
All centralising monoids on the set {0, 1, 2},
including their witnesses

Mike Behrisch∗†‡ Leon Renkin§

15th February 2023

This data set provides supplementary material for the description of witnesses
for all 192 centralising monoids [6, 7] on the three-element set A = {0, 1, 2} as
carried out in [1], cp. also [8].

Centralising monoids are the closed sets on one side of the Galois connection
between finitary functions in OA =

⋃
n∈N+

AAn and O(1)
A = AA induced by the

relation of commutation: we say that f : An → A for some n ∈ N+ commutes
with some unary function s : A → A if and only if s : ⟨A; f⟩ → ⟨A; f⟩ is an
endomorphism of the algebra ⟨A; f⟩, i.e., if s ∈ End (⟨A; f⟩), meaning in more
detail that s(f(x1, . . . , xn)) = f(s(x1), . . . , s(xn)) for all x1, . . . , xn ∈ A. We
denote this by f ⊥ s or by f ∈ {s}∗ or s ∈ {f}∗ (more precisely s ∈ {f}∗(1)).
A centralising monoid is a set of the form F ∗(1) =

{
s ∈ O(1)

A

∣∣∣ ∀f ∈ F : f ⊥ s
}

for some F ⊆ OA. Note that F ∗(1) =
⋂

f∈F {f}∗(1). Any set F ⊆ OA describing
the monoid M = F ∗(1) is called a witness of the centralising monoid; witnesses
are not unique.

Machida and Rosenberg in [6] presented a strategy to determine all central-
ising monoids on A = {0, 1, 2} and included a list of the resulting 192 monoids
in [7], which is not easily, for example, by a computer, verifiable since there are no
witnesses given. In [8, 1], we rephrased the description of all centralising monoids
using formal concept analysis [4, 3]. Namely, the set of centralising monoids
can be seen as the set of intents of the formal context K1 =

(
OA, O(1)

A , ⊥
)

.
In [8, 1] we demonstrate how to find a finite subcontext K′ of K1 having only 183
objects, but the same set of intents as K1. The subcontext K′ can be further
reduced to a subcontext K′′ with only 51 objects, which is still able to describe
all centralising monoids on {0, 1, 2}. The advantage of this approach is twofold:
we may apply well-known algorithms (cf. [3, Chapter 2] and [4, Chapter 2], see
also the implementations [2, 5]) to automatically enumerate all concepts (and
thus in particular all intents) of K′; furthermore, the corresponding extents of
the concepts provide witnesses that were missing in [7]. In this way we are able
to confirm the correctness of the 192 monoids derived by Machida and Rosenberg

∗Institute of Discrete Mathematics and Geometry, TU Wien, Wien, Austria
https://orcid.org/0000-0003-0050-8085

†Institut für Algebra, Johannes Kepler Universität Linz, Austria
‡Partial support by FWF grant P33878 is gratefully acknowledged.
§Department of Mathematics, ETH Zürich, Zürich, Switzerland

https://orcid.org/0000-0003-3343-7869

1

and of their 48 conjugacy types; furthermore, our list of witnesses allows for
a quick verification that the 192 monoids we present are indeed centralising
monoids. A more detailed discussion of our method can be found in [8] and [1].
Here we only comment on certain aspects that are needed to make sense of the
files in this data set (in conjunction with consulting [1] or [8] for the mathematical
background); moreover we show how our data shows the correctness of the results
of [6, 7].

1 Formal contexts
1.1 Object clarification
The context K1 contains many duplicate rows, that is, functions f1 ̸= f2 ∈ OA

with {f1}∗(1) = {f2}∗(1), and it is clearly unnecessary to store duplicate rows in
order to give the lattice of intents of K1. Keeping only one representative for
each duplicate row is called object clarification in the language of formal concept
analysis. As K1 contains an infinite number of rows, we have independently
written two programmes that construct an object clarified subcontext K′ =(

WA, O(1)
A , ⊥

)
of K1, where |WA| = 183 (files comm-ternary-unary-3.cxt1

and context_of_commutation.cxt2). The contexts K′ produced by the two
programmes contain different sets of witnesses, as the codes differ in the order
in which they enumerate certain functions as objects and thus the results of the
object clarification process are distinct. However, their object intents (and thus
the set of all intents, that is, of centralising monoids) is identical in both cases.

1.2 Encoding of operations used as objects or attributes
In order to understand the objects and attributes in the two mentioned context
files representing variants of K′, we have to define the coding of operations
used in these files. The operations appearing in the files are operations of arity
at most three, that is, functions of the form f : An → A where A = {0, 1, 2}
and n ∈ N, 1 ≤ n ≤ 3. In the context files, these functions are represented
by finite strings of digits from A = {0, 1, 2} that stand for the value tables
of the operations. In order to identify a function with such a linearised value
table, we have to specify the order of the arguments used in the string of digits.
We represent functions f : A → A as the string (f(0), f(1), f(2)) ∈ A3 (in the
context files, no commas or parentheses are used since each letter is a single
symbol, for example, the identity operation id3 is represented by the string 012).
For binary operations f : A2 → A there are two natural representations, row-wise
and column-wise coding. Row-wise coding means that f is stored as the string
(f(0, 0), f(0, 1), f(0, 2), f(1, 0), f(1, 1), f(1, 2), f(2, 0), f(2, 1), f(2, 2)) ∈ A9, in
other words, in row-wise coding a string (a0, . . . , a8) ∈ A9 represents the function

1We have also added the c++-file commutation.cpp with which this data was produced
from the command compute_ternary_unary("comm-ternary-unary-3.cxt");. Let us note
that the same programme is also capable of outputting the contexts

(
O(1)

A , O(1)
A , ⊥

)
via

write_context_unary_unary("comm-unary-unary-3.cxt"); and of
(

O(2)
A , O(1)

A , ⊥
)

via write_
context_binary_unary("comm-bin-unary-3.cxt"); if these commands are uncommented.

2This file has been produced by the c++-file context_of_commutation_code.cpp, written
by Leon Renkin, cf. [8, Section 7.1].

2

with value table

x\y 0 1 2
0 a0 a1 a2
1 a3 a4 a5
2 a6 a7 a8

, where f(x, y) appears in row x, column y.

On the other hand, column-wise coding means that f : A2 → A is stored as the
string (f(0, 0), f(1, 0), f(2, 0), f(0, 1), f(1, 1), f(2, 1), f(0, 2), f(1, 2), f(2, 2)) ∈ A9,
in other words, in column-wise coding a string (a0, . . . , a8) ∈ A9 represents the
function with the value table

x\y 0 1 2
0 a0 a3 a6
1 a1 a4 a7
2 a2 a5 a8

, where f(x, y) appears in row x, column y.

If one were to accidentally confuse the two encodings, i.e., to construct the
opposite table out of a row-wise encoded function by mistaking it as a column-
wise coding, not much harm would arise, as both function have identical properties
with respect to commutation, that is, they commute with the same functions
and hence define the same centraliser.

For ternary operations f : A3 → A there are again two major ways of en-
coding them, coming from listing the arguments lexicographically such that
either left-most letters take priority or right-most letters take priority. For
brevity, we will call these possibilities again row-wise and column-wise cod-
ing. That is, in row-wise coding, a function f : A3 → A is represented as
(f(0, 0, 0), f(0, 0, 1), f(0, 0, 2), f(0, 1, 0), f(0, 1, 1), f(0, 1, 2), . . . , f(2, 2, 2)) ∈ A26,
i.e., f(x, y, z) appears at the index 32x+3y+z of the string, while in column-wise
coding, (f(0, 0, 0), f(1, 0, 0), f(2, 0, 0), f(0, 1, 0), f(1, 1, 0), f(2, 1, 0), . . . , f(2, 2, 2))
in A26 is used to represent f , i.e., f(x, y, z) appears at the index x + 3y + 32z of
the string.

In the programme commutation.cpp and the files comm-unary-unary-3.cxt,
comm-bin-unary-3.cxt, comm-ternary-unary-3.cxt produced by it, always
row-wise encoding is used. In the programme context_of_commutation_code.
cpp, which produces the file context_of_commutation.cxt, column-wise en-
coding is used for the binary and ternary operations appearing as objects.

For a more concise representation of the closures, the objects and attributes of
the context context_of_commutation.cxt have been consecutively numbered in
the form h0, . . . , h155, f156, . . . , f182 (for the objects) and s0 = 000, . . . , s26 = 222
(for the attributes). The precise correspondence between the string represent-
ations of the functions and the newly introduced identifiers is given in [8, Sec-
tion 7.2], the corresponding context with renamed objects and attributes is
shown in [8, Section 7.3] and has been added to this data set as file context_
of_commutation_names.cxt.

1.3 Object reduction
Another simplification method that still keeps the set of intents intact is object
reduction [3, Section 1.4.3, p. 27 et seqq.], also called row reduction. In an
object reduced subcontext K′′ of K′ only 51 objects from the 183 functions

3

in WA remain; a representation of K′′ is given in [1, Table 1], cf. context_
of_commutation_names_obj_red.cxt. Applying also the dual operation to the
columns, one obtains a fully reduced context K′′′ from K′ that has 51 objects
(rows) and 25 of the 27 attributes (columns) of K1 or K′. The context K′′′ has an
isomorphic lattice of intents, but obviously not the same set of intents as K′ or K;
it is the standard context belonging to K1 and is presented in [8, Section 7.4],
cf. context_of_commutation_names_red.cxt. The reduction process has been
carried out with readily available formal concept analysis software, such as
ConExp3 or Conexp-clj (cf. [2, 5]). Depending on which file representation
of K′ we start with, we obtain different object reduced (K′′) or fully reduced
(K′′′) context files:

K′ object reduced K′′ standard context K′′′

comm-ternary-unary-3.cxt comm-ternary-unary-obj-red-3.cxt comm-ternary-unary-red-3.cxt
context_of_commutation.cxt context_of_commutation_obj_red.cxt context_of_commutation_red.cxt
context_of_commutation_names.cxt context_of_commutation_names_obj_red.cxt context_of_commutation_names_red.cxt

For further computation of lists of concepts, intents (cf. [8, Section 7.5]), and
intents up to conjugacy (cf. [1]) we have proceeded from the context K′ as
given in context_of_commutation.cxt or from K′′ as given in context_of_
commutation_names_obj_red.cxt.

1.4 Context file format
All formal contexts in this data set are given in Burmeister format, which
can be read by standard formal concept analysis software like ConExp or
Conexp-clj [2] and complies with the following specification:

• A line with the letter B (for Burmeister).

• A blank line

• A line with the integer number m of objects.

• A line with the integer number n of attributes.

• A blank line

• m lines with labels for the objects.

• n lines with labels for the attributes.

• m lines representing the context, that is, the incidence relation between
objects and attributes. The i-th of these lines corresponds to the i-th
object gi and contains a string of n characters X or ., X standing for gi

being in relation with the corresponding attribute and . for the opposite.
This is an encoding of the characteristic tuple of the object intent given
by gi where X represents 1 and . represents 0.

3http://sourceforge.net/projects/conexp

4

Example. The following listing is in Burmeister format:

B

3
2

f
g
h
P
Q
X.
.X
XX

It represents the Galois connection between {f, g, h} and {P, Q}, where f
has property P but not Q, g has Q but not P , and h has both. As a bin-
ary incidence relation I ⊆ {f, g, h} × {P, Q} this would be represented as
I = {(f, P), (g, Q), (h, P), (h, Q)}, which commonly is summarised in a tabu-
lar form (note the resemblance to the last three lines of the listing) as

P Q
f ×
g ×
h × × .

2 Centralising monoids
One of the main goals of [8, 1] was to derive a finite context K′, the intents of
which are all centralising monoids on {0, 1, 2}. This has been achieved using
the programme context_of_commutation_code.cpp in the files context_of_
commutation.cxt and context_of_commutation_names_obj_red.cxt. The
intents of these contexts are the centralising monoids, the corresponding extents
may serve as witnesses. Concepts and intents were computed using [2], see
also [5]. The number of concepts/intents computed agrees with the figure 192
reported in [6, 7]. In Section 5 we shall describe that we were also able to confirm
the correctness of the lists of 192 monoids given in [7].

The following files were obtained from K′ as represented in context_of_
commutation.cxt with the help of [2]4 and some manual change of the formatting
(line breaks, separating symbols, etc.): concepts.txt, the 192 concepts of K′, i.e.,
the centralising monoids together with witnesses; intents.txt, the 192 intents
of K′; intents_numbers.cppinput, the 192 intents of K′ to be used as an input
for the programme reduce_monoids_conj.cpp (here the attribute labels abc for
unary operations s ∈ O(1)

A , where s(0) = a, s(1) = b, s(2) = c, have been replaced
by an integer in {0, . . . , 26} computed as 32 · s(0) + 3 · s(1) + s(2) = 9a + 3b + c,
and line endings have been marked by the value 30; intents_numbers.cppinput
was obtained from intents.txt with the help of the GNU sed command (version
4.2.2) via sed -f int2numb.sed intents.txt > intents_numbers.cppinput).

4Use the commands (def cxt (read-context "path_to/context_of_commutation.cxt"))
followed by (concepts cxt) or (intents cxt).

5

For the presentation of intents (monoids) and witnesses in [1, 8], a different
notation (labelling) of the objects and attributes was needed. As explained in
Section 1.2 on encoding of operations in the formal contexts, the file context_
of_commutation.cxt was changed to context_of_commutation_names.cxt for
this purpose, cf. also [8, Sections 7.2, 7.3] for more details. With the help of
ConExp/Conexp-clj this file was object reduced, resulting in the context file
context_of_commutation_names_obj_red.cxt representing K′′. Using [2] and
some manual formatting as above, the concepts (monoids and their witnesses) of
context_of_commutation_names_obj_red.cxt were computed and stored in
the file concepts_new_format.txt (cf. [8, Section 7.5]), and the corresponding
intents were stored in intents_new_format.txt.

3 Centralising monoids up to conjugacy
For [1, Table 2] we also computed representatives of the 192 centralising monoids
on A = {0, 1, 2} up to conjugacy by inner automorphisms s ∈ Sym(A). In this
way we were able to confirm the number 48 of conjugacy types mentioned in [6, 7].
We were also able to verify the correctness of the 48 conjugacy representatives
shown in [6, Table 3]; for more details see Section 4.

To clarify the terminology, we define the conjugate of an n-ary operation
f : An → A by a permutation s ∈ Sym(A) to be the function fs : An → A that is
given by fs(x1, . . . , xn) := s

(
f

(
s−1(x1), . . . , s−1(xn)

))
for all (x1, . . . , xn) ∈ An.

Functions f, g ∈ O(n)
A are said to be conjugate if there is s ∈ Sym(A) such that

f = gs, and this is clearly an equivalence relation. We extend the notion of
conjugacy element-wise to sets F ⊆ O(n)

A by putting F s := {fs | f ∈ F} for
s ∈ Sym(A). In fact, we use this definition here only for the case where n = 1 and
F ⊆ O(1)

A . In this way we can speak of the conjugate F s by s of a transformation
monoid F ⊆ O(1)

A .
The classification of all centralising monoids on {0, 1, 2} up to conjugacy

was done as follows: the programme reduce_monoids_conj.cpp reads all 192
centralising monoids on A = {0, 1, 2} as lists of integers in {0, . . . , 26} from
the file intents_numbers.cppinput and outputs one representative monoid of
each conjugacy class to the file intents_up_to_conj.txt. In the programme
reduce_monoids_conj.cpp (and its in- and output) unary operations s ∈ O(1)

A

are represented by their hash value 9 ·s(0)+3 ·s(1)+s(2) ∈ {0, . . . , 26}. The code
is rather straightforward: each monoid (line) of intents_numbers.cppinput
is read in as a set of integers, these 192 sets are stored as a set. One then in
compute_monoids_up_to_conj loops over each monoid F in that set and every
s ∈ Sym(A) and conjugates all the elements of the monoid F by s, obtaining F s.
If the resulting isomorphic monoid F s is distinct from the current monoid F (that
is, it is a distinct isomorphic copy in the same conjugacy class), it is removed
from the set of monoids, and thus only the representatives up to conjugacy
remain. These are then output likewise to intents_up_to_conj.txt; this file
has 48 lines.

For the presentation of the representative monoids of the 48 conjugacy types
in [1, Table 2], it was necessary to find these 48 intents among the 192 concepts
of concepts_new_format.txt. For this, the 192 concepts from concepts_new_
format.txt were split at the ; into their extent and intent part, and some

6

delimiting characters such as (,), \{, \}, _{ and }, as well as the prefixes
s for the attributes of the intents, were removed. This resulted in the files
192_extents.txt and 192_intents.txt.

To identify the 48 conjugacy representatives from intents_up_to_conj.txt
among the concepts of concepts_new_format.txt, that is, among the ex-
tents and intents of 192_extents.txt and 192_intents.txt, respectively, the
python script finding_48_conjugacy_types_among_192_intents_extents.
py was written. The lines of 192_extents.txt form the entries (sets) of the list
extentstrlist, the same lines without the h and f prefixes are the entries of
the list extentlist (removing the prefixes is sufficient to identify the objects
of the extents uniquely). The lines of 192_intents.txt are the entries of the
list intentlist. The lines of intents_up_to_conj.txt are the entries of the
list listoftypes. The procedure print_sorted_intents_extents_of_types
then searches for the occurrence of each monoid in listoftypes in the list
intentlist and outputs the corresponding index in the list, the intent (mon-
oid) and the corresponding extent (witness). The result of running the script
finding_48_conjugacy_types_among_192_intents_extents.py is stored in
the file conjugacy_types_intents_extents.txt. From this file the lines con-
taining ‘Ext:’ have been extracted to the file 48_extents.txt, and the lines
containing ‘Int:’ have been extracted to the file 48_intents.txt. Based
on those files, [1, Table 2] has been constructed. Moreover, from the out-
put file conjugacy_types_intents_extents.txt we also extracted the list
192_extents_sorted.txt of the 192 extents corresponding line-wise to the
ones in 192_extents.txt, but where the objects are mentioned in ascending
order of their indices. Similarly, we extracted the list 192_intents_sorted.txt
of the 192 intents (monoids) corresponding line-wise to the ones in 192_intents.
txt, but again the functions in the monoids have been listed in ascending order
of their hash values.

4 Comparison with results from [6]
We went to compare our results (in this data set and those mentioned in [1])
with the data available from [6]. The figures 192 and 48 reported in [6, Pro-
position 3.5] are already confirmed by the numbers of intents in intents.txt
and intents_up_to_conj.txt, respectively. The other central piece of data is
Table 3 from [6, p. 280]. We captured this table in MachidaRosenberg2012_
Table3.txt, and, in order to better compare it with our results, reordered the
columns of this table such that the operations s ∈ O(1)

A are listed in ascending
order of their hash values 9 · s(0) + 3 · s(1) + s(2) in {0, . . . , 26}. That is, after re-
ordering, the first column corresponds to the operation s0 and the last one to s26
as in context_of_commutation.cxt and context_of_commutation_names.
cxt. The reordered table can be found in the file MachidaRosenberg2012_
Table3_ordered_0-26.txt, and it is stored as MR2012tbl_reordered in
the file finding_intents_up_to_conj_as_conjugates_of_MR2012_Table3.
py. We used the function print_converted_list_to_integers(MR2012tbl_
reordered) to print the 48 monoids from [6, Table 3] as 48 lines of
integer hash values in {0, . . . , 26}, keeping the order of the table rows.
The result is stored in the file MachidaRosenberg2012_Table3_numbers.txt.
We then used the function call find_conjugacy_types_as_conjugates_of_

7

MR2012Table3(listoftypes,MR2012tbl_reordered,"human") in the script
finding_intents_up_to_conj_as_conjugates_of_MR2012_Table3.py to find
for each of our 48 representative monoids M from intents_up_to_conj.txt a
monoid F listed in some row of [6, Table 3] and a permutation s ∈ Sym(3)
such that M = F s. The result of this computation has been stored
in the file intents_up_to_conj_as_conjugates_of_MachidaRosenberg2012_
Table3.txt and identifies the 48 representatives from intents_up_to_conj.txt
in a one-to-one fashion with the representatives given in [6, Table 3]. This identi-
fication is also mentioned in [1, Table 2], and, since all 48 representatives from [6,
Table 3] occur there, the conjugacy classes computed in [6] and those represented
by the monoids in intents_up_to_conj.txt coincide; moreover intents_up_
to_conj_as_conjugates_of_MachidaRosenberg2012_Table3.txt shows how
the two presentations can be translated into each other.

5 Comparison with results from [7]
We also compared our computational results with the data available from [7,
Tables 2–6, pp. 61–67]. To this end we first collected these five tables as
accurately as possible in the files MachidaRosenberg2013_Table2.txt up to
MachidaRosenberg2013_Table6.txt. We then joined these tables into one large
table in the file MachidaRosenberg2013_Tables2-6.txt. As the next step we
reordered the columns of this table (as in Section 4) in ascending order of the
hash values 9 · s(0) + 3 · s(1) + s(2) of the unary operations s ∈ O(1)

A that form
the monoids represented in the table. The reordered table can be found (with
additional information that was added later) in the file MachidaRosenberg2013_
Tables2-6_ordered_0-26.txt.

We then inserted the contents of this table as MR2013tbl_reordered
into the python script compute_hash_values_of_192_monoids.py. With
the call print_converted_list_to_integers(MR2013tbl_reordered) we pro-
duced a list of the 192 monoids listed in [7, Tables 2–6] as sequences
of integers in {0, . . . , 26} (keeping the order of the monoids as listed
in MachidaRosenberg2013_Tables2-6.txt). The result of this computa-
tion is contained the file MachidaRosenberg2013_Tables2-6_numbers.txt.
With the help of the call print_hash_values_for_list_of_characteristic_
tuples(MR2013tbl_reordered) we computed hash values for the 192 monoids
from [7, Tables 2–6]; the result is shown in the csv-file MachidaRosenberg2013_
Tables2-6_ordered_0-26.csv (with ; as a delimiter) and has also been added
to the table MachidaRosenberg2013_Tables2-6_ordered_0-26.txt. We fur-
ther included the list of the 192 intents as shown in the file 192_intents.txt in
the list intentlist. We then called print_hash_values_for_list_of_sets_
of_integers_at_most_m(intentlist,26) in order to produce hash values for
our 192 intents; the result is contained in the file 192_intent_hashes.txt
and has been combined with the contents of 192_extents_sorted.txt and
192_intents_sorted.txt in the file 192_concepts_with_hashes.csv. We
then pasted the files MachidaRosenberg2013_Tables2-6_ordered_0-26.csv
and 192_concepts_with_hashes.csv in order to create the open document
spreadsheet file 192_monoids_and_concepts.ods.

We sorted each part of the pasted table (in 192_monoids_and_concepts.ods)
individually by ascending order of the hash values of the monoids; after that in

8

each table row the two hash values coincided, thus we identified which monoid
from MachidaRosenberg2013_Tables2-6_ordered_0-26.txt corresponds to
which of the 192 concepts as listed in 192_extents_sorted.txt and 192_
intents_sorted.txt or concepts_new_format.txt. The result is that the
monoids we computed in 192_intents.txt are in a one-to-one correspondence
with the monoids in [7, Tables 2–6]. We thus prepended the suitable labels
used for the monoids in [7, Tables 2–6] to the corresponding monoids in 192_
concepts_with_hashes.csv, resulting in the file 192_concepts_with_hashes_
and_MR2013labels.csv. We then sorted the whole table in 192_monoids_
and_concepts.ods once in the order of the lines of 192_intents_sorted.txt
(or of concepts_new_format.txt); this produced the file 192_monoids_and_
concepts_reordered_by_concepts.csv. We also sorted the whole table in the
order of the monoids as listed in [7, Tables 2–6]; this produced the file 192_
monoids_and_concepts_reordered_by_MRmonoids.csv. Both files witness the
fact that the monoids we computed via [2] and the context produced by context_
of_commutation_code.cpp are indeed the same as those shown by Machida and
Rosenberg in [7].

We have also used the file 192_monoids_and_concepts_reordered_by_
MRmonoids.csv to update MachidaRosenberg2013_Tables2-6_ordered_0-26.
txt with the appropriate extents that witness the monoids from [7].

6 Overview of files with their uses

commutation.cpp code computing the contexts
(O(1)

A , O(1)
A , ⊥), (O(2)

A , O(1)
A , ⊥) and

K′ in the files comm-unary-unary-3.
cxt, comm-bin-unary-3.cxt and
comm-ternary-unary-3.cxt, respectively.

comm-unary-unary-3.cxt the context (O(1)
A , O(1)

A , ⊥) as computed by
commutation.cpp

comm-bin-unary-3.cxt the context (O(2)
A , O(1)

A , ⊥) as computed by
commutation.cpp

comm-ternary-unary-3.cxt a (witness-complete) subcontext K′ of K1 as
computed by commutation.cpp

comm-ternary-unary-obj-red-3.
cxt

the object reduced subcontext K′′ of K′ as com-
puted from comm-ternary-unary-3.cxt using
ConExp

comm-ternary-unary-red-3.cxt the fully reduced subcontext K′′′ of K′

(standard context of K1) as computed from
comm-ternary-unary-3.cxt using ConExp

context_of_commutation_code.cpp code computing a different variant of the con-
text K′ as shown in the file context_of_
commutation.cxt

context_of_commutation.cxt a (witness-complete) subcontext K′ of K1 as
computed by context_of_commutation_code.
cpp

9

context_of_commutation_obj_red.
cxt

the object reduced subcontext K′′ of K′ as com-
puted from context_of_commutation.cxt us-
ing ConExp

context_of_commutation_red.cxt the fully reduced subcontext K′′′ of K′ (standard
context of K1) as computed from context_of_
commutation.cxt using ConExp

context_of_commutation_names.cxt a different representation of K′ by changing
the object and attribute labels in context_of_
commutation.cxt

context_of_commutation_names_
obj_red.cxt

the object reduced subcontext K′′ of K′ as com-
puted from context_of_commutation_names.
cxt using ConExp, cf. [1, Table 1]

context_of_commutation_names_red.
cxt

the fully reduced subcontext K′′′ of K′ (standard
context of K1) as computed from context_of_
commutation_names.cxt using ConExp

concepts.txt a text file containing one concept of K′ per line
as computed from context_of_commutation.
cxt via [2], with slight manual formatting (e.g.,
splitting lines, changing of brackets etc.)

intents.txt a text file containing one intent of K′ per line as
computed from context_of_commutation.cxt
via [2], with slight manual formatting

intents_numbers.cppinput the result of running the command
sed -f int2numb.sed intents.txt > intents_numbers.cppinput,
which is used as an input file to
reduce_monoids_conj.cpp, computing
representatives of all monoids up to conjugacy

int2numb.sed a sed-script to transform intents.txt into
intents_numbers.cppinput

concepts_new_format.txt a text file containing one concept of K′′ per line,
computed from context_of_commutation_
names_obj_red.cxt via [2], with slight manual
formatting (splitting lines, separation symbols,
etc.) to be included in a .tex file, cf. [8, Sec-
tion 7.5]

intents_new_format.txt a text file containing one intent of K′′ per line,
computed from context_of_commutation_
names_obj_red.cxt via [2], with slight manual
formatting to be included in a .tex file.

192_extents.txt The 192 concepts of concepts_new_format.
txt were split up into their extent and intent
part, removing some separating symbols, but
preserving the order of the concepts and the
order of the objects in the extents. The res-
ulting 192 extents were stored in 192_extents.
txt.

10

192_intents.txt The 192 concepts of concepts_new_format.
txt were split up into their extent and intent
part, removing some separating symbols, but
preserving the order of the concepts and the
order of the attributes (without the s prefix)
in the intents. The resulting 192 intents were
stored in 192_intents.txt.

reduce_monoids_conj.cpp code computing representatives of all intents
of K′ as stored in intents_numbers.cppinput
(derived via intents.txt from context_of_
commutation.cxt) up to conjugacy; this pro-
duces the file intents_up_to_conj.txt.

intents_up_to_conj.txt the result of running reduce_monoids_conj.
cpp on intents_numbers.cppinput; represent-
atives of all 192 centralising monoids arising
from context_of_commutation.cxt up to con-
jugacy

finding_48_conjugacy_types_
among_192_intents_extents.py

a python script finding the 48 conjugacy types
from intents_up_to_conj.txt among the 192
concepts of concepts_new_format.txt (stored
in 192_extents.txt and 192_intents.txt).
The result of running the script is contained in
the file conjugacy_types_intents_extents.
txt.

conjugacy_types_intents_extents.
txt

the result of invoking the python script
finding_48_conjugacy_types_among_192_
intents_extents.py

48_extents.txt the lines starting with ‘Ext:’ in conjugacy_
types_intents_extents.txt, used for [1,
Table 2]

48_intents.txt the lines starting with ‘Int:’ in conjugacy_
types_intents_extents.txt, used for [1,
Table 2]

192_extents_sorted.txt the same sets of witnesses, line by line, as in the
file 192_extents.txt, but within each line the
elements have been listed in ascending order of
their indices

192_intents_sorted.txt the same sets of monoids, line by line, as in
the file 192_intents.txt, but within each line
(monoid) the functions have been listed in as-
cending order of their indices (hash values)

MachidaRosenberg2012_Table3.txt a faithful representation of [6, Table 3]
MachidaRosenberg2012_Table3_
ordered_0-26.txt

a representation of [6, Table 3] after re-ordering
the columns such that the unary operations are
listed in the order s0 = 000, . . . , s26 = 222

11

MachidaRosenberg2012_Table3_
numbers.txt

a representation of the content of [6, Table 3]
by listing the unary operations sj in each
monoid from MachidaRosenberg2012_Table3_
ordered_0-26.txt in ascending order of
their hash values j; each line represents a
monoid (row) of [6, Table 3], the order of the
rows has been left unchanged. The file has
been computed via calling print_converted_
list_to_integers(MR2012tbl_reordered)
in finding_intents_up_to_conj_as_
conjugates_of_MR2012_Table3.py

finding_intents_up_to_conj_as_
conjugates_of_MR2012_Table3.py

a python script finding the 48 conjugacy
types from intents_up_to_conj.txt
as conjugates of the 48 representative
monoids in [6, Table 3] as they are
represented in MachidaRosenberg2012_
Table3_ordered_0-26.txt. Calls in
this script have produced the files
MachidaRosenberg2012_Table3_numbers.txt
and intents_up_to_conj_as_conjugates_
of_MachidaRosenberg2012_Table3.txt.

intents_up_to_conj_
as_conjugates_of_
MachidaRosenberg2012_Table3.txt

output of the script finding_intents_up_to_
conj_as_conjugates_of_MR2012_Table3.py
via the call find_conjugacy_types_as_
conjugates_of_MR2012Table3(listoftypes,
MR2012tbl_reordered,"human").

MachidaRosenberg2013_Table2.txt a faithful representation of [7, Table 2]
MachidaRosenberg2013_Table3.txt a faithful representation of [7, Table 3]
MachidaRosenberg2013_Table4.txt a faithful representation of [7, Table 4]
MachidaRosenberg2013_Table5.txt a faithful representation of [7, Table 5]
MachidaRosenberg2013_Table6.txt a faithful representation of [7, Table 6]
MachidaRosenberg2013_Tables2-6.
txt

a faithful representation of [7, Tables 2–6];
obtained by concatenating the tables in the
files MachidaRosenberg2013_Table2.txt,
MachidaRosenberg2013_Table3.txt,
MachidaRosenberg2013_Table4.txt,
MachidaRosenberg2013_Table5.txt,
MachidaRosenberg2013_Table6.txt in
this order.

MachidaRosenberg2013_Tables2-6_
ordered_0-26.txt

a representation of the table in
MachidaRosenberg2013_Tables2-6.txt
after re-ordering the columns such that the
unary operations are listed in the order
s0 = 000, . . . , s26 = 222; moreover hash values
from MachidaRosenberg2013_Tables2-6_
ordered_0-26.csv and witnesses from
192_monoids_and_concepts_reordered_by_
MRmonoids.csv have been added to this file.

12

compute_hash_values_of_192_
monoids.py

a python script computing hash values for
the 192 monoids from [7, Tables 2–6] as
listed in MachidaRosenberg2013_Tables2-6_
ordered_0-26.txt and for the 192 intents
(monoids) from 192_intents.txt. The
former hash values have been used to
produce the file MachidaRosenberg2013_
Tables2-6_ordered_0-26.csv, the latter to
obtain the files 192_intent_hashes.txt and
192_concepts_with_hashes.csv. The file
MachidaRosenberg2013_Tables2-6_numbers.
txt is also an output of this script.

MachidaRosenberg2013_Tables2-6_
numbers.txt

a representation of the content of [7, Tables 2–6]
by listing the unary operations sj in each mon-
oid from MachidaRosenberg2013_Tables2-6_
ordered_0-26.txt in ascending order of their
hash values j; each line represents a mon-
oid (row) of [7, Tables 2–6], the order of the
rows has been left unchanged. The file has
been computed via calling print_converted_
list_to_integers(MR2013tbl_reordered) in
compute_hash_values_of_192_monoids.py

MachidaRosenberg2013_Tables2-6_
ordered_0-26.csv

a combination of the hash values for the 192
monoids from [7, Tables 2–6] as listed
in MachidaRosenberg2013_Tables2-6_
ordered_0-26.txt, produced by the script
compute_hash_values_of_192_monoids.py
via the call print_hash_values_for_list_
of_characteristic_tuples(MR2013tbl_
reordered), with the original table data in
MachidaRosenberg2013_Tables2-6_ordered_
0-26.txt as a csv-file separated by ;

192_intent_hashes.txt hash values for the computed 192 intents
(monoids) from the file 192_intents.txt
as output by compute_hash_values_
of_192_monoids.py upon calling
print_hash_values_for_list_of_sets_
of_integers_at_most_m(intentlist,26);
intentlist is the same list as in the script
finding_48_conjugacy_types_among_192_
intents_extents.py

192_concepts_with_hashes.csv using the command paste -d ’;’ we com-
bined a list of integers from 1 to 192 and the
files 192_extents_sorted.txt, 192_intents_
sorted.txt and 192_intent_hashes.txt into
a ;-delimited csv-file 192_concepts_with_
hashes.csv; this file contains the 192 concepts
together with the hash value of each monoid

13

192_monoids_and_concepts.ods using the command paste -d ’;’ on
MachidaRosenberg2013_Tables2-6_ordered_
0-26.csv and 192_concepts_with_hashes.
csv we produced a combined table with 192
rows; we used spreadsheet software to sort
both parts of the combined table according
to the column containing the hash values;
in each row we found identical hash values,
that is, matching monoids; we then sorted
the whole table once according to the order
given by the lines of MachidaRosenberg2013_
Tables2-6_ordered_0-26.csv and once
according to the order given by the lines of
192_concepts_with_hashes.csv, the former
resulting in 192_monoids_and_concepts_
reordered_by_MRmonoids.csv and the latter
in 192_monoids_and_concepts_reordered_
by_concepts.csv; both tables are also con-
tained in the open document spreadsheet
192_monoids_and_concepts.ods. We also
prepended the monoid labels used in [7,
Tables 2–6] to the corresponding monoids in
192_concepts_with_hashes.csv, resulting
in the file 192_concepts_with_hashes_and_
MR2013labels.csv.

192_concepts_with_hashes_and_
MR2013labels.csv

the 192 concepts listed in 192_concepts_with_
hashes.csv together with the appropriate iden-
tifiers for each monoid (intent) used in [7,
Tables 2–6]. The file was obtained by a
paste -d ’;’ of the column of identifiers
extracted from 192_monoids_and_concepts_
reordered_by_concepts.csv and the file 192_
concepts_with_hashes.csv

192_monoids_and_concepts_
reordered_by_concepts.csv

the 192 centralising monoids in the order of
the file 192_concepts_with_hashes.csv (i.e.,
the order of the file 192_intents.txt, ≡ as
in concepts_new_format.txt) with the corres-
ponding monoid from [7, Tables 2–6] mentioned
in the same line; this file was produced by ex-
porting data from a sheet in 192_monoids_and_
concepts.ods.

14

192_monoids_and_concepts_
reordered_by_MRmonoids.csv

the 192 centralising monoids occurring in the
order of the file MachidaRosenberg2013_
Tables2-6_ordered_0-26.csv (i.e.,
the order of MachidaRosenberg2013_
Tables2-6_ordered_0-26.txt, ≡ as in
MachidaRosenberg2013_Tables2-6.txt,
≡ as in [7, Tables 2–6]) with the
corresponding intent (monoid) from
192_intents_sorted.txt and extent
(witness) from 192_extents_sorted.txt
mentioned in the same line; this file was
produced by exporting data from a sheet in
192_monoids_and_concepts.ods.

cent_mons3_witn.tex LATEX source file to produce this documentation
cent_mons3_witn.pdf this documentation

Acknowledgement
The research of the first-named author that led to the results and the curation
of the material presented in this data set has been partially supported by the
Austrian Science Fund (FWF), grant number P33878, and is hereby gratefully
acknowledged.

References
[1] Mike Behrisch and Leon Renkin. Computing witnesses for centralising

monoids on a three-element set. To appear in Proc. ICFCA 2023, Kassel,
Germany, 17–21 July, 2023, 16 pages, 2023.

[2] Daniel Borchmann and Tom Hanika. ConExp-clj, 2023. Available from
https://github.com/tomhanika/conexp-clj, accessed on 5 Feb 2023.

[3] Bernhard Ganter and Sergei Obiedkov. Conceptual exploration. Springer-
Verlag, Berlin, Heidelberg, 2016. doi: https://doi.org/10.1007/
978-3-662-49291-8.

[4] Bernhard Ganter and Rudolf Wille. Formal concept analysis. Mathemat-
ical foundations. Springer-Verlag, Berlin, 1999. Translated from the 1996
German original by Cornelia Franzke. doi: https://doi.org/10.1007/
978-3-642-59830-2.

[5] Tom Hanika and Johannes Hirth. Conexp-Clj - A research tool for FCA. In
Diana Cristea, Florence Le Ber, Rokia Missaoui, Léonard Kwuida, and Barış
Sertkaya, editors, Supplementary Proc. ICFCA 2019, Frankfurt, Germany,
25–28 June, 2019, volume 2378 of CEUR Workshop Proceedings, pages
70–75. CEUR-WS.org, 2019. Available on-line from http://ceur-ws.org/
Vol-2378/shortAT8.pdf.

15

[6] Hajime Machida and Ivo G. Rosenberg. Centralizing monoids on a three-
element set. In D. Michael Miller and Vincent C. Gaudet, editors, 2012 IEEE
42nd International Symposium on Multiple-Valued Logic—ISMVL 2012,
Victoria, BC, Canada, 14–16 May 2012, pages 274–280. IEEE Computer Soc.,
Los Alamitos, CA, 2012. doi: https://doi.org/10.1109/ISMVL.2012.50.

[7] Hajime Machida and Ivo G. Rosenberg. Report on centralizing monoids
on a three-element set. In Hajime Machida, editor, Clone Theory and
Discrete Mathematics, June 13–15, 2005, Algebra and Logic Related to
Computer Science, October 22–23, 2009, volume 1846 of RIMS Kôkyûroku,
pages 53–65, Kyoto, Japan, August 2013. RIMS (Research Institute for
Mathematical Sciences), Kyoto University. Available on-line from https:
//www.kurims.kyoto-u.ac.jp/~kyodo/kokyuroku/contents/1846.html.

[8] Leon Renkin. Centralizing monoids on a three-element set. Bachelor’s
thesis, Technische Universität Wien, August 2022. Available on-line from
doi: https://doi.org/10.5281/zenodo.7653085.

16

