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Exploring lexical knowledge on the part of second language (L2) learners can provide 

researchers and practitioners with information about learners’ cognitive development, 

learners’ lexical processing, and assessment principles. L2 lexical knowledge has been 

investigated through a variety of methods including survey items, vocabulary 

assessments, behavioral studies, and corpus analysis (Berger et al. 2019; Kyle et al., 

2018; Lemhöfer et al., 2008; Milton, 2009). Over time, corpus approaches to 

understanding L2 lexical knowledge, especially when combined with natural language 

processing (NLP) techniques, have become common place (Crossley, Skalicky, et al., 

2019; Kyle & Crossley, 2016). Such approaches rely on using NLP techniques to 

automatically annotate learner corpora for specific lexical features such as word length, 

word frequency, or word concreteness and then make associations between these 

annotations and variables related to lexical knowledge include vocabulary test scores 

(Hashimoto & Egbert, 2019), human ratings of vocabulary knowledge (Crossley, 

Salsbury, et al., 2011a, 2011b), or student grade level (Kerz et al., 2021). Additionally, 

lexical annotations can be used to track lexical development over time (Crossley & 

Skalicky, 2019). 

 The majority of NLP annotation techniques measure lexical knowledge at the 

word or phrasal level. Early studies focused on word length and word frequency (Conrad, 

2005; Grant & Ginther, 2000) while later studies began to annotate words to include 

features such as phonological neighbors, lexical response time, number of word 

associations, age of acquisition, and word concreteness (Kyle & Crossley, 2015; Kyle et 

al., 2018). Phrasal annotations were also introduced that measured associational strength, 

frequency, and range (Garner & Crossley, 2018; Garner et al., 2018). Annotations of 



Crossley, S. A., & Holmes, L. (in press). Assessing receptive vocabulary using state-of-the-art natural 

language processing techniques. Journal of Second Language Studies. 

 

2 

 

lexical items has remained state of the art for measuring L2 lexical items since the late 

1990s with studies demonstrating the strength of these features to predict vocabulary 

knowledge and development (Crossley & Kyle, 2022; Laufer & Nation, 1995; Meurers, 

2012, 2021). Such studies provided researchers and practitioners with a wealth of 

knowledge about how the lexicon develops in L2 learners, how words are processed and 

stored, and how assessments can be improved and validated. However, the lexical 

annotations described above generally only examine word properties and not word 

meaning (i.e., semantics). 

Outside of L2 research, computational linguists have continued to refine natural 

language processing techniques, and research has advanced from simply annotating 

linguistic features found in language samples to modeling language semantics using 

continuous vector representations for words derived from large data sets. At a practical 

level, such approaches examine the distributional representations of words in texts with 

the understanding that words with similar meanings tend to occur in similar contexts. 

These approaches embed words in a vector space to compute semantic relationships 

among words. Seminal work on semantic vector representations date back to the late 

1990s with the development of latent semantic analysis (LSA, Landauer et al., 2007), 

which uses dimensionality reduction techniques to condense a large word by document 

co-occurrence matrix derived from a corpus of texts into a lower dimensional space. LSA 

transforms the words of a document-term matrix into a vector, often of length 300. It 

allows for the semantic similarity between two words within a corpus to be measured by 

calculating the cosine of the angle of the two words’ vectors. LSA and related approaches 

have been widely applied in information retrieval, sense disambiguation, and topic 
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modelling. The simple word-embedding approaches found in LSA have been augmented 

in Word2vec models that generate static representations of words that weigh distributions 

based on surrounding words (as compared to an entire text). Word2vec uses a shallow 

neural network to develop these representations (Mikolov et al., 2013). Even newer 

embedding approaches based on transformer models use much larger neural networks 

with an architecture called attention (Vaswani et al., 2017). These transformer models 

develop contextual representations of words, such that the same orthographic form will 

have a different embedding depending on its context. They also require magnitudes more 

training data and processing power. Nonetheless, transformer models (also known as 

large language models) have become state of the art in NLP due to their ability to 

outperform other methods in a variety of tasks. 

However, semantic embedding approaches, including Word2vec models and 

especially transformer models, have rarely been used to examine L2 lexical knowledge. 

One would expect that embedding approaches, which model the underlying semantics of 

a language, would perform well at predicting or classifying L2 lexical knowledge, 

especially when compared to NLP techniques that annotate lexical features of texts (e.g., 

frequency, phonological neighbors, lexical response times, and word concreteness). Thus, 

this study investigates the predictive strength of lexical annotations and embeddings 

derived from L2 student writing to model receptive vocabulary scores. The goal of the 

study is to examine the strength of using semantic models of lexical production compared 

to more traditional lexical annotations of production to better understand L2 lexical 

knowledge. Our hypothesis is that models of lexical production that are based on 

language semantics will outperform models based on lexical feature. 



Crossley, S. A., & Holmes, L. (in press). Assessing receptive vocabulary using state-of-the-art natural 

language processing techniques. Journal of Second Language Studies. 

 

4 

 

Lexical Knowledge 

Lexical knowledge is generally understood through global trait models that have 

traditionally examined two dimensions: 1) breadth of lexical knowledge or lexical size 

and 2) depth of lexical knowledge which measures the manner and degree to which 

known words are organized (Meara, 1996, 2005a; Read, 1998). Breadth is generally 

operationalized through lexical diversity (i.e., the variety of words produced) or word 

frequency (i.e., how frequent a word is within a language). Depth is operationalized to 

include any measurements that examine the strength of networks and/or interactions of 

links among words (Moghadam et al., 2012) including semantic associations and the 

semantic representations of the word (Nagy & Scott, 2000). 

The two dimensions bifurcate over the notion of knowledge and whether it is 

related to knowledge of the entire lexicon (breadth) or is related to the strength of 

knowledge for individual words (depth). There are a number of problems with this binary 

approach. First, breadth and depth dimensions ignore properties related to core lexical 

knowledge like word concreteness, familiarity, and imageability (Crossley & Skalicky, 

2019) which allow for quicker lexical processing or retrieval (Crossley, Salsbury, et al., 

2011a, 2011b; Meara, 2005b). Second, it is also not always clear which lexical features 

should be assigned to which of the two dimensions. For instance, word frequency has 

historically been considered a measure of breadth of knowledge because learners that 

produce more infrequent words should have a larger vocabulary. However, the 

distributional properties of words based on frequency also strengthen connection between 

words and meanings (Ellis, 2002). These connections overlap strongly with depth of 

lexical knowledge (i.e., the organization of words in the lexicon).  
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Measuring L2 Lexical Knowledge 

There are a number of ways to explore lexical knowledge in L2 learners. Traditional 

approaches have depended on lexical assessment such as vocabulary size tests, translation 

or elicitation, and word association tasks (Milton, 2009). Behavioral methods that 

measure L2 learners response times to linguistic stimuli are also commonly used to assess 

L2 knowledge (Berger et al., 2019; Crossley & Skalicky, 2019; Lemhöfer et al., 2008). 

More recently, the use of NLP driven annotations based on L1 norms1 to examine lexical 

knowledge have become common (Crossley, Salsbury, & McNamara, 2009, 2010; Morris 

& Cobb, 2004). 

NLP annotations of lexical features are able to adequately measure both breadth 

and depth features of the lexicon as well as core lexical properties. Common breadth 

features measured using NLP annotations include lexical variety measures using type-

token ratio counts and word frequency measures based on a variety of corpora like the 

British National Corpus (BNC Consortium, 2007) and the Corpus of Contemporary 

American English (COCA, Davies, 2010). Depth measures include features related to 

hypernymy and polysemy derived from WordNet (Fellbaum, 1998), word naming and 

lexical decision time scores taken from the English Lexicon Project (Balota et al., 2007), 

and measures of word association strength derived from corpora like the BNC or COCA 

 
1 Arguments have been made in favor of using NLP annotations based on L2 corpora and L2 learner 

judgments (Oretga, 2016). However, L2-based annotations are not available for many lexical features and 

properties (e.g., concreteness, word naming). For those features in which L1- and L2-based annotations are 

available, research does not clearly favor one annotation approach over the other. For example, Monteiro et 

al. (2020) reported that frequency metrics based on an L2 corpus outperformed L1-based frequency metrics 

in predicting L2 writing quality (although both were predictive); however, a follow up study (Monteiro, 

2020) found no differences. Similarly, Crossley, Skalicky, et al. (2019) reported that L2-based frequency 

metrics were not stronger predictors of L2 development compared to L1-based frequency metrics (although 

both were equally predictive). 
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(Garner et al., 2018). However, NLP annotations of lexical features do not generally 

measure semanticity in language (with WordNet derived features being the exception).  

In contrast to NLP annotations of lexical features, embedding models produce 

semantic representations of words and texts, but they do not explicitly measure features 

related to depth of lexical knowledge nor do they measure breadth of lexical knowledge 

or core lexical properties. For instance, LSA, Word2vec, and transformer models use 

word vectors to measure semantic similarity between words and text segments. These 

techniques are quite good at uncovering semantically related words, predicting next 

words in sentences, and examining the overall semantic content of a text. However, 

embedding models do not provide analytic information about word frequency, the 

processing times for words, or core properties for words such as concreteness. 

Much research has explored the use of lexical annotations to assess L2 lexical 

knowledge. In the area of lexical acquisition Crossley, Salsbury, and McNamara (2009) 

and Crossley, Salsbury, and McNamara (2010) used NLP annotations of lexical 

sophistication and diversity calculated by Coh-Metrix (Graesser et al., 2004) to 

longitudinally investigate various components of second language (L2) lexical 

development (e.g., hypernymic word relations and polysemy). More recently, Crossley, 

Skalicky, et al. (2019) investigated the relationship between lexical salience, lexical 

frequency, and language development over time using the Tool for the Automatic 

Analysis of Lexical Sophistication (TAALES; Kyle et al., 2018). Other researchers have 

used web-based tools such as VocabProfile (Cobb, n.d.) to explore lexical acquisition in 

response to specific activities. For instance, Zaytseva et al. (2019) measured written and 

oral lexical production before and after a 3-month study abroad experience using 
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measures related to diversity, sophistication, density and accuracy. They found that 

studying abroad led to increased vocabulary in written samples more so than spoken 

samples, especially in terms lexical diversity. Sundqvist (2019) found that extramural 

gaming improved measures of both productive and receptive vocabulary use.  

NLP annotations of lexical features have also been used to predict speaking 

proficiency in learner corpora. Lu (2012), for example, used the Lexical Complexity 

Analyzer to successfully model the relationship between speaking proficiency and indices 

related to lexical density, diversity, and sophistication. Biber et al. (2016), used the Biber 

Tagger (Biber, 1988) to predict the relationship between a wide range of 

lexicogrammatical features and speaking quality scores in a large corpus of oral 

standardized test responses.  Studies have also modeled lexical aspects of speaking 

proficiency using the Tool for the Automatic Analysis of Lexical Sophistication 

(TAALES). For instance, Berger et al. (2019), examined the relationship between 

judgements of speaking quality for a large corpus of L2 speech and lexical characteristics 

including contextual diversity and psycholinguistic word properties. Saito (2020) recently 

corroborated Kyle and Crossley (2015)’s finding that L2 oral proficiency can be 

predicted with collocational qualities captured by n-gram indices.   

In comparison to NLP lexical annotations, embedding approaches that focus on 

semantic relations like LSA, Word2vec, and BERT have seen relatively little attention 

outside of automated essay scoring (see Ke & Ng, 2019, for a review). In perhaps the 

earliest study, Crossley, Salsbury, & McNamara (2010) used LSA to examine the 

development of semantic networks in L2 speakers finding that semantic similarity scores 

among words increased as a function of time studying English. In a more recent study, Lu 
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and Hu (2021) explored contextual embeddings from BERT as a means of sense 

disambiguation and found that augmenting existing measures of lexical sophistication 

with sense-aware frequency counts improved predictive power for L2 English writing 

quality. Sun and Lu (2021) utilized a vector space model (fastText, Bojanowski et al. 

2017) to extrapolate psycholinguistic dimensions of unseen words from smaller sets of 

labelled lexemes (i.e., psycholinguistic databases). They then measured variation within 

these psycholinguistic properties in a large, longitudinal corpus (EFCAMDAT, Huang et 

al., 2017) and found that the tested word properties can be inferred from their positions in 

a vector space model. Monteiro (2020) developed L2 semantic context indices from the 

EFCAMDAT corpus (Huang et al., 2017) using LSA (Landauer & Dumais, 1997) and 

Word2vec (Mikolov et al., 2013) and reported that L2 semantic indices were significantly 

predictive of L2 writing and how fast L2 users judged a word to be a pseudoword or a 

real word. While work in this area is scant, existing research suggests that there are 

strong relationships between embeddings and analytic measures of lexical proficiency. 

Current Study 

The purpose of the current study is to compare the predictive strength of NLP lexical 

annotations to semantic embeddings to model vocabulary knowledge in L2 learners. To 

demonstrate the state of the art in semantic embeddings, we compare two semantic 

approaches (Word2vec embeddings, and transformer models) to NLP lexical annotations 

(e.g., word frequency, word associations, word concreteness). The goal is to examine 

how well automated approaches that incorporate lexical semanticity perform compared to 

non-semantic features that have been commonly used in previous NLP studies. The 

research questions that guide this study are: 
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1. Are there differences in accuracy for models predicting L2 receptive lexical 

knowledge between NLP lexical annotations and semantic embedding 

approaches? 

2. What insights can lexical annotations and semantic embedding models provide 

about L2 lexical knowledge? 

Method 

Corpus 

We used the International Corpus Network of Asian Learners of English (ICNALE, 

Ishikawa, 2013) for this analysis. ICNALE (Ishikawa, 2013) includes around 10,000 

topic-controlled L2 writing and speech samples produced by college students and 

graduate students in ten countries/regions in Asia, namely China, Hong Kong, Indonesia, 

Japan, Korea, Pakistan, the Philippines, Singapore, Taiwan, and Thailand. ICNALE 

comprises four modules: Spoken Monologue, Spoken Dialogue, Written Essays, and 

Edited Essays. For this study, we used the ICNALE Written Essays which comprises 

200- to 300-word essays written by each participant on two topics: part-time jobs for 

college students and a ban on smoking in restaurants. ICNALE includes writing samples 

for 2,600 English language learners, with corresponding receptive vocabulary scores as 

calculated using the English vocabulary size test (VST; Nation & Beglar, 2007). These 

scores tap into learners’ receptive lexical proficiency, which is an important element of 

L2 acquisition (David, 2008). Receptive vocabulary is a strong predictor of speaking 

proficiency (Koisumi & In’nami, 2013) and potentially a more robust measure of lexical 

knowledge than productive vocabulary (Webb, 2009). 
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We used data from one prompt (ban on smoking, SMK) to evaluate models 

receptive vocabulary knowledge. One essay was removed for technical reasons and, thus, 

our final corpus consisted of 2,599 essays written by 2,599 L2 English learners from ten 

countries (see Table 1 for breakdown of essays by country). The remaining ICNALE 

prompt (part time job, PTJ) comprises 2,600 essays written by the same learners as the 

SMK prompt. These essays were used to augment the data for the embedding models 

during training, but they were not used during the development of the models to predict 

receptive vocabulary knowledge. The PTJ essays were used in training the embedding 

models to ensure the models had sufficient data for successful training. 

[Insert Table 1 about here] 

Receptive Vocabulary Knowledge 

Participants’ receptive vocabulary levels in ICNALE were assessed using an English 

vocabulary size test (VST) prior to writing their essay submissions. The VST included 

fifty test items in the 1000-5000 word levels (ten items per 1000 word band) from the 

monolingual version of VST (14,000 words; Nation & Beglar, 2007), which was 

delivered in a spreadsheet format (Ishikawa, 2013). When multiplied by 100, test scores 

represent the approximate number of word families known by an individual. For 

example, a VST score of 33 suggests receptive knowledge of approximately 3,300 words.  

Lexical Annotations 

The Tool for the Automatic Analysis of Lexical Sophistication (TAALES; Kyle et al., 

version 2.8) was used to measure the lexical features of each text.2 Each of the following 

features were entered into a model to predict the participant’s VST scores. Lexical 

 
2 TAALES is freely available at linguisticanalysistools.org 
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features to examine depth and breadth of lexical knowledge and core lexical items were 

selected based on previous studies that indicated their strength in explaining L2 lexical 

development (Berger, Crossley, & Kyle, 2019; Berger, Crossley, & Skalicky, 2019; 

Crossley & Skalicky, 2019; Mostafa et al., 2021). Indices were computed for both 

content and function words, and all measures selected were derived from either 

experimental studies, survey responses, or corpus-based statistics. 

Age of acquisition. Age of acquisition (AoA) indices approximate the average age that 

native English speakers learn a word. Words that are acquired later in life can be 

considered more sophisticated (e.g., repudiate) than words learned earlier in life (e.g., 

dog). These indices are based on norms reported by Kuperman et al. (2012) and are 

computed with lemmatized word forms. 

Concreteness. Concreteness measures the tangibility of a word’s referent. More concrete 

words, such as tree and table, refer to physical, perceptible objects. Less concrete words, 

such as thought and ethical, refer to abstract concepts. Words with lower concreteness are 

considered more sophisticated. Scores were calculated using the concreteness norms 

reported by Brysbaert et al. (2014) and are based on word lemmas. 

Word familiarity. Word familiarity measures how likely it is that a person would know 

the word. Well known words that are more commonly used, such as breakfast, television, 

and book, would have higher familiarity. Less commonly used words that may not be 

known, such as egress and encephalon, would have lower familiarity. Scores were 

calculated using the 4,943 lemmas of the MRC Psycholinguistic Database (Wilson, 

1988).  
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Word meaningfulness. Word meaningfulness measures the extent to which a word is 

related to other words. It is based on human judgements of how related a target word is to 

other words. Words that are less broadly meaningful like chagrin and astuteness will 

activate fewer words. On the other hand, a word like cup will be more broadly 

meaningful, activating related words such as soup, saucer, and coffee. Words with lower 

meaningfulness are considered more sophisticated. Scores were calculated using the 

2,644 lemmas of the MRC psycholinguistic database (Wilson, 1988).  

Lexical response times. Lexical response times measure the response time in 

milliseconds it takes for a human participant to respond to a lexical stimulus. A single 

norm was included from Balota et al. (2004), who reported participant’s response time 

when deciding whether a stimulus was a real word or a non-word. Longer lexical 

response times indicate more sophisticated words, such as tangential. Shorter lexical 

response times indicate less sophisticated words such as happy. Scores were calculated 

using raw, unlemmatized word forms. 

Word associations. Word associations measure the number of stimuli words that elicit 

the target word in a word association task. Words with more associations, such as love 

(elicited by 181 different stimuli), are more readily accessible then words with fewer 

associations, such as bride (elicited by 6 stimuli). Words with fewer associations are 

considered more sophisticated. Scores were calculated using the associations norms for 

5,019 stimulus words and 10,470 response words reported in Nelson et al. (1998) and 

found in the University of South Florida (USF) database. 

Phonological distance. Phonological distance measures how similar in sound a word is 

to other words. This is operationalized as the Levenshtein distances between a word and 
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its 20 nearest phonological neighbors, where Levenshtein distance is the smallest number 

of insertions, deletions, and/or replacements that transform the target word into one of its 

neighbors. Words that are more distant from their phonological neighbors, such as 

cardiovascular, conspicuous, and calisthenic, are considered more sophisticated than 

words with more phonologically similar neighbors, such as fairies, wedded, and banter. 

Scores were calculated using the phonological distance norms reported by Balota et al. 

(2004) and are based on raw, unlemmatized word forms. 

Word frequency. Word frequency measures the frequency of words in a reference 

corpus. For this study, the SUBTLEXus corpus (Brysbaert & New, 2009) was selected as 

the reference. SUBTLEXus is a 51-million-word corpus of American film and television 

subtitles. Frequencies extracted from corpora that reflect spoken language tend to align 

more closely with psycholinguistic norms developed in clinical settings (Paetzold & 

Specia, 2016). 

Collocation strength. Collocation strength measures assess the degree of association 

between two words. The specific measure of association strength selected was Delta-P, 

which is defined as the adjusted probability of a second word occurring, given the 

preceding word. The Delta-P measure was calculated for adjacent words (bigrams) and 

utilizes the spoken section of the Corpus of Contemporary American English (Davies, 

2010). Bigrams that exhibit weak association, such as interested for and discovered 

around, can be considered less sophisticated than more strongly associated bigrams, such 

as interested in and discovered that.  

Contextual distinctiveness. Contextual distinctiveness measures the amount of 

information a word provides about its context. The specific measure selected was McD 



Crossley, S. A., & Holmes, L. (in press). Assessing receptive vocabulary using state-of-the-art natural 

language processing techniques. Journal of Second Language Studies. 

 

14 

 

(McDonald & Shillcock, 2001), which is based on relative entropy or Kullback-Leibler 

divergence. It measures the distance between Q, the probability distribution of all 

possible word contexts in a corpus, and P, the probability distribution of word contexts 

for the target word in the same corpus. If P provides little information about its context 

(less distinctive), it will be less distant from Q. If P provides more information about its 

context (more distinctive), it will be more distant from Q. The more greatly these two 

probability distributions differ, the more contextually distinct the word. Less distinctive 

words such as today are used in a variety of contexts. As a result of their contextual 

flexibility, they are considered less sophisticated. More distinctive words such as lone 

provide more information about their context and are considered more sophisticated. 

Scores were calculated using the 8,000 lexemes reported by McDonald and Shillcock, 

whose work was based on the spoken BNC (2007).  

Semantic Embedding 

We used both static and contextualized embedding approaches to extract semantic 

information from each text. This information was then used to model participants’ VST 

scores. We implemented both approaches in the Python programming language. 3 Each 

approach is discussed below. 

Doc2vec. Doc2vec is based on Word2vec (Mikolov et al., 2013), which is a method to 

represent semantic information as a vector of numbers that represent the distributional 

probabilities of words. Word2vec uses a shallow neural network with a single hidden 

layer to learn the probability distributions of words in a corpus. Using a continuous bag 

 
3 The Python scripts used to develop these models are available at 

github.com/langdonholmes/lexical_analysis 
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of words (CBOW) implementation, the neural network learns to predict an unknown 

center word given the vector representations of the surrounding words. At each pass, the 

values of the vectors are slightly adjusted so that they perform better. Since a single 

vector is learned for all occurrences of the same word type, regardless of its syntactic 

function or the semantic sense in which the word is used, the embeddings are considered 

static. Doc2vec (Le & Mikolov, 2014) is an extension of Word2vec in which a single 

vector is trained to represent a whole paragraph or an entire document. The Doc2vec 

implementation used in this study learns word representations and document 

representations in parallel and is conceptually similar to the Word2vec CBOW method 

with an additional paragraph vector included.4 At each pass, the shallow neural network 

attempts to predict an unknown center word given the vector representations of the 

surrounding words and a vector representation of the paragraph. Because document 

vectors make available information about the types of words in a document, they should 

be predictive in determining a writer’s lexical proficiency.  

One problem with Word2vec and Doc2vec is that the semantic representations 

that result from the neural network model are difficult to explain and interpret. The 

complexity of the neural network and opaqueness of the hidden layers that inform the 

network mean that the decision processes that lead to the vector representations are 

unavailable. Thus, if the model is biased or outdated, is based on unjust decisions, or is 

based on incorrect assumptions, that data is not available for human interpretation.   

 
4 Lau and Baldwin (2016) recommend ‘seeding’ Doc2vec algorithm with pre-trained word vectors. 

However, we could locate no pre-trained vectors specific to L2 production. Thus, we used the Doc2vec 

algorithm as implemented in the original paper (Le & Mikolov, 2014). In this implementation, word 

vectors are learned alongside document vectors during training. 

. 
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 For this study, we trained document embeddings with the Gensim (Rehurek & 

Sojka, 2010) library in Python. We used NLTK’s (Bird et al., 2009) word space 

tokenizer, and included all tokens produced by the tokenizer. We optimized two 

important hyperparameters: vector size and epochs. Vector size determines the 

dimensionality of the vector space, and in more practical terms, how many values will 

constitute a document’s vector representation. While the original paper (Le & Mikolov, 

2014) used a vector length of 400, different vector lengths have been shown to work 

better in different contexts (Lau & Baldwin, 2016). The epochs setting determines how 

many times the network is trained on the entire dataset. The original (Le & Mikolov, 

2014) paper used 10-20 epochs, which means that the model saw each text 10-20 times 

during training. In our instantiation, we searched across 50, 100, 200, 400, 600, 800, 

1000, and 1200 epochs. Epoch settings within this range have been shown to be 

appropriate for smaller datasets (Lau & Baldwin, 2016).  

In order to provide an accurate evaluation of each method’s performance, we 

partitioned our data into training, validation, and test sets. The SMK prompt was divided 

into development and test sets following an 80/20 split. The development set was 

augmented with 2,600 additional essays written in response to the PTJ prompt. The 

augmented development set was then divided into training and validation sets, also 

following an 80/20 split. The training and validation sets were used during 

hyperparameter optimization and training. The test set was reserved only for evaluating 

the model’s performance. We found that length 100 vectors trained over 400 epochs 

produced the best results in our task with our training data (see Figure 1). We trained 

document vectors on our training set using these hyperparameters. 
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[Insert Figure 1 here] 

Transformers. Transformer models differ from Word2vec models because they use 

neural networks with multiple hidden layers and include an attention mechanism. 

Transformer models like those found in Bidirectional Encoder Representations from 

Transformers (BERT, Devlin et al., 2019) take into consideration the order in which 

words appear (i.e., love and hate would be represented differently than hate and love) and 

have attention mechanisms which allow input weights to be based on importance in a 

task. Whereas Word2vec takes a small, predefined window of context words into 

consideration, BERT’s self-attention mechanism allows it to dynamically choose which 

words are important for its calculations from a wider context window (the full length of 

the input). Contextual representations allow BERT to extrapolate differences between the 

uses of the word bank in the sentences The man robbed the bank and The man sat on the 

river bank. In Word2vec, bank would have a single vector representation based on these 

two sentences while BERT would have different representations for each use of the word.  

 Like the Doc2Vec model, BERT models are based on neural networks. However, 

BERT neural network models include millions of parameters that interact in complex 

ways, making it even more difficult to fully explain or interpret what the model is doing 

in each pass when compared to Doc2vec models. Thus, like Doc2vec, the semantic 

representations that result from BERT do not lend themselves to interpretation, and it is 

difficult to assess whether the decision process made by the model is appropriate and 

unbiased. Another problem that arises from using transformer models like BERT is the 

immense cost associated with pre-training a language model because of the size of the 

data, the layers of the neural network, the bidirectional nature, and the attention 
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mechanisms. Thus, unlike Doc2vec, it is common practice to use pre-trained language 

models and fine tune them for different tasks. BERT, which we use in this study, was 

pre-trained with a masked language modelling task on a corpus comprising 2.5 billion 

words from Wikipedia and 800 million words from the BooksCorpus (Devlin et al., 

2019). Fine-tuning works by influencing the pretrained BERT’s weights and biases a 

small amount to leverage knowledge about diverse language-related tasks. In comparison 

to training a model from scratch, finetuning can be performed with significantly less data 

and processing power. In practice, finetuning involves providing the pre-trained 

transformer model with labelled training data that are specific to the downstream task. 

The weights and biases are influenced through a procedure called backpropagation. One 

caveat with finetuning is that it is not feasible to alter the tokenization scheme. As a 

result, we used the same WordPiece tokenizer that was utilized during BERT’s pre-

training.  

In order to assess the utility of large language models to predict lexical 

proficiency (as measured by VST), we finetuned the base, uncased version of BERT 

(available through Huggingface Transformers, Wolf et al., 2020) to predict VST score of 

the writer (after scaling VST scores to a floating point value between -1 and 1). 

Huggingface includes a standardized ‘bert for sequence classification’ model, which 

works by adding a sequence classification ‘head’ on top of the pre-trained BERT 

language model. The sequence classification head adds two layers to the neural network: 

a dropout layer and a linear feed forward layer. The linear layer was initialized with 

random values. During training, we backpropagate on the entire network, including the 

additional linear layer. 
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The most important hyperparameters to set when optimizing the BERT model are 

the learning rate, batch size, and number of epochs (Devlin et al., 2019). Learning rate 

determines how dramatically the model adjusts to the new data. If the model learns too 

quickly, it may ‘forget’ some of what it has already learned. If it learns too slowly, it will 

fail to adapt to the data. Batch size determines how many documents are processed in 

parallel. Number of epochs, as with Doc2vec, determines how many passes are made 

over the training set. While deep learning libraries generally provide sensible defaults for 

the learning rate and all other hyperparameters, it is best practice to empirically determine 

the correct learning rate for each task and dataset (Kohavi & John, 1995). We followed 

the recommendations of Devlin et al. (2019) and performed an exhaustive grid search 

over three learning rates (2e-5, 3e-5, and 5e-5) and three epoch settings (2, 3, 4). We 

selected the lower recommended batch size (16) apriori due to memory limitations on our 

processing unit. The hyperparameters which produced the best model were selected for 

fine tuning (see Figure 2). 

[Insert Figure 2] 

Statistical Analysis 

Linear models to predict student VST scores were developed using linguistic features, 

Doc2vec, and BERT. For the linguistic features and Doc2vec models, we constructed 

linear models in R (R Core Team, 2016) using the CARET package (Kuhn, 2008). For 

the linguistic features model, we used a training and test set that matched those used in 

the Doc2vec and BERT models to develop a linear model. The linguistic feature model 

developed from the training set was then applied to the held-out test set. For the Doc2vec 

model, we developed a linear model using only the vectors inferred from the test data. 
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For both the linguistic features model and the Doc2vec model, estimates of model 

accuracy were reported using summary statistics including root mean squared error 

(RMSE) and mean absolute error (MAE) between the observed and modeled holistic and 

VST scores. R-squared (R2) is also reported and can be used to examine the amount of 

variance explained by the developed model. Variable importance was explained using the 

varImp function in CARET. Variable importance in varImp is based on the absolute 

value of the t-statistic for each model parameter used. 

Multi-collinearity between variables (i.e., variables that are highly collinear and 

potentially measuring the same construct) can make interpreting variable importance in 

linear models difficult. Thus, prior to developing our models, we calculated correlations 

among the derived linguistic features and Doc2vec vectors. If two or more variables 

correlated at r > .799, the variable(s) with the lowest correlation with the VST scores was 

removed and the variable with the higher correlation was retained. 

As noted earlier, the BERT model was outfitted with a linear head as part of its 

finetuning process, which allowed the finetuned BERT model to output its predictions 

directly. Using the linear head of the BERT model, as compared to extracting BERT 

embeddings and training a linear model separately, is a more parsimonious use of data 

and the BERT model, since the linear layer is trained during model finetuning. It is also 

the standard method of performing regression and classification tasks with pre-trained 

language models. In practice, the finetuned BERT model directly outputs a predicted 

VST score for each input text. Before finetuning, VST scores were scaled to floating 

point values in the range (-1.0, 1.0). BERT was then finetuned on the augmented (SMK 

training + PTJ) development set. The performance of the finetuned model was evaluated 
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on the held out test set (20% of the SMK prompt), using the same summary statistics 

RMSE, MAE, and R2. 

Results 

Lexical Annotations Model 

Correlations indicated that our SUBTLEXus frequency measure was strongly collinear 

with the Kuperman age of acquisition measure. Because age of acquisition reported a 

higher correlation with VST scores, the frequency measure was removed from the linear 

model. A linear model for the training set using the remaining nine lexical annotations 

reported RMSE = 7.993, MAE = 6.419, r = .415, R2 = .172, indicating that the linguistic 

features model explained 17% of the variance in the VST scores. The relative importance 

metrics indicate that the strongest predictors of VST scores were word meaningfulness 

followed by word familiarity and age of acquisition. The weakest predictors were related 

to contextual diversity and word association (see model parameters summarized in Table 

2).  

[Insert Tables 2 here] 

Doc2vec Model 

As expected, none of the 100 Doc2vec vectors were multicollinear so all vectors were 

entered into the linear model. A linear model for the test data using the 100 Doc2vec 

reported RMSE = 8.641, MAE = 6.863, r = .410, R2 = .168, indicating that the Doc2vec 

model explained 17% of the variance in the VST scores. Because the vectors in the 

Doc2vec model are not interpretable, we do not report their co-efficients or their variable 

importance.  

BERT Model 
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The finetuned BERT model predicted VST scores scaled to the range (-1.0, 1.0). In order 

to make these results comparable to our other models, the predicted values were inverse 

scaled back to the original VST unit scale. The finetuned model, when applied to the test 

set, reported RMSE = 7.127, MAE = 5.438, r = .567, R2 = .321, indicating that the 

finetuned BERT model explained 32% of the variance in the VST scores. 

Comparisons between Models 

We used Fisher r-to-z transformations to assess the significance of the difference between 

the correlation coefficients reported for the linguistic feature, Doc2vec, and BERT 

Models for the test sets (see Table 5). The results indicated that the BERT model 

outperformed the linguistic features model and the Doc2vec model. There were no 

differences between the linguistic features model and the Doc2vec model. 

[Insert Table 5 here] 

Discussion 

This study examined various NLP approaches to modeling receptive vocabulary in L2 

learners including state-of-the-art semantic embedding approaches. Specifically, this 

study predicted the vocabulary size test scores for English language learners using lexical 

lexical annotations, Doc2vec semantic representations, and BERT semantic 

representations of the L2 learners’ essays. The developed models explained between 17% 

and 32% of the variance in the VST scores with the lowerest variance explained by the 

lexical annotations and Doc2vec models and the highest variance explained by the BERT 

model. While lexical annotations that explore breadth, depth, and core lexical knowledge 

features have become commonplace in many studies of L2 performance (Grant & 

Ginther, 2000; Graesser et al., 2004; Koizumi & In’nami, 2013; Sundqvist, 2019), 
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modeling lexical knowledge based on semantic features is rare (cf. Monteiro et al., 2021; 

Sun & Lu, 2021; Lu & Hu, 2021; Zhang et al., 2021). Additionally, little research has 

investigated links between receptive and productive vocabulary as found in this study 

(Meara, 2010). 

 

The results of the study indicate moderate links between lexical annotations and 

semantic models based on Doc2vec and L2 receptive vocabulary knowledge and strong 

links between semantic models based on BERT and L2 receptive vocabulary 

performance. Overall, the findings help support the notion that L2 productive language 

features are associated with receptive vocabulary skills (Webb, 2008). The strength of the 

BERT model in measuring reecptive vocabulary knowledge likely relates to enhanced 

models of semanticity based on neural network models developed on large language 

corpora that include features related to context and attention.  

In the developed models, the lowest performance was reported for the Doc2vec 

models, which performed slightly lower than the lexical annotation model. A potential 

reason for the lower performance is that the model was trained specifically on the 

ICNALE corpus. In some sense, training on the same data that comprises the test set may 

be an advantage. However, semantic embedding models generally perform better when 

they are trained on larger amounts of data. While the ICNALE corpus is large by L2 

standards, it may be considered small in terms of corpora from which language models 

are generally trained. However, it should be noted that the ICNALE training set used in 

our analysis had roughly 1 million tokens, nearly twice as large as Lau and Baldwin’s 

(2016) smallest training set. Additionally, the Doc2vec model for this study performed 

quite well considering it is a relatively simple and shallow network with no pretraining or 
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finetuning. This makes the Doc2vec model more nimble and less computationally heavy, 

which should lead to faster run times with correspondingly smaller difference in 

performance. However, explaining the Doc2vec results is problematic. The 100 vectors 

derived from Doc2vec used to predict VST scores relate to the semanticity of the texts, 

but since the vectors are just numerical representations of semanticity, they are 

impossible to interpret, which is a major limitation of a Doc2vec approach. In practice, 

Doc2vec is good at predicting VST scores, but provides the researcher and practitioner 

with little information about what aspects of semanticity lead to a larger receptive 

vocabulary size. 

The lexical annotation model also explained 17% of the variance in the VST 

scores. The linear model indicated that the strongest predictors of receptive vocabulary 

were related to word meaningfulness, familiarity, and age of acquisition. This was 

followed by features that measured lexical decision response time, word concreteness, 

and USF word associations. Weaker predictors included phonological neighbors, 

contextual diversity, and collocation strength. In brief, writers who produced words with 

fewer meaningful associations (as measured by both MRC word meaningfulness scores 

and USF word association scores) and words that were less familiar and concrete, 

acquired later, and took longer to recognize as scored higher on the VST. Overall, the 

profile of a learner that scores higher on the VST is a writer that produces more complex 

lexical items while, at the same time, produces phrases that adhere to expected multi-

word structures. Thus, we would expect that lexical acquisition equates to the production 

of more sophisticated words (i.e., words that have fewer associations and are less 
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familiar, acquired later, less concrete, and take longer to process) while, at the same time, 

mastering the expectations of multi-word units.  

 Our BERT models, which represents semantic I in texts, performed significantly 

better than the Doc2vec model and the lexical annotation model explaining 32% of the 

variance in VST scores. The BERT model likely outperformed the Doc2vec model 

because of the use of a pre-trained model based on over 3 billion words and the attention 

mechnism contained within the model. The BERT model also likely outperform Doc2vec 

because it includes more advanced approaches such as finetuning and alternative pooling 

techniques. While our model pooled the hidden state of the first token of the final layer, 

different combinations of hidden states (including averaging across layers, concatenating, 

etc.) could improve this performance as could ensemble methods that combine different 

pre-trained and finetuned language models together. Additionally, unlike Doc2vec, 

BERT has been effectively applied to tasks such as syntactic dependency parsing that are 

not exclusively lexical (Goldberg, 2019; Clark et al., 2019). With this consideration in 

mind, it is likely that BERT is essentially capturing semantic information because it was 

trained to predict word distributions in a corpus in a manner similar to Word2vec. 

However, within that process it is also learning syntatic information bringing BERT 

closer to understanding the nexus between lexis and syntax. However, unlike our lexical 

annotation model (and similar to our Doc2vec model), it is difficult to interpret the 

semantic embeddings in the students’ texts that predicted the VST scores because of the 

neural network approaches used in both Doc2vec and BERT. These neural networks, 

based on their complexity, make explaining model decisions extremely difficult. Even the 

smaller BERT model used here has 340 million parameters, which is small in size 
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compared to more recent language models (e.g., GPT-3 has over 175 billion parameters, 

Brown et al., 2020). Thus, while the transformer models are more predictive, they are less 

interpretable. Like the Doc2vec model, this is a major limitation because researchers and 

practitioners can glean little from the BERT model about what it means to have more or 

less receptive vocabulary knowledge. 

Conclusion 

We find that state-of-the-art BERT models based on semantic embeddings outperform 

linguistic annotations and Doc2vec models in predicting L2 learners VST scores based on 

features found in the students’ writing. This finding helps to support the strength and 

accuracy of semantic embedding approaches as well as their generalizability across tasks 

when compared to linguistic feature models. However, we also note a major drawback of 

semantic embedding models: interpretability. While the linguistic features model 

performed statistically lower than the BERT model, its output was understandable and 

easy to map onto existing theories and previous studies investigating L2 lexical 

knowledge. The same cannot be said for the semantic embedding models, whose opaque 

output helps in labeling them as black boxes. As such, there is a trade-off between 

semantic embedding models and the lexical features model in terms of model 

performance and transparency (Došilović et al., 2018).  

 There are also limitations to the current study that go beyond model 

interpretability. Some of these issues were discussed above (e.g., larger training sets for 

Doc2vec models), but some issues are specific to the conducted analyses. For instance, in 

this study we only focused on English and not other languages. Thus, we have no real 

understanding if the results are generalizable beyond English. One obstacle to 
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generalizing findings to other languages is the massive number of resources that have 

traditionally been necessary to develop linguistic annotation tools for a specific language. 

These include part of speech taggers, dependency parsers, lexical judgement databases 

(like ELP) and lexical synsets (like WordNet). Semantic embedding models like Doc2vec 

and BERT provide a partial solution to this concern because they require no hand coding, 

human judgments, or rule-based systems. Given a large enough corpus, the models learn 

the semanticity of a language unsupervised. Thus, future studies may be able to replicate 

the semantic embedding findings reported here in other resource-rich languages for 

which large enough training corpora (and compute) are available. Additionally, if large 

enough L2 English corpora become available, transformer models may be developed that 

purposefully incorporate the English production of non-native speakers (i.e., L2 normed 

models). This may alleviate concerns that some researchers hold (i.e., Ortega, 2016) 

about depending on NLP annotations based on L1 norms. 

 Another limitation is that transformer models like BERT do not allow for the 

inclusion of co-variates that might help explain linguistic knowledge because predictions 

are made using a linear head that is part of the finetuning process. For example, the 

ICNALE corpus includes a number of demographic and individual difference variables 

for each learner that could be included as co-variates in models. These include age and 

gender (for demographic information) and individual difference features such as 

motivation strength (both integrative and instrumental) and learner backgrounds data 

such as grade level, academic background, frequency of using English, experiences being 

taught by native speaker of English, and country of origin. Many of these features may 

help to explain VST scores in addition to the semantic embeddings reported by BERT, 
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but they are impossible to include in the modeling process. Additionally, models could 

have been tested on country of origin to assess potential cross-linguistic influences, but 

the authors of ICNALE (Ishikawa, 2013) warn against using country of origin as 

operationalized in ICNALE because VST scores are higher in the data for ESL outer 

circle countries (Hong Kong and Singapore) than for EFL expanding circle countries 

(Japan and Thailand). Thus, proficiency level and L1 are strongly correlated and any 

comparison based solely on L1 would be unprincipled.  

 Even considering their limitations, transformer models are state-of-the-art and 

commonly used in fields as diverse as health, finance, military, transportation, and 

security (Arrieta et al., 2020) because of their performance strengths. While uncommon 

in L2 studies, this study shows their strength in prediction tasks of interest to the L2 

community. The likelihood of transformer models like BERT becoming more 

mainstream in L2 studies is strong and will become stronger considering the push 

towards more interpretable AI (including transformer models) in government, industry, 

and academia. Interpretable AI is necessary to ensure that decisions made by models are 

justifiable (Gunning & Aha, 2019) and the models allow for detailed explanations to 

increase human trust and understanding (Zhu et al., 2018). As noted by Arrieta et al. 

(2020), developing interpretable machine learning models can help detect and correct 

potential bias in training sets, highlight small changes (i.e., perturbations) that might 

change predictions, and help ensure a causality in model reasoning.  

As transformer models become more interpretable and begin to tell us more about 

the underlying cognitive processes of L2 acquisition, their uptake will likely increase. 

Modified deep learning techniques like training neural networks to associate labelled 
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nodes with known semantic ontologies, generate examples and/or clusters from unlabeled 

and/or prominent nodes to help with semantic interpretation, and identify which 

architectures, parameters, and training lead to the most interpretable models (Gunning et 

al., 2019) should make the semantic output of transformer models more actionable for L2 

researchers and practitioners. Once available, interpretable semantic representations for 

L2 learners will help L2 researchers develop models of L2 knowledge and development 

related to meaning, intention, inference, and pragmatics, all areas that are difficult, if not 

impossible, to model computationally. These models should have immediate impacts in 

the language learning classroom or learning system.  

From a theory-driven perspective, we do not recommend that researchers use 

transformer language models in place of existing NLP annotation to analyze learner 

language, especially if interpretation of output is critical. However, in cases where 

sufficient data is available, computational resources exist, and interpretability is not a 

concern, embedding-based approaches to NLP offer appealing utility for a wide variety 

of language analysis tasks, so long as researchers acknowledge and manage the potential 

for bias in these models. Doc2vec and other static embedding models may also prove 

useful to some research projects while requiring many fewer computational resources. 

We are optimistic that future research will develop creative methodologies that leverage 

embedding models while minimizing their limitations. Meanwhile, NLP annotations of 

lexical features continue to provide a useful and interpretable means of studying learner 

language. 
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Table 1   

Country information   

Country  Number essays Linguistic distance 

China 400 1.5 

Hong Kong 100 1.25 

Indonesia 200 2 

Japan 400 1 

Korea 300 1 

Pakistan 200 1.75 

Philippines 200 2 

Singapore 199 1.5 

Thailand 400 2 

Taiwan 200 1.5 
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Table 2   

Parameters for linguistic features model 

Feature Co-efficient Variable importance 

Intercept 33.504  
Word meaningfulness (MRC) -2.292 4.821 

Word familiarity (MRC) -0.994 1.950 

Age of acquisition (Kuperman) 1.235 1.715 

Lexical decision response time 0.495 0.956 

Word concreteness (Brysbaert) -0.337 0.825 

Word associations (USF) 0.334 0.694 

Phonological neighbors -0.180 0.322 

Contextual distinctiveness 0.083 0.196 

Collocation strength (COCA spoken DP) 0.045 0.118 
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Table 3   

Fisher r-z transformations between models 

Models z p 

Linguistic–Features - Doc2vec 0.22 > .050 

Linguistic–Features - BERT 7.26 < .001– 

Doc2vec - BERT 7.48 < .001 
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Figure 1 

Results of grid search for optimal Doc2vec hyper parameters. 
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Figure 2 

Results of grid search for optimal BERT hyper parameters. 
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