Supplementary Information for

Coseismic Coulomb Stress Changes on Intraplate Faults in the Western Quebec Seismic Zone, Canada: Implications for Seismic Hazards

Jeremy M. Rimando ${ }^{1}$, Alexander L. Peace ${ }^{1}$, Katsuichiro Goda ${ }^{2}$, Navid Sirous ${ }^{2}$, Philippe Rosset ${ }^{3}$, Luc Chouinard ${ }^{3}$
${ }^{1}$ School of Earth, Environment \& Society, McMaster University, 1280 Main Street W., Hamilton, ON, L8S 4K1, Canada
${ }^{2}$ Department of Earth Sciences, Western University, 1151 Richmond Street N., London, ON, N6A 5B7, Canada
${ }^{3}$ Department of Civil Engineering, McGill University, 817 Sherbrooke St W., Montreal, QC H3A 0C3, Canada

Contents of this file

Figures S1 to S20

Figure S1. $1935 M_{w}$ 6.1 Temiscaming Earthquake nodal plane 1 Coulomb stress change maps. Coulomb stress changes for the SW-dipping source fault plane (strike $=130^{\circ}$, dip $=45^{\circ}$, rake $=80^{\circ}$), as seen in map view ($10-\mathrm{km}$-depth slice). The sensitivity of stress change distributions was tested using the following receiver fault rake values (or maximum horizontal stress azimuths) as follows: ($\mathbf{a}, \mathbf{d}, \mathbf{g}$) 121° (or $\mathbf{S}_{H \max }=028^{\circ}$), ($\mathbf{b}, \mathbf{e}, \mathbf{h}$) $104^{\circ}\left(\right.$ or $\left.S H_{\max }=045^{\circ}\right)$, and $(\mathbf{c}, \mathbf{f}, \mathbf{i}) 72^{\circ}\left(\right.$ or $\left.S H_{\max }=073^{\circ}\right)$; and coefficient of friction) values as follows: $(\mathbf{a}, \mathbf{b}, \mathbf{c}) \mu=0.4,(\mathbf{b}, \mathbf{e}, \mathbf{h}) \mu=0.5$, and $(\mathbf{c}, \mathbf{f}$, i) $\mu=0.8$.

Figure S2. $1935 M_{w}$ 6.1 Temiscaming Earthquake nodal plane 2 Coulomb stress change maps. Coulomb stress changes for the NE-dipping source fault plane (strike $=324^{\circ}$, dip $=46^{\circ}$, rake $=100^{\circ}$), as seen in map view (10-km-depth slice). The sensitivity of stress change distributions was tested using the following receiver fault rake values (or maximum horizontal stress azimuths) as follows: ($\mathbf{a}, \mathbf{d}, \mathbf{g}$) 121° (or $\mathbf{S H}_{\mathrm{Hmax}}=028^{\circ}$), (\mathbf{b}, \mathbf{e}, h) 104° (or $\mathrm{SH}_{\max }=045^{\circ}$), and (c, f, i) 72° (or $\mathrm{SH}_{\max }=073^{\circ}$); and coefficient of friction) values as follows: $(\mathbf{a}, \mathbf{b}, \mathbf{c}) \mu=0.4,(\mathbf{b}, \mathbf{e}, \mathbf{h}) \mu=0.5$, and (c, f, i) $\mu=0.8$.

Figure S3. $1935 M_{w}$ 6.1 Temiscaming Earthquake nodal plane 1 Coulomb stress change cross-sections. Coulomb stress changes for the SW-dipping source fault plane (strike $=130^{\circ}$, dip $=45^{\circ}$, rake $=80^{\circ}$), as seen in cross-sectional view. The sensitivity of stress change distributions was tested using the following receiver fault rake values (or maximum horizontal stress azimuths) as follows: ($\mathbf{a}, \mathbf{d}, \mathbf{g}$) 121° (or $\mathbf{S}_{\mathrm{Hmax}}=028^{\circ}$), (\mathbf{b}, \mathbf{e}, h) 104° (or $\mathrm{SH}_{\max }=045^{\circ}$), and (c, f, i) 72° (or $\mathrm{SH}_{\max }=073^{\circ}$); and coefficient of friction) values as follows: $(\mathbf{a}, \mathbf{b}, \mathbf{c}) \mu=0.4,(\mathbf{b}, \mathbf{e}, \mathbf{h}) \mu=0.5$, and (c, f, i) $\mu=0.8$

Figure S4. 1935 Mw 6.1 Temiscaming Earthquake nodal plane 2 Coulomb stress change cross-sections. Coulomb stress changes for the NE-dipping source fault plane (strike $=324^{\circ}$, dip $=46^{\circ}$, rake $=100^{\circ}$), as seen in cross-sectional view. The sensitivity of stress change distributions was tested using the following receiver fault rake values (or maximum horizontal stress azimuths) as follows: ($\mathbf{a}, \mathbf{d}, \mathbf{g}$) 121° (or $\mathrm{S}_{\mathrm{Hmax}}=028^{\circ}$), (\mathbf{b}, \mathbf{e}, h) 104° (or $\mathrm{SH}_{\max }=045^{\circ}$), and (c,f,i) 72° (or $\mathrm{SH}_{\max }=073^{\circ}$); and coefficient of friction) values as follows: (a, b, \mathbf{c}) $\mu=0.4,(\mathbf{b}, \mathbf{e}, \mathbf{h}) \mu=0.5$, and (c, f, i) $\mu=0.8$.

Figure S5. $1935 M_{w}$ 6.1 Temiscaming Earthquake nodal plane 1 Coulomb stress change on receiver faults. Coulomb stress changes for the SW-dipping source fault plane (strike $=130^{\circ}$, dip $=45^{\circ}$, rake $=80^{\circ}$), as seen on the receiver fault plane. The sensitivity of stress change distributions was tested using the following receiver fault rake values (or maximum horizontal stress azimuths) as follows: ($\mathbf{a}, \mathbf{d}, \mathbf{g}$) 121° (or $\mathbf{S}_{H m a x}=$ 028°), (b, e, h) $104^{\circ}\left(\right.$ or $\mathrm{SH}_{\max }=045^{\circ}$), and ($\left.\mathbf{c}, \mathbf{f}, \mathbf{i}\right) 72^{\circ}\left(\right.$ or $\left.\mathrm{SH}_{\max }=073^{\circ}\right)$; and coefficient of friction) values as follows: $(\mathbf{a}, \mathbf{b}, \mathbf{c}) \mu=0.4,(\mathbf{b}, \mathbf{e}, \mathbf{h}) \mu$ $=0.5$, and (c, f, i) $\mu=0.8$.

Figure S6. $1935 M_{w}$ 6.1 Temiscaming Earthquake nodal plane 2 Coulomb stress change on receiver faults. Coulomb stress changes for the NE-dipping source fault plane (strike $=324^{\circ}$, dip $=46^{\circ}$, rake $=100^{\circ}$), as seen on the receiver fault plane. The sensitivity of stress change distributions was tested using the following receiver fault rake values (or maximum horizontal stress azimuths) as follows: ($\mathbf{a}, \mathbf{d}, \mathbf{g}$) 121° (or SHmax $=$ $\left.028^{\circ}\right),(\mathbf{b}, \mathbf{e}, \mathbf{h}) 104^{\circ}\left(\right.$ or $\left.S H_{\max }=045^{\circ}\right)$, and $(\mathbf{c}, \mathbf{f}, \mathbf{i}) 72^{\circ}\left(\right.$ or $\left.S H_{\max }=073^{\circ}\right)$; and coefficient of friction) values as follows: $(\mathbf{a}, \mathbf{b}, \mathbf{c}) \mu=0.4,(\mathbf{b}, \mathbf{e}, \mathbf{h}) \mu$ $=0.5$, and ($\mathbf{c}, \mathbf{f}, \mathbf{i}) \mu=0.8$.

Figure S7. 1935 Mw 6.1 Temiscaming Earthquake nodal plane 1 receiver fault dip sensitivity test. Coulomb stress changes for the SWdipping source fault plane (strike $=130$, dip $=45$, rake $=80$), as seen in map view at $10-\mathrm{km}$-depth ($\mathrm{a}, \mathrm{d}, \mathrm{g}$), in cross-section ($\mathrm{b}, \mathrm{e}, \mathrm{h}$), and as projected on the receiver fault plane ($\mathrm{c}, \mathrm{f}, \mathrm{i}$). The sensitivity of stress change distributions to receiver fault plane dip was tested using the following values: $45^{\circ}(\mathrm{a}, \mathrm{b}, \mathrm{c}), 60^{\circ}(\mathrm{d}, \mathrm{e}, \mathrm{f})$, and $75^{\circ}(\mathrm{r}, \mathrm{h}, \mathrm{i})$. All calculations assumed a coefficient of friction (μ) of 0.5 and a receiver fault plane rake based on a maximum horizontal stress value of 45°.

Figure S8. $1935 M_{w}$ 6.1 Temiscaming Earthquake nodal plane 2 receiver fault dip sensitivity test. Coulomb stress changes for the NEdipping source fault plane (strike $=324$, dip $=46$, rake $=100$), as seen in map view at 10 -km-depth ($\mathbf{a}, \mathbf{d}, \mathbf{g}$), in cross-section (\mathbf{b}, e, \mathbf{h}), and as projected on the receiver fault plane ($\mathbf{c}, \mathbf{f}, \mathbf{i}$). The sensitivity of stress change distributions to receiver fault plane dip was tested using the following values: $45^{\circ}(\mathbf{a}, \mathbf{b}, \mathbf{c}), 60^{\circ}(\mathbf{d}, \mathbf{e}, \mathbf{f})$, and $75^{\circ}(\mathbf{r}, \mathbf{h}, \mathbf{i})$. All calculations assumed a coefficient of friction (μ) of 0.5 and a receiver fault plane rake based on a maximum horizontal stress value of 45°.

Figure S9. 1944 Mw 5.8 Cornwall-Massena Earthquake nodal plane 1 Coulomb stress change maps. Coulomb stress changes for the NWdipping source fault plane (strike $=199^{\circ}$, dip $=42^{\circ}$, rake $=149^{\circ}$), as seen in map view (20-km-depth slice). The sensitivity of stress change distributions was tested using the following receiver fault rake values (or maximum horizontal stress azimuths) as follows: ($\mathbf{a}, \mathbf{d}, \mathbf{g}$) 85° (or $\mathbf{S H m a x}=$ 028°), (b, e, h) 67° (or $S H_{\max }=045^{\circ}$), and ($\left.\mathbf{c}, \mathbf{f}, \mathbf{i}\right) 48^{\circ}\left(\right.$ or $S H_{\max }=073^{\circ}$); and coefficient of friction) values as follows: $(\mathbf{a}, \mathbf{b}, \mathbf{c}) \mu=0.4,(\mathbf{b}, \mathbf{e}, \mathbf{h}) \mu=$ 0.5 , and (c, f, i) $\mu=0.8$.

Figure S10. 1944 Mw 5.8 Cornwall-Massena Earthquake nodal plane 2 Coulomb stress change maps. Coulomb stress changes for the NEdipping source fault plane (strike $=313^{\circ}$, dip $=70^{\circ}$, rake $=52^{\circ}$), as seen in map view ($20-\mathrm{km}$-depth slice). The sensitivity of stress change distributions was tested using the following receiver fault rake values (or maximum horizontal stress azimuths) as follows: (a, d, g) 85° (or Shmax $=$ 028°), (b, e, h) 67° or $S H_{\max }=045^{\circ}$, and (c, f, i) 48° (or $S H_{\max }=073^{\circ}$); and coefficient of friction) values as follows: (a, b, c) $\mu=0.4,(\mathbf{b}, \mathbf{e}, \mathbf{h}) \mu=$ 0.5 , and ($\mathbf{c}, \mathbf{f}, \mathbf{i}) \mu=0.8$.

Figure S11. 1944 Mw 5.8 Cornwall-Massena Earthquake nodal plane 1 Coulomb stress change cross-sections. Coulomb stress changes for the NW-dipping source fault plane (strike $=199^{\circ}$, dip $=42^{\circ}$, rake $=149^{\circ}$), as seen in cross-sectional view. The sensitivity of stress change distributions was tested using the following receiver fault rake values (or maximum horizontal stress azimuths) as follows: ($\mathbf{a}, \mathbf{d}, \mathbf{g}$) 85° (or $\mathbf{S}_{H m a x}=$ 028°), (b, e, $\left.\mathbf{h}\right) 67^{\circ}\left(\right.$ or $\left.S H_{\max }=045^{\circ}\right)$, and $(\mathbf{c}, \mathbf{f}, \mathbf{i}) 48^{\circ}\left(\right.$ or $\left.S H_{\max }=073^{\circ}\right)$; and coefficient of friction) values as follows: $(\mathbf{a}, \mathbf{b}, \mathbf{c}) \mu=0.4,(\mathbf{b}, \mathbf{e}, \mathbf{h}) \mu=$ 0.5 , and (c, f, i) $\mu=0.8$.

Figure S12. 1944 Mw 5.8 Cornwall-Massena Earthquake nodal plane 2 Coulomb stress change cross-sections. Coulomb stress changes for the NE-dipping source fault plane (strike $=313^{\circ}$, dip $=70^{\circ}$, rake $=52^{\circ}$), as seen in cross-sectional view. The sensitivity of stress change distributions was tested using the following receiver fault rake values (or maximum horizontal stress azimuths) as follows: ($\mathbf{a}, \mathbf{d}, \mathbf{g}$) 85° (or $\mathrm{S}_{\mathrm{Hmax}}=$ 028°), (b, e, h) 67° or $S H_{\max }=045^{\circ}$, and ($\left.\mathbf{c}, \mathbf{f}, \mathbf{i}\right) 48^{\circ}\left(\right.$ or $\left.S H_{\max }=073^{\circ}\right)$; and coefficient of friction) values as follows: $(\mathbf{a}, \mathbf{b}, \mathbf{c}) \mu=0.4,(\mathbf{b}, \mathbf{e}, \mathbf{h}) \mu=$ 0.5 , and (c, f, i) $\mu=0.8$.

Figure S13. 1944 Mw 5.8 Cornwall-Massena Earthquake nodal plane 1 Coulomb stress change on receiver faults. Coulomb stress changes for the NW-dipping source fault plane (strike $=199^{\circ}$, dip $=42^{\circ}$, rake $=149^{\circ}$), as seen on the receiver fault plane. The sensitivity of stress change distributions was tested using the following receiver fault rake values (or maximum horizontal stress azimuths) as follows: ($\mathbf{a}, \mathbf{d}, \mathbf{g}$) 85° (or $\mathrm{S}_{\mathrm{Hmax}}=$ $\left.028^{\circ}\right),(\mathbf{b}, \mathbf{e}, \mathbf{h}) 67^{\circ}\left(\right.$ or $\left.S H_{\max }=045^{\circ}\right)$, and ($\left.\mathbf{c}, \mathbf{f}, \mathbf{i}\right) 48^{\circ}\left(\right.$ or $\left.S H_{\max }=073^{\circ}\right)$; and coefficient of friction) values as follows: $(\mathbf{a}, \mathbf{b}, \mathbf{c}) \mu=0.4,(\mathbf{b}, \mathbf{e}, \mathbf{h}) \mu=$ 0.5 , and ($\mathbf{c}, \mathbf{f}, \mathbf{i}$) $\mu=0.8$.

Figure S14. 1944 Mw 5.8 Cornwall-Massena Earthquake nodal plane 2 Coulomb Coulomb stress change on receiver faults. Coulomb stress changes for the NE-dipping source fault plane (strike $=313^{\circ}$, dip $=70^{\circ}$, rake $=52^{\circ}$), as seen on the receiver fault plane. The sensitivity of stress change distributions was tested using the following receiver fault rake values (or maximum horizontal stress azimuths) as follows: (a, d, \mathbf{g}) $85^{\circ}\left(\right.$ or $\left.S_{H \max }=028^{\circ}\right)$, (b, e, h) 67° or $\mathrm{SH}_{\max }=045^{\circ}$, and (c,f,i) 48° (or $\mathrm{SH}_{\max }=073^{\circ}$); and coefficient of friction) values as follows: ($\mathbf{a}, \mathbf{b}, \mathbf{c}$) $\mu=$ $0.4,(\mathbf{b}, \mathbf{e}, \mathbf{h}) \mu=0.5$, and (c, f, i) $\mu=0.8$.

Figure S15. 1944 Mw 5.8 Cornwall-Massena Earthquake Coulomb stress changes for receiver fault 'RF-C2.' Map-view (20-km depth slice) ($\mathbf{a \& d}$), cross-sectional view (b\&e), and receiver fault plane view (c\&f) of the Coulomb stress changes for the NW-dipping (a-c) and NE-dipping (df) source fault planes (nodal planes 1 and 2, respectively; Table 1). All calculations assumed a coefficient of friction (μ) of 0.5 and a receiver fault plane rake of 67°, based on a maximum horizontal stress value $\left(\mathrm{SH}_{\max }\right)$ of 45°.

Figure S16. $1944 M_{w}$ 5.8 Cornwall-Massena Earthquake Coulomb stress changes for receiver fault 'RF-C3.' Map-view (20-km depth slice) ($\mathbf{a} \& \mathbf{d}$), cross-sectional view (b\&e), and receiver fault plane view (c\&f) of the Coulomb stress changes for the NW-dipping (a-c) and NE-dipping (df) source fault planes (nodal planes 1 and 2, respectively; Table 1). All calculations assumed a coefficient of friction (μ) of 0.5 and a receiver fault plane rake of 67°, based on a maximum horizontal stress value $\left(\mathrm{SH}_{\max }\right)$ of 45°.

Figure S17. 2013 Mw 4.7 Ladysmith Earthquake nodal plane 1 Coulomb stress change maps. Coulomb stress changes for the NE-dipping source fault plane (strike $=306^{\circ}$, dip $=41^{\circ}$, rake $=94^{\circ}$), as seen in map view (14-km-depth slice). The sensitivity of stress change distributions was tested using the following receiver fault rake values (or maximum horizontal stress azimuths) as follows: (a, d, g) 91° (or $\mathbf{S}_{\mathrm{Hmax}}=028^{\circ}$), ($\mathbf{b}, \mathbf{e}, \mathbf{h}$) $72^{\circ}\left(\right.$ or $\left.S H_{\max }=045^{\circ}\right)$, and $(\mathbf{c}, \mathbf{f}, \mathbf{i}) 50^{\circ}\left(\right.$ or $\left.S H_{\max }=073^{\circ}\right)$; and coefficient of friction) values as follows: $(\mathbf{a}, \mathbf{b}, \mathbf{c}) \mu=0.4,(\mathbf{b}, \mathbf{e}, \mathbf{h}) \mu=0.5$, and $(\mathbf{c}, \mathbf{f}$, i) $\mu=0.8$.

Figure S18. 2013 Mw 4.7 Ladysmith Earthquake nodal plane 2 Coulomb stress change maps. Coulomb stress changes for the SW-dipping source fault plane (strike $=122^{\circ}$, dip $=50^{\circ}$, rake $=87^{\circ}$), as seen in map view (14-km-depth slice). The sensitivity of stress change distributions was tested using the following receiver fault rake values (or maximum horizontal stress azimuths) as follows: ($\mathbf{a}, \mathbf{d}, \mathbf{g}$) 91° (or $\mathbf{S H m a x}^{\left(=028^{\circ}\right),(\mathbf{b}, \mathbf{e}, \mathbf{h})}$ $72^{\circ}\left(\right.$ or $\left.\mathrm{SH}_{\max }=045^{\circ}\right)$, and $(\mathbf{c}, \mathbf{f}, \mathbf{i}) 50^{\circ}\left(\right.$ or $\left.S H_{\max }=073^{\circ}\right)$; and coefficient of friction) values as follows: $(\mathbf{a}, \mathbf{b}, \mathbf{c}) \mu=0.4,(\mathbf{b}, \mathbf{e}, \mathbf{h}) \mu=0.5$, and $(\mathbf{c}, \mathbf{f}$, i) $\mu=0.8$.

Figure S19. 2013 Mw 4.7 Ladysmith Earthquake nodal plane 1 Coulomb stress stress change cross-sections. Coulomb stress changes for the NE-dipping source fault plane (strike $=306^{\circ}$, dip $=41^{\circ}$, rake $=94^{\circ}$), as seen in cross-sectional view. The sensitivity of stress change distributions was tested using the following receiver fault rake values (or maximum horizontal stress azimuths) as follows: $(\mathbf{a}, \mathbf{d}, \mathbf{g}) 91^{\circ}$ (or $\mathbf{S H}_{H} \mathbf{m a x}=$ 028°), (b, e, h) $72^{\circ}\left(\right.$ or $\left.S H_{\max }=045^{\circ}\right)$, and ($\left.\mathbf{c}, \mathbf{f}, \mathbf{i}\right) 50^{\circ}\left(\right.$ or $\left.S H_{\max }=073^{\circ}\right)$; and coefficient of friction) values as follows: $(\mathbf{a}, \mathbf{b}, \mathbf{c}) \mu=0.4,(\mathbf{b}, \mathbf{e}, \mathbf{h}) \mu=$ 0.5 , and (c, f, i) $\mu=0.8$.

Figure S20. $2013 M_{w}$ 4.7 Ladysmith Earthquake nodal plane 2 Coulomb stress change cross-sections. Coulomb stress changes for the SW-dipping source fault plane (strike $=122^{\circ}$, dip $=50^{\circ}$, rake $=87^{\circ}$), as seen in cross-sectional view. The sensitivity of stress change distributions was tested using the following receiver fault rake values (or maximum horizontal stress azimuths) as follows: ($\mathbf{a}, \mathbf{d}, \mathbf{g}$) 91° (or $\mathbf{S H m a x}^{\mathrm{F}}=028^{\circ}$), (\mathbf{b}, \mathbf{e}, h) 72° (or $\mathrm{SH}_{\max }=045^{\circ}$), and ($\left.\mathbf{c}, \mathbf{f}, \mathrm{i}\right) 50^{\circ}$ (or $S H_{\max }=073^{\circ}$); and coefficient of friction) values as follows: ($\mathbf{a}, \mathbf{b}, \mathbf{c}$) $\mu=0.4,(\mathbf{b}, \mathbf{e}, \mathbf{h}) \mu=0.5$, and (c, f, i) $\mu=0.8$.

