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AI Techniques Aid for Optimizing the 

Collection System of Industrial Plastic Waste

Richao Cong†, Atsushi Fujiyama and Toru Matsumoto

Abstract

Instead of statistical approaches, arti�cial intelligence (AI) techniques have been utilized 

for waste management in many �elds owing to their higher accuracy. It provides opportuni-

ties to make accurate future predictions of collection demands and detect the optimal col-

lection routes. This study aims to address plastic waste management using AI by applying 

predicted individual collection demands of industrial plastic waste (IPW) to an integrated 

collection system, as demonstrated in the Fukuoka Prefecture, Japan.

We propose an AI-based approach for applying known collection demands of IPW re-

garding vehicle routing problems to better integrate the existing IPW collection system. 

After providing details on future prediction of the collection demands through the machine 

learning approach, the Euclidean-distance-optimized vehicle routing problem was solved us-

ing Python. To further validate this method, an optimal route was estimated for a real road 

network. Finally, reductions in traveling distance and carbon dioxide (CO2) emissions were 

evaluated for the collection system both before and after AI-assisted integration.

In this study, a distance-optimized collection route was identi�ed, thus demonstrating the 

feasibility of integrating existing collection systems using AI technology. This integration was 

proven to be bene�cial in terms of the traveling distance (22 km reduced per collection, i.e., 

14.2％ of the total distance was reduced) and CO2 emissions (4.8 kg-CO2 reduced per collec-

tion, i.e., 10.1％ of the total emissions were reduced).

Key Words: AI technology, industrial plastic waste, machine learning, system optimization, 

vehicle routing problem

1.　Introduction

Japan has emphasized effective recycling of plastic 

waste (PW) since an embargo on the import of PW, 

issued by the Chinese government in July 20171). The 

total amount of PW generated by Japan in 2017 was 

approximately 863 million tonnes, of which indus-

trial PW (IPW) accounted for 54%2). Understand-

ing the collection potential of IPW in any locality is 

meaningful for optimizing its recycling system e.g., 

collection and disposal schedules, vehicle deploy-

ment, and personnel arrangements. Thus, there is a 

need for models that enable the accurate prediction 

of this collection potential.

Previous studies have applied a variety of statisti-

cal models, such as multiple linear regression mod-

els3, 4), vector autoregressions5), and seasonal autore-

gressive integrated moving averages6, 7), to predict 

future problems. In recent years, arti�cial intelligence 

(AI) technologies have been used increasingly often 

for analyzing complex “big data,” due to their higher 

prediction accuracy in many fields8‒10). For waste 
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management, both single and multiple models have 

been developed to forecast the generation of munici-

pal solid waste (MSW)11, 12), and to solve optimiza-

tion problems regarding the cost of waste collection 

and subsequent transportation13). In Japan, Cong 

et al. developed a machine learning approach with 28 

models on future predictions of daily IPW collection 

demands from a supermarket in Fukuoka. A higher 

prediction accuracy (seven days mean) is achieved by 

the selected �tting model (optimal ensemble model: 

93.6%) than that by a statistical approach (linear 

regression tool of SPSS: 83.1%)14); however, a dem-

onstration of the use of the predicted IPW collection 

demand has not been conducted.

Routing collections of IPW (i.e., regular collection) 

coexist with spot collections (irregular) in the cur-

rent collection system of Japan. As reported by Cong 

et al.14), problems within this system include certain 

collection points (i.e., facilities) being visited even 

when there is only 1 kg of IPW to collect, and some 

collection points are being visited more than once per 

day; thus, different trucks had to be prepared for two 

types of collections. Owing to the long-term accumu-

lation of collection records from routing collection 

facilities, it is possible to accurately predict their col-

lection demands using AI technology. This provides an 

opportunity to integrate these two types of collections 

towards solving a vehicle routing problem (VRP)15).

Previous studies have used geographic information 

systems (GIS) to solve the VRPs for MSW collec-

tion16, 17) and for household PW collection18). AI tech-

niques have also been used for VRPs in MSW stud-

ies19‒21). In this study, the AI-GIS combined approach 

was explored to search for the optimal solution for 

the VRP on IPW collection.

The aims of this study were as follows: 1) to 

propose an AI-based system for integrating routing 

collections with spot collections; 2) search for an 

optimal collection route by using previously known 

collection demands; 3) validate the optimal solution 

using a real road network; 4) and evaluate the CO2 

emission reductions from the collections before and 

after the optimization.

2.　Methods

2.1　Description of the proposed system

Based on the information from the existing col-

lection system, which was obtained from the local 

recycling company, a framework for integrating the 

current system was proposed, as shown in Fig. 1. The 

AI techniques used in this study include the machine 

learning approach on future predictions of collection 

demands and application of optimization for vehicle 

routing problems. Like with the prediction accuracy 

demonstrated by Cong et al.14), the predicted collec-

tion demands from the routing collection targets are 

sufficiently accurate for use in integrating the two 

aforementioned types of collections. First, the daily 

collection demands for routing collection facilities 

are accurately predicted by the AI based on the ac-

cumulated “big data” (i.e., collection records). Fol-

lowing this, a distance-optimized collection route is 

detected by the AI to integrate the routing collection 

and spot collection facilities.

Fig. 1　A proposed system on integrating the current industrial plastic waste (IPW) collection system by AI technique
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2.2　The work �ow and data preparation

Fig. 2 shows the work�ow that has been used to 

predict the amount of IPW collected from individual 

facilities, to be used for integrating the current col-

lection system using AI. We �rst processed the waste 

manifest data and combined these with daily weather 

data. The data was fitted to all 28 models which 

were stored in a regression learner application in 

MATLAB R2021a. We then evaluated their accuracy 

based on the predicted results, in order to select the 

best model for predicting the collection demands. 

Subsequently, a VRP was designed to integrate the 

routing collections with the spot collections, and a 

distance-optimized (i.e., Euclidean-distance) route 

was searched using an optimal tool established in 

Python 3.0; for validation purposes, another optimal 

route was detected based on the road network. Final-

ly, we evaluated changes in the traveling distance and 

CO2 emissions in the collection system both before 

and after optimization.

The IPW collection amounts were referred to the 

waste manifest data, obtained from a local recycling 

company in the Fukuoka Prefecture. These data in-

cluded daily collection records on the amount of IPW 

collected at the facility level from April 2018 to Sep-

tember 2020 and covered multiple sectors. Climate 

data from daily weather reports22) were also used in 

this study, which may have affected the IPW collec-

tions. The road network used for routing validation 

was a commercial database of digital road maps23).

2.3　The collection demands prediction by machine 

learning

Initial sense on future predictions of this study was 

referred to a previous study14). Unlike that study, we 

excluded variable selection and chose the best model 

in the �nal prediction stage by comparing their mean 

absolute percentage error (MAPE)24) based on all 

tested results rather than the root mean square er-

ror (RMSE)25). The steps for future predictions are 

shown as follows:

First, to ensure prediction accuracy, we prepared 

seven independent variables (see descriptions on 

Table 1) besides the response variable (daily amount 

collected) for each collection day (total records: 912 

days). Second, for validation purpose, we split the 

whole dataset into training data (collection days 

before September 2020; 96.8% of data number) 

and test data (collection days in September 2020; 

3.2%). Third, we processed the training data with 

data smoothing and outlier embedding. Fourth, we 

performed five-cross-validation through model fit-

ting by 28 models (see Table 2) for training data and 

made predictions by the �tted models for test data. 

Fifth, MAPEs of all predictions were calculated for 

test data as validations based on the predicted and 

the observed values. Sixth, the model with the lowest 

MAPE was selected as the best one (the highest accu-

racy) and used for future predictions.

Fig. 2 Work�ow used to predict the industrial plastic waste (IPW) collection amount for integrating the current collec-
tion system by AI technique
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2.4　The current condition on IPW collections and 

the optimal collection-route detection by Python

Owing to data limitations, we used real records of 

IPW collection amounts on August 1, 2021, instead 

of the future predicted values for collection-route 

optimization. To decipher the existing collection sys-

tem, we relied on the real collection sequence and the 

amount of IPW collected by routing collections and 

spot collections on August 1, 2021, from the same 

company. The coordinates of the related facilities 

were collected using Google Maps26). To maintain 

anonymity for local companies, their locations are 

shown without these coordinates. The real case in-

cluding a routing collection (i.e., red lines on the left) 

and a spot collection (i.e., green lines on the right) on 

August 1, 2021 is shown in Fig. 3. The numbers in 

purple near these points (from small to large) show 

the sequence of collection, and the blue point shows 

Table 1　Description of the independent variables used in this study

Variable Description

Day_num day number from 2018.4.1 to 2020.9.30
Weekday category type on what day it was the day
Pre_d_climate category type on climate impact of previous day: wind speed >=10 m s−1, daily rainfall 

>=20 mm, highest temperature >=35 degree
Pre_d_holiday category type on previous day belongs to holiday or not
Interval the interval between the present and former collection day
Num_fday the amount on former collection day
Num_ sday_fw the amount on the same day of the former week

Table 2 The description of the �tted 28 models which were stored in a regression learner application in MATLAB 
R2021a

Description by regression model type Model used

Linear Regression Models have predictors that are linear in the model 
parameters, are easy to interpret, and fast for making predictions. The 
accuracy is often low due to the constrained form

Linear Regression
Interactions Linear
Robust Linear
Stepwise Linear

Regression Trees are easy to interpret, fast for �tting and prediction, and 
low on memory usage. Control the leaf size could prevent over�tting

Fine Tree
Medium Tree
Coarse Tree

SVM: Linear SVMs are easy to interpret, but can have low predictive 
accuracy. Nonlinear SVMs are more dif�cult to interpret, but can be more 
accurate with options on Kernel function, standardize, box constraint, 
Epsilon, and Kernel scale modes

Linear SVM
Quadratic SVM
Cubic SVM
Fine Gaussian SVM
Medium Gaussian SVM
Coarse Gaussian SVM

Ensemble of Trees models combine results from many weak learners into 
one good ensemble model

Boosted Trees
Bagged Trees

Gaussian Process Regression (GPR) models: GPR models are often highly 
accurate, but can be dif�cult to interpret. Like with nonlinear SVMs, there 
are many advanced options for model control

Rational Quadratic
Squared Exponential
Matern 5/2
Exponential

Neural Networks: Neural network models typically have good predictive 
accuracy; however, they are not easy to interpret. Model flexibility 
increases with the size and number of fully connected layers in the neural 
network

Narrow Neural Network
Medium Neural Network
Wide Neural Network
Bilayered Neural Network
Trilayered Neural Network

Optimizable models: Different combinations of hyperparameter values are 
tried automatically by using an optimization scheme to seek the optimized 
hyperparameters for minimum mean squared error

Optimizable Tree
Optimizable SVM
Optimizable GPR
Optimizable Ensemble
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the starting point of the collection (i.e., the location 

of the recycling company).

An integrated collection system was assumed to be 

collected from the 17 facilities in Fig. 3 in one route 

by one truck whose collection demands were known 

previously. To solve the VRP, an objective function 

on the traveling distance and constraint by truck in 

collections were de�ned as:

( , ) ij ijk K i j E
Min d x

∈ ∈    (1)

which is subject to:

0, j iji V j V i j
q x Q

∈ ∈ ≠
≤  

  (2)

where, Equation 1 shows the objective function for 

the minimum total travel distance, dij is the distance 

between facilities i and j (km), xij is the binary vari-

able showing whether the truck passes the route 

between facility i and j or not; Equation 2 provides 

the constraint values that the total load of truck col-

lecting from the facilities qj (t) should not exceed its 

capacity Q. Based on the total amount of IPW in 

the real-life scenario, a 2-t commercial truck was as-

sumed to be used in the collections (Q=2).

The OR-tools27) developed by Google were installed 

in Python to search for the optimal route. The meta-

heuristic uses OR tools, which is a higher-level proce-

dure designed to �nd, generate, or select a heuristic to 

provide a suf�ciently good solution to an optimization 

problem28). The distance matrices on the Euclidean 

distance and road network distance between these fa-

cilities were generated using GIS software. Based on the 

coordinates of all facilities, their locations were mapped 

as points; the links (i.e., lines) between each pair of 

point groups were generated using GIS tools18, 29). Dis-

tance matrices were then read from the length of the re-

lated lines (i.e., links) and used for the VRP in Python.

After this resolution, the optimized collection route 

was detected, and the CO2 emissions were calculated 

using the parameters listed in Table 3. Based on the 

loading rates and accumulated ton-kilometers values, 

the evaluation was made by an improved ton-kilo-

meter method30). For processes with a loading rate of 

less than 10%, an emission factor of the empty truck 

was utilized in the calculations31).

Fig. 3 The real case on routing collections and spot collections of IPW on August 1, 2021 by two trucks from a local 
recycling company in Fukuoka. The blue point with a number zero shows the location of the recycling company

Table 3　Parameter setting for evaluation on CO2 emissions

Term Value Unit

Collection sequence given by Python ̶
Accumulated load of truck given by Python t
Traveling distance of each link given by GIS km
Loading rate of truck (less than 10%) 10 %
Loading rate of truck (more than 10%) counted as the accumulated load %
Emission factor of diesel fuel 2.6230) kg CO2 l−1

Emission factor for empty truck 0.31531) kg CO2 km−1
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3.　Results and discussion

3.1　Predicted collection demands

By evaluating the prediction accuracies for all 

models, the best model for a supermarket belonging 

to routing collection was the coarse Gaussian-sup-

ported vector machine model (with a monthly mean 

accuracy of 84.6%). As shown in Fig. 4, the values 

predicted by the best model (i.e., orange lines) appear 

to be smoother than the observed values (i.e., blue 

bars). We found that daily prediction accuracies were 

stable for the first two weeks (with a mean accu-

racy of 96.5%; i.e., a stable prediction period) from 

September 1, 2020. It also reflects the fact that the 

collection demands predicted by this approach are 

suf�ciently accurate and the stable prediction period 

is long enough to be used for solving the real prob-

lems. On the other hand, those days with extremely 

low prediction accuracies showed that the prediction 

accuracy dropped on some days. The trend learned 

by the model made the predicted values slightly vary 

around 20 kg so that signi�cant errors would occur 

once the observed values were far from 20. In other 

words, the amount of 10 kg in training data occurred 

out of order (e.g., an observed interval for a period 

without the occurrence of 10 was up to 57 days), 

resulting in the fitted model lacking accuracy in 

predicting this value (i.e., collections on 15th, 18th, 

22nd, 25th).

3.2　The detected optimal collection routes and 

evaluations on the optimization

Based on the collection demands from the real-

life scenario (Fig. 3), the distance-optimized routes 

from the 17 facilities in Fukuoka were detected us-

ing Python, as shown in Fig. 5. The total traveling 

Euclidean distance of the optimized 1-route case was 

approximately 131 km (Fig. 5A) and that of the road 

network case was approximately 154 km (Fig. 5B). 

Assuming the working time is 8 hours per day, the 

needed average traveling speed of a truck in one col-

lection route is estimated at about 20 km h−1 which 

re�ects that it is possible to go through all facilities in 

one day. During our validation process, the collection 

sequences in the two optimized routes were almost 

the same (where collections from facility id 5-4-3-2 

in Fig. 5A but 5-3-4-2 in Fig. 5B), which indicates 

that this Euclidean distance-based approach is rea-

sonable to some content for use in future applica-

tions. Meanwhile, if road network data is available, 

it is suggested to be used to solve the real VRPs for 

higher accuracy.

The traveling distance (Euclidean distance) was 

found to be reduced by the optimization and CO2 

emissions were evaluated based on the real collec-

tion amounts, as shown in Fig. 6. Compared to the 

real-life scenario (total distance: 153 km), there was 

a traveling distance of approximately 22 km (i.e., 

14.2% of the total in the real-life scenario) reduced 

after the optimization (Fig. 6A). Through this in-

Fig. 4 The predicted and observed values on daily IPW collection amount (kg) in September 2020 (no collection was 
recorded on September 7) and the accuracy (refer to right y-axis) between them
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tegration, one truck and many traveling distances 

were saved, which is meaningful for local recycling 

companies. The reduction in CO2 emissions was 

estimated to be approximately 4.8 kg-CO2 per col-

lection (i.e., 10.1% of the total emissions in the real 

scenario). This implies that the optimization effect 

is large; therefore, integrating the current collection 

system is important not only for cost saving but also 

for carbon mitigation.

However, to construct such an integrated collec-

tion system, “big data” on routing collection facilities 

is required to support accurate future predictions us-

ing AI technology. Moreover, an advanced technique 

for data processing and AI applications is essential. 

On the other hands, the accuracy of future predic-

tions is limited by the accuracy of the data used, for 

example, the predicted climate data for future days.

4.　Conclusions

In this study, we proposed an integrated IPW collec-

tion system to link the future prediction of collection 

demands from routing collection facilities with spot 

collection ones for VRP solving using the AI tech-

nique. The best prediction model for a supermarket 

was found using a coarse Gaussian-supported vec-

tor machine model (with a monthly mean accuracy 

of 84.6%) and the stable prediction period was two 

weeks from September 1, 2020. Moreover, the total-

traveling-distance-optimized routes were detected 

using the Euclidean distance and road network dis-

tance. The results of routing validation showed that 

this AI-based approach is reasonable for use in such 

applications. Finally, the bene�t from this integration 

was proven through the traveling distance (i.e., 22 km 

reduction, which is 14.2% of the total) and CO2 emis-

sions (i.e., 4.8 kg-CO2 reduction, which is 10.1% of 

the total). This demonstrates the high potential for 

integrating this method in the environmental aspect.

Once the collection records are available until 

August 2021, we suggest that the predicted collec-

tion demands made by this AI technique are used for 

solving the VRP. As a next step, a real-time optimized 

collection system and further variables for better pre-

diction accuracy should be explored. The evaluations 

on the system optimization from economic aspect 

will be considered in future work.

Fig. 5 The shortest routes on IPW collections on: (A) Euclidean-distance optimized; (B) road network-distance opti-
mized
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AI技術による産業系廃プラスチック回収システムの統合化

叢　 日超・藤山　淳史・松本　 亨

（北九州市立大学， 
〒808‒0135 福岡県北九州市若松区ひびきの1‒1）

摘 要

既存の統計手法と比較して，より精度の高いAI技術が多くの分野で応用されるように
なった。これにより，回収需要量の予測の他，収集運搬のルート最適化（巡回の順番や
ルート，配車等）が可能となる可能性がある。本研究の目的は，AI技術を用いることで，
福岡県における産業系廃プラスチックを対象に，回収需要量予測とルート最適化を統合
化させ，それによる効率化を目指すことである。
本研究では，AI技術を用いて廃プラの1日当たり回収需要量の推計結果を輸送計画問題
に適用することによって，従来の回収システムを統合化することを提案した。まず，機械
学習による将来予測手法を提示した上で，Pythonを用いて総移動距離（直線距離）の最
小化に関する輸送計画問題を解いた。さらに，結果を検証するために，道路網に基づいた
最適なルートを検出した。最後に，システムの統合前後による総移動距離やCO2排出量
の変化を評価した。
総移動距離の最適な回収ルートを検出したことによって，システム統合の有効性を示し
た。具体的には，総移動距離（回収1回当たりの削減：22 km, 14.2％）及び二酸化炭素排
出量（回収1回当たりの削減：4.8 kg-CO2，10.1％）の削減があることを確認した。

キーワード： AI技術，産業系廃プラスチック，機械学習，システム最適化，輸送計画問
題


