
Student Thesis No. 837

Robust model-based deep reinforcement learning for
flow control

Janis Geise

Examiner: Prof. Dr.-Ing. Rolf Radespiel
Institute of Fluid Mechanics
Head of Institute: Prof. Dr.-Ing. R. Radespiel
Braunschweig University of Technology

Supervisor: Dr.-Ing Andre Weiner (TU Braunschweig)

Publication: January 2023

Affidavit

I, Janis Geise, declare that I have authored this student thesis independently, that I have not
used other than the declared sources and resources, and that I have explicitly marked all material
which has been quoted either literally or by content from the used sources.

Braunschweig, 31.01.2023

i

Abstract

Active flow control has the potential of achieving remarkable drag reductions in applications for
fluid mechanics, when combined with deep reinforcement learning (DRL). The high computa-
tional demands for CFD simulations currently limits the applicability of DRL to rather simple
cases, such as the flow past a cylinder, as a consequence of the large amount of simulations
which have to be carried out throughout the training. One possible approach of reducing the
computational requirements is to substitute the simulations partially with models, e.g. deep
neural networks; however, model uncertainties and error propagation may lead an unstable
training and deteriorated performance compared to the model-free counterpart. The present
thesis aims to modify the model-free training routine for controlling the flow past a cylinder
towards a model-based one. Therefore, the policy training alternates between the CFD envi-
ronment and environment models, which are trained successively over the course of the policy
optimization. In order to reduce uncertainties and consequently improve the prediction accu-
racy, the CFD environment is represented by two model-ensembles responsible for predicting
the states and lift force as well as the aerodynamic drag, respectively. It could have been shown
that this approach is able to yield a comparable performance to the model-free training routine
at a Reynolds number of Re = 100 while reducing the overall runtime by up to 68.91%. The
model-based training, however, showed a high dependency of the performance and stability on
the initialization, which needs to be investigated further. An increase of the Reynolds number
to Re = 500 and Re = 1000 revealed several issues within the model-free training routine,
such as a dependency of the stability of the policy optimization on its initialization, which were
encountered in the subsequently conducted model-based trainings as well.

iii

Contents

Nomenclature vii

1 Introduction 1
1.1 Related work . 1
1.2 Present work . 4

2 Theoretical background 5
2.1 Reinforcement learning . 5

2.1.1 General principle of reinforcement learning 5
2.1.2 Markov decision process . 5
2.1.3 Deep reinforcement learning . 6

2.2 Model-free DRL . 6
2.2.1 Proximal policy optimization . 6
2.2.2 Disadvantages of model-free DRL algorithms 7

2.3 Model-based DRL . 8
2.3.1 Challenges of model-based DRL . 8

3 Numerical method 10
3.1 Flow past a cylinder . 10

3.1.1 Numerical setup of the flow problem . 10
3.1.2 Domain discretization . 11
3.1.3 Adjustments for higher Reynolds numbers 13

3.2 Libraries and computational resources . 14
3.2.1 Phoenix HPC . 14
3.2.2 AWS . 14
3.2.3 PyTorch . 14
3.2.4 OpenFOAM . 14
3.2.5 Apptainer . 15
3.2.6 OpenMPI . 15
3.2.7 Drlfoam . 15

4 Modeling the CFD environment 16
4.1 Influence of the buffer size and trajectory length for MF-training 16
4.2 Overview of possible approaches for MB-DRL . 20

4.2.1 One global environment model vs. one new model each episode 21
4.2.2 Influence of the model architecture . 24
4.2.3 Separating predictions of cL and pi from predicting cD 25
4.2.4 Influence of the number of input time steps on the prediction error 27
4.2.5 Low-pass filtering of the cD trajectories 30
4.2.6 Prediction of the change of state instead of the next state 30

5 Results 32
5.1 Initial approach of integrating a MB-training into drlfoam 32

5.1.1 Optimizing the number of episodes for training the environment models . 33
5.1.2 Influence of the trajectory length . 35
5.1.3 Assessment of the final policies . 37
5.1.4 Extension to model-ensemble . 39
5.1.5 Optimization of the training routine . 43
5.1.6 Conducting a MB-training on different systems 44

v

vi Contents

5.2 Generalization of the training routine . 46
5.2.1 Early stopping of the model-training . 46
5.2.2 Comparison of the prediction accuracy . 47
5.2.3 Influence of the number of models within the ensemble 49
5.2.4 Alternation between model-based and model-free episodes 51
5.2.5 Improvements of the training routine and migrating to AWS 54

5.3 Comparison of the final results for Re = 100 . 59
5.4 Model-based training at higher Reynolds numbers 61
5.5 Comparison of the final results for Re = 500 . 64

6 Conclusion 65

Bibliography 68

List of Figures 71

List of Tables 74

A Appendix 75
A.1 Navier-Stokes equations for incompressible flow 75
A.2 Adjustments for higher Reynolds numbers . 76
A.3 Influence of the buffer size and trajectory length (MF-DRL) 77
A.4 Integration of the model-based approach into drlfoam 78
A.5 Hyperparameter settings . 80

A.5.1 PPO . 80
A.5.2 One global environment model vs. one new model each episodes 80
A.5.3 ME-MB-DRL . 80

A.6 Generalization of the training routine . 81
A.6.1 Network architecture study new training routine 81
A.6.2 Final improvements to the new training routine 83

A.7 Final results for a Reynolds number of Re = 100 85
A.8 Model-based training at higher Reynolds numbers 86

Nomenclature

Latin symbols

A action space [−]
a actions [−]
b buffer size [−]

cD drag coefficient [−]
c∗

D drag coefficient scaled to interval [0, 1] [−]
cL lift coefficient [−]
c∗

L lift coefficient scaled to interval [0, 1] [−]
d diameter [m]
l trajectory length [s]
l∗ dimensionless trajectory length [−]
p static pressure [N/m2]
R correlation coefficiant [−]
r radius, rewards [m, −]
r∗ rewards scaled to interval [0, 1] [m]
Re Reynolds number [−]
R reward space [−]
S state space [−]
s states [−]
t time [s]
t∗ time scaled to interval [0, 1] [−]
u velocity of the free stream in x-direction [m/s]
u velocity vector [m/s]
u

∗ dimensionless velocity vector [−]
v velocity of the free stream in y-direction [m/s]
W entropy [−]
x x-component in cartesian coordinate system [m]
x∗ dimensionless x-component in cartesian coordi-

nate system
[−]

x coordinate vector in cartesian coordinate system [−]
x

∗ dimensionless coordinate vector in cartesian co-
ordinate system

[−]

y y-component in cartesian coordinate system [m]
y∗ dimensionless y-component in cartesian coordi-

nate system
[−]

Greek symbols

α first parameter of beta-distribution [−]

vii

viii Nomenclature

β second parameter of beta-distribution [−]
∆ Laplace operator [−]
γ discount factor [−]
µ mean [−]
σ standard deviation [−]
∇ Nabla operator [−]
ν kinematic viscosity [Pa ∗ s]
ω rotational velocity of the cylinder [1/s]
π policy [−]
π∗ optimal policy [−]
ρ density [kg/m3]

Abbreviations

AR Aspect ratio
AWS Amazon web services
CFD Computational fluid dynamics
CFL Courant-Friedrichs-Lewy number
CPU Central processing unit
DRL Deep reinforcement learning
GAE Generalized advantage estimation
GPU Graphics processing unit
MDP Markov decision process
HPC High performance computing
MB Model-based
ME Model ensemble
MF Model-free
ML Machine learning

MSE Mean squared error
NN Neural network
PSD Power spectral density

Indices

∞ free stream
Θ parameters of a neural network [−]

Chapter 1

Introduction

Increasing fuel cost and environmental concerns are driving the necessity of reducing CO2 and
NOx emissions in aviation. Since an electrification of aircraft is significantly more challenging
than e.g. for cars, other possibilities for the reduction of fuel consumption need to be inves-
tigated. One promising approach is referred to as flow control, aiming to reduce for example
the drag of an airfoil. Flow control methods can hereby divided into passive flow control (PFC)
and active flow control (AFC) [2]. Drag reduction using passive flow control methods can be
achieved by an optimization of the wing surface or the airfoil geometry, e.g. in order to in-
crease the amount of laminar flow, which is generally known as natural laminar flow (NLF) [15].
However, passive flow control methods need to be optimized for a certain design point limiting
the possibilities with respect to the drag reduction and capabilities for generalization. Active
flow control methods on the other hand use additional energy, e.g boundary layer suction, to
actively control the flow based on the current flow conditions [2]. This method, although requir-
ing additional energy, shows a greater potential with respect to the achievable drag reduction
while mitigating the disadvantages of passive flow control methods. Finding an optimal control
law, however, is not trivial since the required amount of e.g. suction is not only dependent
on the current design point but influenced by outer disturbances such as wind gusts as well,
making a manual definition of an optimal control law not feasible. The developments in ar-
tificial intelligence (AI) and especially deep reinforcement learning (DRL) over the last years
show great capabilities of learning optimal control laws in high dimensional action spaces [50].
DRL is already utilized in fluid mechanics e.g. for turbulence modeling [28, 16, 23] or solving
partial differential equations [34]. Combining DRL with computational fluid dynamics (CFD)
in order to solve flow control problems yielded promising results so far, but the usage of CFD
and associated requirements with respect to the computational resources limits the applicability
of DRL for active flow control currently to rather simple problems.

1.1 Related work

Although there have been recent studies which utilize DRL for more complex flow control prob-
lems, e.g. in [10], the two-dimensional flow past a cylinder is a frequently used test case for the
application of active flow control using DRL. This is reasoned by the simplicity of the numerical
setup and well-known flow characteristics. The flow around a cylinder was thoroughly bench-
marked by [36], providing the definition of the numerical domain, inlet and boundary conditions
as well a characteristic values for cL and cD. As a consequence, the results of this study were
later used in a variety of subsequent studies focusing on the application of DRL for active flow
control.

Controlling the flow past a cylinder using DRL was successfully conducted firstly by [31] at a
Reynolds number of Re = 100. In order to reduce the lift and drag acting on the cylinder, an

1

2 1. Introduction

injection of mass flow at the cylinder surface was applied. The agent was trained with the PPO-
algorithm [40] and finally able to achieve a drag reduction by 8% while only injecting a mass
flow rate of 0.5% of the total mass flow through the domain. However, this approach yielded
high runtimes since the agent only interacted with a single environment each episode limiting
the ability of testing more challenging environments. It was found by [32], that the execution
time of the CFD simulations made up 99.7% of the complete training time, which motivated to
improve the current implementation further. In order to decrease the computational demands
and runtime, this approach was optimized in a next step by [32]. The execution of the CFD
simulation was parallelized, which enabled the agent to learn with the experiences of multiple
environments at the same time. With this approach, it was possible to decrease the required
runtime by a factor of up to 60 compared to a training with a single environment [32].

An alternative approach of active flow control was taken by [8], here the A2C-algorithm was
utilized in order to train the agent. The agent learned to control the flow by actuating two
plasma actuators with a certain burst frequency instead of two continuous jets as conducted in
[32]. The bursts lead to a reattachment of the flow and as a consequence were able achieve a
drag reduction of 22.6%.

In a next step, [26] modified the PPO-algorithm aiming to optimize the sensor layout of the
probes placed in the flow field. The agent was trained for flows with Reynolds numbers between
Re = 100...216. At a Reynolds number of Re = 120, a drag reduction of 18.4% could have been
achieved by using 12 pressure probes placed in the wake of the cylinder. However, it was shown
that the number of required pressure probes can be decreased to five without a experiencing a
significant deterioration with respect to the achieved performance.

A different approach for training the agent with PPO was investigated by [30]. Here, the setup
of [36] was used as well, but instead of defining the reward function with the obtained cL and
cD values, here dynamic mode decomposition (DMD) is utilized. Further, a direct numerical
simulation (DNS) was used in order to provide high-fidelity data of the flow field, the flow field
is then decomposed using DMD at the 63 probes placed in the wake of the cylinder. Overall, a
drag reduction of 8% could have been achieved, which is in accordance to the results presented
in [31].

The numerical setup of [31] was adapted by [45] in order to analyze the ability for generalization
of the training routine with respect to the Reynolds number. Therefore, the number of jets
responsible for the mass flow injection was increased to four instead of two jets. The PPO-
algorithm was utilized to train the agent on flows with Reynolds numbers of Re = 100, 200, 300
and Re = 400. The agent was finally able to achieve drag reductions between 5.7% for Re = 100
and 38.7% for Re = 400. Further, this algorithm showed a great potential of adopting to flows
with different Reynolds numbers and therefore able to yield a good performance on any unseen
Reynolds number between Re = 60...400 [45].

The next large improvement to the ability of controlling the flow past a cylinder was made by
[49]. Here, stable trainings with PPO up to a Reynolds number of Re = 2000 using PPO and two
jets at the cylinder surface were conducted. The chosen setup was hereby the same as the one
used in [31], the bursts suggested by the agent were smoothed in order to achieve a continuous
mass flow rate with respect to the time analogously to the work done by [32]. The agent was
able to reduce the drag by 17% for Re = 2000 while a decrease of even 19% was achieved at
Re = 1000. It further could have been observed that in contrast to low Reynolds numbers, the
agent increases the frequency of the actuation significantly in order to delay the detachment of
the flow by forcing a breakdown of the large vertices into smaller ones [49]. Additionally, it was
tested if the training time of the agent can be reduced if the training is not initialized with a
random policy but with a pre-trained policy of trainings with lower Reynolds number. It was
found that this approach yields good results if the flow physics of these two cases are similar.

1.1 Related work 3

Figure 1.1: Rotation of the cylinder during the flow simulation [47]

However, if the differences within the Reynolds number become too large, e.g. initializing a
training for Re = 2000 with a policy trained with flows at Re = 100, the training yields no
improvements with respect to the ability of controlling the flow.

Although the agent was able to efficiently control the flow in all presented studies, the overall
approach of using an injection of mass flow, either continuous or by discrete bursts, to delay the
detachment of the boundary layer remained the same across all studies. A different approach
for the actuation was developed by [47], here instead of a mass flow injection, the cylinder was
rotated around the z−axis with a variable angular velocity Ω(t) as depicted in fig. 1.1. The
goal of the agent was to find the optimal control law, meaning the angular velocity depending
on the current state of the flow simulation. This approach was able to achieve drag reductions
up to 16% for a Reynolds number of Re = 100 while the angular velocity required a maximum
percentage of the inflow velocity of 8% and 0.8%, respectively, depending on the reward function
used [47].

The approach of [47] in combination to the PPO-algorithm implemented in the work of [32] was
adopted by [6] and optimized further by [9]. A qualitative comparison of the controlled flow
using the implementation of [6] is depicted in fig. 1.2, here the tangential velocity of the cylinder
surface corresponds to a maximum of 25% of the average inflow velocity. It can be seen clearly
that the agent is able to reduce the vortex shedding in the wake of the cylinder significantly.
However, the training of the agent, although a multi-environment approach is utilized requires
long runtimes and high computational costs.

The work of [41] finally aimed to alter the model-free training routine implemented in [6] towards
a model-based approach in order to accelerated the training of the agent. Recurrent neural
networks, trained on data of the model-free training, were utilized for approximating the CFD
environment, however, this approach was not able to maintain the required prediction accuracy
over the course of the training.

Figure 1.2: Comparison of the uncontrolled flow (top) with the controlled flow (bottom) at
Re = 100 using the model-free DRL algorithm implemented by [6]

4 1. Introduction

1.2 Present work

This project1 is a continuation of the work done by [6] and [9], a first attempt to use a model-
based approach in order to accelerate the training process was implemented by [41]. The drlfoam
framework, which is based on the work of [6] and [9] provides the model-free training routine used
as a starting point. The objective of this thesis is to derive requirements for a potential model-
based approach in a first step. Therefore, the influence of the buffer size as well as the trajectory
length on the training stability and performance with respect to the received rewards will be
investigated. In a next step, various different approaches to model the CFD environment with
fully-connected deep neural networks will be tested, these approaches operate on the generated
data of the model-free PPO-training aiming to proof the general feasibility of model-based DRL
for controlling the flow past a cylinder. The most promising approach is then integrated into
the PPO-training routine and successively improved further. After the successful integration
of the model-based approach into the PPO-training routine, the training stability with respect
to the derived requirements is analyzed, a special emphasis will be payed on the influence of
the trajectory length as well as the alternation between model-based and model-free episodes.
Lastly, it will be investigated if the model-based approach can be adopted to flows with higher
Reynolds numbers.

1The code developed in this thesis is publicly available under:

https://github.com/JanisGeise/robust_MB_DRL_for_flow_control/

Chapter 2

Theoretical background

There exits a vast variety of algorithms and methods for reinforcement learning (RL) and deep re-
inforcement learning (DRL) in order to solve complex, high-dimensional problems with machine
learning. The applicability of such algorithms, however, requires a fundamental understanding
of the underlying mathematical principles and differences within these methods and is therefore
not straightforward to implement. This section will give an overview of the fundamentals of
reinforcement and deep reinforcement learning, followed by an introduction into the two general
approaches, namely model-free DRL (MF-DRL) and model-based DRL (MB-DRL).

2.1 Reinforcement learning

Reinforcement learning (RL) refers to the part of machine learning aiming to imitate the human
learning process [7]. In contrast to other machine learning techniques such as supervised learning,
in RL a controller (agent) gathers experience by interacting with an environment [44]. These
interactions are utilized by the agent to develop a strategy (policy) on how solve the given task
in the most efficient way. Comprehensive explanations on RL can be found e.g in [13, 3, 33] and
[7].

2.1.1 General principle of reinforcement learning

Figure 2.1 depicts the general principle of RL. As mentioned, the agent interacts with an envi-
ronment by taking an action at. The environment is hereby in a current state st and transitions
to a next state st+1 due to a taken action at [13]. All states si are part of the state space s ∈ S,
denoting all possible states which can be transitioned to or from. The actions are constrained by
the action space a ∈ A denoting all possible actions which can be taken within the environment.
Based on the taken action at, the agent receives a reward rt from the environment along with
the next state st+1. In case the agent has no access to the full state s, instead of the state it
receives an observation o which is a part of the state, O ⊂ S. The reward r lies in the reward
space r ∈ R, denoting all possible rewards achievable. The agent is then adjusting its policy
π in order to maximize the rewards based on the received observations and the corresponding
reward. The policy hereby denotes the set of rules the agent is following for sampling its actions
from [3]. To accelerate the learning process, multiple interactions with the environment are
collected before feeding back to the agent. This so-called trajectory may contain either a finite
or infinite amount of experience tuples with the encountered states, actions and rewards [13].

2.1.2 Markov decision process

The Markov decision process (MDP) is a mathematical formalization of the aforementioned
principle of RL. The transition from st → st+1 underlies probabilistic principles rather than

5

6 2. Theoretical background

Figure 2.1: Principle of reinforcement learning [44]

being deterministic, due to the fact that the transition dynamics of the environment are generally
not or only partially known by the agent [37]. Consequently, there exists a transition probability
P(st+1|st, at) for transitioning to the next state st+1 when being in a state st and a given at

[35]. The action at is generally sampled from a probability distribution given by the policy as
π(at|st) and therefore also non-deterministic [37].

In practice multiple experiences of interactions between the environment and the agent are
collected and saved as trajectory before updating the policy. The length of the trajectory is
referred to as the horizon, which can either be finite or infinite depending on the given task. A
discount factor γ is introduced in order to make recent events more valuable compared to events
in the past as

R =
∞

∑

t=0

γtrt+1, γ ≤ 1 (2.1)

where R denotes the cumulative reward of the trajectory [35]. A discount factor of γ = 0 would
mean that the agent only takes the action yielding the highest reward at this time step and
therefore acting greedy, without considering that another action which is unfavorable at the
moment but may lead to a higher reward in the future [44].

2.1.3 Deep reinforcement learning

The state and action spaces of physical systems in general is high-dimensional, e.g. in CFD each
grid point contains the flow properties of each time step while (for subsonic flow) all points in
the flow field are affecting each other. A manual definition of the policy or the usage of tabular
methods as it is done e.g. in Q-learning is therefore unfavorable due to the high computational
costs [35]. Deep neural networks as non-linear function approximators on the other hand are
great at mapping high-dimensional inputs to outputs and have therefore a large potential for
approximating arbitrary policies [7]. The combination of RL and deep neural networks is referred
to as deep reinforcement learning (DRL).

2.2 Model-free DRL

In model-free DRL (MF-DRL), the agent interacts directly with the environment as depicted
in fig. 2.1. There have been many algorithms developed over the last years, e.g. SAC [14] or
TRPO [38]. Since this thesis utilizes proximal policy optimization (PPO) [40] for training the
agent, this algorithm will be presented briefly in the following. A thorough description of the
implementation of PPO can be found in the previous work of [6] and [9].

2.2.1 Proximal policy optimization

Proximal policy optimization (PPO) is based on TRPO and developed by [40], but in contrast
to TRPO the implementation and usage is significantly simpler. The PPO-algorithm consists
of a value network for approximating the state-value function v(s) and a policy network for
approximating the state-action function q(a). These two networks are both fully connected,

2.2 Model-free DRL 7

Figure 2.2: Pseudo-code of the PPO-algorithm [40]

deep neural networks. The policy network is responsible for suggesting an action based on the
current state the environment is in. The value network estimates the expected return at the end
of the trajectory based on the current state [6]. The general principle of the PPO-algorithm is
shown in fig. 2.2. Additionally, an action-advantage function estimates the advantage between
taking an action in the current state over following the current policy. Herefore, PPO utilizes the
generalized advantage estimator (GAE) [39]. This increases the likelihood of taking favorable
actions yielding high rewards over unfavorable actions [40]. In order to avoid too large policy
updates, which may lead to instabilities, the gradient for updating the policy is clipped as shown
in figure 2.3.

Figure 2.3: Clipping of advantages [40]

2.2.2 Disadvantages of model-free DRL algorithms

Model-free DRL algorithms are generally known for running very stable while yielding good
results at the same time. However, a main disadvantage is their poor sample efficiency causing
long runtimes and high computational costs for more complex applications, since past experi-
ences of interactions with the environment can not be re-used over the course of the training
[18].

Another issue which all DRL algorithms are affected by is the dependency of the performance on
the initialization. As discussed in the previous section, DRL-algorithms are non-deterministic,
an unfavorable initialization of the model weights and biases may increase the required runtime
for reaching a satisfying result or in some cases may lead to no learning progress at all. This
behavior is shown in fig. 2.4 for TRPO in a sparse reward environment conducted by [17]. The
thick line marks the median reward while the shaded area denotes the corresponding standard
deviation. Clearly it can be seen that the reward can cover a wide range from high rewards
down to a point of complete failure. To counter this issue, in practice the rewards a generally
averaged over multiple different initialization (seed values) in order to account for a too favorable
or unfavorable initialization of the models.

While the aforementioned issues affect model-free DRL algorithms in general, when using DRL
for real-life applications or physical systems, there arise additional problems. The simulation
of physical systems, e.g. in CFD, requires significantly longer runtimes and computational
resources as for example generating images of a video game. This currently leads to a strong

8 2. Theoretical background

Figure 2.4: Performance of TRPO and VIME on the Walker2D locomotion task [17]

limitation of the available applications of DRL for flow control applications and even for those
rather simple cases the CFD part makes up 99.7% of the total runtime [32].

Despite the high computational demands and costs involved, the exploration of the agent during
training is another issue. For technical applications such as autonomous cars, random actions
are potentially harmful and therefore a major safety concern. However, in order to achieve
high rewards and a robust policy, exploration is indispensable. These disadvantages of MF-
DRL algorithms result in the necessity of modeling the real environment and then let the agent
interact with these environment models. This approach is called model-based DRL and will be
discussed in the next section.

2.3 Model-based DRL

Model-based DRL (MB-DRL) aims to train additional models for learning the system dynamics
of the real environment, which then can be used as surrogate models for training the agent [50].
In contrast to model-free algorithms, the sample efficiency is significantly better since experiences
of the interactions with the real environment can be re-used for training the environment models.
However, the applicability of those algorithm is highly dependent on the model accuracy and
complexity of the environment making it a challenging task [1].

2.3.1 Challenges of model-based DRL

Training sufficiently accurate environment models is still a major challenge in model-based DRL
as a result of aleatoric and epistemic uncertainties. Aleatoric uncertainties are referred to as
stochastic model-inherent uncertainties caused by the non-deterministic behavior of deep neural
networks [4]. Epistemic uncertainties on the other hand are systematic uncertainties resulting
from a limited amount of training data [50]. As a consequence, the environment models can not
see all possible states during training leading to inaccurate predictions of the environment state
for a given unseen input state. These model inaccuracies are further exploited by the policy
resulting a good performance in the simulated environment but a worse performance when
tested in a real environment, referred to as model-bias [50]. This exploitation leads to a policy
optimization to regions where no or only sparse training data is available causing unfavorable
performance and stability issues [21]. With increasing length of the horizon these uncertainties
are amplified as a consequence of error propagation, since the predicted state of the environment
model st is used as input into the environment model in order to predict st+1.

Although MB-DRL suffers from the same initialization problems their MF counterpart as already
shown in fig. 2.4, this issue deteriorates for MB-DRL due to the additional environment models
which are initialization-depended as well, leading to a further destabilization of the training pro-
cess [7]. The stability of the training is from paramount importance, especially when combining

2.3 Model-based DRL 9

DRL and CFD due to the stability of the flow simulation itself. In contrast to e.g. video games,
the performance of the agent highly influences the availability of training data. Due model-bias
an unfavorable policy may result in actions which cause the flow simulation to diverge. In such
cases, there exists no guarantee of generating enough or any training data at all to update the
environment models. A major challenge of modeling physical systems is therefore the correct
handling of such exceptions and dealing with incomplete or no training data.

In order to solve or at least mitigate the issue of model-bias and model inaccuracies there have
been developed a variety of different techniques. One commonly used approach is to utilize a
model ensemble (ME) instead of only one single environment model, e.g. in ME-TRPO [21]. The
ensemble is here trained on the same training data, but each model in the ensemble is initialized
differently and the order in which the training data is fed into the environment models differs. For
predicting the next state si+1, a model is randomly chosen out of the ensemble. This technique
has proven to be able to reduce the aleatoric uncertainties and the model-bias significantly while
only little adjustments to existing DRL algorithms are necessary. An example of the principle
of a training using model ensembles instead of a single model is depicted in algorithm 2.5. From
this figure it can be seen that the only real difference is the initialization of an ensemble instead
of a single environment model while the rest of the implementation remains overall the same.
Due to this fact, the present thesis utilizes an approach similar to the one shown algorithm 2.5.

Another possibility is modeling of the uncertainties itself. This can e.g. be achieved by using
Bayesian networks as it is done in [43] and [19] and in the PETS algorithm [4]. However, the
complexity of such an implementation is significantly higher than the aforementioned method.
Another, relatively new approach is to train additional models on the error between the real
and the model-generated trajectories and then correct the model-generated trajectories by this
error. This so-called domain adaption is utilized in AMPO presented in [42, 48] and [12]. A
largely simplified version of this idea was implemented and tested in this thesis as well and will
be discussed in section 5.2.5.

Figure 2.5: Pseudo-code of the ME-TRPO algorithm [21]

Chapter 3

Numerical method

The following section presents the numerical setup used in this thesis. Since this thesis follows
up on the work done in [6, 9] and [41]; the flow control problem in general remains the same as
in the previous work. However, there are some minor adjustments withing the numerical setup
as well as the discretization of the numerical domain which will be presented in the following.
A comprehensive overview of the numerical setup can be found in [6].

3.1 Flow past a cylinder

The incompressible, two-dimensional flow past a cylinder is a frequently used test case for
flow control problems and benchmarks, e.g. in [36], since the theoretical foundations of the
present flow characteristics are well established. An additional advantage of this test case is
the comparably low computational cost allowing to conduct a vast variety of simulations while
keeping the required runtime to a minimum level.

In the original work conducted in [32, 8] and [10], the flow control is achieved by an injection
of mass flow using plasma actuators. These actuators are controlled by deep neural networks
which where trained using MF-DRL. In contrast to this form of flow control method, instead
of mass flow injection the cylinder is rotated with an angular velocity ω depending on the
current state, similar to the work presented in [47]. The angular velocity ω is sampled from a
beta-distribution outputted by the policy network and bound by the interval ω ∈ [−5, 5] rad/s.
Further, the reward function is defined as

rt(st, at) = 3 − (cD + 0.1|cL|) (3.1)

hence the goal is to minimize the forces acting on the cylinder. For more detailed information
the reader is referred to [6] and [9].

3.1.1 Numerical setup of the flow problem

The geometry of the numerical domain remains the same to all previous work in order to ensure
comparability. In contrast to the aforementioned thesis projects, additional to the forces at the
cylinder surface, pressure values are logged throughout the simulation at the marked positions
in figure 3.1. These additional information on the current state are used as input into the
policy network. Providing such information on the flow may reduce the issue of over-fitting as
a consequence of low-dimensional data as occurred in [41] when moving towards a MB-training.
There are currently 12 probes placed in the wake of the cylinder, in the following denoted as
states.

10

3.1 Flow past a cylinder 11

Figure 3.1: Geometry of the numerical domain, probes denotes the sensors placed in the wake
of the cylinder

Incompressible Navier-Stokes equations

The two-dimensional flow past a cylinder can be described with the Navier-Stokes equations for
incompressible flow. The Navier-Stokes equations are obtained in their non-dimensional form
and can be found in A.1 along with the corresponding quantities for non-dimensionalization.

Initial- and boundary conditions

The boundary conditions remain the same as in all previous work, but for the sake of complete-
ness they shall be presented here briefly. At the upper- and lower boundaries of the domain, a
no-slip condition is applied as u∗(x∗, y∗ = 0) = 0 and u∗(x∗, y∗ = h/d) = 0. The same condition
is enforced to the cylinder surface as well. A parabolic inflow velocity profile is defined as

u∗(x∗ = 0, y∗) =
4Umy(h − y)

h2
(3.2)

at the inlet, where Um = 1.5 u∞ at y = h/2 with h denoting the height of the domain. The
velocity in y−direction is set to v∗ = 0. At the outlet, zero-pressure as well as a zero velocity
gradient normal to the outlet is applied.

The cylinder diameter d = 0.1m is used to non-dimensionalize all spacial quantities and remains
constant. Throughout this thesis the Reynolds number is always kept constant at Re = 100,
except for section 5.4. With a kinematic viscosity of ν = 1 ∗ 10−3, this leads to a free stream
velocity at the inlet of u∞ = 1m/s.

The initialization of the flow field can be divided into two parts. In a first part, the transient
phase up to a quasi-steady flow field is computed. The flow field is initialized with zero at
t∗ = 0 and the flow remains uncontrolled until reaching a quasi-steady state at t∗ = 40. This
simulation is referred to as the base case. As described in [32] and [9], multiple simulations are
run simultaneously within every episode in order to accelerate the training process. With the
flow control starting in the quasi-steady state, all simulations are initialized with the base case
at t∗ = 40 and then run up to a specified end time. This initialization avoids the necessity to
compute the transient phase for each simulation run in the training saving a significant amount
of computational resources.

3.1.2 Domain discretization

The numerical domain is discretized using the built-in discretization tools blockMesh of the open-
source CFD software OpenFOAM. The blockMesh utility discretizes the domain into hexahedral
blocks as depicted in fig. 3.2. A grading in x−direction is used to coarsen the mesh downstream
in order to reduce computational requirements.

12 3. Numerical method

Figure 3.2: Spatial discretization of the flow problem

The domain is decomposed into two subdomains during runtime, which are solved simultane-
ously in order to accelerate the simulation. Hereby, the subdomains contain roughly an equal
amount of nodes. The OpenMPI library (compare section 3.2.6) ensures the exchange of infor-
mation of the flow field at the decomposition interface. The flow field itself is solved with the
incompressible, transient solver pimpleFoam [25]. An example tutorial of solving the flow past
a cylinder is provided in the OpenFOAM documentation [24].

Mesh dependency studies have already been carried out by [6] and [9]. However, in order to save
computational resources, the mesh used in this thesis was coarsened in contrast to these prior
studies. A further coarsening of the mesh reduces the required runtime per simulation signifi-
cantly while the deterioration of the accuracy can be seen as neglectable. In order to quantify
the mesh requirements with respect to the minimal number of grid points, the correlation within
the pressure values at the probe locations, and to the coefficients cL and cD were evaluated for
different mesh refinement levels. The correlation coefficient R between two variables is hereby
defined as

Rxy =
cov(x, y)

σxσy

(3.3)

with cov(x, y) denoting the covariance and σ the standard deviation. The correlation coefficient
is bound by the interval R ∈ [−1, 1] and can be used to calculate the linear correlation between
two variables.

Figure 3.3 shows the differences within these correlation maps ∆Ri for the different refinement
levels of the mesh. Here, the number of grid points is increasing from the lowest refinement
level 0 to the highest level 3. It can be seen clearly that the correlations for refinement levels 0
to 1 change significantly, indicating a strong dependency of the mesh on the flow solution. For
the refinement levels 1 to 2, there is only a minor difference within the correlations, while for
level 2 to 3 the differences are neglectable. Since the goal was an optimization of the required
computational resources, for all further computations the refinement level 2 is seen as sufficiently
mesh independent.

R0 −R1 R1 −R2 R2 −R3

−0.50

−0.25

0.00

0.25

0.50

Figure 3.3: Differences within the correlation heat maps for different grid refinement levels1

1These studies where conducted by my supervisor Dr.-Ing. Andre Weiner and by the time this report was

written not published yet. The usage of this data was permitted by Mr. Weiner.

3.1 Flow past a cylinder 13

Npoints max. AR max. skewness ∆t mean CFL max. CFL
11076 2.33 0.741 5 ∗ 10−4 0.0459 0.32

Table 3.1: Characteristics of the mesh and simulation used in this thesis (CFL numbers are
for the uncontrolled case)

The final number of mesh points as well as additional information regarding the mesh quality
and CFL number can be obtained from table 3.1.

3.1.3 Adjustments for higher Reynolds numbers

Towards the end of this thesis the Reynolds number was increased to Re = 500 and Re = 1000
in order to test the abilities of the environment models to adapt to new system dynamics.
Therefore the mean inlet velocity was increased to u∞ = 5m/s and u∞ = 10m/s, respectively.
As a consequence of the higher Reynolds number, the mesh requirements with respect to the
number of mesh cells increase as well, consequently a new mesh dependency study was conducted.
A refinement of the mesh and increasing the inlet velocity leads to the necessity of decreasing
the numerical time step in order to fulfill CFL-condition, which is defined for a two-dimensional
flow as

CFL = u
∆t

∆x
+ v

∆t

∆y
≤ CFLmax (3.4)

the maximal CFL number depends hereby on the temporal discretization scheme used. For
Re = 500, the time step was decreased to ∆t = 1 ∗ 10−5s in order to fulfill the CFL condition
while ensuring that the amount of interactions between agent and environment remains constant
for the same dimensionless time interval.

In order to conduct the mesh dependency study, the numerical setup presented in [49] was used
as orientation while the grid for Re = 100 was used as a starting point. The results of this
study are presented in fig. 3.4, for both cL and cD an overall convergence behavior can be
seen when refining the mesh, although the cL−value for Npoints = 43350 is decreased compared
to Npoints = 21456. Increasing the number of cells from 11076 to 21456 results in an increase
of cL by 77.89%, a further increase to Npoints = 43350, however, leads to a decrease of cL

from cL = −0.0210 to cL = −0.0427. With Npoints = 84490, cL increases again to a value of
cL = −0.0215 indicating a convergence. The course of cD yields a convergence behavior as well,
starting with cD = 3.492 for Npoints = 11076. An increase of the mesh cells to Npoints = 21456
causes a decrease of 4.2%. An increase of Npoints to 43350 corresponds to a decrease of cD

by 2.9% while a further refinement to Npoints = 84490 only shows a minor decrease by 1.3%.
Since cD contributes the major part of the rewards, an accurate computation of cD is seen as
decisive factor for determining the number of required mesh cells, on the other hand the runtime

Figure 3.4: Grid convergence study for Re = 500

14 3. Numerical method

increases significantly with increasing number of mesh cells; therefore Npoints = 43350 is chosen.
The temporal evolution of the corresponding lift and drag coefficients with respect to the number
of mesh cells can be found in the appendix, section A.2.

The chosen setup leads to an average Courant number of CFLavg = 0.103 and a maximum
Courant number of CFLmax = 0.757. The mesh dependency study conducted for Re = 1000
can be found in the appendix, section A.2; the chosen number of mesh cells remains the same as
for Re = 500. The time step was decreased further to ∆t = 5 ∗ 10−5s to ensure the stability of
the simulation while maintaining a constant sample frequency as already discussed. The average
and maximum CFL numbers are similar to the ones for presented for Re = 500.

3.2 Libraries and computational resources

The following section gives a brief overview of important libraries required for running a training
with the PPO-algorithm. This overview is by no means comprehensive, but for ensuring the
ability of reproducing the results presented throughout this thesis, the most important software
and their versions are presented.

3.2.1 Phoenix HPC

Most of the trainings are run on an HPC cluster of the TU Braunschweig2 due to the high
computational costs of running a vast variety of parameter studies. For comparison with respect
to runtimes as well as for testing purposes, additional trainings are run on a local machine
equipped with an Intel ® Core™ i7-11800H CPU with 8 cores and 32 GB of RAM. It is important
to note that all trainings, for the PPO-algorithm as well as for training the environment models,
CPUs are used instead of GPUs.

3.2.2 AWS

Amazon Web Services Inc. (AWS) is a cloud computing provider hosted by Amazon Inc.3

When conducting a training on the Phoenix cluster, instabilities occurred as will be described
in section 5.2.5. To investigate a possible dependency of the stability of the training routine on
the available computational resources, towards the end of this thesis the training routine was
migrated to AWS. The overall training procedure and required libraries, however, remain the
same.

3.2.3 PyTorch

PyTorch is an open-source framework for deep learning in Python developed and maintained by
the PyTorch foundation [29]. PyTorch provides an API for Python as well as C++, while
the backend is implemented in C++ making it a fast, but at the same time user friendly
library. Additional to tools for deep learning, PyTorch implements a variety of methods for
data processing and optimization frameworks. The optimization frameworks used in this thesis
are the Adam optimizer [20] and the AdamW optimizer [22], which is an improved version of the
Adam optimizer. In this thesis, PyTorch v1.12.1 is used, more information on the underlying
principles of PyTorch can be found in [27].

3.2.4 OpenFOAM

OpenFOAM is an open-source CFD software, which is able to solve a wide range of fluid me-
chanical problems [24]. In this thesis, OpenFOAM v2206 is used for discretization as well as

2Phoenix cluster of TU Braunschweig: https://www.tu-braunschweig.de/it/dienste/21/phoenix,

last access: 09.11.2022
3https://aws.amazon.com/, last access 18.12.2022

3.2 Libraries and computational resources 15

solving the flow field. OpenFOAM is written in C++ making it possible for coupling with other
frameworks, e.g. PyTorch, or implementing custom functionalities and extensions. Additionally
to the CFD software itself, OpenFOAM provides a variety of tutorials and test cases, one of
which is the incompressible flow past a cylinder similar to the flow problem presented in section
3.1.1 [24].

3.2.5 Apptainer

Apptainer (former Singularity) is an open-source framework for containerization of applications
and software4. In contrast to other frameworks, e.g. Docker, Apptainer was designed for HPC
applications and can therefore for example be executed without root privileges.

3.2.6 OpenMPI

OpenMPI is an open-source library for inter-process communication (message passing interface)
and generally required for high-performance computing [46]. In this thesis, OpenMPI v4.1 is
used. More information on OpenMPI can be found in [11].

3.2.7 Drlfoam

This thesis utilizes drlfoam5, a framework for applying DRL for flow control problems in CFD.
Drlfoam currently provides the MF-training routine for controlling the flow past a cylinder,
developed based on [6] and [9], in a standardized interface. It incorporates the aforementioned
libraries in order to make DRL in CFD applicable as well as possibilities to extend the current
implementation by additional environments or methods.

4https://apptainer.org/docs/user/main/, last access: 13.12.2022
5drlfoam is publicly available under: https://github.com/OFDataCommittee/drlfoam

Chapter 4

Modeling the CFD environment

Due to the variety of different possible approaches for modeling the CFD environment with deep
neural networks, prior training an agent with environment models the accuracy and practical
implementation of those models are to be tested. In this section, first the current implementation
of the MF-training is benchmarked in order to derive requirements for stability and performance
of a MB-training. In a next step, the data of the MF-training is used for evaluating the general
feasibility of approximating the CFD environment with models. The work done by [41] is
therefore used as a starting point. It is important to note that all trainings in this section are
performed at Re = 100, the hyperparameter settings of the policy and value network of the PPO-
algorithm remain constant throughout this thesis and can be found in the appendix, section A.1.
This section concludes with a possible method for approximating the CFD environment which
is then used as a starting point for the integration into drlfoam.

4.1 Influence of the buffer size and trajectory length for MF-
training

In a first step, the goal was to investigate the influence of the buffer size and trajectory length on
the received rewards and general performance of drlfoam. These information are then utilized
in order to derive requirements for a model-based training routine with respect to stability of
the training routine.

The model-free training routine as it is currently implemented in drlfoam has mainly the two
parameters buffer size and trajectory length, which influence the performance of the agent in
terms of achieved rewards. The buffer size b denotes the number of simulations (environments)
run parallel in each episode and therefore determines the number of trajectories available in each
episode. The trajectory length l denotes the horizon, considering the sample frequency of 100Hz,
this means 1s of physical simulation time corresponds to 100 interactions between agent and
environment for each trajectory at each episode within the buffer. Considering further a vortex
shedding frequency of f(cL) = 2.67Hz (see section 4.2.4), this results in ≈ 37.45 interactions
per period of cL. Consequently, each second of trajectory length corresponds to 2.67 periods of
vortex shedding for cL if a sample frequency of 100Hz is applied.

Both the buffer size and trajectory length are global variables set at the beginning of the training
and remain constant over the course of the training. The number of processes run in parallel
is always the same as the buffer size in order to ensure that all processes finish at roughly the
same time. Further, all cases are run for 80 episodes since the previous work done by [6] and
[9] indicated a convergence of the rewards within the first 80 episodes. Increasing the number
of episodes to > 80 did not yield any significant improvements as will be discussed at the end of

16

4.1 Influence of the buffer size and trajectory length for MF-training 17

Parameter min. µ max. µ min. σ max. σ

runtimes [s] 5071 41747 66.4 8845.7
rewards [-] −0.20 −0.05 0.05 0.08

cL [-] 3.028 3.152 0.030 0.063
cD [-] 0.003 0.156 0.306 0.585

Table 4.1: Values used for the min- max scaling of cL, cD, runtimes and the rewards

this chapter. To counteract the dependency of the performance on the initialization as discussed
in section 2.2.2, all trainings are averaged over three different seed values.

Figure 4.1 shows the resulting rewards for each combination of buffer size and trajectory length.
As presented in section 3.1, the reward consists of cD and cL, for which the heatmaps can be
found in the appendix, section A.3. For a better comparison, the rewards are scaled to an
interval of [0, 1] using a min- max scaling, consequently r∗ = 0 denotes the lowest and r∗ = 1 the
highest rewards averagely received throughout the training. Further, the reward was averaged
over 3 seeds and all episodes, where µ refers to the mean value and σ to the corresponding
standard deviation. Since the absolute values for σ are generally several orders smaller than the
mean values, µ and σ are scaled independently of each other. This procedure applies to fig. 4.2
and 4.3 as well. The absolute min- and max-values used for the scaling can be found in table
4.1.

From fig. 4.1, mainly two trends can be observed. Increasing the trajectory length leads to a
significant increase in the received rewards from r∗ = 0.0...0.2 for l = 1s up to r∗ = 0.6...1.0
for l = 8s. The increase of the trajectory length from l = 1s to l = 2s yields with up to
50% for b = 10 the largest improvement. This behavior is caused by the fact, that is takes
approximately one second for the agent to reduce cL and cD starting from the uncontrolled flow
with cL ∈ [−1, 1] and cD ≈ 3.19 to values yielding high rewards. If the trajectory ends after
l = 1s, however, then the agent is not able to explore regions with low cD and |cL| values.
With increasing trajectory length, the relative amount of this initial phase decreases leading to
increasing rewards.

Secondly, with respect to the rewards, the buffer size has only little influence on the overall
results. For small buffer sizes such as b = 2 or b = 4 the standard deviation tend to be higher
than for larger buffer indicating stability issues for small buffer sizes. As shown in fig. 4.4b,
for b = 2 with increasing trajectory length the course of the achieved rewards tends to become
unstable, while this behavior could not have been observed for b = 10 as presented in fig. 4.4a.

The available computational resources are another important factor, represented by the required

Figure 4.1: Average rewards received with respect to the buffer size and trajectory length

18 4. Modeling the CFD environment

Figure 4.2: Average runtimes with respect to the buffer size and trajectory length

runtime for each training. As shown in figure 4.2 the runtimes largely depend on the trajectory
length while the influence of the buffer size is neglectable. This is caused by the fact that the
number of cores was always chosen to be equal to the buffer size and therefore all required
simulations for each episode are run parallel. Provided that enough computational resources
are available, the trajectory length remains consequently the only parameter determining the
runtime. From fig. 4.2, it can be seen that for short trajectories, e.g. l = 1s or l = 2s the
increase is neglectable, however, for longer trajectories, the runtime increases significantly. It
is important to note that the standard deviation for trainings run with b = 10 and l = 4s is
remarkably higher than for all other cases. This is probably caused by a high traffic on the HPC
at the time these trainings where run. The standard deviation of the runtimes are generally
increasing with increasing buffer size, since each simulation within the buffer allocates 2 cores. At
some point the resources available are not sufficient for running all simulations parallel without
the necessity of holding processes for their execution. It is therefore concluded that a further
increase of the buffer size to b > 10 is not beneficial considering the low impact of the buffer
size on the rewards.

Figure 4.1 and 4.2 were used in a last step to find possible optimal combinations of buffer size
and trajectory length. Since it is the overall goal to minimize the required runtimes while at the
same time maximizing the rewards, the optimization problem can be formulated as minimization
of the superposition of runtime and inverse of rewards, which is depicted in fig. 4.3. It can be
seen that clearly there is no real optimal combination of b and l since both the rewards and the
runtime increase with increasing trajectory length. The buffer size on the other hand has only

Figure 4.3: Optimum of the runtime and received rewards, the red rectangle marks the mini-
mum min

{

∑

(

µ
[

1

r∗
, t∗

]

, σ
[

1

r∗
, t∗

])}

4.1 Influence of the buffer size and trajectory length for MF-training 19

(a) buffer size b = 10 (b) buffer size b = 2

Figure 4.4: Rewards received throughout the training for buffer sizes b = 2 and b = 10 with
respect to the trajectory length

a neglectable effect on both the runtime and rewards, provided there are enough computational
resources available. Nevertheless, fig. 4.3 shows that small buffer sizes of b = 2 or b = 4 in
combination with long trajectories, e.g. l = 6s or l = 8s are rather unfavorable.

Despite runtime and rewards, the stability of the training itself is a decisive factor for determining
requirements for a MB-training. In this context, stability means not only the execution of the
training without any exceptions or errors but a monotonic, continuous increase of the rewards
over the course of the training. Figure 4.4a and 4.4b depict the received rewards with respect to
the episode number for the buffer sizes b = 2 and b = 10 using different trajectory lengths. The
plots for buffer sizes b = 4, 6 and 8 can be found in the appendix, section A.3. For a buffer size
of b = 10, except for l = 1s, the rewards increase monotonically over the course of the training.
The rewards for l = 1s only shown a minor improvement over the course of the training due to
the transient phase at the beginning of the trajectory as already described. Further, as expected
with increasing trajectory length the rewards increase as well. However, for a buffer size of
b = 2 the received rewards are generally worse than for b = 10. For b = 2 in combination with
l = 4s and l = 8s, the training yields discontinuous rewards suggesting stability issues for long
trajectories in combinations with small buffer sizes.

Another trend observed can be seen in fig. 4.5a and 4.5b, which depicts again the total rewards
received throughout the training. For b = 10 the standard deviation within the received rewards
is generally smaller than for b = 2. Further the convergence behavior for trajectory length of
l ≥ 6s can be observed. For b = 2 and l = 8s the rewards are starting to decrease again while the
standard deviation is significantly higher than for all other cases confirming possible stability
issues when combining long trajectories with small buffer sizes.

These results can now be used to derive requirements for a model-based training routine. In
summary it was found that small buffer sizes, e.g. b = 2 or 4 yield only neglectable worse results
than e.g. b = 10, but may cause stability issues during training. Considering that environment
models require a reasonable amount of data for training and validation as well as additional
data to sample initial states for the model-generated trajectories from, a larger buffer may be
beneficial. The buffer size has shown no significant impact on the required runtime making
an increase in buffer size an efficient way of generating larger amounts of training data for the
environment model. To account for possible trainings on a local machine a MB-training should
therefore be able to run stable with a buffer size of b = 8 as well. Regarding the trajectory
length, due to a convergence behavior and with respect to the required runtime, l = 6s seems to
be sufficiently long. On the other hand the trajectories should have at least a length of l > 1s
in order to achieve a satisfactory performance in terms of rewards. For running a training on a
local machine, l = 2s is in general a good compromise in order to conduct a full MF-training in a
reasonable amount of time. For an HPC application l = 6s yields the highest rewards, however,
even advanced MB-DRL algorithms, such as MBPO, are only able to confidentially predict up

20 4. Modeling the CFD environment

to 200...500 subsequent time steps sufficiently accurate [18]. A maximum trajectory length of
l = 4s is therefore seen as a realistic goal for a MB-DRL algorithm.

Conclusively, the convergence behavior of the PPO-training was investigated. A training with
b = 10, l = 8s was run for 200 episodes in order to make sure that the observed convergence
behavior was not just a local saddle point but marked the convergence boundary. It was found
that the training converged within the first 80 episodes as it could have been observed in all
the prior trainings. The rewards, however, started to oscillate at episode ≈ 175, two out of five
trainings even were aborted due to a divergence of the CFD simulation. This indicates that
there exist an upper limit with respect to the number of episodes before instabilities are starting
to arise. The corresponding rewards with respect to the episode number can be found in the
appendix, fig. A.7.

4.2 Overview of possible approaches for MB-DRL

The work of [41] was taken as a starting point for developing environment models for approxi-
mating the flow simulation. In contrast to [41], the present thesis utilizes fully connected neural
networks instead of recurrent ones, also additional to cL and cD, the pressure values at the
defined probe locations in the wake of the cylinder are used as additional information on the
current state. Modeling the trajectories of the probes is an additional requirement since these
values function as input for the policy network. In a first step, one environment model is trained
on the available training data despite taking the episode number in which the data was cre-
ated into account. Based on the obtained results, the prediction accuracy is then gradually
improved using more complex models and techniques. Since the overall prediction accuracy of
these environment models is to be evaluated and improved, the data for training, validating and
testing the environment models is taken from a MF-training with the buffer size of b = 8 and
a trajectory length of l = 2s. Out of these training data, further only the first 40 episodes are
taken, because within the first 40 episodes the trajectories have the most variance, which means
that for episodes e ≥ 40, the rewards underlay only minor improvements and the trajectories in
general are distributed homogeneously. For assessing the accuracy of the environment models, it
is sufficient to evaluate their performance within the first 40 episodes. If the models are able to
perform accurate predictions over a wide range of differently shaped trajectories (data with high
variance), it can be concluded that they also perform well at data with low variance, namely
for episodes e > 40. This concept ensures at the same time that the computational costs can
be reduced to a minimum, since a vast variety of parameter studies have to be conducted on a
local machine.

(a) buffer size b = 10 (b) buffer size b = 2

Figure 4.5: Total rewards received over the course of the training for buffer sizes b = 2 and
b = 10 with respect to the trajectory length

4.2 Overview of possible approaches for MB-DRL 21

(a) L2−norm with respect to the epoch num-
ber using one global model

(b) L2−norm with respect to the episode
number using one new model each
episode

Figure 4.6: L2−norm of the prediction error for the two different approaches, averaged over
all episodes and trajectories within the buffer

4.2.1 One global environment model vs. one new model each episode

In a first step one environment model was trained on the complete data set. The data set
was therefore split into training (65%), validation (30%) and test data (5%), where the test
data refers to the trajectories which are used to test the trained environment model on. The
hyperparameters of the environment model can be found in the appendix, section A.5.2. The
model was trained using two subsequent time steps as input, in the following denoted as Nt,input,
while the next time step was the state to be predicted. It is important to note that the model
input always consists of the pressure values, ω, cL and cD while the model predicts the state,
cL and cD value of the next time step. During the prediction of the trajectory, the first two
time steps of the trajectory were given as input into the model along with the corresponding
action taken in the CFD environment. The model then predicted the next state pi as well as cL

and cD. This predicted state is then used together with the previous time step and the actions
corresponding to those time steps as new model input in order to predict the next time step,
until all 200 points of the trajectory are predicted. Since the actions remain the same as for the
real trajectories generated in the CFD environment, the model accuracy can directly be assessed
by the difference between the real and the predicted trajectories. For a perfect model without
prediction errors, the predicted trajectories would be exactly the same as the real ones.

Figure 4.6a depicts the L2−prediction error, averaged over all trajectories of the test data set
with respect to the epoch number. It can be seen that the predictions for cL and cD are with
up to ≈ 3% generally quite accurate, however, the predictions for the probes contain errors
up to ≈ 14%. The prediction accuracy of the probes is a major concern, because the states
are directly used as input into the policy network and therefore responsible for suggesting an
action based on the current state. If the predicted state is inaccurate, this is likely to lead to
an unfavorable action and increasing model-bias. Further, fig. 4.6a shows the effect of error
propagation due to model inaccuracies. With increasing epoch number, which corresponds to
the trajectory length, the prediction errors accumulate since the model output of the current
time step is used as input for predicting the next time step. This behavior makes the usage of
longer trajectories, e.g. l = 4s a challenging task, because as can be seen the error accumulates
nearly exponentially.

A direct comparison of a real trajectory generated within the CFD environment with the pre-
dicted one is shown in fig. 4.7. It can be seen that the course of cL can be predicted quite
accurately as indicated from the L2−error. However, as already occurred in the work of [41],

22 4. Modeling the CFD environment

Figure 4.7: Real trajectory generated in the CFD environment in comparison to the predicted
trajectory by the environment model using a global model for all episodes (here
episode 14 is shown)

the minima and maxima of the cL trajectory are not predicted accurately enough, further the
environment model is not able to remain the same frequency leading to a shift in phase with
increasing trajectory length. However, the prediction of cL overall can be seen as sufficiently
accurate when compared to the prediction accuracy of the cD−trajectory. Although the over-
all trend of the predicted trajectory matches the real one up to epoch ≈ 100, the prediction
accuracy for the trajectory of cD is significantly worse than for cL.

Another aspect of using a pre-trained environment model is the flexibility of this approach.
Although being rather simple to implement, the model is required to be trained prior running
a MB-training. This means at first a MF-training needs to be conducted with the exact same
settings as intended for the MB-training, such as Reynolds number, then the environment model
needs to be trained and integrated into the MF-training routine. Once this is completed, a MB-
training can be run, however, if any parameters of the training change, e.g. trajectory length,
number of probes and so on, the complete process of generating training data and training the
environment model needs to be repeated. This behavior directly counteracts the upsides of
MB-DRL such as sampling efficiency.

A much more convenient and efficient approach is to directly combine the MB- with the MF-
training. In this case, the environment models are successively trained every N th episode.
These environment models are used to generate trajectories for a certain number of episodes
in order to train the agent. As soon as the models become too inaccurate, one episode within
the CFD environment is conducted, this data is then used to update the environment models.
This approach, in contrast to the prior one, would be independent of any changes within the
parameters offering a much greater flexibility.

The feasibility of this approach is tested in a next step. Therefore two subsequent CFD episodes
are used in order to train an environment model. The model is then tested on the next CFD
episode, e.g. episode 1 and 2 are used for model training and trajectories of episode 3 is used for
testing the model. This approach allows to reduce the variance within the data to a minimum,
since the trajectories of the test data set are similar to the training data. This approach, however,
may lead to an over-fitting of the models since the amount of available training data is reduced
significantly compared to the previous approach. Secondly, with respect to an integration into
drlfoam this may results in a less robust policy, since the variance within the training data is
reduced as well.

The resulting prediction error of this new approach can be seen in 4.6b, here the L2−norm of
the prediction error is shown with respect to the episode number, averaged over all trajectories
available within each episode. In comparison to the previous approach, the prediction error has

4.2 Overview of possible approaches for MB-DRL 23

Figure 4.8: Real trajectory generated in the CFD environment in comparison to the predicted
trajectory by the environment model using a model trained with trajectories of
episode 3 and 4 (here episode 5 is predicted)

improved significantly, if the standard deviation of the prediction error is taken into account.
Especially the prediction of the pressure values is now decreased to the same range as the
prediction of cL and cD. However, at the beginning of the training the prediction accuracy is
worse than towards the end of the training. This may be a consequence of the high variance of
the training and test data due to random actions taken by the agent at the beginning of the
training. These random actions show obviously not clear pattern, making it challenging to learn
the underlying system dynamics for an environment model. Although statistically the prediction
accuracy improves with increasing episode number, there are still a non-neglectable number of
outliers and points with poor prediction accuracy present. These outliers may have a negative
impact on the stability of a MB-training, because even if the overall accuracy is acceptable, one
or two inaccurate trajectories may steer the policy in an unfavorable region from which it can
not recover.

Figure 4.8 shows a predicted trajectory of episode 5 using the episode-wise trained environment
model. While the prediction accuracy for cL remains about on the same level as for the prediction
using one global model, it clearly can be seen that the prediction accuracy for cD improved
significantly. Although there are deviations from the real trajectory, up to an epoch of ≈ 150
the prediction error is comparable to the prediction error made for cL and concentrates mainly
on the min- and maxima within the trajectory.

An example of an outlier with a rather poor prediction accuracy on the other hand is shown

Figure 4.9: Real trajectory generated in the CFD environment in comparison to the predicted
trajectory by the environment model using a model trained with trajectories of
episode 12 and 13 (here episode 14 is predicted)

24 4. Modeling the CFD environment

(a) real and predicted trajectories using one
global model

(b) real and predicted trajectories using a
model trained with data from the previous
two episodes

Figure 4.10: The trajectories of the probes, corresponding to fig. 4.7 and 4.9

in fig. 4.9. It can be seen that, again, the predictions for cL are comparable to the accuracy
of the previous method, the prediction for cD, however, is even worse and displays the course
of the real trajectory not even qualitatively. But in contrast to the previous approach, for the
episode-wise training of an environment model these high errors remain outliers in an overall
quite accurate prediction whereas for the previous approach the prediction accuracy for cD was
generally poor.

Lastly, fig. 4.10a and 4.10b depict the prediction of the trajectories of the states. The overall
accuracy in both cases is quite well, however, as for the cL trajectory there exists a phase
shifting between the real trajectory and the predicted one. This phase shifting is increasing with
increasing trajectory length and more dominant when using one global model as can be seen from
fig. 4.10a. The usage of an episode-wise trained model is able to mitigate the phase shifting but
the prediction accuracy of the minima and maxima are comparable to the prior approach. Since
the correct prediction of the states is from paramount importance for determining the optimal
action, the prediction accuracy of both approaches is seen as not sufficient. Further, an erroneous
prediction of cD leads to a significant corruption of the rewards, since cD contributes partially
higher to the rewards than cL. Therefore, in a next step it is investigated if an optimization of
the model architecture may lead to an improvement in the prediction accuracy.

4.2.2 Influence of the model architecture

The current environment models used consist of 3 hidden layers with 50 neurons per layer. An
optimization of the number of hidden layers and neurons per layer may improve the prediction
accuracy. In order to assess the the general sensitivity of the prediction accuracy on the model
architecture, a parameter study was conducted using one global environment model on the data
without taking the episode number into account. The results are depicted in fig. 4.11, which
shows the average L2− and L1−norm of prediction accuracy for predicting cD. Although there
exist some unfavorable combinations, e.g. 3 hidden layer and 25 neurons, there is no overall trend
identifiable. This raises the concern, that the result of this parameter study may look completely
different for e.g. a different trajectory length, making it challenging to find a combination which
works well, independently of the setup.

4.2 Overview of possible approaches for MB-DRL 25

Figure 4.11: L2− and L1−norm of the prediction error of cD with respect to the model archi-
tecture

The prediction accuracy for cL, however, may be improved by optimizing the model architec-
ture as depicted in fig. 4.12. In contrast to the results for cD, here the prediction accuracy
improves with increasing number of neurons and number of hidden layers. The L2−norm of the
error converges for Nneuons ≥ 25 and Nlayers ≥ 3, but since the models used in all prior studies
already fulfilled this requirement, it can be concluded that the potential of improving the pre-
diction accuracy by optimizing the model architecture alone is not sufficient and the approach
of modeling the CFD environment has to changed substantially.

4.2.3 Separating predictions of cL and pi from predicting cD

As discussed in the previous sections, the course of the trajectories for cL and p are similar, while
the trajectories for cD have a much more complex shape. The trajectories for cD are generally
discontinuous and show a non-periodic behavior while cL and p behave periodically, motivating
to separate the predictions of cD from the prediction of cL and p. This offers not only a better
prediction accuracy, but also a greater flexibility since now the prediction accuracy of cD can be
improved independently without affecting the prediction accuracy of cL and the states. Since
both models require the same input and only differ in the output, the required adjustments
within the implementation are only minor.

Figure 4.13a depicts the L2− prediction error when using an episode-wise trained environment
model for the states, cL and cD, while 4.13b shown the resulting prediction error when the

Figure 4.12: L2− and L1−norm of the prediction error of cL with respect to the model archi-
tecture

26 4. Modeling the CFD environment

(a) L2−norm for one model predicting cL, pi

and cD

(b) L2−norm for one model predicting cL and
pi, another model for cD

Figure 4.13: Comparison of the L2−norm of the prediction error when using one model to
predict cL, pi and cD vs. one model for predicting cL and pi and a separate
model for predicting cD

prediction of cD is separated form the prediction of the states and cL. It can be seen that despite
some outliers in episode 2, 26 and 30, the overall prediction accuracy improved compared to the
previous approach. The prediction accuracy of the states was not affected negatively, however,
the L2 norm for cL increased especially at the beginning of the training. Since cL only makes
up a minor part of the rewards, the correct prediction of cD is seen as more important at this
point, justifying a deteriorated prediction accuracy for cL.

A comparison of a predicted trajectory with a real trajectory is shown in fig. 4.14. From
this figure it can be seen that the prediction accuracy for cL is in the order of the prediction
accuracy of the previous methods shown. The overall course of cL is predicted quite accurately
and in contrast to prior methods, the phase-shifting problem seems to be neglectable now. The
prediction accuracy of the extrema, especially the minima of cL are worse than before. For the
cD trajectories on the other hand, separating the prediction of cD had a great impact on the
prediction accuracy. Although there is an area at episode 50...100 where the predicted trajectory
diverged noticeably from the real one, the accuracy improved significantly compared to prior
methods. The predictions for the states did improve as well as it can be seen in fig. 4.15.
There exists still a phase-shift for some probes, which is is increasing towards the end of the
trajectory. The prediction accuracy of the minima and maxima improved in general compared
to the previous method.

Figure 4.14: Real trajectory generated in the CFD environment in comparison to the predicted
trajectory by the environment model using two models (here episode 14)

4.2 Overview of possible approaches for MB-DRL 27

Figure 4.15: The trajectories of the probes corresponding to fig. 4.14

4.2.4 Influence of the number of input time steps on the prediction error

The prediction accuracy of the current environment model is already quite good, but especially
for the cD trajectory there are still outliers and areas where the prediction accuracy may be
improved. So far, the state was predicted based on the two previous subsequent time steps. The
system dynamics of the vortex shedding, however is comparably complex and underlies physical
principles. A possible approach to exploit these physical principles is to tailor the number of
input time steps to the characteristic vortex shedding frequencies. The existence of a possible
correlation between the number of subsequent input times steps for the environment models
and the frequency spectrum within the trajectories of cL and cD may be used in a way that
the environment models simultaneously learn the underlying system dynamics rather than just
predicting the next state, improving the prediction accuracy further.

In a first step, the frequency spectrum of the uncontrolled flow past a cylinder was investigated
along with development of the frequency spectrum of cL and cD over the course of a training.
The resulting power spectral densities (PSD) of the flow is depicted in fig. 4.16a and 4.16b. It
can be seen that at the beginning of the training, the trajectories of cL consist of frequencies
at approximately 20...25Hz. These frequencies are damped within the first 20...25 episodes,
after which no dominant frequencies can be found in the PSD for cL. The trajectories for cD,
however, consist of significantly lower frequency spectrum, at around 0...7Hz at the beginning
of the training. In contrast to the frequency spectrum for cL, the PSD of the cD trajectories
contain a larger standard deviation, which may also be a possible reason why the agent is not
able to dampen the frequency spectrum significantly up to episode 80. The bandwidth of the
PSD narrows to a range of ≈ 1...3Hz indicating a dampening behavior with progressing training,
but these low frequencies are not fully dampened towards the end of the training.

The PSD of the controlled and uncontrolled flow using the final policy is shown in fig. 4.16a.
Despite the frequency spectrum present during training, in the final result the frequencies for
both cL and cD are dampened to a neglectable intensity in comparison to the uncontrolled flow.
The uncontrolled flow yields one characteristic frequency of each cL and cD, which is in accord
with the results obtained in the work of [6]. The trajectory for cL oscillates with f(cl) = 2.67 Hz
and an amplitude of a(cl) = 0.479 while cD contains mostly a frequency of f(cd) = 5.67 Hz with
an amplitude of a(cd) = 0.000329. The ratio f(cd)/f(cl) = 2.125 indicates that the periodic
length of cL can be seen as the decisive parameter, since it requires substantially more input
time steps to cover one period of cL. Considering the sample frequency of 100Hz, the results

28 4. Modeling the CFD environment

(a) frequency spectrum of the final policies of
the controlled and uncontrolled case

(b) Power spectral density of cL and cD

throughout the training

Figure 4.16: Power spectral density of the trajectories for cL and cD for the controlled and
uncontrolled flow

of this frequency analysis suggests approximately 30...40 time steps as model input in order to
cover one period with a frequency of f(cL) ≈ 2.5...3Hz.

The number of input time steps can not be chosen arbitrarily high, since there is only a limited
amount of data for training-, validating and sampling the initial states from; in the present case
the previous two episodes. The more input time steps are required, the less training data is
available, due to the fact that the training data can not be used for sampling the initial states
from, which may lead to more inaccurate models. Another aspect is the variance within the
sampled initial states. The initial states are sampled from the CFD data, which was already
seen by the agent and is therefore not contributing anymore to the overall training process of
the agent. With increasing number of input time steps, the relative amount of new interactions
between the environment model and agent is decreasing, because the trajectory length is kept
constant independent of the amount of time steps used as input. Additionally, the combination
of a limited amount of data to sample initial states from and large buffer sizes on the other hand
may lead to the necessity of re-using data points for initial states, causing the initial states to
repeat. Since the policy network is not updated within one episode, two trajectories with the
same initial state are redundant and lead to the exact same results since the models predict the
same output when the same input and action is given. As a consequence of these issues, the
goal is to keep the number of required input time steps to a minimum while maximizing the
prediction accuracy of the environment models.

In a first step, the usage of one and two global models respectively is re-visited as comparison
to episode-wise trained models. Figure 4.17a presents the average L2−norm of the prediction
error when one global model is used while fig. 4.17b shows the prediction error when cD is
predicted separately. It can be seen that for both cases, the prediction error decreases overall
with increasing number of time steps, hence the models tend to be more accurate. However, this
behavior is partially caused by the constant trajectory length, leading to a decrease in the actual
amount of points predicted, when increasing the number of input time steps. For a trajectory
length of l = 2s for example, when using 2 subsequent time steps as input there are 198 time
steps remaining which may all contribute to the L2 prediction error. If the number of input
time steps is increased to e.g. 30 this leaves only 170 time steps for prediction and potential
prediction errors.

Another trend which can be observed is the decoupling of the prediction error for cD when two
environment models are utilized. From fig. 4.17a it can be seen that cl, p and cD decrease

4.2 Overview of possible approaches for MB-DRL 29

(a) L2−norm one global model (b) L2−norm two global models

Figure 4.17: L2−norm of the prediction error depended on the number of time steps used as
model input. The environment model(s) are trained independently of the episode
number.

similarly with increasing number of input time steps. When separating the predictions for cD as
it is shown in fig. 4.17b, the prediction accuracy of cD diverges from the error of cL and p starting
at Nt,input = 20. This behavior can be mitigated when training the environment models episode-
wisely as it is depicted in fig. 4.18a and 4.18b. In contrast to the globally trained environment
models the prediction error when training the models episode-wise is almost decreased by one
order of magnitude for the prediction of cD, emphasizing the advantages of this approach. When
separating the predictions for cD, the prediction accuracy of cD remains nearly the same as if
one model is used, but this result may change depending on the current episode (the here shown
plots are for episode 40) and may also be a consequence of a sub-optimal network architecture
of the cD model. The prediction error for cL and p showed here a minor decrease compared to
utilizing one environment model for Nt,input ≥ 20. Further, there exists a convergence behavior
for the predictions when Nt,input ≥ 15 and one environment model is used while the prediction
error converges Nt,input ≥ 20...25 if two environment models are utilized for the predictions. This
indicates that it is not required to display one complete period within the input data, despite
the approach used.

(a) L2−norm one episode-wise model (b) L2−norm two episode-wise models

Figure 4.18: L2−norm of the prediction error depended on the number of time steps used
as model input. The environment model(s) are trained with two CFD episodes
and then tested on data of the following episode. The L2 error is therefore the
prediction error of the test data, in this case for episode 40.

30 4. Modeling the CFD environment

(a) L2−norm two global models (b) L2−norm two episode-wise models

Figure 4.19: L2−norm of the prediction error for Nt,input = 30 with respect to the epoch
number

Finally, fig. 4.19a shows the prediction error when two global environment models and 30 time
steps as input are used. Clearly, the prediction accuracy of cD is significantly worse than for
cL and p additionally confirming that a globally trained model is not capable of capturing the
changes within the trajectories over the course of the training. The prediction error when using
two models trained for a specific episode is on the other hand approximately two orders of
magnitudes smaller when neglecting outliers as depicted in fig. 4.19b. As a consequence of the
aforementioned optimization problem between prediction accuracy and variance within the data
for training the models and sampling initial states, in the following the usage of 30 subsequent
time steps have been found to be a good compromise. Further, a dependency of the number
of input time steps on the frequency spectrum could not have been observed in general, which
decreases the importance of the choice of Nt,input on the model accuracy.

4.2.5 Low-pass filtering of the cD trajectories

The prediction accuracy of the cD−trajectories is generally about one order worse than for
e.g. cL, despite the number of time steps used a model-input. In contrast to the cL− or
pi−trajectories, the cD−trajectories contain discontinuities and a stronger non-periodic behav-
ior. This motivated the application of a low-pass filter for the cD−trajectories in order to
improve the prediction accuracy. However, a low-pass filtering had no measurable impact on
the prediction accuracy for the cD−model and was therefore not regarded further. There was
additionally a concern that a low-pass filtering of cD alters the rewards, but since the states
remain the same this behavior may increase the model-bias.

4.2.6 Prediction of the change of state instead of the next state

A common practice presented in literature about DRL algorithms is the prediction of the change
of state instead of the next state itself. This approach, however, was found to produce com-
plete nonphysical results as shown in fig. 4.20a and 4.20b. In both cases, namely one global
environment model as well as when training one model each new episode, the prediction error
was unrealistically high in the order of 102...103. This behavior occurred despite the number
of models trained or number input time steps used. However, the prediction of cD improved
when using a separate model for predicting cD as shown in fig. 4.21. Since the implementation
for predicting cL and pi was the same as for predicting cD, and the predicting of cD is at least
in the same order of the real trajectory; an implementation error could have been ruled out as
possible cause of this unrealistic behavior.

4.2 Overview of possible approaches for MB-DRL 31

(a) L2−norm training one global model (b) L2−norm training new models every
episode

Figure 4.20: L2−norm of the prediction error when predicting the change of state instead of
the new state (here: ds was scaled to interval [0, 1])

Further, when scaling the model input to an interval, e.g. [0, 1], as it is common practice; in
contrast to all prior findings the prediction error increased significantly up to values in the order
of 1014...1017. A cause for this unusual behavior could not have been determined, but is may
be a result of round-off errors due to the fact that the change within the state is small. In
order to predict the next change within the state, the current state needs to be computed by an
addition (or subtraction) of the previous state and the predicted change in state corresponding
to the previous state. This addition (or subtraction) of a value in the order of 1 to a value with
a significantly lower order followed by a scaling of this value may be prone to round off errors
resulting in a high prediction error.

As a consequence of this behavior, the usage of the change of state was completely discarded for
all further implementations. For an integration of a model-based training into the PPO-training
routine, two environment models where chosen, each model takes 30 subsequent time steps as
input. The models itself are trained with CFD data of the current episode, further details of
the integration into drlfoam will be discussed in the next section.

Figure 4.21: Real trajectory generated in the CFD environment in comparison to the predicted
trajectory, in this case ds was not scaled to [0, 1] since it has been found that a
scaling to [0, 1] deteriorates the prediction accuracy even further (here episode
14)

Chapter 5

Results

In this chapter, the result of integrating the environment models into the PPO-training routine
will be presented and discussed. The approach presented at the end of the previous section is
used as a starting point. This approach, however, caused new issues when integrated into the
PPO-algorithm, such as the lack of training data as a consequence of diverged CFD simulations.
These issues were solved successively by modifying the training routine until a fairly stable
routine could have been devolved yielding results comparable to the model-free training. At
the end of this chapter, the modified approach of approximating the CFD environment with
deep neural networks was evaluated in comparison to the model-free counterpart for different
Reynolds numbers.

5.1 Initial approach of integrating a MB-training into drlfoam

The CFD environment was modeled using one model for predicting cL and pi and another model
for predicting cD in an initial approach. Each model utilizes 30 subsequent time steps as input,
the trajectories are initialized by randomly sampling 30 time steps out of the trajectories gener-
ated within the CFD environment throughout the current episode. Since this initial approach
was meant to proof the overall feasibility of an integration into the PPO-training routine of
drlfoam, all trainings are run for only 50 episodes and not averaged over multiple different seed
values. This was done in order to minimize the computational costs and is not representing the
common practice, however, it ensures the ability to conduct a variety of parameter studies and
tests in order to find all possible sources of errors that occur as a consequence of integrating
the environment models into the PPO-training routine. The trajectories of the model-based
episodes were generated in the following using one model for predicting cD and another model
for predicting the states and cL.

The models are initially trained in episode zero, after the CFD simulation finished and prior
the policy network is updated. In the following episodes, the buffer is filled with trajectories
generated by the models until an episode e%5 = 0 is reached. For all further episodes e%5 = 0,
the training switches back to CFD, meaning the trajectories are generated within the CFD
environment. These trajectories are then used to train the next environment models. The
reason for this choice was justified by the observation that the model training is equivalent to
approximately 1...3 CFD episodes with respect to the runtime, depending on the trajectory
length. To make the MB-approach competitive to the MF-training with respect to the required
runtime, at least three consecutive MB-episodes have to be conducted. When considering a safety
margin of one episode due to varying available resources on different systems, this leads to four
consecutive MB-episodes followed by one episode in the CFD environment. The reference case
with respect to the rewards is a MF-training with a buffer size of b = 8 and trajectory length of

32

5.1 Initial approach of integrating a MB-training into drlfoam 33

l = 4s, the model training itself was conducted using 4 CPU’s in parallel. The hyperparameters
of the environment models remain the same and can be found in the appendix, section A.5.2.

5.1.1 Optimizing the number of episodes for training the environment models

The environment models are trained in a first step only with the data of the current CFD
episode. It is important to note, that throughout this thesis the models are generally trained with
trajectories generated within the CFD environment, although it is possible to train the models
with the model-generated trajectories. This idea was discarded due to model inaccuracies raising
the concern of a destabilization of the training routine and further deterioration of the model
accuracy and accompanied exploitation by the policy. The usage of CFD data for model training
assures that the relation of states, actions and rewards display the correct system dynamics.

Figure 5.1a displays the rewards received for a MB-training in comparison to the MF-counterpart.
It can be seen that the rewards of the MB-trainings yield significantly worse results, independent
of the trajectory length. The course of the rewards is further highly unstable and discontinuous
compared to the MF-training, indicating that the environment models are not able to predict
the next state sufficiently accurate. These prediction errors may lead to the observed trend that
the trajectory length is not affecting the rewards in any measurable way. A possible explanation
of this behavior with respect to model inaccuracies is the fact that only the current CFD episode
is used for model-training. This may lead to a so-called catastrophic interference or catastrophic
forgetting [7]. Catastrophic interference refers to the problem, that the models are updated
using the latest data, which causes the model to forget the data already seen in prior updates
to a certain degree. This directly increases the epistemic uncertainties, since the amount of
training data is not sufficient to cover all possible states. In the context of CFD simulation, this
is especially an issue since the generation of data with CFD is computationally demanding and
consequently costly. In order to mitigate the effects of catastrophic interference and to improve
the sample efficiency of the data, it may be beneficial to not only use the current CFD episode
for training, but also the previous CFD episodes, which may lead to a more robust policy and
consequently more stable learning.

The influence of number of CFD episodes used for model training is depicted in fig. 5.1b, the
meaning of the case with additional entropy will be explained later. Firstly, it can be seen that
if the training data is extended to the current and previous CFD episode, the rewards improve
significantly, and are even able to outperform the results of the MF-training. Additionally, the
course of the rewards is stabilized and does not show as many sudden decreases of the rewards
compared to the training with only the current CFD episode. A further increase of the number
of CFD episodes utilized, however, leads to a deterioration of the rewards, as indicated by the

(a) only current CFD episode used for training (b) multiple CFD episodes used for training

Figure 5.1: Different approaches for training the environment models, all cases run with b = 8
and l = 4. Parameter e denotes the episode number while W denotes the additional
entropy with respect to the original entropy Worig

34 5. Results

green curve in fig. 5.1b. In this case, all CFD episodes encountered up to the current episode
are used for model-training. A possible reason for this trend may be a generalization of the
environment models due to the high variance within the training data as already could have
been observed in section 4.1, leading to an overall decrease in model accuracy and consequently
rewards. When the trajectories are not homogeneously, the environment model is not able
to learn the system dynamics sufficiently accurate, because especially at the beginning of the
PPO-training the agent is exploring the parameter space using random actions. An advantage
of increasing the number of CFD episodes used may be an increase in stability of the training
routine as a consequence of a decrease in epistemic uncertainties caused by a larger amount of
data, which can be concluded by the smoother course of the rewards depicted in fig. 5.1b. This
increase of data leads to a greater variety of different states seen during the training process
by the models and although the prediction accuracy is decreased compared to training where
the models are only trained with the current CFD episode, the models are more accurate on
predicting unseen states. Further, the total number of possible unseen states decreases as a
direct consequence of the larger amount of training data. The number of episodes chosen for
training the environment models can therefore be seen as an optimization problem of stability
on the one hand and performance in terms of rewards, on the other hand.

To emphasize the change within the variance of the trajectories throughout the PPO-training,
fig. 5.2 depicts the variance of the beta-distribution of the policy network with respect to the
episode number. The variance of the beta-distribution is measure for the uncertainty of the
chosen action by the policy network, since only the mean value of the beta-distribution is used
to compute the action. A high standard deviation consequently indicates a high uncertainty
of the policy network that the chosen action is the optimal one. From fig. 5.2, it can be seen
that the variance decreases throughout the MF-training from ≈ 0.058 in episode zero to ≈ 0.01
for episode 50 and is likely to decrease further for higher episode numbers. This behavior was
expected since at the beginning of the training the entropy is high in order to force the agent to
explore the parameter space, while towards the end of the training an exploitation is preferred
over exploration. For the MB-trainings, however, it can be seen that the variance decreases
significantly faster than for a MF-training and converges at lower values. This behavior indicates
that for a MB-training the policy network is certain that the chosen action is the optimal one,
although this might not be the case as indicated by the peaks when running an episode in the
CFD environment. The differences within the uncertainty of MB- and MF- episodes may be a
consequence of the poor prediction accuracy of the environment models, leading to exploitation
of these prediction errors by the agent, as discussed in section 2.3.1.

Figure 5.2: Corresponding variances of the Beta-distribution with respect to the training rou-
tine

5.1 Initial approach of integrating a MB-training into drlfoam 35

To mitigate this problem, the effect of introducing additional entropy to the MB-training was
investigated. The entropy was therefore artificially increased using a beta distribution. At the
beginning of the training, the entropy and consequently the uncertainty is already sufficiently
high while towards the end of the training the entropy should decrease as a consequence of
reducing the exploration of the agent. The beta-distribution was utilized, since it is zero at both
boundaries while the maximum value of the additional entropy can be easily controlled by the
two parameters α and β. The beta-distribution for generating additional entropy can be found
in the appendix, section A.4 along with the parameters α and β.

Fig. 5.1b shows the resulting rewards when introducing additional entropy to the MB-training.
It can be seen that, despite stabilizing the course of the rewards to some degree, it did not yield
any improvement compared to the case without additional entropy. Further, this approach was
not able to increase the resulting uncertainty of the policy network, as indicated by fig. 5.2.
A possible explanation for this behavior might be that additional entropy is operating as noise
within the data. Noisy training data is generally known the deteriorate the model accuracy
leading to a worse performance, e.g. as presented in [5]. Consequently, this idea of introducing
additional entropy was not considered further, however, extending the amount of training data
from only using the current CFD episode to using the current and the previous CFD episode
was found to have a great beneficial effect of the training performance and is therefore used in
all following trainings.

5.1.2 Influence of the trajectory length

The previous section showed that the MB-training routine was able to run for 50 episodes and
yielded partially comparable results to the MF-training routine. However, especially at the last
CFD episode the training crashed in some cases indicating stability issues when increasing the
number of episodes. In order to assess the long-term stability of the model-based training, the
number of episodes was increased to Nepisodes = 80 and the results where averaged over three
different seed values in order to account for the dependency of the rewards on the initialization.
During model-training no additional entropy was introduced, but in contrast to the results
presented in the previous section, in the following the trajectories of the current and last CFD
episode was used for training the environment models. Additionally to the training stability, it
was investigated if this modification leads to improved rewards with respect to the trajectory
length, since the initial approach for the MB-training showed no dependencies of the trajectory
length on the received rewards. The reference case remains with l = 4s and b = 10 the same as
used in the previous section.

General remarks for all remaining trainings presented in this chapter

Due to stability issues occurred during a MB-training, some of the conducted trainings crashed.
This crash was generally caused by a divergence of the CFD simulation leading to lack of training
data. Although this problem could have been mitigated, as will be presented in the next sections,
it could not have been solved completely. To ensure the comparability of the results to each
other and to the corresponding MF-training, the trainings where re-started with different seed
values, until three completed trainings were available for each setup; consequently, the seed
values may not be the same for each case. Further, as will be discussed in the following sections
as well is the dependency of the seed value on the system where the training is conducted. These
problems may lead to the unfavorable situation, that the presented results in this thesis may
be not fully reproducible quantitatively. However, for the sake of completeness it is important
to mention that the initialization was started with seed = 0, then the seed value is incremented
by one until three fully converged training where available for each case. In some cases, the
stability of the training was not sufficient to even reach three converged trainings, in those cases
the training was averaged only over all available seed values. This fact will be pointed out in the

36 5. Results

Figure 5.3: Influence of the trajectory length on the performance for a model-based PPO-
training

following, whenever it was not possible to average over three different seed values. Theses pieces
of information and procedures apply for all trainings presented over the course of the following
chapters.

Figure 5.3 shows the resulting rewards received in the MB-training with different trajectory
lengths. In contrast to the results presented in the previous section, the course of the received
rewards show a dependency on the trajectory length. But while the rewards for a MF-training
increase monotonically with increasing trajectory length, when running a MB-training this seems
not to be the case. Here, a trajectory length of l = 1s yields significantly higher rewards than
the training with a trajectory length of l = 2s, a reason for this behavior could not been found.
Further, the rewards for a training with l = 1s and l = 2s did not show any sudden decreases
throughout the course of the training. This confirms the assumption that using two consecutive
CFD episodes for model training improves the stability of the model-based PPO-training, but
the training stability in general is still not nearly as high as for the MF-trainings.

Another difference between MF- and MB-training can be found in the resulting cL and cD

values with respect to the episode number. As can be seen in fig. 5.4, the course of the cD

values matches the trend displayed by the rewards, since cD has a large influence on the reward.
The cL values of the other hand can be dampened to values close to zero in MF-training. For
a MB-training, the cL values remain with values up to |cL| ≈ 0.2 significantly higher. However,
since cL is only weighted with 0.1 in the reward function, the divergence of cL has only a
neglectable influence on the rewards.

Figure 5.4: cL and cD over the course of the MB-PPO training when using different trajectory
lengths

5.1 Initial approach of integrating a MB-training into drlfoam 37

Since there could not been found a reasonable explanation for this behavior, in a next step
the performance of the final policy is evaluated. The rewards of the MB-training for l = 4s
are comparable to the MF-counterpart, therefore these two cases were compared to each other
in the following section aiming to find potential causes for the stability issue, which occurred
during the MB-training.

5.1.3 Assessment of the final policies

In order to assess the final policies, the seed value yielding the best rewards was taken. For
the model-free training, the policy of episode 80 was used for controlling the flow while for the
MB-case the policy of the last CFD episode, namely episode 75 was taken. This ensures the
comparability of the policies since the rewards of the MB-episodes are generally higher than the
rewards received in episodes run in the CFD environment. Figure 5.5 shows the course of cL

and cD using the final policies to control the flow. It can be seen that after the control starts
at t = 4s, it takes approximately 1s to reduce cL and cD to a level with low values, as already
observed in section 4.1. After this initial, transient phase the agent is able to maintain cL and
especially cD at a low level, while the performance of the MB-policy yields comparable values
as the MF-training, which is also presented in table 5.1. This shows the general feasibility of
MB-DRL for flow control problems, despite the decreased stability of a MB-training compared
to the MF-counterpart.

Figure 5.5: Results using best policy for MF case and last CFD episode for MB case

Since the performances of the final policies are comparable to each other with respect to the load
reduction, this raises the question of what may cause the stability issues during a MB-training.
A possible reason may be the quality of the model-generated trajectory throughout the training
as depicted in fig. 5.6. It is important to note, that the here shown trajectories are not meant
to have the same values, since they originated from different trainings, therefore, the goal is to
emphasize the qualitative differences between the model-generated trajectories and trajectories
generated within the CFD environment in a MF-training. As depicted in fig. 5.6, the course of
the trajectory for cL is qualitatively quite similar although the absolute values for cL of the MB-
training are generally worse compared to the MF-training. For the trajectory of cD, however,
it can be seen that the trajectory generated by the environment model shows, in contrast to

case µ(cD) µ(cL) σ(cD) σ(cL)
uncontrolled 3.1863 −0.0106 0.0186 0.7119

MF-DRL 3.0257 0.0032 0.0075 0.2461
MB-DRL 3.0157 −0.0680 0.0026 0.2441

Table 5.1: Average cL and cD values of the final policies in the quasi-steady state at t = 6...8s,
both controlled cases where run with b = 10 and l = 4s

38 5. Results

Figure 5.6: Qualitative comparison of the model-generated trajectory with a trajectory gener-
ated within the CFD environment, both for episode 80

the trajectory of the MF-training, a distinct periodic behavior and a less discontinuous course.
This can be seen as a direct consequence of the actions taken over the course of the trajectory,
which is depicted on the right of fig. 5.6. The actions for the MB-trajectory show a remarkable
periodicity at significantly lower frequencies than the MF-counterpart, also the actions are all
positive. This behavior implies that the environment models act as a low-pass filter, especially
for ω and are therefore not capable of covering the full frequency spectrum.

In order to analyze this issue further, the PSD of the actions is shown in fig. 5.7 along with the
frequencies and their multiples of cL and cD. It can be seen that for a model-free training, the
actions oscillate approximately with the frequencies of cL and cD and multiples thereof, while
the frequencies of cL are the dominating factor. This is caused by the fact that the frequencies of
cL are in the range of the frequencies of the states, which can be found in the appendix, fig. A.9.
The PSD for a MB-training, however, shows that the actions are not able to display frequencies
greater than two times of the frequencies of cL and cD confirming that the environment models
act as a low pass filter with a cut-off frequency of approximately 6Hz.

In a next step, it was investigated if the number of input time steps has an effect on the low-pass
filtering behavior of the environment models. The results of the PSD for different Nt,input are
shown in fig. 5.8. It can be seen that for Nt,input = 15 and Nt,input = 60 there exist small peaks
in the frequency spectrum at frequencies corresponding to 2 and 3 times of the frequencies of cD.
These peaks, however, have an insufficiently low amplitude to actually influence the periodic
behavior of the actions. In all cases, the environment models seem to act as a low-pass filter
on the actions, which indicates that the number of input time steps can be ruled out to be the
reason for this behavior, as indicted by fig 5.8.

A possible explanation for the low-pass filtering of cD and actions may be that only the trajec-
tories of the probes are used as input into the policy network. In a CFD environment, there

Figure 5.7: Power spectral density for ω and frequencies of cL and cD

5.1 Initial approach of integrating a MB-training into drlfoam 39

Figure 5.8: Power spectral density for cL, cD and ω with respect to Nt,input

exists a physically dependency between the pressure in the wake, and the cL and cD values.
The environment models, however, are not based on physics and consequently this dependency
is not naturally given. The probes oscillate with frequencies in the range of the frequencies of
cL. This may cause the models to encounter periodic input values, which oscillate in exactly
those frequencies. If the input values are similar, it is likely that this leads to a similar output.
The policy network samples its actions depending on the current state, consequently a periodic
behavior of the model output leads to periodic actions, since the agent is not updated during
the generation of the trajectories. In order to avoid this behavior, a possible approach may
be the introduction of discontinuities into the trajectories, which can be achieved by using an
model-ensemble (ME) instead of only one model as a consequence of the aleatoric uncertainties.
Since every model within the ensemble is trained differently, each model will predict a slightly
different state given the same actions and input values, as e.g. shown in [4]. If a model is
randomly chosen out of the ensemble every new time step to predict the next state, this is likely
to artificially create discontinuities leading to higher frequencies within the trajectories. The
extension to a model-ensemble will be presented and discussed in the next section.

5.1.4 Extension to model-ensemble

The following section discusses the influence of using a model-ensemble on the results and
stability of the MB-training. In all further cases, the number of models always refers to the
number of models predicting cL, pi and cD, e.g. Nmodels = 1 means that there is one model for
predicting cL and pi and another model for predicting cD; all models in the ensemble are trained
for 10 000 epochs. The number of input time steps as well as the model architecture remains the
same as in the previous section. However, there have been made some modifications regarding
the training routine which shall be presented briefly.

The optimizer was changed from Adam to AdamW due to its improved convergence behavior.
Further, an early stopping criteria was introduced in order to accelerate the model training.
The early stopping was based on the validation loss, if the validation loss decreases to values
lower than 10−5 the model-training was stopped. Additionally, the exception handling and
consequently stability of the training routine was improved in case CFD simulations diverged
during the PPO-training. If the buffer of the current episode returns empty trajectories, meaning
all or at least some CFD simulations diverged, then the trajectories three CFD episodes are
loaded and used additionally to the CFD data of the previous CFD episode. This ensures that
the available data for model-training and sampling initial states is always kept at two times the
buffer size. In case two subsequent CFD episodes return an empty buffer, then only the last
converged CFD episode is utilized for model-training. A potential issue of using trajectories

40 5. Results

Figure 5.9: Rewards received for an MB-training with b = 10, l = 4 and different Nmodels in
comparison to the MF-training

generated too far in the past is the divergence of the policy used to generate the data and the
current policy. As a consequence, if the policy under which the training data was generated and
the policy used for making the predictions are too different, the model-generated trajectories
are likely to be highly inaccurate. This leads to a deterioration of the current policy from which
the training can not recover. It was therefore decided to abort the PPO-training if there are
no converged CFD simulations within three consecutive CFD episodes, which corresponds to 15
episodes in total.

The rewards received for trainings with varying amount of environment models in the ensemble
is shown in fig. 5.9 for a trajectory length of l = 4s. The results for l = 2s and l = 6s show
qualitatively the same trend and can be found in the appendix, fig. A.10 and fig. A.11. When
increasing the number of models from one to Nmodels = 5, the rewards increase significantly, but
at the same time the differences between rewards received in a model-based episode are diverging
from the rewards received within the CFD environment. An increase to Nmodels = 10, however
leads to a deterioration within the rewards down to a level comparable to the performance of
Nmodels = 1. The standard deviation of the training with Nmodels = 1 is significantly increased
compared to the results presented in the previous section, probably resulting from a poor con-
vergence behavior of the CFD simulations and the associated modifications made with respect
to the loading of the trajectories for model training. Before a possible reason for this decrease in
performance is given, the divergence of the rewards as well as the problem of low-pass filtering
shall be discussed.

Figure 5.10: Qualitative comparison of the trajectories for cL and cD at episode 80, for b =
10, l = 4 and different Nmodels in comparison to the MF-training

5.1 Initial approach of integrating a MB-training into drlfoam 41

Figure 5.11: Prediction accuracy of the different models for episode 80, l = 4s and b = 10

Figure 5.10 shows trajectories randomly drawn from episode 80. Again, since these trajectories
are taken from different trainings, they are not meant to yield the same values. However, it can
clearly be seen that while for the MF-training the trajectory for cD starts with rather high values,
all MB-trajectories start with significantly lower values for cD. This is caused by the sampling of
the initial states for generating the MB-trajectories. In order to provide 30 coherent time steps
for the model input, the initial states are randomly sampled from trajectories generated within
the CFD environment. This procedure was implemented in order to provide a sufficient amount
of initial states, since the amount of available trajectories for model-training and sampling is
strongly limited. That means that the initial transient phase of those MF-trajectories, starting
at the uncontrolled flow and making up approximately the first second of the trajectory, is not
necessarily sampled as initial state. This transient phase yields in general higher cD values
than, e.g. the last 30 time steps of the trajectory, leading to a higher average cD value for the
complete trajectory. Since the cD value contributes the major part of the rewards, by discarding
the initial first second due to the random sampling for the MB-trajectories, the average cD value
is decreased compared to the MF equivalent leading to averagely higher rewards. The actions
depicted in fig. 5.10 still show a periodic behavior for a MB-training. Increasing the number
of models in the ensemble is able to mitigate the issue of low-pass filtering, for the training
with Nmodels = 5 the actions show a higher degree of discontinuities as well as the ability of
covering the complete range of ω = −5...5. This indicates, that using a model-ensemble is able
to introduce discontinuities leading to a more realistic representation of the CFD environment.

An increase of Nmodels to values greater than five leads to a deterioration of the rewards, as
already mentioned. Further, the stability of the training decreased significantly, leading to
a high number of crashed trainings caused by a diverging CFD simulation and consequently
absence of training data for more than three CFD episodes. The log-files of the training showed,
that with increasing number of models, the KL-divergence stopping criteria of the policy training
routine was reached more frequently. The KL-divergence stopping criteria was introduced to
bound the gradient of the policy in order to prevent too large policy updates possibly leading to
instability as presented in section 2.2.1. An increase of the KL-divergence over the predefined
limit leads consequently to an abortion of the policy optimization.

Introducing a model-ensemble is known to reduce the aleatoric uncertainties [21]. This means
that one model may predict the next state too optimistic while the prediction of another model
is too pessimistic; combining these two models yields statistically a higher prediction accuracy
than using only one model. If the prediction accuracy is not sufficient, then the range of
possible predicted states increases. Since each new time step, a new model is randomly taken
out of the ensemble for making a prediction, the divergence within the predictions is high,
leading to strong discontinuities between two consecutive time steps. Figure 5.11 shows the
divergence of the predictions within the model ensemble when given the exact same input state

42 5. Results

and corresponding action. It can be seen clearly, that although each model in the ensemble
was trained on the same data, as a consequence of error propagation and uncertainties the
trajectory generated by each model differs. If the model changes now every time step, instead
of generating five different trajectories for Nmodels = 5, one trajectory is generated in total.
This trajectory covers the range of all possible predictions made by each model, leading to a
statistically improved prediction accuracy as explained. However, with increasing number of
models in the ensemble, the probability of predicting an unrealistic value by one of the models
over the course of the trajectory increases as well. The amount of these outliers is likely to
increase with increasing number of models as a consequence of the diverging predictions for
different models. This indicates that an increase of Nmodels, although reducing the aleatoric
uncertainties, may cause stability issues to diverging predictions for similar states and actions.

Another issue which can be seen in fig. 5.11 for the trajectory generated by model number 2,
is that the model is not able to generate a valid trajectory at all, probably caused by a poor
prediction accuracy. If even only one state is predicted falsely by an environment model, this
may lead to nonphysical or even nan values causing the PPO-training to crash completely. To
prevent this occurrence and to improve the stability of the training it was therefore decided to
check the model-generated trajectories for invalid values. Although the boundaries were chosen
carefully to not influence the training process itself, filtering the trajectories for unrealistic
values may introduce a bias. Another disadvantage is the dependency of such boundaries on
the chosen setup, e.g. boundaries for cD values may be depending on the Reynolds number
and consequently require knowledge of the expected boundaries beforehand. This disadvantage,
however, is overcompensated by potential improvement of the stability when introducing such
a sanity check and is therefore accepted. The upper boundaries where derived by the maximum
values encountered in the uncontrolled flow, further a safety margin was added. The lower
bounds where derived using the minimum values of the best MF-case with b = 10, l = 8s in
episode 200 plus an additional safety margin accounting for uncertainties when determining these
minimum values. This leads to the following boundaries, which the model-generated trajectories
are not allowed to exceed:

• |cL| < 1.3

• 2.85 < cD < 3.5

• |ω| ≤ 5.0

• α < 5000

• β < 5000

Additionally, the trajectories where checked and discarded if they contain any nan values. It
was further found that it is not necessary to check the states for invalid values, because if all
the parameter presented here where in the defined boundaries, the states showed valid values as
well.

5.1 Initial approach of integrating a MB-training into drlfoam 43

5.1.5 Optimization of the training routine

The extension to a ME increased the performance and stability of the training routine signif-
icantly. In a final step, the training routine is modified aiming to decrease the runtime while
at the same time improving the stability further. Therefore, the model architecture as well
as the hyperparameters where optimized and can be found in the appendix, section A.3. The
runtime was decreased by initializing the environment models with the ones from the previous
CFD episode instead of training the models each new CFD episode from scratch. In episode
zero, the first model in the ensemble is trained with 10 000 epochs as before, every other model
in the ensemble, however, is then initialized with this first model and then trained for another
1000 epochs. In every new CFD episode, the first model in the ensemble is initialized with
the first model of the previous CFD episode and then trained for 1000 epochs. The remaining
models are again initialized with the first model in the ensemble and trained for 1000 epochs
each. Additionally, a batch normalization and a weight decay of 10−3 was introduced, the batch
size was chosen to be 25.

In the previous section, a sanity check of the model-generated trajectories was introduced. This
lead to the unfavorable situation that for highly inaccurate models, as usually present in the first
episodes due to the little amount of available training data with high variance, all trajectories
were invalid and consequently discarded. The PPO-training was then forced into an infinite
loop and had to be aborted manually. This problem was fixed by introducing a counter, when
the environment models were not able to generate valid trajectories within 50 iterations, the
PPO-training switched back to the CFD environment for the current episode. After finishing the
simulation, the models were re-trained for 100 epochs each using the newly generated trajectories.
This lead to an overall increase in stability of the MB-training, since the tolerated inaccuracy
of the models with respect to the predictions can be controlled by the defined boundaries.

The effects of these improvements to the MB-training routine can be seen in fig. 5.12. The
received rewards improved in all cases, especially for Nmodels = 5 and Nmodels = 10. These
two cases are now able to outperform the MF-training significantly. Further, a monotonic
increase of the rewards with increasing Nmodels can be observed as a direct consequence of an
increased prediction accuracy. There are no sudden decreases in the rewards over the course of
the training indicating an improved stability of the training routine. However, although yielding
now higher rewards than Nmodels = 5, the training conducted with Nmodels = 10 was highly
unstable in comparison the Nmodels = 5 as a consequence of the KL-divergence within the policy
optimization discussed in the previous section.

Figure 5.12: Influence of the number of models within the ensemble on the received rewards
for b = 10 and l = 4s

44 5. Results

Figure 5.13: Influence of the number of models within the ensemble on cL and cD for b = 10
and l = 4

The cL and cD values with respect to the episode number are depicted in fig. 5.13. It can
be seen, that with increasing Nmodels the ability to control cL deteriorates. Especially for
Nmodels = 10, the course of cL is significantly diverging from values of |cL| ≈ 0 as achieved in
the MF-training. This behavior may be an indicator that the introduction of discontinuities
using a ME has a negative influence on the ability of controlling cL. The cD values on the
other hand, monotonically decrease with increasing Nmodels, which may be another reason why
Nmodels = 5 yields the highest training stability. If with increasing Nmodels the policy is not able
to control cL sufficiently accurate, while at the same time the performance with respect to cD

increases; it is likely that this results in an optimal Nmodels of five since cD is weighted more
than cL.

5.1.6 Conducting a MB-training on different systems

As a consequence of diverged CFD simulations during an MB-training, a not neglectable amount
of trainings crashed at some point. These errors, however, where not reproducible when running
a training with the same setup and seed values on a local machine, making it hardly possible to
find reasons for the unstable behavior of the MB-training routine. In the following, the problem
of encountering different results when running a training on different systems will be presented
briefly, these cases are all averaged over three different seed values. The seed values for trainings
on the HPC cluster were the same as for the trainings on a local machine, the remaining setup
was chosen to b = 8, l = 2s and Nmodels = 5.

Table 5.2 shows the runtime for a MF-training in comparison to the MB-training. It can be seen
that for both the HPC cluster and the local machine, the MB-training required significantly
less runtime and resources than the MF-counterpart. When conducted on the HPC cluster,
the model-based training was able to reduce the runtime by 64.16% compared to the model-
free training. This discrepancy is increasing when the available computational resources are a
limiting factor as it is generally the case on a local machine. The MB-training leads here to a
decrease of 76.57% of the runtime compared to the MF-training emphasizing the large potential
of MB-DRL for flow control applications.

The rewards of the MF-training show only minor differences when running the training on

MF-DRL (HPC) MF-DRL (local) MB-DRL (HPC) MB-DRL (local)
runtime 04h : 53min 23h : 19min 01h : 45min 05h : 15min

Table 5.2: Average runtimes for a MF- and MB-training on different systems

5.1 Initial approach of integrating a MB-training into drlfoam 45

Figure 5.14: Differences between the rewards received on an HPC cluster and on a local ma-
chine

different systems, as depicted in fig. 5.14. This may be partially caused by a possible hardware-
dependency of the initialization, although the chosen seed value is the same. As discussed in the
PyTorch documentation [29], the initialization of the random number generator may yield differ-
ent absolute values across different hardware, since the pseudo-random numbers are generated
under the usage of e.g. background noise. This can cause a slightly different initialization of the
policy and value network leading to diverging results. The differences within the MF-trainings,
however, can be seen as neglectable.

The rewards received in the MB-training on the other hand is highly dependent on the system
as can be obtained from fig 5.14 as well. This is partially caused by the fact, that in contrast
to the MF-training, here the environment models need to be initialized additionally, which may
also differ across different systems. Another aspect is the process scheduling with SLURM when
running a training on an HPC cluster. As a consequence of an unfavorable policy caused by
model inaccuracies, the CFD simulation may require significantly longer runtimes to converge
compared to a MF-training. However, if there is a high traffic on the cluster, this may lead to
waiting times for process execution or the necessity to interrupt processes in favor of executing
other processes. After a predefined maximum execution time, which was set in all trainings
to tmax = 30min, the process is canceled by SLURM. In case of an unfavorable convergence
behavior of the CFD simulation, this may lead to an abortion and consequently decreased
amount of available training data causing a deteriorated model accuracy and rewards. It is
important to note that the average execution time of a CFD simulation is in the order of
tavg ≈ 3min...6min depending on the trajectory length, and therefore tmax = 30min was found
to be sufficiently long.

46 5. Results

5.2 Generalization of the training routine

The stability issues of the MB-training routine as well as the poor prediction accuracy of the
environment models motivated the implementation of a new training routine. The previous
training routine generated the feature-label pairs directly during the model training, also the
training data was statistically seen only once by the models during training. This procedure
stands in direct contrast to the common practice, where all the training data is utilized each
epoch in order to train the environment model and was a result of unawareness of this practice.
This issue was corrected in the new training routine, further it was made use of built-in function-
alities provided by PyTorch, e.g. the dataloader, rather that implementing an own customized
training routine. In the new training routine, the feature-label pairs were created beforehand,
leading to an additional decrease in runtime. These improvements of the training routine yield
the great advantage that the model training can be conducted via a standardized interface, mak-
ing it more flexible for implementing further functionalities and at the same time more robust
against potential implementation errors.

Despite these adjustments, a layer normalization was used instead of batch normalization, be-
cause batch normalization is sensitive to the chosen batch size [29], which may be a disadvantage.
However, the general model architecture remains the same as in previous training routine. Fi-
nally, the scheduler ReduceLROnPlateau was introduced in order to optimize the training routine
further. The scheduler controls the learning rate based on the current validation loss. The learn-
ing rate is set to lr = 0.01 at the beginning of the model training. Whenever a plateau in the
validation loss is reached and maintained for 10 consecutive episodes, the scheduler reduces the
learning rate by a factor of 0.1. The minimal possible learning rate (lower bound) is set to
lrmin = 1 ∗ 10−4.

5.2.1 Early stopping of the model-training

In the previous training routine, an early stopping criteria based on the absolute value of the
validation loss was introduced, however, this criteria was never reached as a consequence of high
validation losses as depicted in fig. 5.15. Both the training and validation loss of the previous
training routine showed a highly discontinuous course resulting from the fact that the training
data was only presented to the models once throughout the training. This discontinuous course
makes it challenging to implement metrics to detect and prevent over-fitting of the environment
models, since a gradient-based measurement is highly affected by the starting and end point of
the interval taken for computing the gradient.

The losses of the new training routine on the other hand yield a significantly smoother course,
additionally, a clear convergence behavior can be seen from fig. 5.16 within the first ≈ 150

Figure 5.15: Training and validation losses using the original training routine

5.2 Generalization of the training routine 47

Figure 5.16: Training and validation losses using the new training routine

epochs. This improved convergence behavior makes it redundant to train each model for 1000
epochs, since it is highly unlikely that the losses decrease any further. The steady course of the
losses provide the possibility to implement an additional, gradient-based early stopping criteria
based on the gradient of the validation loss. In the present training routine, this stopping criteria
was set to a decrease of the validation loss by less than −1 ∗ 10−6, averaged over the last 50
epochs. This prevents the models from over-fitting, because if the validation loss increases over
the defined threshold of −1 ∗ 10−6, the training is aborted. As a consequence of the improved
convergence behavior of the losses when using the new training routine, instead of training the
first model in the ensemble for 10 000 epochs, Nepochs was reduced to a maximum of 2500 epochs.
However, in all the following trainings, it could have been observed that the stopping criteria was
generally reached after a maximum of ≈ 500 epochs. Every remaining model in the ensemble is
further only trained for 150 epochs in contrast to 1000 epochs as before, since fig. 5.16 indicated
a convergence within the first 150 epochs. This improvement of the model-training lead to a
significant decrease in the required runtimes.

The losses of the new training routine are generally one order of magnitude smaller than the
losses of the previous training routine, which indicates that the prediction accuracy of the
models improved as well. In a next step, the prediction accuracy of both training routines
where compared.

5.2.2 Comparison of the prediction accuracy

The PPO-training routine was simulated in order to compare the prediction accuracy of the two
training routines. This means trajectories of a MF-training, which was conducted beforehand,
where taken in order to provide states and actions, and then used to train the environment models
successively each episode e%5 = 0 until the complete 80 episodes were performed. This procedure
was necessary since the environment models are always initialized with the environment models
of the previous CFD episode. If the prediction accuracy of e.g. episode 80 is to be evaluated,
then the models can not be simply trained with the CFD data of episode 75, because in the real
model-based PPO-training routine, the models would have been initialized with the environment
models of episode 70 and so on. For comparing the different training routines, the actions are
provided by the MF-training and the same for both trainings, also the trajectories were initialized
with the first 30 consecutive time steps in order to be comparable to the MF-trajectory. As
already discussed in section 4.2.1, without uncertainties and error propagation the MF- and
both MB-trajectories would be identical, therefore the prediction error can directly be assessed
by the differences within the trajectories.

The new training routine is in the following denoted as new training, while the old training
routine is denoted as original training. Figure 5.17 shows the predicted trajectory for b =

48 5. Results

Figure 5.17: Comparison of the predicted trajectories with the original (CFD) one, for both
training routines, here: b = 8, l = 2s, Nmodels = 5, episode 80

10, l = 2s in episode 80 along with the real trajectory generated in the CFD environment. It can
be seen that the prediction accuracy of the new training routine is significantly better than for
the original training routine, which was already indicated by the decreased validation loss. The
trajectory for cL shows a more continuous course when using the new training routine, however,
there exists a phase-shifting which is not present when using the original routine. The trajectory
of cD can be predicted accurately by the new routine, while when using the original one, the
predicted trajectory starts to diverge from the real one at approximately episode 100.

For a trajectory length of l = 6s, however, the predictions for cL when using the new training
routine is deteriorated compared to the original one. The amplitude of cL is predicted signif-
icantly higher than the actual amplitude, starting at approximately episode 225. Up to this
point, the predictions for cL of both training routines are fairly accurate, the original routine,
again, showed a higher degree of discontinuities which are not present when using the new train-
ing routine. The prediction for cD on the other hand is sufficiently accurate for approximately
350 time steps before diverging from the real trajectory, while the original training routine is
only capable of predicting the first 200 before diverging. However, within these 200 time steps
the prediction accuracy is not at a satisfying level as well, illustrating the improvement with
respect to the prediction accuracy of the new training routine.

Figure 5.18: Comparison of the predicted trajectories with the original (CFD) one, for both
training routines, here: b = 10, l = 6s, Nmodels = 5, episode 80

5.2 Generalization of the training routine 49

5.2.3 Influence of the number of models within the ensemble

Since the prediction accuracy when using the new training routine improved, it was investigated
in next step if a variation of the number of models in the ensemble yields different trends
than observed when using the original training routine. The dependency of the rewards on the
initialization was analyzed in a first step.

The rewards for conducting a MF-training with different seed values are depicted in fig. 5.19a.
Although the course of the rewards show a dependency on the seed value, the resulting differences
within the trainings are generally following the same monotonic trend. This behavior changes
significantly when conducting a MB-training as can be seen from fig. 5.19b. In this case, the
rewards for a seed value of zero shows an overall improvement throughout the training, while
the rewards of the training initialized with seed = 1 decrease significantly towards the end of
the training. This divergence of the rewards increases with increasing number of models in
the ensemble and is probably a consequence of the fact that each model within the ensemble
is depending on the initialization. This results in a higher statistical variance if more models
are utilized, making it challenging to derive overall trends and consequently improvements with
respect to the stability of the training. It is important to note that this behavior was also
observed for the original training routine, as discussed in section 5.1.6. This indicates that the
prediction accuracy of the environment models does not seem to have a measurable impact on
this issue.

(a) Rewards of a MF-training for different seeds (b) Rewards of a MB-training for different seeds

Figure 5.19: Comparison of the rewards received throughout the training for different seeds
(all b = 10, l = 2), for the MB-training Nmodels = 3 was used

It could have been observed during a MB-training that the stability when using Nmodels = 1 is
significantly worse than with Nmodels = 5. This trend is also displayed by the rewards shown
in fig. 5.20, since the overall course of the rewards for Nmodels = 1 shows a significantly worse
convergence behavior in terms of monotonic increase than the rewards received with a MB-
training using Nmodels = 5 or Nmodels = 10. Further, the difference in the rewards between the
MF- and MB-episodes is significantly higher when using Nmodels = 1, than e.g. for a training
with Nmodels = 5. Although the sampling of the initial states may have an influence on the
differences within the rewards for the MB-episodes, the relative difference between the training
with Nmodels = 1 and Nmodels = 5 indicates, that the environment models for a training with
Nmodels = 1 predict the course of cL and cD too optimistic. However, the overall trend with
respect to the course of the rewards when using the new training routine is the same as already
observed in the original routine, namely an increase in rewards when increasing the Nmodels to
five, followed by a decrease in the rewards when increasing the Nmodels further to e.g. ten. This
may be again caused by a more frequent exceeding of the threshold for the KL-divergence within
the policy optimization with increasing number of models, as could have been observed from
the log-files.

Figure 5.21 shows the divergence within the predictions accuracy for the different models in
the ensemble, analogously to the study conducted in section 5.1.4. Generally, the predictions of

50 5. Results

Figure 5.20: Influence of the number of models within the ensemble on the received rewards,
here for b = 10, l = 2

the environment models are too optimistic, as indicated by the lower cD values of the predicted
trajectories compared to the real ones, causing a further increase in the rewards for MB-episodes.
The divergence within the prediction accuracy is likely to be the consequence of triggering of
the KL-divergence criteria when optimizing the policy, as explained in section 5.1.4. However,
in contrast to the original training routine, the divergence within the predicted trajectories for
the different models decreased significantly when using the new training routine, starting at
approximately epoch 275. Further, all trajectories contain physical values comparable to the
real trajectory. This behavior is in accordance with the observation that less trajectories where
discarded as a consequence of invalid values during a MB-training when using the new training
routine, making a switching back to CFD a significantly less frequent event.

An increase of the trajectory length, however, leads to a significant deterioration with respect
to the training stability. As presented in the previous section, the predicted trajectory starts
to diverge from the real one at approximately epoch 300, when using Nmodels = 5 and the new
training routine. The trajectories with l = 4s on the other hand contain 400 values, making
it necessary to be able to predict 370 consecutive time steps sufficiently accurate. Fig. 5.22
shows the rewards received for a MB-training with Nmodels = 1 and Nmodels = 5. It is important
to note that the results presented for Nmodels = 1 could not have been averaged over multiple
seed values, since it was not possible to achieve another stable training despite the one depicted
in fig. 5.22. At some point during the training, all trainings crashed due to a divergence of
the CFD simulations over three subsequent CFD episodes. Consequently, resulting from the

Figure 5.21: Prediction accuracy of the different models when using the new training routine
for episode 80, l = 4s and b = 10

5.2 Generalization of the training routine 51

Figure 5.22: Influence of the number of models within the ensemble on the received rewards
using b = 10 and l = 4

high dependency of the results on the initialization, the results for this case can not be seen as
trustworthy enough to draw any conclusions from it. When using Nmodels = 5 for the training,
the stability improved significantly in comparison to Nmodels = 1, the results presented in fig.
5.22 for Nmodels = 5 were therefore averaged over three different seed values. Although the
rewards for a training with Nmodels = 5 are not reaching the level achieved in a MF-training,
the overall stability when using the new training routine improved. Nmodels = 10 showed again
a significant deterioration with respect to the stability throughout the training, leading to the
unfavorable situation that it was not possible to obtain even one full training and is therefore
not considered here.

A network architecture study has additionally been carried out aiming to improve the stability of
the training further. However, the results did not yield any trends, comparable to the behavior
observed in section 4.2.2. The results of this network architecture study are presented in the
appendix, section A.6.1 for the sake of completeness. It is important to note that these results
may be depended on the trajectory length and buffer size, making it a challenging task to find a
network architecture which performs well over a vast variety of different settings. In a next step,
the last remaining parameter, namely the alternation between MF- and MB-episodes, which
may be able to influence the training stability was investigated.

5.2.4 Alternation between model-based and model-free episodes

The alternation between the model-free and model-based episodes was seen as another possible
reason for the stability issues of the MB-training. Resulting from the increasing divergence
between the policy under which the training data was collected and the policy used when gen-
erating the MB-trajectories, the accuracy of the environment models decrease with increasing
distance to the last CFD episode. This may cause stability problems due to an exploitation of
the model-uncertainties by the policy.

The rewards with respect to the episode number are depicted in fig. 5.23, the ratios of MB/MF
episodes correspond hereby to switching to the CFD environment every episode e%2 = 0, e%5 =
0, e%6 = 0 and e%8 = 0 followed by an update of the environment models with the trajectories
of the current and last CFD episode. In all cases, the first episode is conducted in CFD as well in
order to initially train the environment models. The training with a ratio of MB/MF = 6.27,
corresponding to conducting all episodes e%8 = 0 in the CFD environment, was averaged
over two different seed values as a consequence of severe stability issues of the training. This
indicates that with increasing distance of two subsequent CFD episodes, the environment models
become too inaccurate and therefore vulnerable to an exploitation by the policy. The rewards,

52 5. Results

Figure 5.23: Influence of the ratio between MB- and MF-episodes for MB-trainings with b = 10
and l = 2

however, increase with increasing ratio of MB/MF episodes, for MB/MF = 6.27, the MB-
training reaches even a comparable performance to the MF-counterpart. It was not able to
determine the reason for this behavior, but the standard deviation for the training with the
ratio MB/MF = 6.27 is significantly larger than for all other trainings. Since this training has
a relatively high amount of MB-episodes it may be increasingly dependent on the initialization
in contrast to cases with lower MB/MF ratios. Therefore, the high rewards achieved may be
a consequence of a favorable initialization considering that this case was only average over two
instead of three different seed values.

Figure 5.24 depicts the lift and drag coefficients corresponding to the trainings shown in fig.
5.23. It can be seen that except for the ratio of 6.27, all MB-trainings are able to reduce and
maintain the course of cL at a level in the vicinity of |cL| ≈ 0. The reason for the significantly
different behavior of the training with the ratio of 6.27 could not been found, both seed values
for this training showed a worse ability to control cL. The results for cD are generally following
the trend already displayed by the rewards. As discussed, the training with a ratio of 6.27 shows
a significantly larger standard deviation, which is probably caused by the higher dependency on
the initialization due to a larger amount of MB-episodes.

The stability of the training with a trajectory length of l = 2s showed minor improvements
with decreasing ratio of MB/MF episodes. At the same time, the rewards decreased while

Figure 5.24: Lift and drag coefficients with respect to the episode number for MB-trainings
with b = 10 and l = 2s and different ratios of MB/MF episodes

5.2 Generalization of the training routine 53

Figure 5.25: Influence of the ratio between MB- and MF-episodes for MB-trainings with b = 10
and l = 4s

the runtime increases with a more frequent switching between MB- and MF-episodes resulting
in the aforementioned optimization problem. When increasing the trajectory length to l = 4s,
however, this trend reverses as depicted in fig. 5.25. The stability for trainings with l = 4s was
significantly worse than with l = 2s, leading to the unfavorable situation that there are only
data for MB/MF = 1 and MB/MF = 4 available. All trainings with other ratios crashed
at some point in the training, further the results for MB/MF = 1 are only averaged over two
different seed as a consequence of these stability issues. The training with a ratio MB/MF = 4,
corresponding to all episodes e%5 = 0 conducted in the CFD environment, did not encounter
any stability issues and was therefore averaged over three different seed values. Although the
amount of data is not sufficient to draw a profound conclusion, it is indicated that for l = 4s, with
increasing ratio of MB/MF episodes the rewards decrease while the stability of the training
increases. This behavior stands in direct contrast to the trends observed for trainings with
l = 2s.

Since the ratio MB/MF = 4 was able to run fairly stable independent of the trajectory length
while at the same time yielding acceptable rewards, it was decided to maintain this setup. This
means in the following, all episodes e%5 = 0 are conducted in the CFD environment while
for the other episodes the trajectories were generated by the environment models. In order to
ensure that the instabilities where not depending on the HPC cluster, in a final step the training
routine was migrated to AWS, as presented in the next section.

54 5. Results

5.2.5 Improvements of the training routine and migrating to AWS

A dependency of the training performance on the system (local machine versus HPC cluster)
was presented in section 5.1.6. It could have been observed in general that in some cases
the training hung up in episode zero for no obscure reason when conducting a MB-training
on the Phoenix HPC cluster of TU Braunschweig. This behavior motivated the necessity to
compare the MB-trainings run on the HPC of TU Braunschweig to trainings conducted on
AWS in order to ensure that the encountered stability issues were not a consequence of the
available computational resources. The training routine was therefore migrated to AWS, the
setup remains the same as for trainings conducted on the Phoenix cluster; the only difference is
the usage of 10 CPU’s for model-training instead of only 4 CPU’s.

The results of MB-trainings conducted on Phoenix in comparison to AWS are depicted in fig.
5.26. The overall course of the rewards until episode 40 displays significant differences for the
different systems, however, these difference converge for episodes > 40 leading to similar results
towards the end of the PPO-training. It is important to note that for both HPC systems,
all data was averaged over the same three different seed values. One possible explanation of
what caused the differences within the rewards may be the fact that during training, some CFD
simulations diverged and consequently did not yield any results. This leads to a reduction of
available data for model training and sampling of the initial states, and therefore to a decrease
in model-accuracy resulting in deterioration of the rewards as already discussed in section 5.1.6.
However, the absolute amount of diverged CFD simulations is not the only factor influencing
the performance and stability of the MB-training, it is also necessary to account for the episodes
in which the simulations diverged.

At the beginning of the PPO-training, the variance within the data is high, leading to generally
more inaccurate environment models than for episodes towards the end of the PPO-training. If
a simulation diverges in an early stage of the PPO-training it is likely that this deteriorates the
model-accuracy significantly, since the trajectories are highly heterogeneous. In later episodes,
the trajectories show a qualitatively similar behavior making a lack of available data not as
severe as in the first episodes. Divergence of CFD simulations within the first CFD episodes
may has a significant impact on the overall stability of the training as a consequence of error
propagation and the fact that the amount of episodes which still need to be conducted is large
at this point in the training process; influencing the course of the rewards and stability. On the
other hand, if a CFD simulation diverged towards the end of the PPO-training, e.g. in episode

Figure 5.26: Rewards received for MB-trainings on the Phoenix cluster in comparison to AWS
using b = 10 and l = 2s

5.2 Generalization of the training routine 55

Figure 5.27: Rewards received for MB-trainings on the Phoenix cluster in comparison to AWS
using b = 10 and l = 4s

75, the impact on the remaining PPO-training can be seen as rather low since the environment
models are significantly more accurate caused by a low variance within the data. Further, the
impact of the overall course of the training is not given, since the training at this point is
almost finished. Another aspect is the point within the trajectory, namely the amount of time
steps, after which the simulation diverges. If the simulation diverges e.g towards the end of the
trajectory, there is still a reasonable amount of data available, in contrast to the situation when
the simulation divergence after the first few time steps. Consequently, although the stability of
the training routine is the same across different systems in terms of diverged CFD simulations,
the results may differ significantly if the simulations diverged in different episodes containing a
different amount of time steps. However, when conducting MB-trainings on AWS, the issue that
the training hung up in episode zero for no obscure reason could not been observed, indicating
that the training stability may be influenced by the HPC cluster where it is conducted.

Trainings with a trajectory length of l = 4s showed a significant divergence between rewards
received on Phoenix and on AWS as depicted in fig. 5.27. This is mainly caused by stability
issues for different seed values on those two different systems, leading to the situations that
seed values converged onPhoenix did crash on AWS and vice versa. In order to have the same
amount of data for all the here shown trainings, all cases were averaged over three seeds, but
the seed values itself were not necessarily the same as discussed at the beginning of section 5.1.2
as a direct consequence of the convergence behavior when conducting a training on different
systems. The significant discrepancy between rewards received in a training on AWS and a
training conducted on Phoenix is mainly reasoned by the usage of different seed values. However,
this emphasizes that results may be depending on the system and are therefore not entirely
reproducible. Nonetheless, fig. 5.27 shows that the new training routine for the MB-training
is able to reach a similar performance as the MF-counterpart even with a trajectory length of
l = 4s.

Since the stability of the training routine is still a major concern, despite the HPC cluster on
which the training is conducted, three approaches have been developed in a final step aiming
to solve or at least mitigate the encountered stability issues. These ideas, however, did not
yield the expected results but this may be changed by a more thorough investigation of these
approaches in the future and are therefore presented briefly in the following.

56 5. Results

Increase the weight of ω and cD within the cD−environment models

The environment models take the states, cL, cD and ω of 30 subsequent time steps as input.
However, the states consist of 12 values for each time step while cL, cD and ω are only represented
by one value for each time step. The course of the trajectories for cD and ω are significantly
more complex than the trajectories of the states and cL. These two facts raised the concern that
the environment model for predicting cD is not able to learn the dependencies between cD and
ω sufficiently accurate since the amount of the input values are rather small compared to the
amount of input values for the states an cL. This motivated to split the fully connected model
internally into two networks. The model input and output remains the same but internally,
the model is split up into one model for cL and the states, and another model for cD and ω.
Each sub-model consists of multiple layers with different number of neurons. The resulting
output of these two sub-models is then merged into one vector, which is finally used as input
into the second part of the model. This second part outputs then the predicted cD value. In
the following, this model is denoted as new model. The sub-model for processing the cL values
and states contains two hidden layers with 50 neurons each while the sub-model for handling
cD and ω consists of 3 hidden layers with 50 neurons each. The output of those sub-models is
merged and used as an input into the second part of the model, which has two hidden layers with
100 neurons each. These changes of the model architecture only apply the to the environment
models for predicting cD, the model for predicting cL and the states remained the same fully
connected network used in the previous sections.

This new model for predicting cD offers a higher flexibility and possibilities to optimize the
model architecture further. Although this approach yielded promising results as discussed in
the following, due to time constraints it was not able to investigate the influence of the model
architecture on the rewards and training stability more thoroughly.

Placing additional probes in the vicinity of the cylinder

Up to this point, 12 probes were placed in the wake of the cylinder, these pressure values are
used as input into the policy network as well as for the environment models. Considering that
the domain consists of 11076 grid cells, this may be not enough data points to be able to fully
represent the current state of the simulation by only these 12 data points. In order to provide
more data points on the current state of the simulation, another 12 probes were placed in the
vicinity of the cylinder as depicted in fig. 5.28.

Figure 5.28: Location of the additional probes (green) placed in the vicinity of the cylinder

Correct the error between trajectories generated in CFD and by the models

Inspired by the feature extractor of the AMPO algorithm [42], additional models for correcting
the model-generated trajectories were introduced. These models were trained during the PPO-
training routine after each episode conducted in the CFD environment on the difference between
the trajectories generated by the environment models and the real ones. The correction models
for cD and cL consist of 5 hidden layers with 50 neurons per layer while the model for correcting
the states has 5 hidden layers with 150 neurons per layer. Figure 5.29 depicts a trajectory

5.2 Generalization of the training routine 57

Figure 5.29: Prediction accuracy of the environment models with and without additional cor-
rection models, here with Nmodels = 5 and l = 4s for episode 25

generated within the CFD environment, denoted as real along with the predicted trajectory
of the environment model without additional correction models; denoted as predicted. Further
the corrected trajectory, denoted as corrected is shown. Clearly, the correction models are
able to correct the model-generated trajectory highly accurate, especially for the trajectory of
cD. However, these correction models can only be updated in the PPO-training routine every
CFD episode. This leads to the issue that while the policy changes over the MB-episodes, the
correction models are not able to adapt to this new policy, which increases the error made by
the correction models over the course of the MB-episodes.

Figure 5.30 shows the rewards received when conducting a MB-training with these different
approaches for l = 4s. The trainings with a trajectory length of l = 2s yielded a qualitatively
similar behavior and can be found in in the appendix, section A.6.2. Further, the results for
a training with l = 6s, fully connected models and Nprobes = 12 are depicted in the appendix,
section A.6.2 as well, emphasizing the increasing influence of the seed value with increasing
trajectory length. As it can be seen in fig. 5.30, the rewards are generally lower with increasing
number of probes placed in the flow field. This may be caused by a redundancy within the data
of the probes, meaning the additional probe yield no or only partially new information on the
state. Since the number of probes doubled, this results in a doubling of the input states as well,
which may cause a decreasing influence of cD and ω relatively to the probes. The application of

Figure 5.30: Comparison of the rewards for MB-training using the different approaches, here
for a training with b = 10 and l = 4

58 5. Results

Figure 5.31: Comparison of the rewards for MB-training with differently weighted ω and cD,
here for a training with b = 10 and l = 2

additional correction models yields comparably low rewards as placing additional probes in the
flow field, which may be a consequence of the increasing error made by the correction models
over multiple consecutive MB-episodes, as already discussed. Increasing the weight of ω and cD

within the environment model, however, showed a high degree of stability over the course of the
training although the rewards are not as high as when using a fully connected model. Since the
lower rewards may be a consequence of an unfavorable network architecture, the influence of the
network architecture was briefly investigated in the following.

The model architecture with respect to the number of layers and neurons remained the same
throughout this study, only the number of output neurons for each sub-model was altered. The
environment models for predicting cL and the states remained a fully connected network, only
the environment models for predicting cD where changed, as already discussed. The first training
depicted in fig. 5.31, denoted as new model is the same as already presented. In this case, the
sub-model for ω and cD contains 60 output neurons while the sub-model for cL and the states has
390 neurons. For the second case, denoted as new model ω only, the first sub-model handles cD,
cL and the states while the second sub-model only processes ω. The number of output neurons
remained the same, but since cD was moved to the first sub-model, this case corresponds to an
increase of weight for ω. The last case, denoted as new model increased Nneurons, is generally
the same as the first case, the only differences lie within the number of output neurons for the
cD −ω sub-model. Here, Nneurons was increased to Nprobes ∗(Nactions +NcD

) leading to an overall
Nneurons of 720. The number of output neurons for the cL − p part of the model remained with
Nneurons = 390 the same. It can be seen clearly in fig. 5.31 that an increase of the number
of output neurons for the cD − ω sub-model increased the rewards significantly compared to
the other two cases. The stability is higher for trainings with a trajectory length of l = 2s,
but when increasing the trajectory length to l = 4s, for which the results are provided in the
appendix, section A.6.2; the stability deteriorates to a level even worse than for trainings with
fully connected models.

It is important to note that this parameter study was conducted at the end of this thesis, after
assessing the final policies for a Reynolds number of Re = 100. It was not possible to benchmark
the final policies using this new model architecture as well as analyzing the influence of the model
architecture more thoroughly, due to time constraints. The results up this this point, however,
indicated a significant improvement with respect to the overall training stability for trajectory
lengths of l = 2s while at the same time reaching a comparable performance and runtimes. An
extension to the model for predicting cL and the states may improve these results further.

5.3 Comparison of the final results for Re = 100 59

5.3 Comparison of the final results for Re = 100

In order to analyze the performance of the final policies, the trainings conducted on AWS with
fully connected networks and 12 probes were taken. These trainings are the same as presented
in the previous section and taken since they yielded comparable results to their MF-counterpart.
While the rewards were averaged over three different seed values, the final policy was determined
analogously to the procedure presented in section 5.1.3, meaning the best seed value of each case
was taken. The seed values can be found in table 5.3, the policies for the MF-cases where taken
from episode 80 while for the MB-trainings the last CFD episode, namely episode 75 was used.

Figure 5.32 summarizes the rewards received over the course of the MF- and MB-trainings.
These rewards have already been discussed in the previous section and are here presented again
in a more compact way for a better understanding. It can be seen that for a trajectory length of
l = 2s the rewards converged on a slightly lower level than in the MF-training while for l = 4s,
the MB-training is able to reach the performance of the corresponding MF-training. Despite
the deteriorated stability of the MB-training, this shows the general feasibility of MB-DRL for
flow control applications.

Fig. 5.33 shows the course of the final cL and cD trajectories for the training with l = 4s in
comparison to each other and to the uncontrolled flow, the control starts hereby at t = 4s. The
course of cL for the MB-training is not as periodic as when conducting a MF-training and shows
outliers towards higher cL−values. This indicates that the policy for ω is not optimal yet when
using the MB-training. For the cD−trajectory, the agent trained with the MB-training yields
significantly lower values than for the policy of the MF-training, however, the course of cD shows
a less periodic and more unstable behavior. The results for policies of MB- in comparison to
MF-trainings using a trajectory length of l = 2s can be found in the appendix, section A.7 along
with the cL− and cD−coefficients with respect to the episode. These results are qualitatively
similar, however, the course of cD yields oscillation with a low frequency for the policy of the
MB-training, indicating that the performance of the policy is deteriorated compared to the
MF-counterpart. This was already indicated by the lower rewards received in the MB-training.

The mean cL and cD values averaged over the quasi-steady flow between t = 6...12s can be
found in table 5.3 for the uncontrolled and controlled flow along with the corresponding standard
deviation. The MF-training with a trajectory length of l = 2s was able to reduce the mean cD by
5.72%, but the mean cL, however, yields an increase by 660.38% compared to the uncontrolled
flow. The standard deviation was reduced by 22.22% for cD and 69.38% for cL when applying
active flow control. An increase of the trajectory length to l = 4s leads to a reduction of the

Figure 5.32: Comparison of the rewards for the final MF- and MB-trainings at Re = 100

60 5. Results

Figure 5.33: Lift and drag coefficients of the uncontrolled flow in comparison to the controlled
one for a training with l = 4

mean cD by 4.94% and the mean cL by 81.13% in a MF-training while the agent was able to
decrease the standard deviation by 67.74% for cD and 66.29% for cL. These load reductions are
in accordance with the results achieved in the previous work of [6] and [9].

As already indicated by fig. 5.32, the ability to control the course of the cL−trajectory is
worse when conducting a MB-training in comparison to a MF-training. This trend can be
confirmed when analyzing the average load reductions of the final policies of the MB-trainings.
In comparison to the MF-training, the MB-training with l = 2s was able to decrease the mean
cD further by 0.07%, however, the corresponding standard deviation increased by 85.71%. The
mean cL increased by 457.14% in comparison to the MF-training while the standard deviation
for cL increased by 139.91%. This shows that the MB-training is not able to control the control
the course of cL as efficiently as the policy of the MF-training as already mentioned. On the
other hand, by using the MB-training routine, it was able to decrease the average runtime by
56.36% in comparison to the MF-training.

For the MB-training with a trajectory length of l = 4s, the mean cD could have been decreased
by 1.56% compared to the MF-training, while the corresponding standard deviation increased
by 33.33%. The mean cL resulting from the MB-training is with 9750% significantly increased
compared to the performance when conducting a MF-training. The increase of the standard
deviation of cL is with 138.75% comparable to the training with a trajectory length of l =
2s. As a consequence of the increased trajectory length and consequently the computational
requirements for the CFD simulation, by utilizing the MB-approach the average runtime could
have been even decreased by 68.91%, emphasizing the great potential of MB-DRL with respect
to the computational requirements. In the current implementation, however, the MB-trainings
are significantly worse in controlling cL than the MF-trainings, but on the other hand show an
improved ability in controlling cD.

case seed µ(cD) µ(cL) σ(cD) σ(cL) µ(runtime)
uncontrolled − 3.1863 −0.0106 0.0186 0.7119 −

MF-DRL, l = 2s 2 3.004 0.07 0.014 0.218 03h : 04min
MF-DRL, l = 4s 1 3.029 0.002 0.006 0.24 09h : 05min
MB-DRL, l = 2s 0 3.002 −0.32 0.026 0.305 01h : 20min
MB-DRL, l = 4s 1 2.982 0.195 0.008 0.333 02h : 49min

Table 5.3: Average cL and cD values of the final policies in the quasi-steady state at t = 6...12s

5.4 Model-based training at higher Reynolds numbers 61

5.4 Model-based training at higher Reynolds numbers

In a final step of this thesis it was investigated if the MB-training can be applied to flows with a
higher Reynolds number, therefore, the MF-training is bench-marked in a first step with respect
to the Reynolds number. Additionally to the changes within the numerical setup presented in
section 3.1.3, when increasing the Reynolds number it is not necessary to run the simulation
until the same physical end time is reached. Instead it is sufficient to keep the dimensionless
end time constant since the numerical time step was adjusted to ensure that the amount of
interactions between the agent and environment is held constant independently of the Reynolds
number. This means that e.g. a trajectory length of l = 0.4s for Re = 500 corresponds to
l = 2s at Re = 100. The quantities used for non-dimensionalizing the time is presented in the
appendix, section A.1. In order to account for the finer mesh, the number of sub-domains was
further increased from two (Re = 100) to four (Re = 500).

The Reynolds number was firstly increased to Re = 500. Since the inflow velocity increased
corresponding to the Reynolds number, the boundaries of the action had to be increased as well.
The influence of ω on the received rewards in a MF-training is depicted in fig. 5.34. Clearly
it can be seen that despite the training with ω ∈ [−150, 150], all trainings crashed at some
point. The crash of the PPO-training routine is hereby caused by a divergence of the CFD
simulations analogously to the behavior observed when conducting a MB-training. In contrast
to the MB-training, the MF-training only utilizes trajectories of the current episode as discussed
in section 2.2.2, making it not possible to re-use trajectories of the previous episode when there
is no data for updating the agent available in the current episode. It is important to note
that all cases presented in fig. 5.34 are only averaged over one seed value as a consequence of
the poor stability of the training. It can further be seen that the episode in which the crash
occurs is increasing with increasing ω. On the other hand the course of the rewards show an
increasingly discontinuous behavior with increasing ω, a reason for this behavior could not have
been determined. Despite the stability issues, it can be seen that that ω is required to be at
least in the order of |ω| ≥ 25 to identify an improvement of the rewards throughout the course
of the training.

The log-files of the trainings showed no errors or anomalies encountered, an additional increase
of the maximum execution time did also not yield any improvements with respect to the stability
of the training. In order to rule out that the trajectory length may have been a potential reason
for this behavior, the influence of the trajectory length on the stability of the MF-training was

Figure 5.34: Reward received for a MF-training with a Reynolds number of Re = 500 with
respect to the chosen ω using a trajectory length of l = 0.4s

62 5. Results

Figure 5.35: Reward received for a MF-training with a Reynolds number of Re = 500 with
respect to the chosen trajectory length using ω ∈ [−25, 25]

investigated. The results of this analysis are depicted in fig. 5.35. As shown, the stability of the
PPO-training decreases significantly with increasing trajectory length. The trainings shown in
fig. 5.35 are again only averaged over one seed values as a consequence of the poor stability of
the trainings. Further, in this figure only the best seed value of each case in terms of stability
is depicted, this means that all other seed values showed an even worse stability. A reason for
this behavior could also not have been determined.

It was investigated in a final step if the training stability can be improved when initializing the
training with a pre-trained policy instead of a random one, as suggested by [49]. Therefore, the
final policy for a MF-training at Re = 100 using l = 2s, b = 10 and ω ∈ [−25, 25] was utilized
in order to initialize the MF-training at Re = 500. The trajectory length of l = 2s at Re = 100
is hereby equivalent to l = 0.4s at Re = 500 as discussed at the beginning of this section. The
results of this study are depicted in fig. 5.36, clearly it can be seen that the MF-training using
a random policy crashed in episode 28, while for the MF-trainings initialized with the final
policy of the MF-training at Re = 100 all seed values were able to run complete the trainings
without encountering stability issues. This indicates that with increasing Reynolds number

Figure 5.36: Reward received for a MF- and MB-trainings with a Reynolds number of Re =
500 with respect to the policy used for initialization. The actions are in all cases
ω ∈ [−25, 25].

5.4 Model-based training at higher Reynolds numbers 63

random actions are rather unfavorable, which may be caused by the increasingly complex system
dynamics at higher Reynolds numbers. The MB-trainings, however, yielded the same stability
issues and comparable rewards despite the initialization of the policy. Both MB-trainings could
have been therefore only averaged over one seed value. Fig. 5.36 further shows the influence
of the number of sub-domains used on the rewards. In contrast to trainings with Re = 100,
for Re = 500 the numerical domain was decomposed into four sub-domains instead of two,
leading to an increased inter-process communication during runtime, which may contributes to
the encountered stability issues. A MF-training with eight sub-domains instead of four was
therefore additionally conducted, which utilized the exact same setup and seed values in order
to investigate this potential issue. As can be seen in fig. 5.36, although the rewards are slightly
higher when using eight subdomains, the yield a more unstable course. Further, this training was
only averaged over two seed values, since the training with seed = 0 crashed in episode 74, which
may also be the reason for the increased rewards. Overall, this indicates a dependency of the
stability of the MF-training on the number of sub-domain, since when using four sub-domains
the MF-training with seed = 0 did not crash.

The Reynolds number was finally increased to Re = 1000, but the results with respect to the
stability and received rewards showed a qualitatively similar behavior to the MF-trainings at
Re = 500 and was therefore not further investigated. However, for the sake of completeness the
influence of ω on the received rewards with respect to the episode can be found in the appendix,
section A.22.

64 5. Results

5.5 Comparison of the final results for Re = 500

In the following, the final policies of the training conducted in the previous section were assessed
with respect to the ability of efficiently controlling the flow at Re = 500. Since the rewards of
the MB-trainings showed no or only a neglectable improvement over the course of the training
they are not considered here, because it is highly unlikely that these policies yield any helpful
results. The rewards of the MF-trainings on the other hand were able to improve throughout
the training and are therefore chosen. Since the training using the final policy of a training with
Re = 100 for initialization and four sub-domains was the only training able to run stable for 80
episodes, the final policy of this training was chosen for evaluation. As in section 5.33, here the
training yielding the best seed value was taken.

Figure 5.37: Lift and drag coefficients of the uncontrolled flow in comparison to the controlled
one for a training with l = 0.4

Figure 5.37 shows the course of cL and cD of the uncontrolled and controlled flow using the final
policy. It can be seen, that in contrast to simulations with Re = 100, the length of the transient
phase is significantly decreased and takes here only approximately up to t∗ ≈ 25 instead of
t∗ ≈ 50; but in order to ensure the comparability between simulations with different Reynolds
numbers the control starts here at t∗ = 40 as well. Further, the agent is not able to effectively
reduce the loads acting on the cylinder, which indicates that the chosen setup for the training
is not yet optimal. Table 5.4 shows the average cL and cD values of both cases in the quasi-
steady state along with the corresponding standard deviations. As depicted, the policy is able
to decrease the average cD by 2.97% compared to the uncontrolled flow, however, the average
cL of the controlled flow is increased by 222.86% at the same time. Since the rewards depicted
in fig. 5.36 showed a convergence until episode 80, it can be concluded that a further increase of
the amount of episodes will not yield any measurable improvements with respect to the policy.
Consequently, this indicates that a policy with ω ∈ [−25, 25] is not sufficient to effectively control
the flow, although the rewards increased over the course of the training. A further increase of
ω up to ω ∈ [−50, 50] is likely to improve the ability of flow control for Re = 500 as can be seen
in fig. 5.34.

case seed µ(cD) µ(cL) σ(cD) σ(cL) µ(runtime)
uncontrolled − 3.233 −0.035 0.215 2.059 −

MF-DRL, l = 0.4s 1 3.137 −0.078 0.251 2.056 12h : 01min

Table 5.4: Average cL and cD values of the final policies in the quasi-steady state at t = 1...1.6s

Chapter 6

Conclusion

Climate change enforces the efforts to reduce the fuel consumption in aviation. While the
efficiency of the propulsion system is one major concern, drag reduction of the aircraft itself using
passive or active flow control showed a large potential. The applicability of active flow control
methods, however, requires the definition of a robust control law, which is generally challenging.
On the other hand, developments in AI and especially DRL over the past years showed the
ability of learning optimal control laws in complex environments. The high computational costs
associated with CFD limits the applicability of DRL for active flow control currently to rather
simple cases, such as the well-known incompressible flow past a two-dimensional cylinder. Prior
studies were able to successfully apply a variety of active flow control methods using DRL, which
aimed to reduce the drag and lift forces acting on the cylinder. However, using exclusively CFD
simulations in order to train the agent is computationally demanding and requires long runtimes
as a consequence of the large amount of simulations which needs to be conducted. Model-based
DRL on the other hand aims to approximate the environment with deep neural networks in
order to decrease the runtimes, but ensuring a sufficient model accuracy over the course of the
training is still a major difficulty. To proof the general feasibility of MB-DRL for active flow
control, the model-free training routine for controlling the flow past a cylinder provided by the
drlfoam framework was modified towards a MB-version in this thesis.

The derivation of requirements for a MB-training was conducted in a first step. Therefore, the
current implementation of the MF-training was bench-marked with respect to the influence of
the buffer size and trajectory length. It was found that the buffer size has no significant influence
on rewards and runtimes, but an increase of the buffer size can be seen as beneficial since a higher
buffer size provides a larger amount of training data for the models and sampling of initial states
used for model-input. The remaining parameter trajectory length mainly influences the training
stability and rewards. It was found that the trajectory length is required to be l ≥ 1s as a
consequence of an initial transient phase, while for trajectory lengths of l ≥ 8s a convergence
could have been observed. Consequently, trajectory lengths between l = 2s and l = 4s in
combination with buffer sizes of b = 8 and b = 10 were seen as an achievable goal for a MB-
algorithm.

In a next step, different approaches of modeling the CFD environment with deep neural networks
were investigated. It was found that an alternation between the CFD environment followed by
a model-training and several subsequent model-based episodes yielded best performance with
respect to the prediction accuracy. Further, the course of the trajectories of cL and the states
showed a similar, periodic behavior while the trajectory of cD was significantly more complex.
This motivated to separate the predictions for cL and the states from the predictions for cD,
which led to a further increase of the prediction accuracy. An optimization of architecture of the
environment models, however, did only have a neglectable influence on the prediction accuracy.

65

66 6. Conclusion

After an integration of this approach into the PPO-training routine, the environment mod-
els were extended to a model-ensemble in order to reduce uncertainties within the prediction
accuracy and to counteract a low-pass filtering behavior encountered when only one environ-
ment model was used. It was found that, independently of the trajectory length, Nmodels = 5
yielded the most stable training while achieving a good performance. The MB-training routine
was subsequently optimized aiming to improve especially the stability of the training, however,
the results and stability of the training were not always reproducible quantitatively when con-
ducting a MB-training on different systems. Further, a high dependency on the initialization
(seed value) of the training could have been observed, which increased with increasing trajec-
tory length. The alternation between model-free and model-based episodes showed only little
influence on the training stability, but indicated that with increasing trajectory length a more
frequent switching to the CFD environment may be beneficial with respect to the training sta-
bility. A final benchmark of the MB-training for a Reynolds number of Re = 100 showed that
the model-based training is able to run fairly stable, especially when shorter trajectories such as
l = 2s utilized, while yielding a comparable performance with respect to the ability of control-
ling the flow to the corresponding model-free training. Moreover, the model-based training was
able to decrease the required runtime by up to 68.91% when conducting trainings on an HPC
cluster. This decrease in runtime increases significantly when the trainings are conducted on a
local machine, where the available computational resources are a limiting factor.

The capabilities of the environment models to generalize to flows with higher Reynolds numbers
were investigated in a last step. Therefore, trainings with Re = 500 and Re = 1000 were
conducted, but already the model-free training encountered here a variety of issues such as the
stability of the training. The stability issues were partially caused by the necessary increase of
ω to account for the higher Reynolds number and partially a consequence of increasing inter-
process communication during the simulation due to the larger amount of sub-domains used. An
initialization of the training at higher Reynolds numbers with the final policy of a corresponding
training conducted at Re = 100 was able to mitigate these issues, but due to time constraints
it was not possible to investigate the performance of DRL for active flow control at higher
Reynolds numbers further. The usage of a random policy can consequently be considered as
problematic when increasing the Reynolds number. Although MB-trainings were conducted
using a random policy for initialization, the rewards showed no improvement over the course of
the training, while the training itself was highly unstable. Conclusively, this behavior needs to
be investigated more thoroughly in future work.

Current issues and outlook

The MB-training in general is able to run fairly stable while yielding good rewards. However,
there is still a large potential for optimization and improvements, which shall be presented con-
clusively. The most important problem of the current implementation is the training stability,
especially when increasing the trajectory length to l ≥ 4s, CFD simulations tend to diverge lead-
ing to a crash of the PPO-training. These stability issues may be contributing to the different
behavior with respect to the rewards when conducting MB-trainings on different systems, e.g.
different HPC cluster. As a consequence of model uncertainties and a decreasing prediction ac-
curacy with increasing trajectory length, the stability of the trainings as well as the performance
with respect to the rewards are highly depended on initialization (seed value). The necessity
of providing pre-trained policies in order to conduct stable trainings at higher Reynolds num-
bers lead further to high computational costs, especially when considering parameter studies,
e.g. the influence of ω of rewards since for each configuration, first a MF-training at a low
Reynolds number needs to be conducted prior running trainings for the actual Reynolds number
of interest.

The causes of these issues can be divided mainly into two parts. The first part is the hardware

67

dependency and utilized libraries such as OpenMPI. It could been shown in section 5.4, that
the number of MPI ranks (sub-domains) the computational domain is decomposed to has an
influence on the training stability when the training is conducted on the Phoenix cluster of TU
Braunschweig. It therefore needs to be further investigated if, e.g. this problem occurs on other
systems such as the AWS HPC or on a local machine and in which boundaries the number of
sub-domains can be chosen to ensure a stable training. Another aspect is the dependency of
available resources, since it was found in section 5.2.5, that the stability of the training differs
across different systems.

The second part concerns the MB-DRL algorithm itself, especially the improvement of the model
accuracy may yield great potential regarding training stability and performance. There is always
the possibility to implement more sophisticated models and algorithms, e.g. probabilistic or
Bayesian models, however, when considering the current implementation a next important step
may be a more thorough investigation of the influence of the model architecture. As presented
in section 5.2.5, the influence of model architecture on results and stability is high, especially
when considering no fully connect models.

The training stability may further be improved when the alternation between MB- and MF-
episodes takes place dynamically instead of switching e.g. every fifth episode to the CFD sim-
ulation, maybe dependent on the current episode or based on other parameters such as the
variance within the beta-distribution of the policy network. Further, up to this point the size of
the model-ensemble for predicting cL −p is the same as for the ensemble predicting cD, however,
as discussed in section 5.1.5, with increasing Nmodels the ability to control the flow with respect
to cL deteriorates while the ability for cD improves. This behavior may be exploited by using
different Nmodels for the cL − p ensemble than for cD ensemble.

Lastly, the loading of previous CFD episodes for model training and sampling of initial states
can be optimized, especially the exception handling when CFD simulations diverge over a long
period of episodes. On the other hand, the model-generated trajectories are only utilized once
for updating the policy and then discarded for the remaining training. This inefficient usage of
data maybe optimized by using improved correction models, which would be able to convert the
model-generated trajectories in a way that they can be used for model-training as well.

Bibliography

[1] Abbeel, P., Quigley, M., and Ng, A. Y.: “Using inaccurate models in reinforcement learn-
ing”. In: Proceedings of the 23rd international conference on Machine learning. Ed. by
Cohen, W. ACM Other conferences. New York, NY: ACM, 2006, pp. 1–8. doi: 10.1145/

1143844.1143845.
[2] Beck, N., Landa, T., Seitz, A., et al.: “Drag Reduction by Laminar Flow Control”. In:

energies 11(1) (2018), pp. 1–28. doi: 10.3390/en11010252.
[3] Belousov, B., Abdulsamad, H., Klink, P., et al., eds.: Reinforcement learning algorithms:

Analysis and applications. Vol. 883. Studies in computational intelligence. Cham, Switzer-
land: Springer Nature, 2021. doi: 10.1007/978-3-030-41188-6.

[4] Chua, K., Calandra, R., McAllister, R., et al.: “Deep Reinforcement Learning in a Handful
of Trials using Probabilistic Dynamics Models”. In: arXiv (2018).

[5] Clavera, I., Rothfuss, J., Schulman, J., et al.: “Model-Based Reinforcement Learning via
Meta-Policy Optimization”. In: arXiv (2018).

[6] Darshan Thummar: “Active flow control in simulations of fluid flows based on deep rein-
forcement learning”. MA thesis. Braunschweig: TU Braunschweig, 2021. doi: 10.5281/

ZENODO.4897961.
[7] Dong, H., Ding, Z., and Zhang, S., eds.: Deep Reinforcement Learning: Fundamentals,

Research and Applications. Singapore: Springer Singapore Pte. Limited, 2020.
[8] Elhawary, M. A.: “Deep Reinforcement Learning for Active Flow Control around a Circular

Cylinder Using Unsteady-mode Plasma Actuators”. In: arXiv (2020).
[9] Fabian Gabriel: “Aktive Regelung einer Zylinderumströmung bei variierender Reynold-

szahl durch bestärkendes Lernen”. MA thesis. Braunschweig: TU Braunschweig, 2021.
doi: 10.5281/ZENODO.5634050.

[10] Fan, D., Yang, L., Wang, Z., et al.: “Reinforcement learning for bluff body active flow
control in experiments and simulations”. In: Proceedings of the National Academy of
Sciences of the United States of America 117(42) (2020), pp. 26091–26098. doi: 10.1073/

pnas.2004939117.
[11] Gabriel, E., Fagg, G. E., Bosilca, G., et al.: “Open MPI: Goals, Concept, and Design of

a Next Generation MPI Implementation”. In: Kranzlmüller, D., Kacsuk, P., Dongarra,
J. (eds) Recent Advances in Parallel Virtual Machine and Message Passing Interface.
EuroPVM/MPI 2004. Vol. 3241, pp. 97–104. doi: 10.1007/978-3-540-30218-6_19.

[12] Ganin, Y., Ustinova, E., Ajakan, H., et al.: “Domain-Adversarial Training of Neural Net-
works”. In: Journal of Machine Learning Research 17 (2016), pp. 1–35.

[13] Garnier, P., Viquerat, J., Rabault, J., et al.: “A review on deep reinforcement learning for
fluid mechanics”. In: Computers & Fluids 225 (2021). doi: 10.1016/j.compfluid.2021.

104973.
[14] Haarnoja, T., Zhou, A., Abbeel, P., et al.: “Soft Actor-Critic: Off-Policy Maximum Entropy

Deep Reinforcement Learning with a Stochastic Actor”. In: arXiv (2018).
[15] Hanks, G. W. and et. al.: Natural Laminar Flow Airfoil analysis and trade studies. Ed. by

National Aeronautics and Space Administration. Hampton, Virginia.

68

BIBLIOGRAPHY 69

[16] Hanna, B. N., Dinh, N. T., Youngblood, R. W., et al.: “Coarse-Grid Computational Fluid
Dynamic (CG-CFD) Error Prediction using Machine Learning”. In: arXiv (2017).

[17] Houthooft, R., Chen, X., Duan, Y., et al.: “VIME: Variational Information Maximizing
Exploration”. In: arXiv (2017).

[18] Janner, M., Fu, J., Zhang, M., et al.: “When to Trust Your Model: Model-Based Policy
Optimization”. In: arXiv (2019).

[19] Kalweit, G. and Boedecker, J.: Uncertainty-driven imagination for continuous deep rein-
forcement learning. 2017.

[20] Kingma, D. P. and Ba, J.: “Adam: A Method for Stochastic Optimization”. In: 3rd Inter-
national Conference for Learning, San Diego.

[21] Kurutach, T., Clavera, I., Duan, Y., et al.: “Model-Ensemble Trust-Region Policy Opti-
mization”. In: arXiv (2018).

[22] Loshchilov, I. and Hutter, F.: Decoupled Weight Decay Regularization.
[23] Novati, G., Laroussilhe, H. L. de, and Koumoutsakos, P.: “Automating Turbulence Mod-

eling by Multi-Agent Reinforcement Learning”. In: arXiv (2020).
[24] OpenFOAM: User Guide: Flow around a cylinder, OpenFOAM documentation. url: https:

//www.openfoam.com/documentation/tutorial-guide/2-incompressible-flow/2.

2-flow-around-a-cylinder. Last access: 09.11.2022.
[25] OpenFOAM: User Guide: incompressible solver algorithm, OpenFOAM documentation.

url: https : / / www . openfoam . com / documentation / guides / latest / doc / guide -

applications-solvers-incompressible-pimpleFoam.html. Last access: 09.11.2022.
[26] Paris, R., Beneddine, S., and Dandois, J.: “Robust flow control and optimal sensor place-

ment using deep reinforcement learning”. In: arXiv (2020).
[27] Paszke, A., Gross, S., Massa, F., et al.: “PyTorch: An Imperative Style, High-Performance

Deep Learning Library”. In: arXiv (2019).
[28] Pathak, J., Mustafa, M., Kashinath, K., et al.: “Using Machine Learning to Augment

Coarse-Grid Computational Fluid Dynamics Simulations”. In: arXiv (2020).
[29] PyTorch Foundation: PyTorch documentation. url: https://pytorch.org/docs/1.12/.

Last access: 09.11.2022.
[30] Qin, S., Wang, S., Rabault, J., et al.: “An application of data driven reward of deep

reinforcement learning by dynamic mode decomposition in active flow control”. In: arXiv
(2021).

[31] Rabault, J., Kuchta, M., Jensen, A., et al.: “Artificial neural networks trained through deep
reinforcement learning discover control strategies for active flow control”. In: Journal of
Fluid Mechanics 865 (2019), pp. 281–302. doi: 10.1017/jfm.2019.62.

[32] Rabault, J. and Kuhnle, A.: “Accelerating deep reinforcement learning strategies of flow
control through a multi-environment approach”. In: arXiv (2019). doi: 10.1063/1.

5116415.
[33] Raff, E.: Inside deep learning: Math, algorithms, models. Shelter Island: Manning Publi-

cations, 2022.
[34] Raissi, M., Perdikaris, P., and Karniadakis, G. E.: “Physics-informed neural networks:

A deep learning framework for solving forward and inverse problems involving nonlinear
partial differential equations”. In: Journal of Computational Physics 378 (2019), pp. 686–
707. doi: 10.1016/j.jcp.2018.10.045.

[35] Ríos Insua, D.: Bayesian analysis of stochastic process models. Wiley series in probability
and statistics. Chichester, U.K.: Wiley, 2012.

[36] Schäfer, M., Turek, S., Durst, F., et al.: “Benchmark Computations of Laminar Flow
Around a Cylinder”. In: Flow Simulation with High-Performance Computers II. Ed. by
Hirschel, E. H. Vol. 48. Notes on Numerical Fluid Mechanics (NNFM). Wiesbaden: Vieweg+Teubner
Verlag, 1996, pp. 547–566. doi: 10.1007/978-3-322-89849-4_39.

70 Bibliography

[37] Schulman, J.: “Optimizing Expectations: From Deep Reinforcement Learning to Stochastic
Computation Graphs”. MA thesis. EECS Department, University of California, Berkeley,
2016.

[38] Schulman, J., Levine, S., Moritz, P., et al.: “Trust Region Policy Optimization”. In: arXiv
(2015).

[39] Schulman, J., Moritz, P., Levine, S., et al.: “High-Dimensional Continuous Control Using
Generalized Advantage Estimation”. In: arXiv (2015).

[40] Schulman, J., Wolski, F., Dhariwal, P., et al.: “Proximal Policy Optimization Algorithms”.
In: arXiv (2017).

[41] Schulze, E.: “Model-based Reinforcement Learning for Accelerated Learning From CFD
Simulations”. MA thesis. Braunschweig: TU Braunschweig, 2022. doi: 10.5281/ZENODO.

6375575.
[42] Shen, J., Zhao, H., Zhang, W., et al.: “Model-based Policy Optimization with Unsupervised

Model Adaptation”. In: arXiv (2020).
[43] Snoek, J., Larochelle, H., and Adams, R. P.: “Practical Bayesian Optimization of Machine

Learning Algorithms”. In: arXiv (2012).
[44] Sutton, R. S. and Barto, A. G.: Reinforcement Learning: An Introduction. Second. The

MIT Press, 2018.
[45] Tang, H., Rabault, J., Kuhnle, A., et al.: “Robust active flow control over a range of

Reynolds numbers using an artificial neural network trained through deep reinforcement
learning”. In: Physics of Fluids 32(5) (2020). doi: 10.1063/5.0006492.

[46] The Open MPI Project: Open MPI documentation. url: https://www.open-mpi.org/

doc/. Last access: 09.11.2022.
[47] Tokarev, M., Palkin, E., and Mullyadzhanov, R.: “Deep Reinforcement Learning Control of

Cylinder Flow Using Rotary Oscillations at Low Reynolds Number”. In: Energies 13(22)
(2020), p. 5920. doi: 10.3390/en13225920.

[48] Tzeng, E., Hoffman, J., Saenko, K., et al.: “Adversarial Discriminative Domain Adapta-
tion”. In: arXiv (2017).

[49] Varela, P., Suárez, P., Alcántara-Ávila, F., et al.: “Deep reinforcement learning for flow con-
trol exploits different physics for increasing Reynolds-number regimes”. In: arXiv (2022).

[50] Wang, T., Bao, X., Clavera, I., et al.: “Benchmarking Model-Based Reinforcement Learn-
ing”. In: arXiv (2019).

List of Figures

1.1 Rotation of the cylinder during the flow simulation [47] 3
1.2 Comparison of the uncontrolled flow with the controlled flow at Re = 100 using

model-free DRL . 3

2.1 Principle of reinforcement learning . 6
2.2 Pseudo-code of the PPO-algorithm . 7
2.3 Clipping of advantages . 7
2.4 Performance of TRPO and VIME on the Walker2D locomotion task 8
2.5 Pseudo-code of the ME-TRPO algorithm . 9

3.1 Geometry of the numerical domain . 11
3.2 Spatial discretization of the flow problem . 12
3.3 Differences within the correlation heat maps for different grid refinement levels . 12
3.4 Grid convergence study for Re = 500 . 13

4.1 Average rewards received with respect to the buffer size and trajectory length . . 17
4.2 Average runtimes with respect to the buffer size and trajectory length 18
4.3 Optimum of the runtime and received rewards . 18
4.4 Rewards received throughout the training for buffer sizes b = 2 and b = 10 with

respect to the trajectory length . 19
4.5 Total rewards received over the course of the training for buffer sizes b = 2 and

b = 10 with respect to the trajectory length . 20
4.6 L2−norm of the prediction error for the two different approaches, averaged over

all episodes and trajectories within the buffer . 21
4.7 Real trajectory generated in the CFD environment in comparison to the predicted

trajectory by the environment model using a global model for all episodes 22
4.8 Real trajectory generated in the CFD environment in comparison to the predicted

trajectory by the environment model using a model trained with trajectories of
episode 3 and 4 . 23

4.9 Real trajectory generated in the CFD environment in comparison to the predicted
trajectory by the environment model using a model trained with trajectories of
episode 12 and 13 . 23

4.10 The trajectories of the probes, corresponding to fig. 4.7 and 4.9 24
4.11 L2− and L1−norm of the prediction error of cD with respect to the model archi-

tecture . 25
4.12 L2− and L1−norm of the prediction error of cL with respect to the model archi-

tecture . 25
4.13 Comparison of the L2−norm of the prediction error when using one model to

predict cL, pi and cD vs. one model for predicting cL and pi and a separate
model for predicting cD . 26

4.14 Real trajectory generated in the CFD environment in comparison to the predicted
trajectory by the environment model using two models 26

4.15 The trajectories of the probes corresponding to fig. 4.14 27
4.16 Power spectral density of the trajectories for cL and cD for the controlled and

uncontrolled flow . 28
4.17 L2−norm of the prediction error depended on the number of time steps used as

model input . 29
4.18 L2−norm of the prediction error depended on the number of time steps used as

model input . 29

71

72 List of Figures

4.19 L2−norm of the prediction error for Nt,input = 30 with respect to the epoch number 30
4.20 L2−norm of the prediction error when predicting the change of state instead of

the new state . 31
4.21 Real trajectory generated in the CFD environment in comparison to the predicted

trajectory, ds was not scaled . 31

5.1 Different amounts of episodes taken for training the environment models 33
5.2 Corresponding variances of the Beta-distribution with respect to the training routine 34
5.3 Influence of the trajectory length on the performance for a model-based PPO-

training . 36
5.4 cL and cD over the course of the MB-PPO training when using different trajectory

lengths . 36
5.5 Results using best policy for MF case and last CFD episode for MB case 37
5.6 Qualitative comparison of the model-generated trajectory with a trajectory gen-

erated within the CFD environment . 38
5.7 Power spectral density for ω and frequencies of cL and cD 38
5.8 Power spectral density for cL, cD and ω with respect to Nt,input 39
5.9 Rewards received for an MB-training with b = 10, l = 4 and different Nmodels in

comparison to the MF-training . 40
5.10 Qualitative comparison of the trajectories for cL and cD at episode 80, for b =

10, l = 4 and different Nmodels in comparison to the MF-training 40
5.11 Prediction accuracy of the different models for episode 80, l = 4s and b = 10 . . . 41
5.12 Influence of the number of models within the ensemble on the received rewards

for b = 10 and l = 4s . 43
5.13 Influence of the number of models within the ensemble on cL and cD for b = 10

and l = 4 . 44
5.14 Differences between the rewards received on an HPC cluster and on a local machine 45
5.15 Training and validation losses using the original training routine 46
5.16 Training and validation losses using the new training routine 47
5.17 Comparison of the predicted trajectories with the original (CFD) one, for both

training routines using a trajectory length of l = 2s 48
5.18 Comparison of the predicted trajectories with the original (CFD) one, for both

training routines using a trajectory length of l = 6s 48
5.19 Comparison of the rewards received throughout the training for different seeds . 49
5.20 Influence of the number of models within the ensemble on the received rewards,

here for b = 10, l = 2 . 50
5.21 Prediction accuracy of the different models when using the new training routine

for episode 80, l = 4s and b = 10 . 50
5.22 Influence of the number of models within the ensemble on the received rewards

using b = 10 and l = 4 . 51
5.23 Influence of the ratio between MB- and MF-episodes for MB-trainings with b = 10

and l = 2 . 52
5.24 Lift and drag coefficients with respect to the episode number for MB-trainings

with b = 10 and l = 2s and different ratios of MB/MF episodes 52
5.25 Influence of the ratio between MB- and MF-episodes for MB-trainings with b = 10

and l = 4s . 53
5.26 Rewards received for MB-trainings on the Phoenix cluster in comparison to AWS

using b = 10 and l = 2s . 54
5.27 Rewards received for MB-trainings on the Phoenix cluster in comparison to AWS

using b = 10 and l = 4s . 55
5.28 Location of the additional probes placed in the vicinity of the cylinder 56
5.29 Prediction accuracy of the environment models with and without additional cor-

rection models . 57
5.30 Comparison of the rewards for MB-training using the different approaches 57
5.31 Comparison of the rewards for MB-training with differently weighted ω and cD . 58
5.32 Comparison of the rewards for the final MF- and MB-trainings at Re = 100 . . . 59
5.33 Lift and drag coefficients of the uncontrolled flow in comparison to the controlled

one for a training with l = 4 . 60
5.34 Reward received for a MF-training with a Reynolds number of Re = 500 with

respect to the chosen ω using a trajectory length of l = 0.4s 61

List of Figures 73

5.35 Reward received for a MF-training with a Reynolds number of Re = 500 with
respect to the chosen trajectory length using ω ∈ [−25, 25] 62

5.36 Reward received for a MF- and MB-trainings with a Reynolds number of Re = 500
with respect to the policy used for initialization 62

5.37 Lift and drag coefficients of the uncontrolled flow in comparison to the controlled
one for a training with l = 0.4 . 64

A.1 Lift and drag coefficients for Re = 500 depending on the number of mesh cells . . 76
A.2 Grid convergence study for Re = 1000 . 76
A.3 Average cL−values of the MF-training with respect to the buffer size and trajec-

tory length . 77
A.4 Average cD−values of the MF-training with respect to the buffer size and trajec-

tory length . 77
A.5 Rewards received throughout the PPO-training for buffer size of b = 4 and b = 6

using different trajectory lengths . 77
A.6 Rewards received throughout the PPO-training for a buffer size of b = 8 and

different trajectory lengths . 78
A.7 Convergence behavior of the PPO-training when extending the training to 200

episodes . 78
A.8 Beta-distribution of additional entropy applied with respect to the episode, cor-

responding to section 5.1.1 . 78
A.9 Power spectral density for pi using the final policy of a MB-training, corresponding

to section 5.1.3 . 79
A.10 Rewards received for an MB-training using a model-ensemble with b = 10, l = 2

and different Nmodels in comparison to the MF-training 79
A.11 Rewards received for an MB-training using a model-ensemble with b = 10, l = 6

and different Nmodels in comparison to the MF-training, corresponding to section
5.1.4 . 79

A.12 Influence of the network architecture on the overall MSE-loss of cD received
throughout the training using the new training routine 81

A.13 Influence of the network architecture on the overall MSE-loss of cL received
throughout the training using the new training routine 81

A.14 Influence of the network architecture on the overall MSE-loss of pi received
throughout the training using the new training routine 82

A.15 Rewards for the original network architecture in comparison to the optimal one . 82
A.16 Comparison of the different adjustments to the training routine using b = 10 and

l = 2 . 83
A.17 Received rewards with respect to the seed value for a MB-training on AWS with

fully-connected models and Nprobes = 12 using b = 10 and l = 6 83
A.18 Comparison of the rewards for MB-training with differently weighted ω and cD . 84
A.19 Lift and drag coefficients with respect to the episode for the final trainings with

Re = 100 and l = 4s . 85
A.20 Lift and drag coefficients with respect to the episode for the final trainings with

Re = 100 and l = 2s . 85
A.21 Lift and drag coefficients of the uncontrolled flow in comparison to the controlled

one for a training with l = 2s at Re = 100 . 85
A.22 Reward received for a MF-training with a Reynolds number of Re = 1000 with

respect to the chosen ω using a trajectory length of l = 0.2s 86

List of Tables

3.1 Characteristics of the mesh and simulation used in this thesis 13

4.1 Values used for the min- max scaling of cL, cD, runtimes and the rewards 17

5.1 Average cL and cD values of the final policies in the quasi-steady state at t = 6...8s 37
5.2 Average runtimes for a MF- and MB-training on different systems 44
5.3 Average cL and cD values of the final policies in the quasi-steady state at t = 6...12s 60
5.4 Average cL and cD values of the final policies in the quasi-steady state at t = 1...1.6s 64

A.1 Hyperparameter settings of the PPO-algorithm 80
A.2 Hyperparameter settings of the global and the episode-wise environment model

predicting cD, cL and pi . 80
A.3 Hyperparameter settings of the optimized training routine 80

74

Appendix A

Appendix

A.1 Navier-Stokes equations for incompressible flow

Incompressible flow can be described with the Navier-Stokes equations as

∇ ∗ u∗ = 0 (A.1)

∂u∗

∂t
+ (u∗ ∗ ∇∗)u∗ = −∇∗p∗ +

1
Re

∇∗2u∗ (A.2)

where eq. A.1 describes the conservation of mass and eq. A.2 the conservation of momentum
within the computational domain. These equations are non-dimensionalized using characteristic
quantities of the flow problems, namely

t∗ = t
u∞

d
(A.3)

u∗ =
u

u∞

(A.4)

p∗ = p
d

µu∞

(A.5)

∇∗ = d∇ (A.6)

where the ∗ superscript denotes all non-dimensional quantities. The Reynolds number Re can
further be expressed as

Re =
du∞

ν
(A.7)

75

76 A. Appendix

A.2 Adjustments for higher Reynolds numbers

Figure A.1: Lift and drag coefficients for Re = 500 depending on the number of mesh cells

Figure A.2: Grid convergence study for Re = 1000

A.3 Influence of the buffer size and trajectory length (MF-DRL) 77

A.3 Influence of the buffer size and trajectory length (MF-DRL)

Figure A.3: Average cL−values of the MF-training with respect to the buffer size and trajec-
tory length

Figure A.4: Average cD−values of the MF-training with respect to the buffer size and trajec-
tory length

(a) Rewards for b = 4 (b) Rewards for b = 6

Figure A.5: Rewards received throughout the PPO-training for buffer size of b = 4 and b = 6
using different trajectory lengths

78 A. Appendix

Figure A.6: Rewards received throughout the PPO-training for a buffer size of b = 8 and
different trajectory lengths

Figure A.7: Convergence behavior of the PPO-training when extending the training to 200
episodes using a buffer size of b = 10 and a trajectory length of l = 8s

A.4 Integration of the model-based approach into drlfoam

Figure A.8: Beta-distribution of additional entropy applied with respect to the episode, cor-
responding to section 5.1.1

A.4 Integration of the model-based approach into drlfoam 79

Figure A.9: Power spectral density for pi using the final policy of a MB-training, corresponding
to section 5.1.3

Figure A.10: Rewards received for an MB-training using a model-ensemble with b = 10, l = 2
and different Nmodels in comparison to the MF-training

Figure A.11: Rewards received for an MB-training using a model-ensemble with b = 10, l = 6
and different Nmodels in comparison to the MF-training, corresponding to section
5.1.4

80 A. Appendix

A.5 Hyperparameter settings

A.5.1 PPO

Parameter Value network Value network

Nlayers 2 2
Nneurons 64 64
Nepochs 100 100

learning rate 0.001 0.0005

Table A.1: Hyperparameter settings of the PPO-algorithm, additionally γ = 0.99 and λ = 0.97

A.5.2 One global environment model vs. one new model each episodes

Parameter global model episode-wise model

Nt,input 2 2
Nlayers 3 3

Nneurons 50 75
Nepochs 10000 10000

learning rate 0.0005 0.0005

Table A.2: Hyperparameter settings of the global and the episode-wise environment model
predicting cD, cL and pi

A.5.3 ME-MB-DRL

Parameter global model episode-wise model

Nt,input 30 30
Nlayers 3 5

Nneurons 100 50
Nepochs 10000, 500 10000, 500

learning rate 0.001 0.001

Table A.3: Hyperparameter settings of the optimized training routine

A.6 Generalization of the training routine 81

A.6 Generalization of the training routine

A.6.1 Network architecture study new training routine

Figure A.12: Influence of the network architecture on the overall MSE-loss of cD received
throughout the training using the new training routine, here b = 8, l = 2 and
Nmodels = 5. This figure corresponds to section 5.2.3.

Figure A.13: Influence of the network architecture on the overall MSE-loss of cL received
throughout the training using the new training routine, here b = 8, l = 2 and
Nmodels = 5. This figure corresponds to section 5.2.3 as well.

82 A. Appendix

Figure A.14: Influence of the network architecture on the overall MSE-loss of pi received
throughout the training using the new training routine, here b = 8, l = 2 and
Nmodels = 5. This figure also corresponds to section 5.2.3.

Figure A.15: Rewards for the original network architecture in comparison to the optimal one,
here b = 8, l = 2 and Nmodels = 5. This figure corresponds to section 5.2.3.

A.6 Generalization of the training routine 83

A.6.2 Final improvements to the new training routine

Figure A.16: Comparison of the different adjustments to the training routine using b = 10
and l = 2. This figure corresponds to section 5.2.5.

Figure A.17: Received rewards with respect to the seed value for a MB-training on AWS with
fully-connected models and Nprobes = 12 using b = 10 and l = 6. This figure
corresponds to section 5.2.5.

84 A. Appendix

Figure A.18: Comparison of the rewards for MB-training with differently weighted ω and cD,
here for a training with b = 10 and l = 4. This figure corresponds to section
5.2.5.

A.7 Final results for a Reynolds number of Re = 100 85

A.7 Final results for a Reynolds number of Re = 100

Figure A.19: Lift and drag coefficients with respect to the episode for the final trainings with
Re = 100 and l = 4s. This figure corresponds to section 5.3.

Figure A.20: Lift and drag coefficients with respect to the episode for the final trainings with
Re = 100 and l = 2s. This figure corresponds to section 5.3.

Figure A.21: Lift and drag coefficients of the uncontrolled flow in comparison to the controlled
one for a training with l = 2 at Re = 100. This figure corresponds to section
5.3.

86 A. Appendix

A.8 Model-based training at higher Reynolds numbers

Figure A.22: Reward received for a MF-training with a Reynolds number of Re = 1000 with
respect to the chosen ω using a trajectory length of l = 0.2s

