Supplementary Information for

Coseismic Coulomb Stress Changes on Intraplate Faults in the Western Quebec Seismic Zone, Canada: Implications for Seismic Hazards

Jeremy M. Rimando¹, Alexander L. Peace¹, Katsuichiro Goda², Navid Sirous², Philippe Rosset³, Luc Chouinard³

¹School of Earth, Environment & Society, McMaster University, 1280 Main Street W., Hamilton, ON, L8S 4K1, Canada

²Department of Earth Sciences, Western University, 1151 Richmond Street N., London, ON, N6A 5B7, Canada

³Department of Civil Engineering, McGill University, 817 Sherbrooke St W., Montreal, QC H3A 0C3, Canada

Contents of this file Figures S1 to S20

Figure S1. 1935 M_w 6.1 Temiscaming Earthquake nodal plane 1 Coulomb stress change maps. Coulomb stress changes for the SW-dipping source fault plane (strike = 130°, dip = 45°, rake = 80°), as seen in map view (10-km-depth slice). The sensitivity of stress change distributions was tested using the following receiver fault rake values (or maximum horizontal stress azimuths) as follows: (**a**, **d**, **g**) 121° (or S_{Hmax} = 028°), (**b**, **e**, **h**) 104° (or SH_{max} = 045°), and (**c**, **f**, **i**) 72° (or SH_{max} = 073°); and coefficient of friction) values as follows: (**a**, **b**, **c**) μ = 0.4, (**b**, **e**, **h**) μ = 0.5, and (**c**, **f**, **i**) μ = 0.8.

Figure S2. 1935 M_W 6.1 Temiscaming Earthquake nodal plane 2 Coulomb stress change maps. Coulomb stress changes for the NE-dipping source fault plane (strike = 324°, dip = 46°, rake = 100°), as seen in map view (10-km-depth slice). The sensitivity of stress change distributions was tested using the following receiver fault rake values (or maximum horizontal stress azimuths) as follows: (**a**, **d**, **g**) 121° (or S_{Hmax} = 028°), (**b**, **e**, **h**) 104° (or SH_{max} = 045°), and (**c**, **f**, **i**) 72° (or SH_{max} = 073°); and coefficient of friction) values as follows: (**a**, **b**, **c**) μ = 0.4, (**b**, **e**, **h**) μ = 0.5, and (**c**, **f**, **i**) μ = 0.8.

Figure S3. 1935 M_W 6.1 Temiscaming Earthquake nodal plane 1 Coulomb stress change cross-sections. Coulomb stress changes for the SW-dipping source fault plane (strike = 130°, dip = 45°, rake = 80°), as seen in cross-sectional view. The sensitivity of stress change distributions was tested using the following receiver fault rake values (or maximum horizontal stress azimuths) as follows: (**a**, **d**, **g**) 121° (or S_{Hmax} = 028°), (**b**, **e**, **h**) 104° (or SH_{max} = 045°), and (**c**, **f**, **i**) 72° (or SH_{max} = 073°); and coefficient of friction) values as follows: (**a**, **b**, **c**) μ = 0.4, (**b**, **e**, **h**) μ = 0.5, and (**c**, **f**, **i**) μ = 0.8

Figure S4. 1935 M_w 6.1 Temiscaming Earthquake nodal plane 2 Coulomb stress change cross-sections. Coulomb stress changes for the NE-dipping source fault plane (strike = 324°, dip = 46°, rake = 100°), as seen in cross-sectional view. The sensitivity of stress change distributions was tested using the following receiver fault rake values (or maximum horizontal stress azimuths) as follows: (**a**, **d**, **g**) 121° (or S_{Hmax} = 028°), (**b**, **e**, **h**) 104° (or SH_{max} = 045°), and (**c**, **f**, **i**) 72° (or SH_{max} = 073°); and coefficient of friction) values as follows: (**a**, **b**, **c**) μ = 0.4, (**b**, **e**, **h**) μ = 0.5, and (**c**, **f**, **i**) μ = 0.8.

Figure S5. 1935 M_w 6.1 Temiscaming Earthquake nodal plane 1 Coulomb stress change on receiver faults. Coulomb stress changes for the SW-dipping source fault plane (strike = 130°, dip = 45°, rake = 80°), as seen on the receiver fault plane. The sensitivity of stress change distributions was tested using the following receiver fault rake values (or maximum horizontal stress azimuths) as follows: (**a**, **d**, **g**) 121° (or S_{Hmax} = 028°), (**b**, **e**, **h**) 104° (or SH_{max} = 045°), and (**c**, **f**, **i**) 72° (or SH_{max} = 073°); and coefficient of friction) values as follows: (**a**, **b**, **c**) μ = 0.4, (**b**, **e**, **h**) μ = 0.5, and (**c**, **f**, **i**) μ = 0.8.

Figure S6. 1935 M_w 6.1 Temiscaming Earthquake nodal plane 2 Coulomb stress change on receiver faults. Coulomb stress changes for the NE-dipping source fault plane (strike = 324°, dip = 46°, rake = 100°), as seen on the receiver fault plane. The sensitivity of stress change distributions was tested using the following receiver fault rake values (or maximum horizontal stress azimuths) as follows: (**a**, **d**, **g**) 121° (or S_{Hmax} = 028°), (**b**, **e**, **h**) 104° (or SH_{max} = 045°), and (**c**, **f**, **i**) 72° (or SH_{max} = 073°); and coefficient of friction) values as follows: (**a**, **b**, **c**) μ = 0.4, (**b**, **e**, **h**) μ = 0.5, and (**c**, **f**, **i**) μ = 0.8.

Figure S7. 1935 M_W 6.1 Temiscaming Earthquake nodal plane 1 receiver fault dip sensitivity test. Coulomb stress changes for the SW-dipping source fault plane (strike = 130, dip = 45, rake = 80), as seen in map view at 10-km-depth (a, d, g), in cross-section (b, e, h), and as projected on the receiver fault plane (c, f, i). The sensitivity of stress change distributions to receiver fault plane dip was tested using the following values: 45 ° (a, b, c), 60 ° (d, e, f), and 75 ° (r, h, i). All calculations assumed a coefficient of friction (μ) of 0.5 and a receiver fault plane rake based on a maximum horizontal stress value of 45°.

Figure S8. 1935 M_W **6.1 Temiscaming Earthquake nodal plane 2 receiver fault dip sensitivity test**. Coulomb stress changes for the NEdipping source fault plane (strike = 324, dip = 46, rake = 100), as seen in map view at 10-km-depth (**a**, **d**, **g**), in cross-section (**b**, **e**, **h**), and as projected on the receiver fault plane (**c**, **f**, **i**). The sensitivity of stress change distributions to receiver fault plane dip was tested using the following values: 45 ° (**a**, **b**, **c**), 60 ° (**d**, **e**, **f**), and 75 ° (**r**, **h**, **i**). All calculations assumed a coefficient of friction (μ) of 0.5 and a receiver fault plane rake based on a maximum horizontal stress value of 45°.

Figure S9. 1944 M_W **5.8 Cornwall-Massena Earthquake nodal plane 1 Coulomb stress change maps.** Coulomb stress changes for the NW-dipping source fault plane (strike = 199°, dip = 42°, rake = 149°), as seen in map view (20-km-depth slice). The sensitivity of stress change distributions was tested using the following receiver fault rake values (or maximum horizontal stress azimuths) as follows: (a, d, g) 85° (or S_{Hmax} = 028°), (**b, e, h**) 67° (or SH_{max} = 045°), and (**c, f, i**) 48° (or SH_{max} = 073°); and coefficient of friction) values as follows: (**a, b, c**) μ = 0.4, (**b, e, h**) μ = 0.5, and (**c, f, i**) μ = 0.8.

Figure S10. 1944 M_W 5.8 Cornwall-Massena Earthquake nodal plane 2 Coulomb stress change maps. Coulomb stress changes for the NEdipping source fault plane (strike = 313°, dip = 70°, rake = 52°), as seen in map view (20-km-depth slice). The sensitivity of stress change distributions was tested using the following receiver fault rake values (or maximum horizontal stress azimuths) as follows: (**a**, **d**, **g**) 85° (or S_{Hmax} = 028°), (**b**, **e**, **h**) 67° or SH_{max} = 045°, and (**c**, **f**, **i**) 48° (or SH_{max} = 073°); and coefficient of friction) values as follows: (**a**, **b**, **c**) μ = 0.4, (**b**, **e**, **h**) μ = 0.5, and (**c**, **f**, **i**) μ = 0.8.

Figure S11. 1944 M_W 5.8 Cornwall-Massena Earthquake nodal plane 1 Coulomb stress change cross-sections. Coulomb stress changes for the NW-dipping source fault plane (strike = 199°, dip = 42°, rake = 149°), as seen in cross-sectional view. The sensitivity of stress change distributions was tested using the following receiver fault rake values (or maximum horizontal stress azimuths) as follows: (**a**, **d**, **g**) 85° (or S_{Hmax} = 028°), (**b**, **e**, **h**) 67° (or SH_{max} = 045°), and (**c**, **f**, **i**) 48° (or SH_{max} = 073°); and coefficient of friction) values as follows: (**a**, **b**, **c**) μ = 0.4, (**b**, **e**, **h**) μ = 0.5, and (**c**, **f**, **i**) μ = 0.8.

Figure S12. 1944 M_W 5.8 Cornwall-Massena Earthquake nodal plane 2 Coulomb stress change cross-sections. Coulomb stress changes for the NE-dipping source fault plane (strike = 313°, dip = 70°, rake = 52°), as seen in cross-sectional view. The sensitivity of stress change distributions was tested using the following receiver fault rake values (or maximum horizontal stress azimuths) as follows: (**a**, **d**, **g**) 85° (or S_{Hmax} = 028°), (**b**, **e**, **h**) 67° or SH_{max} = 045°, and (**c**, **f**, **i**) 48° (or SH_{max} = 073°); and coefficient of friction) values as follows: (**a**, **b**, **c**) μ = 0.4, (**b**, **e**, **h**) μ = 0.5, and (**c**, **f**, **i**) μ = 0.8.

Figure S13. 1944 M_W 5.8 Cornwall-Massena Earthquake nodal plane 1 Coulomb stress change on receiver faults. Coulomb stress changes for the NW-dipping source fault plane (strike = 199°, dip = 42°, rake = 149°), as seen on the receiver fault plane. The sensitivity of stress change distributions was tested using the following receiver fault rake values (or maximum horizontal stress azimuths) as follows: (**a**, **d**, **g**) 85° (or S_{Hmax} = 028°), (**b**, **e**, **h**) 67° (or SH_{max} = 045°), and (**c**, **f**, **i**) 48° (or SH_{max} = 073°); and coefficient of friction) values as follows: (**a**, **b**, **c**) μ = 0.4, (**b**, **e**, **h**) μ = 0.5, and (**c**, **f**, **i**) μ = 0.8.

Figure S14. 1944 M_W 5.8 Cornwall-Massena Earthquake nodal plane 2 Coulomb Coulomb stress change on receiver faults. Coulomb stress changes for the NE-dipping source fault plane (strike = 313°, dip = 70°, rake = 52°), as seen on the receiver fault plane. The sensitivity of stress change distributions was tested using the following receiver fault rake values (or maximum horizontal stress azimuths) as follows: (**a**, **d**, **g**) 85° (or S_{Hmax} = 028°), (**b**, **e**, **h**) 67° or SH_{max} = 045°, and (**c**, **f**, **i**) 48° (or SH_{max} = 073°); and coefficient of friction) values as follows: (**a**, **b**, **c**) μ = 0.4, (**b**, **e**, **h**) μ = 0.5, and (**c**, **f**, **i**) μ = 0.8.

Figure S15. 1944 M_W 5.8 Cornwall-Massena Earthquake Coulomb stress changes for receiver fault 'RF-C2.' Map-view (20-km depth slice) (a&d), cross-sectional view (b&e), and receiver fault plane view (c&f) of the Coulomb stress changes for the NW-dipping (a- c) and NE-dipping (d-f) source fault planes (nodal planes 1 and 2, respectively; Table 1). All calculations assumed a coefficient of friction (μ) of 0.5 and a receiver fault plane rake of 67°, based on a maximum horizontal stress value (SH_{max}) of 45°.

Figure S16. 1944 M_W 5.8 Cornwall-Massena Earthquake Coulomb stress changes for receiver fault 'RF-C3.' Map-view (20-km depth slice) (a&d), cross-sectional view (b&e), and receiver fault plane view (c&f) of the Coulomb stress changes for the NW-dipping (a- c) and NE-dipping (d-f) source fault planes (nodal planes 1 and 2, respectively; Table 1). All calculations assumed a coefficient of friction (μ) of 0.5 and a receiver fault plane rake of 67°, based on a maximum horizontal stress value (SH_{max}) of 45°.

Figure S17. 2013 M_W 4.7 Ladysmith Earthquake nodal plane 1 Coulomb stress change maps. Coulomb stress changes for the NE-dipping source fault plane (strike = 306°, dip = 41°, rake = 94°), as seen in map view (14-km-depth slice). The sensitivity of stress change distributions was tested using the following receiver fault rake values (or maximum horizontal stress azimuths) as follows: (**a**, **d**, **g**) 91° (or S_{Hmax} = 028°), (**b**, **e**, **h**) 72° (or SH_{max} = 045°), and (**c**, **f**, **i**) 50° (or SH_{max} = 073°); and coefficient of friction) values as follows: (**a**, **b**, **c**) μ = 0.4, (**b**, **e**, **h**) μ = 0.5, and (**c**, **f**, **i**) μ = 0.8.

Figure S18. 2013 M_W 4.7 Ladysmith Earthquake nodal plane 2 Coulomb stress change maps. Coulomb stress changes for the SW-dipping source fault plane (strike = 122°, dip = 50°, rake = 87°), as seen in map view (14-km-depth slice). The sensitivity of stress change distributions was tested using the following receiver fault rake values (or maximum horizontal stress azimuths) as follows: (**a**, **d**, **g**) 91° (or S_{Hmax} = 028°), (**b**, **e**, **h**) 72° (or SH_{max} = 045°), and (**c**, **f**, **i**) 50° (or SH_{max} = 073°); and coefficient of friction) values as follows: (**a**, **b**, **c**) μ = 0.4, (**b**, **e**, **h**) μ = 0.5, and (**c**, **f**, **i**) μ = 0.8.

Figure S19. 2013 M_W 4.7 Ladysmith Earthquake nodal plane 1 Coulomb stress stress change cross-sections. Coulomb stress changes for the NE-dipping source fault plane (strike = 306°, dip = 41°, rake = 94°), as seen in cross-sectional view. The sensitivity of stress change distributions was tested using the following receiver fault rake values (or maximum horizontal stress azimuths) as follows: (**a**, **d**, **g**) 91° (or S_{Hmax} = 028°), (**b**, **e**, **h**) 72° (or SH_{max} = 045°), and (**c**, **f**, **i**) 50° (or SH_{max} = 073°); and coefficient of friction) values as follows: (**a**, **b**, **c**) μ = 0.4, (**b**, **e**, **h**) μ = 0.5, and (**c**, **f**, **i**) μ = 0.8.

Figure S20. 2013 M_w 4.7 Ladysmith Earthquake nodal plane 2 Coulomb stress change cross-sections. Coulomb stress changes for the SW-dipping source fault plane (strike = 122°, dip = 50°, rake = 87°), as seen in cross-sectional view. The sensitivity of stress change distributions was tested using the following receiver fault rake values (or maximum horizontal stress azimuths) as follows: (**a**, **d**, **g**) 91° (or S_{Hmax} = 028°), (**b**, **e**, **h**) 72° (or SH_{max} = 045°), and (**c**, **f**, **i**) 50° (or SH_{max} = 073°); and coefficient of friction) values as follows: (**a**, **b**, **c**) μ = 0.4, (**b**, **e**, **h**) μ = 0.5, and (**c**, **f**, **i**) μ = 0.8.