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* Radiomics makes it possible to analyze and extract data from medical

Images, including and characteristics.
* CT, MRI and PET using computer software.

* More precise delimitation of tumor, the tumor microenvironment or

alterations after treatment.
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This requires:

1.Image acquisition

2.Dataset creation

3. Export of DICOM studies

4. Identification of the volume of interest (VOI) using segmentation tools
5. Feature extraction and qualification

6. Study of the data

/. Construction of a predictive model

8. Validation of the created models

nion
programme under grant agreement No 857381
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The use of convolutional neural networks (CNNs) in medical image analysis is growing,
outperforming traditional machine learning (ML) algorithms on large datasets.

Problems

- Large variability in medical concepts

‘ number of studies

Pre-training studies is proposed with promising results for different image analysis tasks.

Ziegelmayer S, et al. J Clin Med 2020;9:4013. Barat M, et al. Jpn J Radiol 2021;39:514-523. Weisberg EM, et This project has received funding from the European TSRS
al. Diagn Interv Imaging 2020;101:111-115. Kaissis G, et al. Eur Radiol Exp 2019;3:41. Union’s Horizon 2020 Research and Innovation *: :*
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Correlation of studies between genomics and molecular
measurements and radiological studies to be established,

improving diagnosis and patient stratification.

This project has received funding from the European

Bartoli M, et al. Jpn J Radiol 2020;38:1111-1124. : _ an [INEEEN
Union’s Horizon 2020 Researc h and Innova tion »; o'

programme under grant agreement No 857381




Table 1. Short definitions for specific medical terms.

Terminology Short Definition
Radiomics Quantitative approach to medical imaging, enhancing existing
data through mathematical analysis [68].
Study of whole genomes, including elements from genetics.
Gt Genomics uses a combination of recombinant DNA, DNA

sequencing methods, and bioinformatics to sequence, assemble,
and analyze the structure and function of genomes [69-71].

Genomics information that can be explained or decoded by
Radiogenomics radiomics and to develop methodology to create more-efficient
predictive models [72].

DNA = deoxyribonucleic acid.

Ferro M, de Cobelli O, Vartolomei MD, Lucarelli G, Crocetto F, Barone B, Sciarra A, Del Giudice F, Muto M, Maggi M, Carrieri G, Busetto GM, Falagario U, Terracciano D, Cormio L, Musi G, Tataru OS. Prostate Cancer
Radiogenomics-From Imaging to Molecular Characterization. Int J Mol Sci. 2021 Sep 15;22(18):9971
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Figure 2. (a) Publication trends; (b) country-wise distribution of radiogenomics studies.
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Figure 4. (a) Image modalities; (b) anatomical cancer in radiogenomics studies.

Saxena S, Jena B, Gupta N, Das S, Sarmah D, Bhattacharya P, Nath T, Paul S, Fouda MM, Kalra M, Saba L, Pareek G, Suri JS. Role of Artificial Intelligence in Radiogenomics for Cancers in the Era of Precision

Medicine. Cancers (Basel). 2022 Jun 9;14(12):2860.
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 Characteristics: kV, mAs, slice size, breath control method,

configuration, contrast.

* Standardization of image data

* Can help to establish predictive models.

* Important in the final results of the analysis (homogeneous criterion)

/7%/ Radiomics based on non-contrast CT images has shown in some studies a higher efficiency compared to contrast CT images.

. This project has received funding from the European =
Barat M, et al. Jpn J Radiol 2021;39:514-523. Union’s Horizon 2020 Research and Innovation [
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* ROI (Region of interest) = segmentation.
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Types of segmentation: Manual, automatic, or semi-automatic.
* Gold standard - manual segmentation by experts but is operator dependent

* Automatic segmentation: uses preselected parameters and is ideal for its
accuracy, reproducibility, and consistency but manual intervention is necessary
to validate the automatic segmentation.

* There is no universal method, the same algorithm can give variable results.

* The semiautomatic segmentation is able to combine two previous procedures
being the most recommended.

This project has received funding from the European KXk
Union’s Horizon 2020 Researc h and Innova tion R
programme under grant agreement No 857381




) 2. Segmentation of the area of
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 Is crucial, an error in this phase will modify the whole
analisis.

Weisberg EM, et al. Diagn Interv Imaging 2020;101:111-115. X
. _ _ -
Kaissis G, et al. Eur Radiol Exp 2019;3:41. Bartoli M, et al. Jpn J Radiol 2020;38:1111-1124 This project has received funding from the European
ke
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* 4 types of analysis:

1. Morphological-> the most basic radiomics analysis

2. Statistical> includes first-order (histogram) and highly-order

features (texture)

3. Regional~> intratumor heterogeneity and characteristics around the

tumor

4. Model-based - is analyzed with a mathematical approach

This project has received funding from the European Rl *
Union’s Horizon 2020 Researc h and Innovation i *
programme under grant agreement No 857381
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- Morphological analysis includes:
>

To evaluate physical characteristics and differentiates between
malignant and benign lesions.

Include: diameter, volume, area under the curve (AUC), and
wave.

Lesions are constructed in 3D images.

The most commonly used: maximum and minimum diameter,
and volume.

Mubhi A et al. J Magn Reson Imaging 2012;35:827—-836. Zaheer A, et al. ) Comput Assist Tomogr 2014;38:146-152. Cheng

MF, et al. Sci Rep 2018;8:3651. Park S, et al. Diagn Interv Imaging 2020;101:555-564. Chu LC, etl al. AJR Am J Roentgenol This project has received funding from the European g
Union’s Horizon 2020 Researc h and Innova tion R

2019;213:349-357. programme under grant agreement No 857381
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The volume is defined by counting the number of voxels in the
tumor and multiplying by the volume of the voxel.

Volume is a , a short volume doubling time reflects
high histological aggressiveness and suggests poor prognosis,
volume is a tool for evaluating response to treatment.

Muhi A et al. ) Magn Reson Imaging 2012;35:827—-836. Zaheer A, et al. ] Comput Assist Tomogr 2014;38:146—
152. Cheng MF, et al. Sci Rep 2018;8:3651. Park S, et al. Diagn Interv Imaging 2020;101:555-564. Chu LC, etl al. This project has received funding from the European [JRCREN
AJR Am J Roentgenol 2019;213:349-357. Union’s Horizon 2020 Researc h and Innova tion I

programme under grant agreement No 857381
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* Is analyzed in histograms which are graphic representations of the
Intensity distribution in an image.

* Analysis includes:

* Range, mean, median, standard deviation (SD), minimum,
maximum, kurtosis, energy, entropy (describes the randomness of
the surrounding intensities within a grayscale image), uniformity,
variance, and skewness

* Can be used to predict the nature of the lesion and prognosis.

* Characteristics are dependent on the reconstruction and image
acquisition parameters (cut size and voxel size).

European Study Group on Cystic Tumours of the Pancreas. European evidence-based guidelines on pancreatic This project has received funding from the European [ES
cystic neoplasms. Gut 2018;67:789-804. Union’s Horizon 2020 Researc h and Innova tion RS,

programme under grant agreement No 857381




3. Extraction and quantification of
features (V)
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» Describes the relationship between neighboring
pixels and their distribution through the nodes.

* Determines the tumor’s heterogeneity

Gray-level Image Numeric Gray-levels Co-occurrence Matrix

differentiation between benign and malignant e
esions) Ql2|2f2| £ A2
. 1(3|@|2 210Gt |
°* For texture extraction, the most used method P 3‘“1’ Z0(2]2]
includes  second-order statistics and  co- | el S 515 5
occurrence matrix characteristics constructed | @[2[3 (3] ¢ |
using number, distance, and angle of gray levels ) b) f)

in the image.

° Includes: correlation, clustering, contrast, energy,
and entropy.

This project has received funding from the European Rl *
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* Allows to decompose the image data into different frequency
components and uses these data to extract characteristics
related to the texture and intensity of the image.

* These are filters that transform an array of complex lines or
radio waves.

« The most common is the Coiflet wave transformation.

* They are used in the diagnosis and evaluation of response to
treatment.

Zamboni F, et la. Transpl Int 2000;13:234-235.
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* The relationship between the tumor and the surrounding
healthy surface is another element of the tumor
microenvironment.

* The discrete compaction is related to its circularity and this to
the invasion around the tumor.

 The IS a parameter to

differentiate gray tones, including busyness, complexity, and
texture length.

* |tis necessary to evaluate these data with statistical co-
variance.

Sahani DV, et al. AJR Am J Roentgenol 2011;197:W53-W61. Kumar V, Gu Y, Basu S, Berglund A, Eschrich SA, Schabath MB,
et al. Radiomics: the process and the challenges. Magn Reson Imaging 2012;30:1234-1248.

This project has received funding from the European =
Union’s Horizon 2020 Researc h and Innova tion R
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4. Construction of predictive models and  ...... V I S I 0 N
prognosis in a non-invasive method e

« Relationships between radiomics parameters and clinical
variables.

* This can be done from direct statistical analysis based on
hypotheses on machine learning methods.

This project has received funding from the European KXk
Union’s Horizon 2020 Research and Innovation [l *
programme under grant agreement No 857381
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Fig. 1 Radiomics flowdiagram

Radiomics in medical imaging: pitfalls and challenges in clinical management
Roberta Fusco et al.
Japanese Journal of Radiology https://doi.org/10.1007/s11604-022-01271-4
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Table 1
Radiomics studies in differentiation of pancreatic cystic lesions.
Differentation
Studies n Type Model Clinical Segmentation Features between entities
Dmitriev et al. 134 IPMN (n = 74) Random forest Demographics Semi- Intensity, shape 84%
[23] MCN (n = 14) classifier and automated
SCA (n = 29) convolutional
SPN (n = 17) neural networks
(CNN)
Wei et al. [24] 260 SCN, others LASSO regression Sex, location, moment Manual In the validation
machine learning of difference, mean Intensity cohort (n = 60),
rectangular fitting texture sensitivity = 0.667,
factor and size specificity = 0.818
Yang et al. [25] 53 MCN LASSO regression Age, sex, location Manual (two Texture 74% in 2 mm 83%
SCN and random forest radiologist) in 5 mm
classifiers
Hanania et al. 53 IPMN Logistic-regression Grade Manual 360 radiomics 96%
[26] model Fukuoka criteria (radiation features analyzed;
oncology and 14 included in
radiologist) analysis
Permuth et al. 38 IPMN Regression analysis Age, sex, race, jaundice Semi- 112 Combination 92%
[27] present, CA19-9, automated radiomics features
albumin, location, analyzed;
ductal communication, 14 included in
main duct dilation, analysis
size, solid component (texture, size and
or mural nodule, high shape)
risk stigmata,
worrisome features, 5
miRNA
Chakraborty 103 IPMN Cox Age, size, solid Manual 12 80%,
et al. [28] proportional component, pain, sex (radiologist) intensity negative predictive
hazards model texture value 94%

IPMN: intraductal papillary mucinous neoplasm, MCN: mucinous cystic neoplasm, SCA: serous cystadenoma of pancreas, SPN: solid pseudopapillary neoplasm, SCN: serous
cystic neoplasm; LASSO: least absolute shrinkage and selection operator; CA19-9: carbohydrate antigen 19-9.

This project has received funding from the European KXk
Union’s Horizon 2020 Research and Innovation [l o
programme under grant agreement No 857381 * oy K

de la Pinta C. Radiomics in pancreatic cancer for oncologist: Present and future. Hepatobiliary Pancreat Dis Int. 2022 Aug;21(4):356-361.
doi: 10.1016/j.hbpd.2021.12.006. Epub 2021 Dec 16. PMID: 34961674.
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Table 2
Radiomics studies in PNETs.
Studies n Image Features Results
Lin et al. [30] PNET (n = 21) CT Texture, entropy, Less heterogeneous enhancement in arterial and portal phase in
Intra-pancreatic skewness, kurtosis PNET (69% vs. 35%, P = 0.06; 100% vs. 29%, P = 0.04).
spleen (n = 13) and uniformity Entropy and uniformity (P < 0.01).
Uniformity with sensitivity of 85%-95% and specificity of
75%-83.3% to differentiate.
Choi et al. [31] PNET (n = 66): CT Texture Predictors of grade 2/3 were a well-defined margin (OR = 7.273).
grade 1(n = 45);
grade 2/3 (n = 21) Low sphericity (OR = 0.409) in 2D arterial analysis,
high skewness (OR = 1.972),
low sphericity (OR = 0.408) in 3D analysis,
low kurtosis (OR = 0.436),
low sphericity in 2D portal (OR = 0.420) and in 3D (OR = 0.503)
(P < 0.05),
large surface area (OR = 2.007).
Texture-based diagnosis was superior to CT findings
(AUC = 0.774 vs. 0.683).
Canellas et al. [32] Pre-surgery CT Texture Size larger than 2 cm was predictive of higher grade (OR = 3.3;
(n = 101) P = 0.014).
Presence of vascular involvement (OR = 25.2; P = 0.03),
pancreatic duct dilatation (OR = 6.0; P = 0.002),
presence of lymphadenopathy (OR = 25.2; P = 0.003),
entropy (OR = 3.7; P = 0.008) were predictive of more aggressive
tumors.
Differences were observed in progression free survival for grade
1 versus grade 2 tumors for PNETs with vascular involvement;
and for tumors with entropy (P < 0.001).
Li et al. [33] n = 127: pancreas CT Texture Atypical PNETs had high mean, median, 5th, 10th and 25th

adenocarcinoma
(n = 50)
PNETs (n = 77)

percentiles (P = 0.006, 0.024, < 0.001, 0.001, 0.021, respectively)
and low skewness (P = 0.017).

No differences in 75th and 90th percentiles, kurtosis, and
entropy between the two tumors.

PNET: pancreatic neuroendocrine tumor; CT: computed tomography; OR: odds ratio; AUC: area under curve.

de la Pinta C. Radiomics in pancreatic cancer for oncologist: Present and future. Hepatobiliary Pancreat Dis Int. 2022 Aug;21(4):356-361. doi:

10.1016/j.hbpd.2021.12.006. Epub 2021 Dec 16. PMID: 34961674.

This project has received funding from the European
Union’s Horizon 2020 Research and Innovation
programme under grant agreement No 857381




M PREDICTION: OVERALL SURVIVAL AND
LOCAL CONTROL

Table 1. Radiomics for prediction survival and local control.

Study n Stage Treatment Image Radiomic Features
Survival
Huang® 282 L1I - CT DFS: Texture
Parmar® 464 NSCLC Pre-treatment CT OS: Size, intensity, shape, texture, wavelet
Coroller®! 182 NSCLC CRT CT DMEFS: First order statistics, texture, wavelet
Song®! 199 NSCLC - CT OS: Wavelet
Fried” 91 I RT CT/PET OS, LC, DMFS: Textura+clinical parameters
Ganeshan? I-IVNSCLC Pre-treatment CT OS: Texture
Depeursinge 101 I, AC, resected Surgery CT DEFS: Texture
Grove* 108 Early - CT OS: Shape, texture
Balagurunathan® 59 NSCLC - CT OS: Shape, texture
Carvalho® 220 I-I1IB CRT PET OS: Delta radiomics (volume, texture and intensity-volume histogram)
Li* 92 I-TA SBRT CT OS: Morphology and clinical parameters
Aerts" 647 CRT CT OS: Shape, intensity, texture
Song® 152 I-Iv TKI CT OS: Wavelet
Huynh* 113 L 1II SBRT CT OS: First order statistics, texture, shape Metastases: Wavelet
Local control
Mattonen*’ 45 Recurrence SBRT CT Texture
Pyka* 45 I-TA SBRT PET Entropy
Lovinfosse® 63 I-IT SBRT PET Texture
Wu?’ 101 I SBRT PET Radiomics and histology
Cook® 53 IB-III CRT PET Coarseness, contrast, busyness
Kang® 116 11 CRT PET SUVmax, AUC-CSH
Vaidya® 27 v SBRT CT/PET IVH in PET, COV in CT

CT: computed tomography; DFS: disease free survival; NSCLC: non-small cell lung cancer; CRT: chemoradiotherapy, OS: overall survival; RT: radiotherapy; PET: positron emission tomography;
LC: local control; DMFS: distant metastases free survival; AC: adenocarcinoma; SBRT: stereotactic body radiotherapy; TKI: tirosin kinasa inhibitors; SUV: standardized uptake value; AUC-
CSH: area under curve of the cumulative SUV-volume histogram; IVH: intensity volume histogram ; COV: coefficient of variation

de la Pinta C, Barrios-Campo N, Sevillano D. Radiomics in lung cancer for oncologists. J Clin Transl Res. 2020 Sep 2;6(4):127-134. PMID: 33521373; PMCID: PMC7837741.



[~ Radiogenomics

® The genetic study of tumors has
allowed the development of

targeted therapies, and the
stratification of patients in terms
of risk of relapse, prognosis,
prediction of response and
survival.

® The correlation of genetic
alterations or tumor
microenvironment and

radiological findings allows the
use of these imaging tests as a
non-invasive tool for personalized
medicine.

de la Pinta C, Castillo ME, Collado M, Galindo-Pumarifio C, Peiia C. Radiogenomics: Hunting Down Liver Metastasis in Colorectal Cancer

Patients. Cancers (Basel). 2021 Nov 5;13(21):5547.
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L IVER METASTASES
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Table 1. Clinical benefits of radiomic and radiogenomics in CRC liver metastatic patients.

Study Design N}?daagllixt‘iges Sample Size Study Cohorts and Validation Toolcsafl(:lﬁ:ilz:ucs Statistical Model Construction
Early diagnosis of colorectal cancer metastasis
Linear regression model, Pearson
Becker et al., 2018 [5] Preclinical MRI 8 male mice One cohort MATLAB routine correlation test and hierarchical cluster
analysis
T;(;‘;?;?’{LS' I;?t;e;f‘x;l:hz‘ ?;aftz%es Kruskal-Wallis test, inter-correlated
; ; 91 CRC without LM at PO = e Philips Intellispace Portal features and Bayesian-optimized
Taghavictal, 2021, 1] REradpective =h diagnosis ane pebienbcheiceys oped software and PyRadiomics ~ random forest was used for prediction
metachronous liver metastases <24 models
months (n = 24). No validation :
Three cohorts. Patients without LM Shudertt s {itestion Marm—Whi?:n eyl
: test. ROC analyses to determine the
(n = 15), with synchronous LM (n = 10) tential di HEBEE £
Rao et al., 2014 [7] Retrospective T 29 CRC patients and metachronous LM within 18 MATLAB routine POICINA 1A EHOSHE PErOTMENCe O
months following primary staging the respective texture parameters for
(n = 4). No validation diagnosing the presence of metastatic
s disease.
Two cohorts. 54 patients with LM and .
54 without LM. Python in Anaconda3 mé\fcoac:iz ‘:)vfe;iceu‘;zlcuatseeis“i,t?\}/‘it
Liang et al., 2019 [8] Retrospective MRI 108 rectal cancer patients The results of the one-round platform with Scikit-learn specificity and AUC an)g - arec{,b
cross-validation were stabilized and and Matplotlib packages. P ty DeLon 4 taat P y
representative. Bk
MATLAB Image Processing Tiwomaciine leamingmodsisa
150 liver tumors. 50 HCC, Toolbox, Signal Processing 168 ﬁo lassifi ¢ lea d lg . tl'? ¢ Si "
Oyama et al., 2019 [9] Retrospective MRI 50 LM and 50 HHs in 37, 23 One cohort. Toolbox, Statistics and 08’8 t C.C aslil < (Iino ; wi ar:ie ai <
and 33 patients Machine Learning Toolbox, DELPERa LY SHe ey S S SAtiel
and Wavelet Toolbox boosting (XGBoost)
Kruskal-Walls test, ROC curve and
AUC analysis to differentiate three
Three cohorts. HHs (n = 55), LM o izg:vnzre Afﬁs(t:r(i);; ;Tr(:;m, subtypes. K-nearest neighbor classifier
HewL 27l Rewopeave | v eGS0 NATiAbKasy Mol backpropagaton i
ey (Mathworks, Natick, MA, : ol
reliability of the models US’ A) g 4 support vector machine and logistic
regression were used for improving
accuracy for classifier.

This project has received funding from the European * Kk
Union’s Horizon 2020 Research and Innovation i o

programme under grant agreement No 857381

de la Pinta C, Castillo ME, Collado M, Galindo-Pumarifio C, Pefia C. Radiogenomics: Hunting Down Liver Metastasis in
Colorectal Cancer Patients. Cancers (Basel). 2021 Nov 5;13(21):5547.
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Table 1. Cont.

. Imaging . . Tools for Radiomics ‘e .

Study Design Modalities Sample Size Study Cohorts and Validation Calculations Statistical Model Construction

. . . Hermes Hybrid Viewer Kaplan-Meier and Cox proportional
Rahmim et al., 2019 [25] Retrospective FDG PET/CT 52 CRLM patients One cohort PDR and MATLAB hazards models
Two foﬁzmmfsﬁga?s;gn i‘: 1) Variance and v2 test were performed
PO dict d%uo . toi ¢ t‘ to compare categorical variables. Cox
. . redicted tumor sensitivity to MATLAB (Mathworks, regression was used to investigate the
Dercle et al., 2020 [26] Retrospective CT 667 CRLM patients treatment was measured using AUC . . .
. R Natick, MA, USA) effect of survival variables, and
in the validation sets of the four log-rank test was used to compare
cohorts consisting of patients that gs urvival imes of two erou };
were not used for training. roups.
Two cohorts. Training cohort in 120
. 491 CRLM patients treated patients, and validate cohort in 110 . .
Dohan et al., 2019 [27] Mulhceqter CT by FOLFIRI and patients. External validation was TexRAD Ltd., (Somerset, Multivariable Cox, Kaplan-Meier and
prospective . . UK) log-rank
bevacizumab performed in another cohort of 40
patients
Two cohorts. 23 treated with
. . . bevacizumab-containing MATLAB (Natick, MA, . . .
Ravanelli et al., 2019 [28] Retrospective CT 43 CRLM patients chemotherapy (group A), and 20 with USA) Multivariable logistic regression
standard chemotherapy (group B)

CT: computed tomography; MRI: magnetic resonance imaging; FDG PET /CT: fluorodeoxyglucose positron emission tomography/computed tomography; CRC: colorectal carcinoma; LM: liver metastases;
CRCLM: colorectal carcinoma liver metastases; HCC: hepatocellular carcinoma; HHs: hepatic hemangiomas; FLLs: focal liver lesions; AUC: area under curve; ROC: receiver operating characteristic.

de la Pinta C, Castillo ME, Collado M, Galindo-Pumarifio C, Pefia C. Radiogenomics: Hunting Down Liver Metastasis in Colorectal Cancer Patients. Cancers (Basel). 2021 Nov 5;13(21):5547.



" PROSTATE CANCER

Ferro M, et al. Prostate Cancer Radiogenomics-From Imaging to Molecular Characterization. Int J Mol Sci.
2021 Sep 15;22(18):9971

Table 4. Overview of radiogenomic literature on prostate cancer.

VISIqu

Imaging

Reference Molecule Studied Results Approach Method
Performed
Perfusion imaging
contrast uptake,
McCann et al. [124] PTEN MRI T2-weighted Classical Radiomic
signal-intensity
skewness
Stoyanova et al. [158] General e MRI Radiomic signatures Classical Radiomic
expression
RinaidP £ RNA expression signature Correlation with Gleason score (r =0.199, p =
cna conacha derived from cell cycle mpMRI 0.04) and PIRADS sum score (r = 0.26,p = Classical Radiomic
[119] > 3 . ®
proliferation genes (Prolaris®) 0.007)
No statistically significant linear correlation
o Whole-exosome DNA between individual mutations and mpMRI 5 5 e S
Jamshidi et al. [125] sequencing mpMRI imaging parameters or PIRADS scores (p = Classical Radiomic
0.3)
Elevated snoRNA abundance may be a novel
Houlahan et al. [130] Small nucleolar RNAs mpMRI hallmark of nimbotic tumors (AUC: 0.87; Classical Radiomic
95%CI: 0.75-0.99)
MRI visibility (AUC: 0.86), progression-free
. . : survival HR = 2.53 (1.55-4.11), p < 0.001 . . :
LiPetal. [159] Differentially expressed genes MRI BCR-free survival HR = 1.3 (1.04-1.63), p = Classical Radiomic
0.021
MRI-invisible lesions had less PTEN loss and
. ERG-positive expression compared with . 2 i
Eineluoto et al. [160] PTEN and ERG MRI patients with MRI-visible lesions (17.2% vs. Classical Radiomic
43.3%, p = 0.006; 8.6% vs. 20.0%, p = 0.125)
T Prediction of Gleason score of 8 or greater
Hectors et al. [161] 8 1 pDec' h gn MRI (AUC 0.72) and prediction of a Decipher® Classical Radiomic
ps 2 score of 0.6 or greater (AUC 0.84).
Model outperformed the prediction using
LiL etal. [162] Decipher® MRI PIRADS v2 (AUC = 0.67), and comparable Classical Radiomic
performance with Gleason grade group
(AUC = 0.80)
Sun et al. [163] Full transcripfome genetic mpMRI Weak ass?ciaﬁon of mpMRl features and Classical Radiomic
profiles hypoxia gene expression (p < 0.05).
Gene and miRNA expression
(Alanyl membrane T2c and T3b prostate cancer stages being
Fischer et al. [27] aminopeptidase, mpMRI highly correlated with aggressiveness on Classical Radiomic
microRNA-mir-217, mir-592, related imaging features (average r = £ 0.75)
mir-6715b)
ECE on MRI had significantly higher mean
Wibmer et al. [150] Prolaris® test MRI cell cycle risk score (reader 1: 3.9 vs. 3.2,p = Classical Radiomic
0.015; reader 2: 3.6 vs. 3.2, p = 0.045)
Imaging uptake parameters showing
VatideiWeels et al mathematical correlation with PTEN
3 PTEN mpMRI expression (r=0.25,p<0.1andr =043,p < Classical Radiomic
0.01), and T2w unevenness also showed
some correlation tendency (r = —0.25, p < 0.1)
Switlyk et al. [165] PTEN MRI ADC fvas niegatively correlated with Gleason Classical Radiomic

score (p = 0.001) and tumor size (p = 0.023)

ADC = apparent diffusion coefficient; AUC = area under the curve; DNA = deoxyribonucleic acid; ECE = extracapsular extension; ERG =
ETS-related gene; mpMRI = multiparametric magnetic resonance imaging; miRNA = micro ribonucleic acid; PIRADS = prostate imaging
reporting and data system; PTEN = phosphatase and tensin homolog; T2w = T2-weighted.



Table 3. Compilations of studies on the association of imaging and genomics.

Study

Results

M Biomarker Description Test Source Analysis
Prostat " Prostate-specific Significant association between
roasn:i eec:gce mRNA Prostate biopsy Negative prior biopsy De Luca et al. [138] PCAS3 score and PI-RADS grade
& quantification groups 3, 4, and 5 (p = 0.006)
PCA3 not statistically correlated
Twonegative prostate with PCa diagnosis (p = 0.128)
gio siels) Alkasab et al. [139] and PCA3 associated with
p high-grade PCa at final
pathology (p = 0.0435)
Painstarmaker stal PCA3 associated with MRI
No prior biopsy [140] ’ suspicion score of 2and 3 (p =
0.004), not 4 and 5 (p = 0.340)
Normal PCA3 score gave a
Negative prior biopsy Perlis et al. [141] negative predictive value of 100%
(p < 0.0001)
22 RNA markers Decipher® biopsy genomic test
: for prognosis and : Low and intermediate ; iated with Gleason
® progn was associate
Decipher test prediction of RP or prostate biopsy PCa Martin et al. [142] grade group and it was
metastasis independent of PIRADSv2 score
Unfavorable intermediate-risk
category (p < 0.001) and
Defining the favorable Decipher® test (p = 0.012) were
intermediate-risk Falagario et al. [143] statistically significant predictors

prostate cancer

of adverse pathology; mpMRI
did not maintain statistical
significance (p = 0.059)

Prediction of BCR

Jambor et al. [144]

Decipher® genomic score and
mpMRI could not improve
predictive performance of

biochemical recurrence compared
with the individual use of these
features

mpMRI could predict
aggressive prostate
cancer features

Beksac et al. [145]

Association of Decipher® score
was significantly with lesion size
(p = 0.03), PIRADS score (p = 0.02)
and extraprostatic extension (p =

0.01)

Correlation between
MRI phenotypes of PCa
as defined by PI-RADS
v2 and Decipher

Purysko et al. [146]

MRI-visible lesions had higher
Decipher® scores than
MRI-invisible lesions (p < 0.0001);
some lesions classified as
intermediate/high risk by
Decipher® are invisible on MRI

BCR and adverse
pathology prediction

Li et al. [45]

New imaging-based nomogram;
AUC (0.71, 95% CI 0.62-0.81)
better than Decipher® AUC (0.66,
95% CI 0.56-0.77) and prostate
cancer risk assessment (CAPRA)
score AUC (0.69, 95% CI
0.59-0.79)

Ferro M, de Cobelli O, Vartolomei MD, Lucarelli G, Crocetto F, Barone B, Sciarra A, Del Giudice F, Muto M, Maggi M, Carrieri G, Busetto GM, Falagario U, Terracciano D, Cormio L, Musi G, Tataru OS. Prostate Cancer

Radiogenomics-From Imaging to Molecular Characterization. Int J Mol Sci. 2021 Sep 15;22(18):9971




Table 3. Cont.

Biomarker Description Test Source Analysis Study Results
5 reference genes .
and 12 cancer Association between Eﬁ;ﬁi;efr:f;:g; ?:sgxtl;l
® . .
Oncotype Dx test genes generating a Prostate biopsy mpMRI and®0ncotype Leapman et al. [147] Gleason pattern 3 + 4 (p = 0.010),
genomic prostate Dx test®GPS i
not in Gleason pattern 3 + 3
score (GPS)
GPS to predict adverse . GPS is a significant predictor for
pathology Salmsesctal ] adverse pathology (p < 0.001)
Negative ConfirmMDx® test is in
mpMRI PIRADS score accordance with negative MRI
: Alterations in DNA : : = lesions after ; results (71.4%). ConfirmMDx®
®
ConfirmMDx methylation Prior negative biopsies ConfirmMDx® Artenstein et al. [149] sampling may be usefal 28 2
sampling fusion-targeted biopsy rather
than systematic biopsy
In the RP subgroup, ECE on MRI
- < 0.001-0.001) and cycle genes
RN ; Associations between 4 =
Prolaris test® % sgenomic Prostate biopsy MRI and the expression Wibmer et al. [150] Hecacoresip=00 Jviee

test

levels of cell cycle genes

significantly associated with
Gleason score 4 + 3 or higher,
ECE and lymph node metastases

AUC = area under the curve; BCR = biochemical recurrence; DNA = deoxyribonucleic acid; ECE = extracapsular extension; GPS = genomic
prostate score; mpMRI = multiparametric magnetic resonance imaging; mRNA = micro ribonucleic acid; PCA3 = prostate cancer antigen 3;
PIRADS v2 = prostate imaging reporting and data system version 2; RP = radical prostatectomy.

Ferro M, de Cobelli O, Vartolomei MD, Lucarelli G, Crocetto F, Barone B, Sciarra A, Del Giudice F, Muto M, Maggi M, Carrieri G, Busetto GM, Falagario U, Terracciano D, Cormio L, Musi G, Tataru OS
Radiogenomics-From Imaging to Molecular Characterization. Int J Mol Sci. 2021 Sep 15;22(18):9971
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“" RENAL CELL CARCINOMA i

Table 1. Summary of 20 reviewed articles on radiogenomics in clear cell renal cell carcinoma. Nature of feature extraction is indicated by “Radiologist” if features are
scored by one or more radiologists. Elsewise, software derived features are indicated by “Computational”. Number of selected features indicated in parenthesis.
TAT (total adipose tissue), VAT (visceral adipose tissue), AUC (area under the curve), OR (odds ratio), HR (hazard ratio), CSS (cancer specific survival), OS (overall
survival), PFS (progression free survival).

Feature +Machi
Author Title Year of Publication Patient # Extraction acIine: Image Phase Used Genes Studied Outcome
Learning
(Number)
3 S BAP1 and KD5MC: renal
Radiogenomics of gy G d
Clear Cell Renal Cell veln “‘V'“‘S“;“S(QC)’R R0
Carcinoma: s X BAP1 s g &
Karlo et al. [9] Associationg Betwaas 2014 233 Radiologist (10) - CT VHL KD5MC VHL.: ill-defined margin (OR
CT Imaging Features 0.49), nodular enhancement
nd Matations (OR 2.33), intratumoral
vasculature (OR 0.51)
Radiogenomics of clear
cell renal cell
carcinoma: Preliminary . g
g BAPT1: Ill-defined margin and
Shinagare etal, [10] .ndings of the cancer 2015 103 Radiologist (6) - Gt iy calcification
genome atlas-renal cell CT MUC-4 2 :
z MUC4: Exophytic growth
carcinoma
(TCGA-RCC) imaging
research group
Relationship between
visceral adipose tissue
and genetic mutations Computational KDMS5C higher TAT and VAT
Grecoetal. [11] (VHL and KDMS5C) in 2021 97 3 - CT KDMS5C vs. VHL area than VHL
clear cell renal cell
carcinoma
Identifying BAP1
Mutations in Clear-Cell :
Feng et al. [12] Renal Cell Carcinoma 2020 54 C°“‘P(‘5‘;‘;“°nal K g;‘:t‘)’m CT BAP1 AUC 0.77
by CT Radiomics:
Preliminary Findings
Machine
learning-based
unenhanced CT texture .
Kocaketal [13]  analysis for predicting 2020 65 C"“‘P;“f;“"“‘ * %‘a“dt‘)”“ cr BAP1 AUC 0897
BAP1 mutation status Ofes
of clear cell renal cell
carcinomas

Gopal N, et al. The Next Paradigm Shift in the Management of Clear Cell Renal Cancer: Radiogenomics-Definition, Current Advances, and Future This project has received funding from the European T
. . * ok
Directions. Cancers (Basel). 2022 Feb 4;14(3):793. Union’s Horizon 2020 Research and Innovation i *

programme under grant agreement No 857381 *op X




Assessment of response to treatment :i V I S I 0 N

* The correct assessment of response in the treatment is

fundamental in defining the success or failure of treatment
interventions.

 Prediction of early response would improve treatment selection
In these patients.

» Radiomics and radiogenomics could be very useful.

This project has received funding from the European o
Union’s Horizon 2020 Researc h and Innova tion R
programme under grant agreement No 857381




Technical problems, limitati d ...
CﬁaC”ean}(éaeSp(rlc; ems, limitations an VISIUN

« CT acquisition
* Reconstruction
« Kernels
* Tube currents
« Slice size
* Voxel size
* Grey level
» Delay of contrast enhancement
Larue RYNEE B et ager e oo U

nion’s
programme under grant agreement No 857381




Technical problems, limitati d ...
CﬁaC”ean%aeSp(rlcl)) ems, limitations an VISION

« Standardization of protocols is therefore important in clinical
applications

* Also many of the comparisons between diagnostic entities
using radiomics are subjective and not clinically applicable.

Mayerhoefer ME, et al. Med Phys 2009;36:1236—-1243. This project has received funding from the European

* X x
Lo, . R * *

Varghese BA, et al. AIR Am J Roentgenol 2019;212:520-528. Union’s  Horizon 2020 Researc h and Innova tion IR
programme under grant agreement No 857381




CONCLUSIONS s VISION

* Radiomics is a promising non-invasive tool for the diagnosis and clinical
management of tumors and the patients.

* The usefulness of radiomics has been studied in the differential diagnosis
of benign, premalignant and malignant lesions.

° In addition, it can help in the more precise definition of lesions for
chemotherpay and radiotherapy and assessment of response.

* Radiomics provides a more adequate and reproducible measurement of
the tumor than other methods.

* |n addition, the combination of radiomics and genomics has a promising
future to biomarkers.

°* However, image acquisition protocols and radiomic analysis systems
need to be standardized and validation cohorts are needed.

* Further studies are needed to consolidate the available data.

This project has received funding from the European Tl *
Union’s Horizon 2020 Research and Innovation [l *
programme under grant agreement No 857381
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