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Al Techniques Aid for Optimizing the

Collection System of Industrial Plastic Waste

Richao ConG', Atsushi Fujryama and Toru MATSUMOTO

Abstract

Instead of statistical approaches, artificial intelligence (AI) techniques have been utilized
for waste management in many fields owing to their higher accuracy. It provides opportuni-
ties to make accurate future predictions of collection demands and detect the optimal col-
lection routes. This study aims to address plastic waste management using Al by applying
predicted individual collection demands of industrial plastic waste (IPW) to an integrated
collection system, as demonstrated in the Fukuoka Prefecture, Japan.

We propose an Al-based approach for applying known collection demands of IPW re-
garding vehicle routing problems to better integrate the existing IPW collection system.
After providing details on future prediction of the collection demands through the machine
learning approach, the Euclidean-distance-optimized vehicle routing problem was solved us-
ing Python. To further validate this method, an optimal route was estimated for a real road
network. Finally, reductions in traveling distance and carbon dioxide (CO,) emissions were
evaluated for the collection system both before and after Al-assisted integration.

In this study, a distance-optimized collection route was identified, thus demonstrating the
feasibility of integrating existing collection systems using Al technology. This integration was
proven to be beneficial in terms of the traveling distance (22 km reduced per collection, i.e.,
14.2% of the total distance was reduced) and CO; emissions (4.8 kg-CO; reduced per collec-

tion, i.e., 10.1% of the total emissions were reduced).

Key Words: Al technology, industrial plastic waste, machine learning, system optimization,
vehicle routing problem

1. Introduction

ment, and personnel arrangements. Thus, there is a

Japan has emphasized effective recycling of plastic
waste (PW) since an embargo on the import of PW,
issued by the Chinese government in July 2017". The
total amount of PW generated by Japan in 2017 was
approximately 863 million tonnes, of which indus-
trial PW (IPW) accounted for 54%2. Understand-
ing the collection potential of IPW in any locality is
meaningful for optimizing its recycling system e.g.,

collection and disposal schedules, vehicle deploy-

need for models that enable the accurate prediction
of this collection potential.
Previous studies have applied a variety of statisti-

cal models, such as multiple linear regression mod-

)

els>*, vector autoregressions”, and seasonal autore-

)

gressive integrated moving averages® ”, to predict

future problems. In recent years, artificial intelligence
(AI) technologies have been used increasingly often
for analyzing complex “big data,” due to their higher

8-10

prediction accuracy in many fields*!”. For waste
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Fig. 1 A proposed system on integrating the current industrial plastic waste (IPW) collection system by Al technique

management, both single and multiple models have
been developed to forecast the generation of munici-
pal solid waste (MSW)!'" 2 and to solve optimiza-
tion problems regarding the cost of waste collection
and subsequent transportation'?. In Japan, Cong
et al. developed a machine learning approach with 28
models on future predictions of daily IPW collection
demands from a supermarket in Fukuoka. A higher
prediction accuracy (seven days mean) is achieved by
the selected fitting model (optimal ensemble model:
93.6%) than that by a statistical approach (linear
regression tool of SPSS: 83.1%)'); however, a dem-
onstration of the use of the predicted IPW collection
demand has not been conducted.

Routing collections of IPW (i.e., regular collection)
coexist with spot collections (irregular) in the cur-
rent collection system of Japan. As reported by Cong

et al.'¥

, problems within this system include certain
collection points (i.e., facilities) being visited even
when there is only 1kg of IPW to collect, and some
collection points are being visited more than once per
day; thus, different trucks had to be prepared for two
types of collections. Owing to the long-term accumu-
lation of collection records from routing collection
facilities, it is possible to accurately predict their col-
lection demands using Al technology. This provides an
opportunity to integrate these two types of collections
towards solving a vehicle routing problem (VRP)'.
Previous studies have used geographic information
systems (GIS) to solve the VRPs for MSW collec-
tion'®'” and for household PW collection'®. A tech-

niques have also been used for VRPs in MSW stud-

ies'” 2!, In this study, the AI-GIS combined approach

was explored to search for the optimal solution for
the VRP on IPW collection.

The aims of this study were as follows: 1) to
propose an Al-based system for integrating routing
collections with spot collections; 2) search for an
optimal collection route by using previously known
collection demands; 3) validate the optimal solution
using a real road network; 4) and evaluate the CO,
emission reductions from the collections before and

after the optimization.
2. Methods

2.1 Description of the proposed system

Based on the information from the existing col-
lection system, which was obtained from the local
recycling company, a framework for integrating the
current system was proposed, as shown in Fig. 1. The
Al techniques used in this study include the machine
learning approach on future predictions of collection
demands and application of optimization for vehicle
routing problems. Like with the prediction accuracy
demonstrated by Cong et al.', the predicted collec-
tion demands from the routing collection targets are
sufficiently accurate for use in integrating the two
aforementioned types of collections. First, the daily
collection demands for routing collection facilities
are accurately predicted by the Al based on the ac-
cumulated “big data” (i.e., collection records). Fol-
lowing this, a distance-optimized collection route is
detected by the Al to integrate the routing collection

and spot collection facilities.
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Fig. 2 Workflow used to predict the industrial plastic waste (IPW) collection amount for integrating the current collec-

tion system by Al technique

2.2 The work flow and data preparation

Fig. 2 shows the workflow that has been used to
predict the amount of IPW collected from individual
facilities, to be used for integrating the current col-
lection system using AL We first processed the waste
manifest data and combined these with daily weather
data. The data was fitted to all 28 models which
were stored in a regression learner application in
MATLAB R2021a. We then evaluated their accuracy
based on the predicted results, in order to select the
best model for predicting the collection demands.
Subsequently, a VRP was designed to integrate the
routing collections with the spot collections, and a
distance-optimized (i.e., Euclidean-distance) route
was searched using an optimal tool established in
Python 3.0; for validation purposes, another optimal
route was detected based on the road network. Final-
ly, we evaluated changes in the traveling distance and
CO; emissions in the collection system both before
and after optimization.

The IPW collection amounts were referred to the
waste manifest data, obtained from a local recycling
company in the Fukuoka Prefecture. These data in-
cluded daily collection records on the amount of IPW
collected at the facility level from April 2018 to Sep-
tember 2020 and covered multiple sectors. Climate

22) were also used in

data from daily weather reports
this study, which may have affected the IPW collec-

tions. The road network used for routing validation

was a commercial database of digital road maps*?.
2.3 The collection demands prediction by machine
learning

Initial sense on future predictions of this study was
referred to a previous study'®. Unlike that study, we
excluded variable selection and chose the best model
in the final prediction stage by comparing their mean
absolute percentage error (MAPE)** based on all
tested results rather than the root mean square er-
ror (RMSE)*). The steps for future predictions are
shown as follows:

First, to ensure prediction accuracy, we prepared
seven independent variables (see descriptions on
Table 1) besides the response variable (daily amount
collected) for each collection day (total records: 912
days). Second, for validation purpose, we split the
whole dataset into training data (collection days
before September 2020; 96.8% of data number)
and test data (collection days in September 2020;
3.2%). Third, we processed the training data with
data smoothing and outlier embedding. Fourth, we
performed five-cross-validation through model fit-
ting by 28 models (see Table 2) for training data and
made predictions by the fitted models for test data.
Fifth, MAPEs of all predictions were calculated for
test data as validations based on the predicted and
the observed values. Sixth, the model with the lowest
MAPE was selected as the best one (the highest accu-
racy) and used for future predictions.
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2.4 The current condition on IPW collections and
the optimal collection-route detection by Python
Owing to data limitations, we used real records of
IPW collection amounts on August 1, 2021, instead
of the future predicted values for collection-route
optimization. To decipher the existing collection sys-
tem, we relied on the real collection sequence and the
amount of IPW collected by routing collections and

spot collections on August 1, 2021, from the same

company. The coordinates of the related facilities
were collected using Google Maps*®. To maintain
anonymity for local companies, their locations are
shown without these coordinates. The real case in-
cluding a routing collection (i.e., red lines on the left)
and a spot collection (i.e., green lines on the right) on
August 1, 2021 is shown in Fig. 3. The numbers in
purple near these points (from small to large) show

the sequence of collection, and the blue point shows

Table 1 Description of the independent variables used in this study

Variable Description
Day_num day number from 2018.4.1 to 2020.9.30
Weekday category type on what day it was the day

Pre_d_climate
>=20mm, highest temperature >=35 degree
Pre_d_holiday

Interval the interval between the present and former collection day

Num_fday
Num_ sday_fw

the amount on former collection day

the amount on the same day of the former week

category type on previous day belongs to holiday or not

category type on climate impact of previous day: wind speed >=10ms ", daily rainfall

Table 2 The description of the fitted 28 models which were stored in a regression learner application in MATLAB

R2021a

Description by regression model type

Model used

Linear Regression Models have predictors that are linear in the model

parameters, are easy to interpret, and fast for making predictions. The
accuracy is often low due to the constrained form

Regression Trees are easy to interpret, fast for fitting and prediction, and
low on memory usage. Control the leaf size could prevent overfitting

SVM: Linear SVMs are easy to interpret, but can have low predictive
accuracy. Nonlinear SVMs are more difficult to interpret, but can be more
accurate with options on Kernel function, standardize, box constraint,
Epsilon, and Kernel scale modes

Ensemble of Trees models combine results from many weak learners into
one good ensemble model

Gaussian Process Regression (GPR) models: GPR models are often highly
accurate, but can be difficult to interpret. Like with nonlinear SVMs, there

are many advanced options for model control

Neural Networks: Neural network models typically have good predictive
accuracy; however, they are not easy to interpret. Model flexibility
increases with the size and number of fully connected layers in the neural
network

Optimizable models: Different combinations of hyperparameter values are
tried automatically by using an optimization scheme to seek the optimized
hyperparameters for minimum mean squared error

Linear Regression
Interactions Linear
Robust Linear

Stepwise Linear

Fine Tree

Medium Tree

Coarse Tree

Linear SVM

Quadratic SVM

Cubic SVM

Fine Gaussian SVM
Medium Gaussian SVM
Coarse Gaussian SVM
Boosted Trees

Bagged Trees

Rational Quadratic
Squared Exponential
Matern 5/2

Exponential

Narrow Neural Network
Medium Neural Network
Wide Neural Network
Bilayered Neural Network
Trilayered Neural Network
Optimizable Tree
Optimizable SVM
Optimizable GPR
Optimizable Ensemble
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Fig. 3 The real case on routing collections and spot collections of IPW on August 1, 2021 by two trucks from a local

recycling company in Fukuoka. The blue point with a number zero shows the location of the recycling company

Table 3 Parameter setting for evaluation on CO; emissions

Term

Value Unit

Collection sequence

given by Python —

Accumulated load of truck given by Python t
Traveling distance of each link given by GIS km
Loading rate of truck (less than 10%) 10 %
Loading rate of truck (more than 10%) counted as the accumulated load Y%
Emission factor of diesel fuel 2.6237 kg CO,1™!
Emission factor for empty truck 0.315%Y kg CO,km™!

the starting point of the collection (i.e., the location
of the recycling company).

An integrated collection system was assumed to be
collected from the 17 facilities in Fig. 3 in one route
by one truck whose collection demands were known
previously. To solve the VRP, an objective function
on the traveling distance and constraint by truck in

collections were defined as:

MinzkeK Z(i,/’)eEdifxif (1)

which is subject to:

Zievz/ﬂ\o,gﬂﬂﬁ <0 2)

where, Equation 1 shows the objective function for
the minimum total travel distance, d; is the distance
between facilities i and j (km), x;; is the binary vari-
able showing whether the truck passes the route
between facility i and j or not; Equation 2 provides
the constraint values that the total load of truck col-
lecting from the facilities g; (t) should not exceed its
capacity Q. Based on the total amount of IPW in
the real-life scenario, a 2-t commercial truck was as-

sumed to be used in the collections (Q=2).

The OR-tools*” developed by Google were installed
in Python to search for the optimal route. The meta-
heuristic uses OR tools, which is a higher-level proce-
dure designed to find, generate, or select a heuristic to
provide a sufficiently good solution to an optimization

28 The distance matrices on the Euclidean

problem
distance and road network distance between these fa-
cilities were generated using GIS software. Based on the
coordinates of all facilities, their locations were mapped
as points; the links (i.e., lines) between each pair of
point groups were generated using GIS tools'® >, Dis-
tance matrices were then read from the length of the re-
lated lines (i.e., links) and used for the VRP in Python.
After this resolution, the optimized collection route
was detected, and the CO, emissions were calculated
using the parameters listed in Table 3. Based on the
loading rates and accumulated ton-kilometers values,
the evaluation was made by an improved ton-kilo-
meter method®”. For processes with a loading rate of
less than 10%, an emission factor of the empty truck

was utilized in the calculations®!.
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Fig. 4 The predicted and observed values on daily IPW collection amount (kg) in September 2020 (no collection was

recorded on September 7) and the accuracy (refer to right y-axis) between them

3. Results and discussion

3.1 Predicted collection demands

By evaluating the prediction accuracies for all
models, the best model for a supermarket belonging
to routing collection was the coarse Gaussian-sup-
ported vector machine model (with a monthly mean
accuracy of 84.6%). As shown in Fig. 4, the values
predicted by the best model (i.e., orange lines) appear
to be smoother than the observed values (i.e., blue
bars). We found that daily prediction accuracies were
stable for the first two weeks (with a mean accu-
racy of 96.5%; i.e., a stable prediction period) from
September 1, 2020. It also reflects the fact that the
collection demands predicted by this approach are
sufficiently accurate and the stable prediction period
is long enough to be used for solving the real prob-
lems. On the other hand, those days with extremely
low prediction accuracies showed that the prediction
accuracy dropped on some days. The trend learned
by the model made the predicted values slightly vary
around 20kg so that significant errors would occur
once the observed values were far from 20. In other
words, the amount of 10kg in training data occurred
out of order (e.g., an observed interval for a period
without the occurrence of 10 was up to 57 days),
resulting in the fitted model lacking accuracy in
predicting this value (i.e., collections on 15th, 18th,
22nd, 25th).

3.2 The detected optimal collection routes and
evaluations on the optimization

Based on the collection demands from the real-
life scenario (Fig. 3), the distance-optimized routes
from the 17 facilities in Fukuoka were detected us-
ing Python, as shown in Fig. 5. The total traveling
Euclidean distance of the optimized 1-route case was
approximately 131km (Fig. 5A) and that of the road
network case was approximately 154km (Fig. 5B).
Assuming the working time is 8 hours per day, the
needed average traveling speed of a truck in one col-
lection route is estimated at about 20kmh™" which
reflects that it is possible to go through all facilities in
one day. During our validation process, the collection
sequences in the two optimized routes were almost
the same (where collections from facility id 5-4-3-2
in Fig. SA but 5-3-4-2 in Fig. 5B), which indicates
that this Euclidean distance-based approach is rea-
sonable to some content for use in future applica-
tions. Meanwhile, if road network data is available,
it is suggested to be used to solve the real VRPs for
higher accuracy.

The traveling distance (Euclidean distance) was
found to be reduced by the optimization and CO,
emissions were evaluated based on the real collec-
tion amounts, as shown in Fig. 6. Compared to the
real-life scenario (total distance: 153 km), there was
a traveling distance of approximately 22km (i.e.,
14.2% of the total in the real-life scenario) reduced

after the optimization (Fig. 6A). Through this in-



254 CoNG, FujiyAmA and MaTsumoTto
0.6
N o / °I7
j} 66110/ 1422
8 XN 3'%5 21.7
25,250 1415
14.4 *0.4
2 224
727" is
1.(326
6.5 336 ° Collection targets
0_4‘;33,5 0 25 5 10 Km The shortest collection route
1.5 The shortest roads between facilities

Numbers in purple show the facility id

Numbers in black show the distance of each line (km)

10 Km
0742

A

Collection targets

~— The shortest collection route

Numbers in black show the distance of each road link (km)

The shortest roads between facilities

B
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tegration, one truck and many traveling distances
were saved, which is meaningful for local recycling
companies. The reduction in CO; emissions was
estimated to be approximately 4.8 kg-CO, per col-
lection (i.e., 10.1% of the total emissions in the real
scenario). This implies that the optimization effect
is large; therefore, integrating the current collection
system is important not only for cost saving but also
for carbon mitigation.

However, to construct such an integrated collec-
tion system, “big data” on routing collection facilities
is required to support accurate future predictions us-
ing Al technology. Moreover, an advanced technique
for data processing and Al applications is essential.
On the other hands, the accuracy of future predic-
tions is limited by the accuracy of the data used, for

example, the predicted climate data for future days.
4. Conclusions

In this study, we proposed an integrated IPW collec-
tion system to link the future prediction of collection
demands from routing collection facilities with spot

collection ones for VRP solving using the AI tech-

nique. The best prediction model for a supermarket
was found using a coarse Gaussian-supported vec-
tor machine model (with a monthly mean accuracy
of 84.6%) and the stable prediction period was two
weeks from September 1, 2020. Moreover, the total-
traveling-distance-optimized routes were detected
using the Euclidean distance and road network dis-
tance. The results of routing validation showed that
this Al-based approach is reasonable for use in such
applications. Finally, the benefit from this integration
was proven through the traveling distance (i.e., 22km
reduction, which is 14.2% of the total) and CO, emis-
sions (i.e., 4.8kg-CO; reduction, which is 10.1% of
the total). This demonstrates the high potential for
integrating this method in the environmental aspect.
Once the collection records are available until
August 2021, we suggest that the predicted collec-
tion demands made by this AI technique are used for
solving the VRP. As a next step, a real-time optimized
collection system and further variables for better pre-
diction accuracy should be explored. The evaluations
on the system optimization from economic aspect

will be considered in future work.
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Solve Vehicle Routing Problems by Al on Plastic Waste Collection

AIBEMIICKBDERXRRET ZAF v JEIRY AT LOHEL

weo BB -l El AR

(AL 3K,
T808-0135 MRRILAL LTI B KX OUED 1-1)

i) 3

WO THELLKLT, JVBEOSVAIBMIL L 0BT ENE LIS
Tolze 2HCEY, ENFEEREOFNOM, INEERHO NV — M@t (KiEloNEE =
V— 1, BEHEE) ASHIREE 2 B REMED D Do AMED HIWIE, AIHMZ M52 & T,
MBS BT B HEFERET 7 AF v 7 23512, BIRGHER T &V — Mr#fbzia
fbsg, ThICX 2%z HIETZ 2 TH D,

AWFFETIX, ALFM 2 FVCEE 7T o1 H Y72 0 0T & OHEFTRS S % ok 5116 1
WCHEHT A2 EICE 5T, EROBINY AT L ZMEILTH I E#RE L, T3,
R X DI T TEZRR L LT, Python 2 W CHRBEIHEE (FARHE) O
AMUIZB$ B Rt R 2 N 72 S 51, R EZMEET 572012, BRI\
Bl V— PRI L7z, RBIC, VAT LOMEHIHRIC X 5 RBEHHEE CO, PEH &
DEALE FHM L 720

BRI ORELR IV — N 2RI L7228 10X 5T, VAT AREOHEIMEERL
720 BAKMYICIE, BEIIEEE (BUX1ES 720 OHI : 22km, 14.2%) KO BIbRFEHE
W (1A 72 ) OHIE : 4.8kg-CO,, 10.1%) DHIFAH 5 Z & MR L 72,
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