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Abstract

Cut finite-element methods (CutFEMs) belong to the class of methods that allow boundaries/interfaces to cut through the
lements, which avoids any meshing/remeshing problems. This is highly convenient from a practical point of view, especially
hen non-stationary interfaces are considered, e.g. phase boundaries in solids, as the interfaces can move independently of

he mesh. There are many research directions related to CutFEM, one of which focuses on the equations of solid mechanics.
nitially, the developments centred on linear elasticity and, in the previous publication by the authors, the method has been
xtended to large deformations and arbitrary constitutive relations, while the focus has been on phase boundaries in solids and
n localised chemical reaction fronts in coupled mechanics–diffusion–reaction systems. In this paper, the method is further
xtended to more complex physics of the interfaces — fracture, i.e. separation of the interface into two surfaces in the current
onfiguration, and contact between the separated surfaces. Several cases are considered — fracture with linear and non-linear
raction separation, contact without and with adhesion. Each incremental generalisation of the approach contains a prior approach
s a particular case, e.g. the phase boundary problem is a particular case of the fracture problem. The contact problem is treated
n an unbiased way — the weak form is symmetric with respect to the choice of the contact surfaces for the integration. The
eak forms are derived from the total energy functional. The proposed method has been tested computationally for the case
f linear elements and passed the so-called patch tests and the convergence rate tests demonstrating the asymptotically optimal
ates.
c 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
http://creativecommons.org/licenses/by-nc-nd/4.0/).

eywords: Cut finite element method; Fictitious domain method; Sharp interface method; Contact mechanics; Large deformation mechanics;
nbiased contact formulation

1. Introduction

Solving PDEs defined on domains with interfaces still remains one of the challenging problems in computational
ciences, especially when physics of these interfaces is non-trivial and involves a coupling between a number of
hysical processes. Non-stationary interfaces represent a specific challenge for computational techniques, while
olution of such problems is highly relevant for physical sciences. These problems are encountered in a large variety
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of applications, e.g. two–phase flows, fluid–structure interactions, phase transitions, diffusion–reaction systems,
fracture and damage in solids, etc.

One of the ways of handling interfaces that gained significant popularity in recent years is the class of fictitious-
omain methods, also called non-conforming mesh methods or unfitted methods. In this approach, the computational
esh is independent of the geometry, the interfaces can arbitrarily cut through the elements and, in the case of non-

tationary problems, can move independently of the mesh. The advantages of such approach are obvious — it not
nly completely avoids remeshing for non-stationary interfaces, but it is also useful for stationary problems with
omplex interface geometries and allows using structured meshes.

One of such methods is the cut finite-element method or CutFEM [1,2]. Literature on CutFEM is vast and
his introduction does not aim to be exhaustive. It is important to mention that the method originates from [3],
here it has been proposed to use the Nitsche’s method [4] to enforce the boundary/interface conditions, and

rom [1], where the numerical stabilisation has been proposed. For a summary of the method, the reader is referred
o overview [2] and references therein. The subsequent research includes the improvement of the quadrature on
ut elements, e.g. [5], further development of the method for PDEs on surfaces and on embedded manifolds in
eneral, e.g. [6–8], generalisation of the numerical stabilisation, e.g. [9], formulation of the space–time FEM with
ut elements, e.g. [10,11], tailoring the method to specific applications such as topology optimisation [12,13].

Perhaps the most well-known (in the computational mechanics community) unfitted method for interface
roblems is XFEM/GFEM [14–16]; therefore, it is important to highlight its relation to CutFEM. The main idea of
he XFEM framework is the enrichment of the numerical solution, such that it becomes a sum of the standard
nite-element approximation and products of some enrichment functions, partition of unity functions [17] and
dditional degrees of freedom. Taking a crack opening as an example of an interface problem, the enrichment
s typically done locally for the elements that are cut by the crack, the enrichment function is typically taken to be
he Heaviside step function for the elements containing the crack surface and taken to be an asymptotic solution
or the elements containing the crack tip [16,18]. For the phase boundary problems, the enrichment function has
nitially been proposed to be the ridge function [19–21], i.e. the absolute value of the level set function defining the
nterface, but it can also be the Heaviside step function [22,23]. In the CutFEM method, the elements that are cut
y the crack have doubled degrees of freedom [3,24], i.e. an extra element is added for every cut element, which
s a form of enrichment of the numerical solution. Such enrichment can be derived from the standard XFEM, as
as been shown in detail in Section 3.2.1 of Ref. [18].

For most types of interfaces, there is a need to enforce specific interface conditions, which is done via the weak
orm. For cohesive cracks treated within the XFEM framework, it has been proposed to account for additional
ohesive forces within the principle of virtual work (or virtual power) as work of tractions on virtual displacements
t both sides of the crack [25–28]. For phase boundaries treated within the XFEM framework, various enforcement
echniques of the interface conditions exist: one option is to use the ridge function for the solution enrichment and
he standard weak form [21], an alternative option is to use the Heaviside function for the solution enrichment
nd impose the interface conditions via the Lagrange multipliers [22,23]. The latter approach is similar to the
nforcement of the interface conditions using the Nitsche’s method, as has been discussed in [23]. As described
arlier, the CutFEM framework uses the Nitsche’s method [2]; therefore, it might be viewed as a particular case of
he XFEM framework. According to the best knowledge of the authors, in the numerical analysis community, name
CutFEM’ consolidated for a non-conforming mesh framework relying on (a) the Nitsche’s method for enforcement
f the boundary/interface conditions and (b) using a some form of inter-element stabilisation for cut elements (or
host penalty) as introduced in [1].

Within the area of solid mechanics, CutFEM without inter-element stabilisation has originally been formulated
or linear elasticity problems in [24] and the stabilised version of CutFEM for linear elasticity has been proposed
n [29]. It is also noteworthy to mention an overview paper on elasticity and interfaces [30]. The method has been
xtended to non-linear problems of solid mechanics (i.e. large deformations and arbitrary constitutive relations)
n [31], where not only phase boundaries in solids have been considered, but also more general localised chemical
eaction fronts (or transformation fronts) in coupled mechanics–diffusion–reaction systems. The extension, however,
as been limited to interfaces without damage, i.e. without separation between surfaces belonging to different
ubdomains. Although fracture problems have been considered in the original paper [24], they were limited to
inear elasticity. Therefore, the first aim of this paper is to extend the CutFEM approach to fracture problems in
arge-deformation solid mechanics.
2
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In fracture problems, the initial interface in the reference configuration splits into two surfaces in the current
onfiguration, and, when large deformations are considered, these surfaces can come in contact. Furthermore, in large
eformations, the images of the contact points in the reference configuration can be significantly distanced. This
equires proper resolution of the contact conditions. The idea of the Nitsche’s method, which is used in CutFEM,
as also been applied to contact problems in solid mechanics. Originally, the Nitsche-based contact resolution has
een formulated for linear elastic contact problems [32] and then extended to large deformations [33], based on the
arlier results of [34,35], and even to coupled problems such as thermo-mechanics [36]. Thus, the second aim of
his paper is to incorporate the Nitsche-based resolution of the contact conditions at the interface into CutFEM.

. Numerical method

The presentation of the generalisation of the CutFEM approach for fracture and contact problems in large-
eformation solid mechanics is split in four major parts. In the first part, the general framework for interface
roblems is summarised. The second part deals with the case of phase boundary in solids (e.g. a discontinuity
n constitutive relations) and summarises some results from [31]. In the third and the fourth parts, the fracture and
he contact problems are considered, respectively.

The major goal here is twofold. The first goal is to ensure that any incremental generalisation of the approach
ontains a prior approach as a particular case, i.e. the phase boundary problem is a particular case of the fracture
roblem, while the latter can become a particular case of the contact problem under some conditions. The second
oal is to ensure that the weak form obtained for the contact problem is symmetric with respect to the choice of the
ontact surfaces for the integration, i.e. the week form contains integrals over both surfaces that come into contact
nd the integrals corresponding to the first surface have the same structure as the integrals corresponding to the
econd surface.

.1. General interface problem

.1.1. Problem formulation
The solid body is split into two subdomains, which are separated by an interface. A static problem is considered,

.e. there are no dynamic terms in the linear momentum balance equations. The problem is to find the deformed
tate of the material under a certain load by solving the linear momentum balance equation:

∇ · σ± = 0⃗, x⃗ ∈ ω±. (1)

Here, the same tensor notation as in the previous publication by the authors is used [31]. Current position vector x⃗
of a material point is a function of position vector X⃗ of the point in the reference configuration. Nabla operators ∇0
and ∇ = F−T

· ∇0 are defined with respect to the reference and the current configurations, respectively, where F
is the deformation gradient, which maps the reference configuration to the current configuration: F = (∇0 x⃗)T. The
Cauchy stress tensor is denoted as σ . Quantities (deformation gradients, stresses, displacements, etc.) corresponding
to subdomains one and two are denoted with subscripts ‘+ ’ and ‘−’, respectively. As seen from Eq. (1), to shorten
the description, subscript ‘±’ is used on some occasions to combine two separate equations corresponding to two
ubdomains into one equation. In the current configuration, subdomains one and two are denoted as ω+ and ω−,

respectively. These domains are separated by interface γ∗. The normal to γ∗ is denoted as n⃗∗ and is defined as
the outer normal to ω+. Mappings of ω+ and ω− onto the reference configuration are denoted as Ω+ and Ω−,
respectively. These subdomains are separated by interface Γ∗. The normal to the interface is defined as the outer
normal to Ω+ and is denoted as N⃗∗.

The outer boundary of the body is split into γD and γT, on which displacements and tractions are enforced,
respectively. The normal to γT is denoted as n⃗T and is defined as the outer normal to the body. The boundary
conditions at the outer surface of the body can be written as

u⃗± = d⃗, x⃗ ∈ γD±, γD± = γD ∩ ∂ω±, (2)

σ± · n⃗T = t⃗, x⃗ ∈ γT±, γT± = γT ∩ ∂ω±, (3)

where u⃗ is the displacement of a material point, d⃗ is the imposed displacement vector and t⃗ is the imposed traction
vector. There are of course interface conditions enforced at γ∗, which are considered below separately for each

problem.

3
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It is also useful to rewrite the boundary conditions with respect to the reference configuration. Here, ΓD and ΓT
re the images of γD and γT, respectively, in the reference configuration. The normal to ΓT is denoted as N⃗T and
s defined as the outer normal to the body. Then, the boundary conditions at the outer surface of the body can be
ritten as

u⃗± = d⃗, X⃗ ∈ ΓD±, ΓD± = ΓD ∩ ∂Ω±, (4)

P± · N⃗T = T⃗ , X⃗ ∈ ΓT±, ΓT± = ΓT ∩ ∂Ω±, (5)

where P is the first Piola–Kirchhoff stress tensor and T⃗ is the imposed traction defined per unit surface in the
reference configuration. As usual, for the purpose of presenting a numerical method, T⃗ is assumed to be independent
of displacement u⃗; however, it is easy to construct the generalisation. In the reference configuration, the interface
conditions are enforced at Γ∗.

Only one assumption is made regarding the constitutive relations — the materials have a defined strain energy
ensity such that

P =
∂W
∂F

, (6)

here W is the strain energy density per unit volume in the reference configuration. It should be emphasised that
uch assumption is valid not only for hyperelasticity but also for a larger range of material models, for example,
or the so-called hyperelastoplasticity.1

.1.2. Method
The weak form of the linear momentum balance equation, which is required for the finite-element discretisation,

an be obtained either from the strong form or by variation of the total energy. Here, the latter route is chosen. The
otal energy can be represented by four terms:

Π = Π+ +Π− +Π∗ +ΠI, (7)

here Π+ and Π− are the bulk energies corresponding to subdomains one and two, respectively, Π∗ is the energy
orresponding to the interface, ΠI is the inter-element stabilisation energy that is usually introduced in the CutFEM
ethods and is considered in Section 2.5. At this point, a general interface is considered and later, different energies

re specified for different types of the interface (phase boundary, crack opening, contact). The energies of the
ubdomains are trivially expressed as

Π± =

∫
Ω±

W± dΩ± −

∫
ΓT±

u⃗± · T⃗ dΓ T±. (8)

he variation of the bulk energies can be obtained in the straightforward way:

δΠ± =

∫
Ω±

P± : ∇0ϕ⃗± dΩ± −

∫
ΓT±

ϕ⃗± · T⃗ dΓ T±, (9)

here ϕ⃗± = δu⃗± is introduced. Although it is easy to see how (9) emerges from Eqs. (6) and (8), a more detailed
xplanation is available in [31].

To ensure that the functions under the integrals are integrable, the following functional spaces are introduced:

R± =

{
u⃗
⏐⏐⏐ ui ∈ H 1 (Ω±) , u⃗ = d⃗ on ΓD±

}
, ui = u⃗ · e⃗i , i ∈ {1, 2, 3} , (10)

1 For example, when the rheological model of the material consists of two sequential elements: elastic and purely plastic, the deformation
gradient is decomposed as F = Fe · Fp, while the stresses in the elastic element are equal to the stresses in the plastic element and are
equal to the total stresses σ = σ e. Assuming that there is strain energy density We = We (Fe) of the elastic element, it can be written that
Pe = Jeσ e · F−T

e = ∂We/∂Fe, where Je = det (Fe). Considering an isochoric plasticity model (J = Je), it follows that

P = Jσ · F−T
= Jeσ e · F−T

e · F−T
p =

∂We

∂Fe
· F−T

p =
∂We

∂Fe
:

(
F−T

p ·
4I
)

=
∂We

∂Fe
:

(
F−T

p ·
∂FT

∂F

)
=

=
∂We

∂Fe
:
∂FT

e

∂F
=
∂We

∂F
.

4
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Q± =

{
ϕ⃗

⏐⏐⏐ϕi ∈ H 1 (Ω±) , ϕ⃗ = 0⃗ on ΓD±

}
, ϕi = ϕ⃗ · e⃗i , i ∈ {1, 2, 3} . (11)

Here, ui are components of vector function u⃗ and H 1 (Ω±) is the Sobolev space with the L2-norm. The resulting
weak problem formulation is the following:

find u⃗+ ∈ R+, u⃗− ∈ R− such that a (u⃗+, u⃗−, ϕ⃗+, ϕ⃗−) = 0, ∀ϕ⃗+ ∈ Q+, ∀ϕ⃗− ∈ Q−,

here

a (u⃗+, u⃗−, ϕ⃗+, ϕ⃗−) = δΠ+ + δΠ− + δΠ∗ + δΠI. (12)

erm δΠ∗ is the variation of the interfacial energy and is considered separately for different interface problems.
erm δΠI is the variation of the stabilisation energy and is given in Section 2.5.

After the weak form is obtained, a finite-element mesh must be introduced, as well as the standard nodal basis
unctions. Following the finite-element formulation, the system of non-linear algebraic equations with respect to
he unknown nodal degrees of freedom must be assembled. These two steps are rather straightforward and have
een outlined many times in literature, e.g. in Sections 4.1.4 and 4.1.5 of Ref. [31]. Therefore, the summary of the
nite-element formulation of the problem is given in Appendix.

.2. Phase boundary

.2.1. Problem formulation
In the phase boundary problem, two subdomains correspond to two different phases of the material and can have

ifferent constitutive behaviour. Within the theory of solid–solid phase transitions, three different configurations
re usually introduced — the current configuration, the reference configuration of phase one and the reference
onfiguration of phase two. A transformation strain then links the reference configurations of the phases. However,
umerically, the problem is solved only in one given configuration; therefore, for the purposes of this paper, it is
ufficient to consider only one reference configuration, e.g. the reference configuration of phase ‘−’, and assume
hat the phases can have different constitutive laws.2 More detailed discussion of the configurations for this case
an be found in [31] and references therein.

For the phase boundary problem, the displacement and the traction continuity conditions are enforced at the
nterface. In the current configuration, these conditions are written as

u⃗− = u⃗+, x⃗ ∈ γ∗, (13)

σ− · n⃗∗ = σ+ · n⃗∗, x⃗ ∈ γ∗, (14)

nd in the reference configuration, these conditions become

u⃗− = u⃗+, X⃗ ∈ Γ∗, (15)

P− · N⃗∗ = P+ · N⃗∗, X⃗ ∈ Γ∗. (16)

t is also useful to introduce brackets [[·]]∗ to denote the jump of the quantity across the interface and brackets ⟨·⟩

o denote the average of the quantity across the interface.3

The problem consists in solving Eq. (1) with corresponding boundary conditions (4), (5) enforced at the external
oundary of the body and interface conditions (15), (16).

.2.2. Method
For the case when the interface is the phase boundary, the following interfacial energy is introduced [31]:

ΠB
∗

=

∫
Γ∗

(
1
2
λ

h
[[u⃗]]∗ − ⟨P⟩ · N⃗∗

)
· [[u⃗]]∗dΓ ∗, (17)

2 For example, an illustrative analogy of this approach can be finding a deformed state of a body, one half of which is exactly at
temperature 0 ◦C, while the other half is exactly at 100 ◦C. There is a stress-free configuration of the body, when the entire volume is at
0 ◦C, and a stress-free configuration, when the entire volume is at 100 ◦C. The problem can be solved in the first configuration, prescribing
a constitutive law for the second half of the body to contain a thermal expansion by 100 ◦C.

3 For example, ⟨P⟩ = (P + P ) /2 and [[u⃗]] = u⃗ − u⃗ .
+ − ∗ + −

5
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where h is the typical mesh size and λ is the penalty parameter. The first term is explained below. The second term
s obtained from writing the work of tractions at the interface (analogous to the second term of (8)) for subdomains
+ ’ and ‘−’ separately and combining them together using the continuity of tractions interface condition. Eq. (17)
s a version of the augmented Lagrangian approach, which is sometimes used to derive the Nitsche’s method if the
raction is interpreted as a multiplier [37].

The variation of ΠB
∗

results in

δΠB
∗

=

∫
Γ∗

(
λ

h
[[u⃗]]∗ · [[ϕ⃗]]∗ − ⟨P⟩ : N⃗∗[[ϕ⃗]]∗ − [[u⃗]]∗ N⃗∗ :

⟨
∂ PT

∂F
: ∇0ϕ⃗

⟩)
dΓ ∗, (18)

hich results in weak form (12) with the following interfacial term:

for phase boundary problem δΠ∗ = δΠB
∗
.

t can be seen that the first term in (17) resulted in the term containing [[u⃗]]∗ · [[ϕ⃗]]∗, which is usually introduced in
he numerical frameworks with the enforcement of the boundary conditions using the Nitsche-type methods [3] to
nsure the coercivity of the weak form. In [31], it has been additionally shown that such weak form of the problem,
q. (12) with δΠ∗ = δΠB

∗
and without stabilisation term δΠI, can equivalently be obtained directly from the strong

orm of the problem, Eq. (1) with boundary conditions (4), (5) and interface conditions (15), (16).

.3. Crack opening

.3.1. Problem formulation
From the mathematical point of view, the problem formulation for the fracture is somewhat similar to the problem

ormulation for the phase boundary. However, now, the separation of the boundaries in the current configuration is
llowed, i.e. [[u⃗]]∗ can be non-zero. When a typical matrix-inclusion problem is considered, there are two phases (the
atrix and the inclusion) and an interface between them. If a discrete crack is considered with a crack tip located

n the bulk, formally, there is only one phase; however, it is still necessary to distinguish between two surfaces that
eparate in the current configuration. Therefore, the quantities (i.e. displacements, stresses, etc.) on different sides
f the interface are denoted using subscripts ‘+ ’ and ‘−’ in the same way as done for the phase boundary problem.

The problem consists in solving Eq. (1) with corresponding boundary conditions (4), (5) enforced at the external
oundary of the body and the interface conditions considered below. The first interface condition is the equality of
he tractions, Eq. (16). To shorten the expressions below, the following notation is introduced:

p⃗ = ⟨P⟩ · N⃗∗, v⃗ = [[u⃗]]∗, v = |v⃗| . (19)

he second interface condition describes the traction-separation relation. Two cases are considered below. The first
ase is the anisotropic linear traction-separation:

K · p⃗ = −v⃗, X⃗ ∈ Γ∗, (20)

here tensor K is symmetric and is the compliance of the interface. The second considered case is the non-linear
raction-separation:

p⃗ = −
∂WI

∂v⃗
, X⃗ ∈ Γ∗, (21)

here WI is the strain energy density of the interface per unit surface in the reference configuration.

.3.2. Linear traction-separation
Previously, the handling of the fracture problem using the Nitsche’s approach has been considered in [24] for the

ase of linear elasticity and linear traction-separation. This subsection generalises the results of [24] for the case of
arge deformations and arbitrary constitutive relations.

First, additional tensor Sh is introduced:

Sh =

(
h
λ

I + K
)−1

, (22)
6
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Then, the energy of the interface (the crack opening) can be written as

ΠL
∗

=

∫
Γ∗

(
1
2

Sh : ([[u⃗]]∗ + K · p⃗) ([[u⃗]]∗ + K · p⃗)− p⃗ · [[u⃗]]∗ −
1
2

K : p⃗ p⃗
)

dΓ ∗ =

=

∫
Γ∗

(
1
2

Sh : [[u⃗]]∗[[u⃗]]∗ −
h
λ

Sh : [[u⃗]]∗ p⃗ +
1
2

h
λ

p⃗ p⃗ :

(
h
λ

Sh − I
))

dΓ ∗,

(23)

where the first line is the direct generalisation of the results of [24] to the case of large deformations (clarification
is given at the end of the subsection), while the second line is obtained by the rearrangement of the terms (i.e. K
is expanded into K + hλ−1 I − hλ−1 I , first two terms of which are replaced by S−1

h , followed by expansion of the
brackets).

The relatively complex form of Eq. (23) results from the requirement to obtain certain particular cases as tensor
K approaches zero or infinity. It can be seen that when K is zero, the case of a phase boundary is obtained:

ΠL
∗

⏐⏐
K=0 = ΠB

∗
. (24)

When K approaches infinity, the energy becomes proportional to h and disappears as h → 0, which corresponds
to the free surface. Assuming that K−1 exists, it can be written as

ΠL
∗

⏐⏐
K−1→0 = −

∫
Γ∗

1
2

h
λ

p⃗ · p⃗dΓ ∗. (25)

To get the weak form for this problem, a variation of ΠL
∗

is performed. Since linear traction-separation is
considered, i.e. constant K , it is useful to denote this variation with δK = 0, as non-linear traction-separation
s considered later. From the definition of p⃗, Eq. (19), it follows that

δ p⃗ = N⃗∗ ·

⟨
∂ PT

∂F
: ∇0ϕ⃗

⟩
. (26)

This can then be used to obtain δΠL
∗

directly from the second line of Eq. (23),

δΠL
∗

⏐⏐
δK=0 =

∫
Γ∗

(
Sh :

(
[[u⃗]]∗ −

h
λ

p⃗
)

[[ϕ⃗]]∗ −

−
h
λ

((
[[u⃗]]∗ −

h
λ

p⃗
)

· Sh + p⃗
)

N⃗∗ :

⟨
∂ PT

∂F
: ∇0ϕ⃗

⟩)
dΓ ∗,

(27)

hich results in weak form (12) with the following interfacial term:

for crack opening problem with linear traction-separation δΠ∗ = δΠL
∗

⏐⏐
δK=0 .

It should be noted that in [24], only the weak form is given, which is derived directly from the strong form, and
ot from the energy. To see that this paper indeed presents a generalisation of the method of [24] to the case of
arge deformations, a variation of the first line of Eq. (23) must be taken, which gives:

δΠL
∗

⏐⏐
δK=0 =

∫
Γ∗

(Sh : [[u⃗]]∗[[ϕ⃗]]∗ − (I − Sh · K ) : p⃗ [[ϕ⃗]]∗ − (I − K · Sh) : [[u⃗]]∗δ p⃗ −

− (K · (I − Sh · K )) : p⃗ δ p⃗) dΓ ∗.

(28)

his expression has exactly the same structure as the corresponding term in Eq. (6) of Ref. [24], apart from the use
f the Piola–Kirchhoff tractions instead of the Cauchy tractions and the integration in the reference configuration.
n [24], product of Sh and K is commutative due to the chosen structure of K .

.3.3. Non-linear traction-separation
The non-linear traction-separation is given by Eq. (21). To use the results of Section 2.3.2, it is necessary to

efine tensor K for the case of non-linear traction-separation. Thus, assuming that there exists some tensor K such
hat condition (20) is fulfilled, it is possible to write the following interface energy:

ΠN
∗

= ΠL
∗

+

∫
Γ∗

(
WI −

1
2

g⃗ · [[u⃗]]∗

)
dΓ ∗, (29)
7
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where

g⃗ =
∂WI

∂v⃗
. (30)

Here it can be seen that for an exact solution (with exactly fulfilled interfaces conditions), energy ΠN
∗

becomes
simply an integral of WI over surface Γ∗. Term added in Eq. (29) can be viewed as the correction for the non-linear
case and when WI is quadratic (assuming that K−1 exists), the non-linear case becomes the linear case:

ΠN
∗

⏐⏐
WI=v⃗·K−1·v⃗/2 = ΠL

∗
. (31)

Although it is possible to consider the general case, where WI depends on v⃗, in large deformations, it is often
assumed that the separation energy depends only on the scalar separation [38], i.e. it is assumed that WI = WI (v).
In this case,

g⃗ =
v⃗

v
G, G =

∂WI

∂v
. (32)

he resulting form of g⃗, as well as Eqs. (20), (21), (30) leads to the following definition of tensor K for the case
f non-linear traction-separation:

K ·
v⃗

v
G = v⃗ ⇒ K =

v

G
I = K I, Sh =

1
K +

h
λ

I = Sh I, (33)

where K = K (v) is a scalar function of v. In the equations below, K ′ denotes the derivative of K by v.
Before deriving the variation of ΠN

∗
, it is useful to write the variation of scalar Sh and the derivative of g⃗ by v⃗

where K is substituted:

δSh =
dSh

dv
δv =

dSh

dv
v⃗

v
· δv⃗ = −K ′S2

h
v⃗

v
· δv⃗, (34)

∂ g⃗
∂v⃗

=
1
K

I + v⃗

(
−

K ′

K 2

)
∂v

∂v⃗
=

1
K

I −
K ′

vK 2 v⃗v⃗, (35)

hen, using that δWI = g⃗ · δv⃗, it is possible to write the variation of the term added in Eq. (29), where Eqs. (32),
33), (35) are used:

δΠN
∗

− δΠL
∗

=

∫
Γ∗

(
1
2

g⃗ · δv⃗ −
1
2
v⃗ · δg⃗

)
dΓ ∗ =

∫
Γ∗

1
2

K ′

K 2 vv⃗ · δv⃗dΓ ∗. (36)

ow, the variation of ΠL
∗

should be considered, given that in this subsection, K is not constant. It is required since
L
∗

is the first part of ΠN
∗

. Most of the terms of the variation of ΠL
∗

are already given in Eq. (27) and it remains to
ummarise the terms with δSh . These terms can be written by taking the second line of Eq. (23), substituting the
tructure of Sh from Eq. (33) and substituting p⃗, which is expressed via g⃗ according to Eqs. (21), (30), which in
urn is expressed via K and v⃗ according to Eqs. (32), (33). This gives

δΠL
∗

− δΠL
∗

⏐⏐
δK=0 =

∫
Γ∗

δSh

(
1
2
v2

+
h
λ

1
K
v2

+
1
2

h2

λ2

1
K 2 v

2
)

dΓ ∗ =

=

∫
Γ∗

(
−K ′

) 1(
K +

h
λ

)2 vv⃗ · δv⃗
1
2

(
1 + 2

h
λ

1
K

+
h2

λ2

1
K 2

)
dΓ ∗ = −

∫
Γ∗

1
2

K ′

K 2 vv⃗ · δv⃗dΓ ∗.

(37)

From Eqs. (36) and (37) it is clearly seen that

δΠN
∗

= δΠL
∗

⏐⏐
δK=0 , (38)

hich might be perhaps a counter-intuitive result that the variation of the linear separation energy exactly coincides
ith the variation of a more complex non-linear separation energy. This finally results in weak form (12) with the

ollowing interfacial term:

for general crack opening problem δΠ∗ = δΠN
∗

= δΠL
∗

⏐⏐
δK=0 .
8
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2.4. Contact

2.4.1. Problem formulation
When the fracture problem in large deformations is considered, the separated surfaces may come into contact.

urthermore, the points that come into contact in the current configuration, can have a finite distance between them
n the reference configuration. Therefore, a proper contact resolution is required.

Previously, the handling of the contact problem using the Nitsche’s approach has been considered in [32] for the
ase of linear elasticity and in [33] for the case of large deformations. Typically, methods that deal with the contact
echanics rely on the contact surfaces conforming to the mesh. A recent exception to this are two novel unfitted
nite-element methods for contact in linear elasticity setting [39–41], where the contact conditions are enforced
n the embedded interfaces. As highlighted above, the aim of the present paper is to obtain an unfitted method
CutFEM); therefore, the major difference between the contact problem considered here and most previous works
s that the contact is always between the surfaces that cut through the elements.

In [33], the total energy functional for the case of large deformations is already suggested (Proposition 2.3
f the reference), which enforces the contact conditions in a Nitsche’s manner and from which the weak form
s derived by taking the variation. It can be used directly and can be incorporated into CutFEM. However, as
ighlighted above, the aim of this paper is to present the functionals for the phase boundary, the crack opening
nd the contact cases in such a way that one can become a particular case of the other. Since the modification of
he energy functional of [33], which achieves this, is not straightforward, a somewhat different method is presented
elow, which generalises the energy functional of [32] for the case of large deformations and arbitrary constitutive
elations. Furthermore, traditionally, in the computational contact mechanics, the quantities are projected from one
urface onto another and the integration is performed over the latter surface (the so-called master–slave approach).
n this paper, however, the aim is to split of the contact conditions into integrals over both contact surfaces and to
rite a symmetric formulation of the numerical method with respect to the choice of the surfaces (also called an
nbiased formulation), which is another major difference to [32].

Interface Γ∗ in the reference configuration separates into two surfaces γ ∗
+

and γ ∗
−

in the current configuration,
arts of which come into contact. In the current configuration, a gap between the surfaces is introduced as

ρ+ = n⃗∗

+
·
(
x⃗c

−
(x⃗+)− x⃗+

)
or ρ− = n⃗∗

−
·
(
x⃗c

+
(x⃗−)− x⃗−

)
,

here n⃗∗
+

and n⃗∗
−

are the outer normals to γ ∗
+

and γ ∗
−

, respectively, and it is implied that x⃗c
−

and x⃗c
+

are obtained by
he projection of x⃗+ and x⃗− along normals n⃗∗

+
and n⃗∗

−
onto γ ∗

−
and γ ∗

+
, respectively, hence are the functions of x⃗+

nd x⃗−, respectively. At this point, it is useful to introduce the step functions that define the contact patch itself:

χ± =

{
1, if ρ± ≤ 0,
0, if ρ± > 0,

(39)

nd introduce the contact tractions as

q± = q± (x⃗±) = n⃗∗

±
n⃗∗

±
: σ±, n⃗∗

±
= n⃗∗

±
(x⃗±) , σ± = σ± (x⃗±) ,

here each traction is written as a function of a point of a boundary at which it is calculated. This is done to be
ble to use traction q− (x⃗−) at point x⃗− of boundary γ ∗

−
, as well as traction q−

(
x⃗c

−
(x⃗+)

)
at point x⃗c

−
of boundary

∗
−

that is obtained by the projection of point x⃗+ along normal n⃗+ from γ ∗
+

onto γ ∗
−

, and similarly for q+. Sign ‘≤’
n (39) is introduced to account for a possible overlap of the surfaces in the numerical solution. Now, it is possible
o write the contact conditions in Hertz–Signorini–Moreau form, including the equality of normal tractions:

ρ± ≥ 0, q± ≤ 0, ρ±q± = 0, x⃗± ∈ γ ∗

±
, (40)

q± (x⃗±) = q∓

(
x⃗c

∓
(x⃗±)

)
, x⃗± ∈ γ ∗

±
. (41)

hese are the conditions for a perfect contact, i.e. as soon as the gap between the surfaces is non-zero, the traction
ecomes zero. It is also useful to introduce the form of the contact conditions for the case of adhesion between the
urfaces, i.e. when surfaces come into contact, they can imperfectly ‘glue’:

K̃± ≥ 0, K̃±

⏐⏐⏐
q±<0

= 0, K̃±q± = ρ±, x⃗± ∈ γ ∗

±
, (42)
9
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where K̃± is the non-negative compliance of the interface. When the traction is negative, the compliance is zero,
which prevents the negative gap between the surfaces. Symbol ‘∼’ is added above K± to distinguish the compliance
in the current and in the reference configurations. It is also useful to rewrite this condition in the reference
configuration:

Q± = n⃗∗

±
· P± · N⃗ ∗

±
, (43)

K± ≥ 0, K±|Q±<0 = 0, K± Q± = ρ±, X⃗± ∈ Γ ∗

±
. (44)

This condition is structurally similar to condition (20).
Now, the problem can be formulated: it consists in solving Eq. (1) with corresponding boundary conditions (4),

(5) enforced at the external boundary of the body and interface conditions (40), (41) for the case of contact without
adhesion or interface conditions (41), (42) for the case of contact with adhesion.

Given the contact conditions above, when χ+ takes value 1 at point x⃗+ and its neighbourhood (understood as
the neighbourhood on set γ ∗

+
), points x⃗c

−
(x⃗+) and x⃗+ exactly coincide in space and elements dγ ∗

+
and dγ ∗

−
exactly

match (therefore, also n⃗∗
+

= −n⃗∗
−

), and similarly for χ−. This can be used to write the following assumption:

assume that γ ∗

+
and γ ∗

−
are such that∫

γ ∗
+

χ+ f
(
x⃗+, x⃗c

−
(x⃗+) , n⃗∗

+
(x⃗+)

)
dγ ∗

+
=

∫
γ ∗
−

χ− f
(
x⃗c

+
(x⃗−) , x⃗−,−n⃗∗

−
(x⃗−)

)
dγ ∗

−
,

(45)

where f is an arbitrary integrable on γ ∗
±

function. In less precise terms, this assumption means that within a contact
patch and its neighbourhood, it is assumed that the surfaces are smooth enough for the integration over one surface
to be equivalent to the integration over the other surface. This assumption is used in the derivations below to change
the integration from one surface to another. Although it might seem to be restrictive, all performed numerical tests
confirm that the weak form, which is obtained using this assumption, works fine in practice.

The integral forms of the equations are considered in the presentation below. In the current configuration, the
integration is performed over either γ ∗

+
or γ ∗

−
, taking the integrand as depending on either x⃗+ or x⃗−, respectively,

and also containing quantities that depend on the projected points either x⃗c
−
(x⃗+) or x⃗c

+
(x⃗−), respectively. When

these integrals are pulled back to the reference configuration, even though the integration is performed over Γ∗, the
integrand still depends on either X⃗+ or X⃗−, respectively, and also contains either x⃗c

−
(x⃗+) or x⃗c

+
(x⃗−), respectively,

where x⃗+ and x⃗− are images of X⃗+ and X⃗−, respectively. These cases must obviously be distinguished. Therefore,
to denote that the integrand is taken to depend on either X⃗+ or X⃗−, surface Γ∗ is written as either Γ ∗

+
or Γ ∗

−
,

respectively.
Since the contact conditions always involve a point on one surface and its projection onto another, integrals over

γ ∗
+

will not contain x⃗− as such and will only contain x⃗c
−

. Therefore, for all quantities that depend on x⃗c
−

, e.g. f
(
x⃗c

−

)
,

where f is an arbitrary function, superscript ‘c’ can be dropped, and it is implied that x⃗− in this case is the projection
of x⃗+ onto γ ∗

−
. Furthermore, f (x⃗−) is then simply written as f−. The same omission of superscript ‘c’ is obviously

done for integrals over γ ∗
−

with quantities depending on x⃗c
+

. This allows using the notation that is consistent with the
previous sections. Such notation is also consistent with the integration in the reference configuration. For example,
when integration is performed over Γ ∗

+
and there are quantities that depend on X⃗−, it is implied that X⃗− is the

image of point x⃗− = x⃗c
−

, which is a projection of x⃗+ from γ ∗
+

onto γ ∗
−

, while point x⃗+ is itself the image of X⃗+,
which belongs to Γ ∗

+
.

Additional aim here is to write a formulation for the case of the contact that contains the case of the phase
boundary as a particular case, i.e. the contact can become “perfect gluing” of the surfaces. For this, a projection
tensor is introduced:

Pn = n⃗∗

+
n⃗∗

+
= n⃗∗

−
n⃗∗

−
, (46)

which is used in the derivations below. The fact that Pn is symmetric is used in the derivations.

2.4.2. Without adhesion
The energy of the interface can be written as

ΠW
∗

= Π1
∗

+Π2
∗
, (47)
10
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where

Π1
∗

= −

∫
Γ ∗

+

χ+

1
2

[[x⃗]]∗ · Pn · P+ · N⃗ ∗

+
dΓ ∗

+
+

∫
Γ ∗

−

χ−

1
2

[[x⃗]]∗ · Pn · P− · N⃗ ∗

−
dΓ ∗

−
=

= −

∫
γ ∗
+

χ+[[x⃗]]∗ · Pn · ⟨σ ⟩ · n⃗∗

+
dγ ∗

+
=

∫
γ ∗
−

χ−[[x⃗]]∗ · Pn · ⟨σ ⟩ · n⃗∗

−
dγ ∗

−
,

Π2
∗

=

∫
Γ ∗

+

χ+

1
4
β

h
Pn : [[x⃗]]∗[[x⃗]]∗dΓ ∗

+
+

∫
Γ ∗

−

χ−

1
4
β

h
Pn : [[x⃗]]∗[[x⃗]]∗dΓ ∗

−
,

(48)

nd β is the penalty parameter (similar to λ introduced previously, but it is useful to use a different letter for the
ontact problem). In Π1

∗
, the transformation between the configurations and equality (45) are used to show that it

s possible to write the energy in the reference configuration or in the current configuration with respect to γ ∗
+

or
∗
−

. It can be seen that in the current configuration, energy ΠW
∗

almost exactly matches the corresponding term in
q. (6) of Ref. [32], where the linear elasticity case has been considered. To match the expressions exactly, term
2
∗

should be written in the current configuration and with respect to only one surface, γ ∗
+

or γ ∗
−

. However, in the
linear elasticity case, the area transformation is neglected and using equality (45) it is easy to see that indeed the
same form as in Ref. [32] is obtained. Projection tensor Pn is taken either as function of n⃗∗

+
when it enters integrals

over Γ ∗
+

or as function of n⃗∗
−

when it enters integrals over Γ ∗
−

.
This form of energy is advantageous from several points of view. First, in the reference configuration, terms in

1
∗

and Π2
∗

are symmetric with respect to the choice of the surfaces. Although there is a different sign in front of the
erm corresponding to Γ ∗

−
, by convention of this paper, [[x⃗]]∗ = x⃗+ − x⃗−, therefore, both terms in Π1

∗
have exactly

the same structure, including the signs. Second, the phase boundary case is a particular case of the energy given by
Eqs. (47), (48). In the phase boundary case, no projection is performed, i.e. the surface evolves from the reference
configuration to the current configuration as one surface and γ ∗

+
should exactly match γ ∗

−
for the exact solution.

Therefore, χ± = 1 everywhere and [[x⃗]]∗ = [[u⃗]]∗, since x⃗+ and x⃗− correspond to the same X⃗ in the reference
configuration in this case. In addition to that, in the phase boundary case, total tractions and displacements are
considered; therefore, Pn = I . This can be summarised as

ΠW
∗

⏐⏐
χ±=1, [[x⃗]]∗=[[u⃗]]∗, Pn=I = ΠB

∗
. (49)

To obtain the weak form, the variation of ΠW
∗

is performed in several steps. At first, the variation of Π1
∗

is
obtained:4

δΠ1
∗

= −

∫
Γ ∗

+

χ+

1
2

N⃗ ∗

+
[[x⃗]]∗ :

(
Pn ·

∂ P+

∂F+

+
4IRT

:

(
PT

+
·
∂Pn

∂F+

))
: ∇0ϕ⃗+dΓ ∗

+
+

+

∫
Γ ∗

−

χ−

1
2

N⃗ ∗

−
[[x⃗]]∗ :

(
Pn ·

∂ P−

∂F−

+
4IRT

:

(
PT

−
·
∂Pn

∂F−

))
: ∇0ϕ⃗−dΓ ∗

−
+ I 1

+ I 2,

(50)

here last two terms are written separately:

I 1
+ I 2

= −

∫
Γ ∗

+

χ+

1
2

[[ϕ⃗]]∗ · Pn · P+ · N⃗ ∗

+
dΓ ∗

+
+

∫
Γ ∗

−

χ−

1
2

[[ϕ⃗]]∗ · Pn · P− · N⃗ ∗

−
dΓ ∗

−
=

= −

∫
Γ ∗

+

χ+ϕ⃗+ · Pn · J+⟨σ ⟩ · F−T
+

· N⃗ ∗

+
dΓ ∗

+
−

∫
Γ ∗

−

χ−ϕ⃗− · Pn · J−⟨σ ⟩ · F−T
−

· N⃗ ∗

−
dΓ ∗

−
,

here J± = det (F±). In Eq. (50), the first two terms account for the variation of Pn and P±. Terms I 1 and
I 2 account for the variation of [[x⃗]]∗ in both integrals, which becomes [[ϕ⃗]]∗. The first line of the expression for
I 1

+ I 2, however, requires evaluating integrals over one surface, e.g. Γ ∗
+

, when the test function belonging to the
other surface, e.g. ϕ⃗−, is non-zero. This is inconvenient from the programming point of view and, therefore, the
expression is rewritten such that integrals over Γ ∗

+
contain only ϕ⃗+ and similar for Γ ∗

−
. To do this, the integrals are

pulled forward to the current configuration, hence, the Cauchy stress appears, [[ϕ⃗]]∗ is expanded, equality (45) is
used to transform the integral with ϕ⃗− and γ ∗

+
to γ ∗

−
and the integral with ϕ⃗+ and γ ∗

−
to γ ∗

+
, and all integrals are

pulled back to the reference configuration, hence, terms J± F−T
±

appear.

4 Fourth-order identity tensor 4I = e⃗s e⃗k e⃗k e⃗s and its right-transpose 4IRT
= e⃗s e⃗k e⃗s e⃗k are used in the equations. Property A =

4IRT
: AT
or arbitrary A is used.

11
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w

2

Then, the variation of Π2
∗

is obtained:

δΠ2
∗

= I 3
+ I 4

+

∫
Γ ∗

+

χ+

1
4
β

h
[[x⃗]]∗[[x⃗]]∗ :

∂Pn

∂F+

: ∇0ϕ⃗+dΓ ∗

+
+

+

∫
Γ ∗

−

χ−

1
4
β

h
[[x⃗]]∗[[x⃗]]∗ :

∂Pn

∂F−

: ∇0ϕ⃗−dΓ ∗

−
,

(51)

where the first two terms are written separately:

I 3
+ I 4

=

∫
Γ ∗

+

χ+

1
2
β

h
[[x⃗]]∗ · Pn · [[ϕ⃗]]∗dΓ ∗

+
+

∫
Γ ∗

−

χ−

1
2
β

h
[[x⃗]]∗ · Pn · [[ϕ⃗]]∗dΓ ∗

−
=

=

∫
Γ ∗

+

χ+

1
2

(
1 +

η−

η+

)
β

h
[[x⃗]]∗ · Pn · ϕ⃗+dΓ ∗

+
−

∫
Γ ∗

−

χ−

1
2

(
1 +

η+

η−

)
β

h
[[x⃗]]∗ · Pn · ϕ⃗−dΓ ∗

−
.

Here again, the variation of Pn is accounted first and the variation of [[x⃗]]∗ in both integrals is written separately.
The latter is then transformed in a similar way as above, such that integrals over Γ ∗

+
contain only ϕ⃗+ and similar for

Γ ∗
−

. However, since terms J± F−T
±

· N⃗ ∗
±

are not present in the integrals, the area transformation is done differently,
as shown below. This gives weak form (12) with the following interfacial term:

for contact problem without adhesion δΠ∗ = δΠW
∗

= δΠ1
∗

+ δΠ2
∗
.

For elementary surface elements dΓ and dγ in the reference and the current configurations, respectively, the
following is true:

J F−T
· N⃗dΓ = n⃗dγ ,

N⃗dΓ = J−1 FT
· n⃗dγ ,

(dΓ )2 = J−2n⃗ · F · FT
· n⃗(dγ )2,

dΓ = J−1
√

B : n⃗n⃗dγ ,

where B = F · FT is the Finger tensor. This can be used in the setting of this paper in the following way:∫
Γ ∗

+

χ+ f dΓ ∗

+
=

∫
γ ∗
+

χ+ f

√
B+ : n⃗∗

+n⃗∗
+

J+

dγ ∗

+
=

∫
γ ∗
−

χ− f

√
B+ : n⃗∗

+n⃗∗
+

J+

dγ ∗

−
=

=

∫
Γ ∗

−

χ− f
J−

√
B+ : n⃗∗

+n⃗∗
+

J+

√
B− : n⃗∗

−n⃗∗
−

dΓ ∗

−
=

∫
Γ ∗

−

χ− f
η+

η−

dΓ ∗

−
,

(52)

here equality (45) is used and notation η± is introduced.
Finally, the derivative of Pn by F± must be written. Since Pn is always taken as function of either n⃗∗

+
or n⃗∗

−

according to Eq. (46), the subscripts are omitted below:

n⃗∗n⃗∗
=

c⃗c⃗

|c⃗|2
, c⃗ = F−T

· N⃗ ∗,

∂ (n⃗∗n⃗∗)

∂F
= −2

c⃗c⃗

|c⃗|4
c⃗ ·

∂ c⃗
∂F

+
1

|c⃗|2
(4I +

4IRT)
: c⃗
∂ c⃗
∂F

,
∂ c⃗
∂F

= N⃗ ∗
·
∂F−1

∂F
.

.4.3. With adhesion
Before the interfacial energy is outlined, additional quantities similar to Eq. (33) are introduced:

Sh
±

=
1

K± +
h
β

, ζ± =
1
2

h
β

(
h
β

Sh
±

− 1
)
, χ a

±
=

h
β

Sh
±
. (53)
12
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For now, K± is taken to be a constant. Next, the interfacial energy of the contact with adhesion is written similar
to Eq. (23) in the following way:

ΠA
∗

= ΠW
∗

⏐⏐
χ±=χa

±

+

∫
Γ ∗

+

ζ+

2
N⃗ ∗

+
· PT

+
· Pn · P+ · N⃗ ∗

+
dΓ ∗

+
+

+

∫
Γ ∗

−

ζ−

2
N⃗ ∗

−
· PT

−
· Pn · P− · N⃗ ∗

−
dΓ ∗

−
.

(54)

he new terms introduced in Eq. (54) are symmetric with respect to the choice of the surfaces.
Energy (54) can be viewed as a modified version of energy (23) for the case of contact with adhesion, although

t is not strictly a generalisation of it. In the crack opening case, no projection is performed, surface Γ∗ in the
eference configuration splits into two surfaces in the current configuration; however, the opening in the current
onfiguration is calculated between the points that coincide in the reference configuration, therefore, [[x⃗]]∗ = [[u⃗]]∗.
n Eq. (54), term ΠW

∗
taken at χ± = χ a

±
corresponds to the first two terms of the second line of Eq. (23), and when

[x⃗]]∗ = [[u⃗]]∗ and Pn = I , it is easy to see that these parts match exactly. The last two terms introduced in energy
54) correspond to the last term of the second line of Eq. (23); however, they are not equal and to obtain the exact
atch, it is necessary to use interface condition (16). This can be summarised as:

ΠA
∗

⏐⏐
[[x⃗]]∗=[[u⃗]]∗, Pn=I, P−·N⃗∗=P+·N⃗∗, K+=K−

= ΠL
∗

⏐⏐
K=K I . (55)

The variation of the energy is performed:

δΠA
∗

= δΠW
∗

⏐⏐
χ±=χa

±

+ I A
+

+ I A
−
, (56)

here

I A
±

=

∫
Γ ∗

±

ζ±

2
N⃗ ∗

±
·

(
PT

±

(
P± · N⃗ ∗

±

)
:
∂Pn

∂F±

+ 2PT
±

· Pn N⃗ ∗

±
:
∂ PT

±

∂F±

)
: ∇0ϕ⃗±dΓ ∗

±
. (57)

ariation δΠW
∗

in (56), however, must be taken carefully, as equality (45) does not hold for the contact with adhesion,
ince the surfaces can be at a finite distance and the integration over one surface cannot be directly replaced by
he integration over the other surface. Equality (45) was used in two places in the derivation of δΠW

∗
— in I1 + I2

nd in I3 + I4 to go from the first line to the second line of the corresponding expressions. This means that in the
eneral case (an exception is discussed below), first lines of the expressions for I1 + I2 and I3 + I4 must be used
hen substituted to (56). This finally gives weak form (12) with the following interfacial term:

for contact problem with adhesion δΠ∗ = δΠA
∗
.

So far, K± has been taken to be a constant, which of course does not prevent the volumes to overlap, i.e. it does
ot prevent a negative gap between the surfaces, as it does not enforce contact conditions (44). Therefore, K± must
e a function of Q± and ρ±, and, in addition to this, a non-linear energy density must be added, as done during
he transition from Eq. (23) to Eq. (29). In the crack opening case, it has been shown that the addition of such term
nd the consideration of a non-linear compliance does not change the weak form, as shown in Eq. (38). It can be
asily seen5 that ΠA

∗
has the same structure as ΠL

∗
. Therefore, the derivation analogous to Eqs. (36) and (37) will

how that the addition of analogous to (29) energy term and the consideration of K± (Q±, ρ±) will result in the
ame form with δΠ∗ = δΠA

∗
derived above.

One practical purpose of the case of contact with adhesion is the introduction of the ‘numerical’ adhesion to
ccelerate and stabilise the convergence when the Newton–Raphson method is used to solve the system of equations.
or example, the compliance can be taken as

K± =

{
0, if Q± < 0,
A
⏐⏐ ρ±

h

⏐⏐s , if Q± ≥ 0,
(58)

5 Energy ΠA
∗ can be rewritten with Q±, ρ±, χ a

±, ζ±, Pn substituted into it:

ΠA
∗ = ΠA+

∗ +ΠA−

∗ , ΠA±

∗ =

∫
Γ ∗

±

(
1
4

Sh
±ρ±

2
+

1
2

h
β

Sh
±ρ± Q± +

1
4

h
β

(
h
β

Sh
± − 1

)
Q±

2
)

dΓ ∗

±,

hich has the same structure as ΠL
∗ , only split into two integrals, each taken with 1/2. Different sign in front of the second term is due
o the definition of ρ±. For derivation analogous to (37), condition K± Q± = ρ± from (44) must be used.

13
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T

where A and s > 1 are constants, and when h → 0 it can be seen that the ideal contact is obtained — zero
compliance if traction is negative, infinite compliance (free boundary) otherwise.

For such numerical adhesion, assumption (45) can be used. Surfaces γ ∗
±

can be separated into parts that are in
the perfect contact (Q± < 0) and parts that are distanced (Q± ≥ 0). Assumption (45) can be used for the former
in the same way it was used in Section 2.4.2. When assumption (45) is used for the latter, a shift is introduced in
the energy; however, since the adhesion is numerical, the energy density for these parts goes to zero when h → 0
anyway. Therefore, any form of terms I1 + I2 and I3 + I4 in δΠW

∗
can be used when substituted into δΠA

∗
, including

the convenient from the programming point of view form with integrals over Γ ∗
+

and Γ ∗
−

containing only ϕ⃗+ and
ϕ⃗−, respectively.

2.5. Stabilisation term

As mentioned above, the outline of the finite-element formulation of the method, given the weak form, is
relatively standard and can be found in Appendix. Since the interface can partition some elements into highly
unequal area fractions, additional numerical stabilisation terms are introduced in CutFEM, e.g. [1,29], to avoid
ill-conditionality of the system of equations.

In the finite-element formulation, the set of all elements is denoted as T , the sets of elements that cover Ω+ and
Ω− are denoted as T+ and T−, respectively, and the set of elements that are intersected by the interface is denoted
as T∗ = T+ ∩ T−. The set of all element boundaries is denoted as F . The set of boundaries of all elements that are
intersected by the interface is denoted as

F∗ = {F | F ∈ F , E ∈ T∗, F ∩ E ̸= ∅} .

Next, it is necessary to define the sets of element boundaries that have two adjacent elements from the same element
set (T+ or T−):

F∗

±
= {F | F ∈ F∗, ∃E1 ∈ T±, ∃E2 ∈ T±, F ∩ E1 ̸= ∅, F ∩ E2 ̸= ∅} .

The stabilisation term is added as an additional term ΠI to the energy:

ΠI =

∑
Γf∈F∗

+

κh
2

∫
Γf

[[F+ · N⃗f]]e
2
dΓ f +

∑
Γf∈F∗

−

κh
2

∫
Γf

[[F− · N⃗f]]e
2
dΓ f, (59)

where N⃗f is the normal to boundary Γf, κ is the stabilisation parameter and [[·]]e denotes the jump of the quantity
across the element boundary. The orientation of normal N⃗f is not important, as the jump is squared. The variation
of the stabilisation term leads to

δΠI =

∑
Γf∈F∗

+

κh
∫
Γf

[[F+ · N⃗f]]e · [[(∇0ϕ⃗+)
T

· N⃗f]]edΓ f +

+

∑
Γf∈F∗

−

κh
∫
Γf

[[F− · N⃗f]]e · [[(∇0ϕ⃗−)
T

· N⃗f]]edΓ f.

(60)

3. Computational examples

3.1. Geometry, constitutive laws and parameters

The proposed method has been implemented in MATLAB. For all computational examples, the geometry in the
reference configuration is the unit square. The structured mesh consisting of linear finite elements is used. The
elements of the mesh are isosceles right triangles with side lengths of h. The plane strain problem formulation is
considered. Therefore, the matrix notation of the total deformation gradient tensor is given by

F =

⎛⎜⎝
∂x1
∂X1

∂x1
∂X2

0
∂x2
∂X1

∂x2
∂X2

0
0 0 1

⎞⎟⎠ .
hus, unknown displacements u⃗ are vectors in the 12-plane.
14
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The hyperelastic constitutive behaviour is assumed for both phases [42,43]:

W± = k (J± − 1 − ln J±)+
µ

2

(
tr
(
B̄±

)
− 3

)
, P± =

∂W±

∂F±

, (61)

here

B̄± = (J±)
−

2
3 F± · FT

±
, J± = det (F±) . (62)

losed-form expressions for the first and the second derivatives of W± with respect to F± can be found in the
appendix of Ref. [31].

For crack opening, the following non-linear energy density of the interface is used:

WI = ψ
(

1 −

(
1 +

v

a

)
exp

(
−
v

a

))
, (63)

here ψ and a are the interaction parameters. Scalar traction G at the interface, defined in Eq. (32), reaches
aximum at v = a and decays approximately exponentially at v > a.
Since the purpose of this paper is the presentation of a numerical method, units are omitted for the parameter

alues. For the examples below, bulk modulus k = 10 and shear modulus µ = 2 were taken. Interface separation
arameters ψ and a, the numerical parameters (h, λ, β, κ) and the boundary conditions are varied for different
xamples and the values are given below. In the Newton–Raphson method, absolute tolerances for the ℓ∞-norms
f the function and of the change of the solution were taken to be 10−11.

.2. Flat interface and homogeneous deformation

First, it is necessary to ensure that for the case of homogeneous deformation, the proposed method exactly
ecovers the solution, up to the machine accuracy, i.e. it does not introduce any surplus errors. This idea can be
nderstood along the lines of the so-called patch test in the finite-element methods, where the boundary conditions
orresponding to the homogeneous solution (i.e. constant deformation gradient) are applied, and the numerically
btained solution should match the analytical solution up to the machine accuracy. The testing is performed in
hree steps: the crack opening for the general case of the non-linear traction separation (Section 3.2.1), the contact
ithout adhesion (Section 3.2.2) and the contact with adhesion (Section 3.2.3). For these subsections, a flat interface

X2 = 11/19 is created and uniaxial loading boundary conditions are used:

u2|X2=0 = 0, u1|X1=0, X2=0 = 0,

u2|X2=1 = u0, u1|X1=0, X2=1 = 0.

ince this section deals with the flat interface and homogeneous deformation, it is sufficient to report the results in
ext, without showing the plots.

.2.1. Crack opening
The crack opening case tests specifically weak form (12) with δΠN

∗
. For this example, physical parameters

= 0.0049, a = 0.07 and numerical parameters h = 1/16, λ = 104, κ = 10−3 are used. Two different loading
cenarios (both uniaxial tension) are considered: u0

= 0.05 and u0
= 0.1. Even though the problem is non-linear,

ince the deformation is homogeneous, it is easy to obtain the analytical solution. When the analytical solution was
ompared to the numerical solution, the difference between the displacements was order of 10−16, which is the
rder of the default machine precision of MATLAB. This means that the proposed method and the implementation
or the crack opening case with non-linear traction separation passes the test case of homogeneous deformation.

.2.2. Contact, compression
Next, it is necessary to test weak form (12) with δΠW

∗
, which is the case of contact. The case of uniaxial

ompression with u0
= −0.01 is considered. Numerical parameters h = 1/16, κ = 10−3 are used and β ∈

1, 10, 100} is considered. The relevant quantity in the case of contact is the distance between the surfaces. In the
umerical solution, the negative gap was order of 10−16, again the order of the machine precision. This coincides
ith the other versions of the contact conditions imposed using the Nitsche’s method — in [32], the considered

−16
xample “elastic block on elastic block” also resulted in a gap order of 10 . Due to boundary conditions, only

15
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Fig. 1. The geometry of the body in the reference configuration (a) and in the current configuration (b). The interfacial gap (c) as a function
of X1 coordinate of the interfacial point in the reference configuration and the traction-separation law used in the simulations. The horizontal
line indicates the gap equal to a. The calculations shown in the plots were performed for h = 1/32, λ = 104, κ = 10−2.

2 and 33 components of the first Piola–Kirchhoff stress are expected to be non-zero and the numerical solution
esulted in P22 = −0.0683 and P33 = −0.0277. The spread of the values of the components of the first Piola–
irchhoff stress across all elements, i.e.

(
max Pi j − min Pi j

)
over all elements for i j component of P , was order

f 10−13–10−14.

.2.3. Contact with adhesion, tension
Finally, it is necessary to verify that the adhesion works correctly in the case of contact, i.e. weak form (12)

ith δΠA
∗

. For this example, physical compliance of the adhesion is imposed

K± =
a2

ψ
exp

(ρ±

a

)
,

ith parameters ψ = 0.0049, a = 0.07. Two different tensile loadings are considered: u0
= 0.05 and u0

= 0.1. Such
etup corresponds to the same analytical solution as in Section 3.2.1. Numerical parameters h = 1/16, β = 103,
= 10−3 are used. Again, when the solutions were compared, the difference between the displacements was order

f 10−16. This completes the verification for the case of homogeneous deformation.

.3. Non-homogeneous deformation and convergence rates

.3.1. Curved interface, crack opening
The next step in testing of the proposed method and its implementation is to verify that the theoretical

onvergence rate of the finite-element method is approached with decrease of the mesh size. First, the crack opening
ase is considered, weak form (12) with δΠN

∗
. A non-flat interface is given by curve

X2 =
23
47

+
4

11π
arctan

(
33π

4

(
X1 −

1
2

))
,

which is shown in Fig. 1a. Uniaxial loading boundary conditions are used:

u2|X2=0 = 0, u1|X1=0, X2=0 = 0, (64)

u2|X2=1 = u0, (65)

with u0
= 0.2. Physical parameters ψ = 0.1323, a = 0.115 and numerical parameters h = 1/N , N ∈

22, 23, . . . , 29
}
, λ ∈

{
103, 104, 105

}
, κ ∈

{
10−2, 10−1, . . . , 102

}
are used.

The deformed state of the geometry is shown in Fig. 1b. It can be seen that due to the curvature of the interface,
he traction varies along the interface, which leads to slight rotation of the regions to the left and to the right of the
entral part of the interface. The interfacial gap as a function of X1 is shown in Fig. 1c, with the traction-separation
16
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Fig. 2. The dependence of the error on the mesh size (a) and on the inter-element stabilisation parameter (b). The error was calculated as
the ℓ2-norm of the difference between the current solution and the reference solution with mesh size h = 1/840. Parameter λ = 104 was

sed in the calculations. The calculations in (a) were performed for κ = 10−2.

aw shown in the inset of the figure. Value v = a, which corresponds to the maximum traction, is indicated by the
orizontal line on both figures. It can be seen that in the considered problem, the traction-separation relation is in
he highly non-linear regime.

To analyse the convergence, the reference solution with mesh size h = 1/840 was calculated. The solutions with
ifferent mesh sizes were compared at the nodes of the mesh with hc = 1/4, i.e. M = 25 comparison points were
elected. The error was calculated as the ℓ2-norm of the difference between the solutions taken at the comparison
oints:

e (h1, h2) =
1
M

U h1 − U h2

ℓ2 , (66)

here U h1 and U h2 are solutions with mesh sizes h1 and h2, respectively, taken at the comparison points.6 The
onvergence is shown in Fig. 2a and the calculated rate (i.e. the slope of the linear fit) is r = 1.93, which is close to
he theoretical quadratic convergence for linear elements. Furthermore, the influence of numerical parameter κ on
he numerical error was investigated and is shown in Fig. 2b. The introduction of the stabilisation term somewhat
ncreases the error; however, it can be seen that for small κ this increase is negligible, while such stabilisation term
an be important for cases when the interface cuts a small area fraction in some elements.

The convergence rate was also evaluated pointwise:

r = r
(

X⃗ , h
)

= log2

⏐⏐⏐u⃗h
(

X⃗
)

− u⃗h/2
(

X⃗
)⏐⏐⏐⏐⏐⏐u⃗h/2

(
X⃗
)

− u⃗h/4
(

X⃗
)⏐⏐⏐ , (67)

here r is the convergence rate at point X⃗ and u⃗h is the numerical solution obtained with mesh size h = 1/N .
he pointwise convergence rate at three lines across the computational domain, X2 = 1/4, X2 = 1/2, X2 = 3/4, is
hown in Fig. 3 as a function of X1. In Figs. 3a–c, the mesh size is varied and it can be seen that with the decrease
f h, the convergence rate approaches the expected value of 2, which is the theoretical convergence rate for linear
nite elements.

In Figs. 3d–f, parameter κ is varied and it can be seen that up to κ = 101, the convergence rate is still around the
heoretical convergence rate of 2; however, for κ = 102, the rate drops due to overconstrained inter-element jump of
he deformation gradient in the intersected elements and such values of κ should be avoided. This coincides with the
esults for the previously-proposed method for handling the phase boundaries using the cut-element technique [31].

6 Column U h can be formally defined as

U h
2Nci+2i+2 j+k = e⃗k · u⃗h

(
X⃗ i j

)
, X⃗ i j = e⃗1hci + e⃗2hc j, i, j ∈ {0, 1, . . . , Nc} , k ∈ {1, 2} ,

here u⃗h is the numerical solution obtained with mesh with size h, while hc = 1/Nc is the size of the coarse mesh, nodes of which are
aken as the comparison points.
17
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Fig. 3. The pointwise convergence rate on lines X2 = 1/4 (a,d), X2 = 1/2 (b,e) and X2 = 3/4 (c,f) as a function of X1. Parameters
h = 1/N (a,b,c) and κ (d,e,f) are varied. In (a,b,c), the calculations were performed for λ = 104, κ = 10−2. In (d,e,f), the calculations were
performed for h = 1/32, λ = 104.

he variation of parameter λ (results are not shown in the figures) showed that for large λ, more specifically
λ ∈

{
103, 104, 105

}
, its influence on the convergence rate is negligible.

.3.2. Inclined interface, contact, compression
Finally, it is necessary to ensure that the contact conditions do not affect the convergence rate and do not create

ny surplus tractions. Weak form (12) with δΠW
∗

is considered. Since the convergence rate in the bulk has already
een tested in Section 3.3.1, it is only necessary to verify that the behaviour of the interface is correct. This can be
one by comparing the total traction on one surface with the total traction on the other surface. In the numerical
olution, the difference between these tractions should behave similarly to the error in the stresses, which is O (h)
or linear finite elements.

Numerical parameters h = 1/N , N ∈
{
22, 23, . . . , 27

}
, β ∈

{
10−2, 10−1, . . . , 103

}
, κ = 10−3 are used. An

nclined interface X2 = (13 − 6X1) /23 is created and the following boundary conditions are used:

u⃗|X2=0 = 0⃗, u⃗|X2=1 = u⃗0, (68)

ith u⃗0
= 0.01 (e⃗1 − e⃗2). These boundary conditions lead to the slip between the interface surfaces and the

ontact points fall within various positions within the interface segments, similar to the “non-matching discretisation
nd non-uniform displacement” example in [32]. The deformed state of the geometry is shown in Fig. 4a. The
eformation of the geometry can be seen in the lower and the upper blocks deflecting slightly to the left and to the
ight, respectively.

The absolute value of the jump of the total tractions acting on the contact surfaces is defined as

j =

⏐⏐⏐⏐⏐
∫
Γ ∗

+

P+ · N⃗+dΓ ∗

+
−

∫
Γ ∗

−

P− · N⃗−dΓ ∗

−

⏐⏐⏐⏐⏐ , (69)

where it can be seen that in j , the first term contains only stresses in the ‘+ ’ subdomain, while the second term

contains only stresses in ‘−’ subdomain. In Fig. 4b, j as a function of the mesh size is shown and it can be seen

18
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Fig. 4. The geometry of the body in the current configuration (a). The red and the blue diamonds indicate the intersections of the element
edges with surfaces γ ∗

− (belonging to the upper subdomain) and γ ∗
+ (belonging to the lower subdomain), respectively. The absolute value of

the jump of the total tractions acting on the contact surfaces as a function of the mesh size (b) and parameter β (c). In (a), the calculation
was performed for h = 1/32, β = 102; in (b), for β = 102; in (c), for h = 1/16.

that, although there is some spread between the points, on average, it converges to zero with the approximate rate
of 1, i.e. it behaves as the theoretical error in the stresses. In Fig. 4c, it can be seen that there is no significant
influence of the value of β on j .

.4. Demonstrative examples

So far, the crack opening, the contact without and with adhesion were considered separately in relatively simple
cenarios. It is useful to demonstrate the proposed method in more complex conditions, combining together the
rack opening with the non-linear traction-separation and the contact with adhesion, by considering weak form (12)
ith the following interfacial term:

for combined crack opening and contact problem δΠ∗ = δΠN
∗

+ δΠA
∗
.

n this section, three different geometries and corresponding loading cases are considered. Numerical adhesion
iven by Eq. (58) is used with parameters A = 102, s = 1.5. Numerical parameters h = 1/32, κ = 10−3, λ = 104,
= 102 are used.

.4.1. Inclusion
The first considered problem is an inclusion inside a matrix. The circular interface is given by curve

X1 − 1/2)2 + (X2 − 1/2)2 = 1/5. Physical parameters of the interface ψ = 1, a = 1 are taken. Uniaxial
oading boundary conditions (64), (65) are used with u0 varied from 0 to 0.3. The deformed configuration at
0

∈ {0.1, 0.2, 0.3} is shown in Fig. 5. The matrix material stretches and debonds from the inclusion at the upper
nd the lower parts of the inclusion. At the left and at the right sides of the inclusion, the matrix frictionlessly slides
round the inclusion and subjects inclusion to compressive stresses, which can be seen from the deformed mesh of
19
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Fig. 5. The geometry of the body in the current configuration for the case of the inclusion inside the matrix. The red and the blue diamonds
indicate the intersections of the element edges with surfaces γ ∗

− (belonging to the matrix) and γ ∗
+ (belonging to the inclusion), respectively.

the inclusion in the zoomed-in figures. The contact in large deformations is resolved without any visually-observed
negative gap between the surfaces. At u0

= 0.3, the matrix elements stretch to almost twice the size of the inclusion
elements at the interface. The contour plot of the von Mises stress,

σVM =

√
3
2
σ d : σ d,

at u0
= 0.3 is shown in Fig. 6a.

3.4.2. Interlocking
The second considered problem is the opening and the shear of the curved interface leading to localised

eformation. Such scenario resembles the interlocking between cogs in mechanical devices. The interface is given
y curve

X2 =
1
2

+
1
7

cos
(

4πX1 −
59π
40

)
.

hysical parameters of the interface ψ = 10−4, a = 10−1 are taken. Boundary conditions (68) are used with
⃗

0
= de⃗1 + 0.2e⃗2, where d is varied from 0.12 to 0.23. The deformed configuration at various d is shown in Fig. 7.

t can be seen that the points that come in contact in the current configuration are significantly distanced in the
eference configuration. The contact conditions are properly resolved leading to sliding of the surfaces. The contact
ressure leads to bending of the curved parts of the interface. The contour plot of the von Mises stress at d = 0.23
s shown in Fig. 6b.

.4.3. Crack growth
The third considered example is the crack growth problem. The aim of this example is to demonstrate one of the

iggest advantages of the CutFEM technique — the interface (e.g. the crack) can evolve in time in arbitrary way
20
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Fig. 6. The contour plots of the von Mises stress for the inclusion (a), the interlocking (b) and the crack growth (c) examples shown on
he geometry of the body in the current configuration.

Fig. 7. The geometry of the body in the current configuration for the interlocking example. The red and the blue diamonds indicate the
intersections of the element edges with surfaces γ ∗

− (belonging to the upper subdomain) and γ ∗
+ (belonging to the lower subdomain),

espectively.

rom the computational point of view. Since the focus of this paper is on numerical method, very simplified physics
f the crack growth is considered, which is sufficient for the demonstrative purposes; obviously, the computational
ethod can handle more realistic crack propagation physics. Initial configuration of the interface is an inclined

otch given by line X2 = (19 − 32X1) /23, X1 ∈ [0; 0.25]. The crack tip propagates in time depending on the
igenvalues and the eigenvectors of the Cauchy stress tensor, similar to [24].

To define the propagation direction, average stress σ A around the crack tip is introduced, calculated as the
olume average within some small domain ΩA. The highest eigenvalue of σ A is denoted as b and the corresponding

igenvector is denoted as w⃗. The rotation tensor is denoted as R⊥ and the rotation angle of R⊥ is chosen to be

21
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Fig. 8. The geometry of the body in the current configuration for the case of the crack growth. The red and the blue diamonds indicate
the intersections of the element edges with surfaces γ ∗

− and γ ∗
+, respectively.

either π/2 or 3π/2, such that the crack tip is not allowed to turn ‘backwards’. The velocity of the crack tip in the
reference configuration is defined as

V⃗ = αb
F−1

±
· R⊥ · w⃗⏐⏐F−1

±
· R⊥ · w⃗

⏐⏐ , (70)

here α is the kinetic constant and for the simulations α = 1 is taken. In the numerical simulations, the crack tip is
dvanced using the forward Euler method. This means that given the configuration of the crack, the deformed state
nd the stresses are found at first. Domain ΩA is selected as all elements that are adjacent to the nodes, which belong
o the element edge, onto which the crack tip falls. Then, the velocity of the crack propagation in the reference
onfiguration is found according to Eq. (70). The crack tip is moved along V⃗ just until it hits the next intersection

with the element edge. Since ∆X of such movement is known, the time step ∆t required for the movement of the
tip is calculated from the absolute value of V⃗ .

Physical parameters of the interface ψ = 10−4, a = 10−1 are taken. Boundary conditions (68) are used
with u⃗0

= (0.15 − 0.1X1) e⃗2. These boundary conditions create inhomogeneous stress state and lead to the crack
propagating in the direction different to the direction of the initial notch. The simulation setup can be understood
as taking the stress-free geometry, creating the initial notch and instantaneously applying the boundary conditions;
afterwards, the crack starts propagating. The results of the simulations are shown in Fig. 8, where the crack geometry
at different iterations is illustrated. Quantity tm shows the time corresponding to iteration number m, before the crack
tip is advanced. The deformed state of the geometry at the first iteration (i.e. the crack has not propagated yet) is
shown on the left. Due to high stretch of the left side of the geometry, the region below the notch significant rotates
outwards. The crack then advances in the direction approximately 14◦ to e⃗1 in the reference configuration, which
also leads to a significant change of the deformed state of the geometry. The contour plot of the von Mises stress
at iteration m = 14 is shown in Fig. 6c.
22
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4. Conclusions

In this paper, a novel generalisation of the CutFEM approach for fracture and contact problems in large-
eformation solid mechanics has been presented. Within the proposed method, the weak forms are derived from the
otal energy functional, which contains the interfacial energy term that is responsible for ensuring that the correct
nterface behaviour is obtained. Five different interfacial energy terms have been considered corresponding to five
ifferent scenarios: phase boundary, crack opening with linear and non-linear traction-separation, contact without
nd with adhesion.

It has been shown that each incremental generalisation of the approach contains a prior approach as a particular
ase. As discussed in the introduction, application of the Nitsche’s method to solve the considered problems (phase
oundary, crack opening, contact) has been studied extensively for the case of linear elasticity. The generalisations
roposed here contain the linear elasticity as a particular case. The crack opening case generalises the phase
oundary case and allows non-zero gap between the interface points. The contact without adhesion generalises
he phase boundary case and allows for the interaction between the points that are not coinciding in the reference
onfiguration, while the contact with adhesion performs a similar generalisation of the crack opening case.

Another advantage of the proposed generalisation is that for all problems, including the contact problem, the
eak form is completely symmetric with respect to the choice of the surfaces for the integration, i.e. it contains

ntegrals and quantities (e.g. deformation gradients, stresses) from both subdomains and these integrals have identical
tructure. For contact problems this is usually referred to as the unbiased formulation. Finally, in the resulting weak
orms for the contact case, the integrals over a surface contain the finite-element test functions belonging only to
hat surface. This avoids projection of the test functions from one surface onto another, which is very convenient
rom the programming point of view leading to a shorter and a better structured code.

The proposed method has been implemented in MATLAB and tested computationally for the case of linear
lements. It has passed the tests imposing homogeneous deformations (“patch tests”) and the convergence rate tests.
he method can be used for modelling phase boundaries (including non-stationary phase boundaries, as considered

n [31]), predefined interfaces where damage is expected to take place or cracks that grow in arbitrary direction.
he contact part automatically accounts for the closure of the cracks and the contact between parts of these cracks

n large-deformation setting. The results of this paper might be interesting for software developers working on
nite-element software and aiming to utilise the power of the CutFEM methodology in application to non-linear

arge-deformation solid mechanics problems.

eclaration of competing interest

The authors declare the following financial interests/personal relationships which may be considered as potential
ompeting interests: the authors report that the financial support was provided by the European Union.

cknowledgement

The authors acknowledge the financial support from the EU Horizon 2020 project ECO2LIB, number 875514.

ppendix. Finite-element formulation

The finite-element mesh covers the entire volume of the body Ω = Ω+ ∪ Ω− and is arbitrary with respect to
interface Γ∗. Without loss of generality, the mesh is considered to be conforming to the external boundary of the
body, ∂Ω .

The mesh contains N nodes. The standard nodal basis function associated with node i is denoted as ψi . These
functions are continuous piecewise-polynomial functions and are equal to 1 at node i and equal to 0 at all other

odes. The space of the standard nodal basis functions is denoted as

Sh
= span {ψi }

N
i=1 , ψi = ψi

(
X⃗
)
.

o shorten the notation, additional space is introduced,

Qh
=
{
ϕ⃗
⏐⏐ϕ j ∈ Sh } , ϕ j = ϕ⃗ · e⃗ j , j ∈ {1, 2, 3} .
23
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Furthermore, globally defined functions u⃗h
+
, u⃗h

−
∈ Qh are introduced. Restrictions of functions u⃗h

+
and u⃗h

−
to domains

Ω+ and Ω−, respectively, approximate solutions u⃗+ and u⃗−, respectively.
The set of all elements is denoted as T . Furthermore, the following sets can be defined:

T± =
{

E
⏐⏐ E ∈ T , E ∩Ωh

±
̸= ∅

}
,

here E denotes an element. Sets T+ and T− overlap, i.e. they share the set of elements that are intersected by Γ h
∗

.
he set of all elements intersected by the interface is denoted as

T∗ = T+ ∩ T−.

ere, superscript h is added to Ω± and Γ∗ to indicate the discretisation of the boundaries of the domains.
Thus, the finite-element formulation of the problem is the following:

find u⃗h
+
, u⃗h

−
∈ Qh such that a

(
u⃗h

+
, u⃗h

−
, ϕ⃗h

+
, ϕ⃗h

−

)
= 0, ∀ϕ⃗h

+
, ϕ⃗h

−
∈ Qh,

u⃗h
±

= 0⃗ at nodes that do not belong to elements T±,

u⃗h
±

= d⃗ at nodes on ΓD ∩ T±,

here functional a was defined in (12). The above finite-element problem represents a system of non-linear algebraic
quations with respect to nodal values of u⃗h

+
and u⃗h

−
, which can be solved using the standard Newton–Raphson

ethod.
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