

MAIN GENERAL ASSEMBLY 2022

DeDNAed: cluster decorated recognition elements on DNA origami for enhanced raman spectroscopic detection methods

M.Janßen^{1,2,4}, J. Hann^{1,2,4}, A. Morschhauser^{1,2,3,4}, S. Hartmann², D. Reuter², T. Otto^{1,2,3,4}

- ¹TU Chemnitz, Institute of Opto Electronic Systems
- ²TU Chemnitz, Centre for Microtechnologies
- ³Fraunhofer ENAS, Technologie-Campus 3, 09126 Chemnitz, Germany
- ⁴TU Chemnitz, Research Center for Materials, Architectures and Integration of Nanomembranes, Rosenbergstr. 6, 09126 Chemnitz, Germany *Corresponding author: Julia Hann (phone 0371/531-34156, E-Mail: <julia.hann@zfm.tu-chemnitz.de)

Concept:

- DNA Origami represent a new and simple method for selfassembly of 2D- and 3D-structures
- DNA Origami offer a native resolution of approx. 5,2 nm for the decoration with functional elements (nanoparticles, sensing elements, etc.)
- In this project DNA Origami is used as a nanobreadboard to integrate a biological recognition element in the center of an array of gold nanoparticles for surface enhanced raman spectroscopy

Methods:

- Immobilization of DNA Origami for characterization and formation of meta-structures
- bond-resistant layers and bond-attractive structures for the Origami deposition were created using chemical vapor deposition and lithography
- Plasma- and chemical activation of the wafers to favor immobilization at bond-attractive sites

Folding Polding DNA Origami Scaffold Staples

Figure 1: Visualization of the DNA Origami folding mechanism during the self-assembly

Figure 2: Conceptional picture of the DNA Origami sensor approach

Results:

- Heterogenous self-assembly of the DNA-Origami
- Selective immobilization of DNA Origami on the Wafers
- Comparison of different activation methods and surface modifications for the selective immobilization of DNA Origami

Outlook:

- Functionalization of the DNA-Origami
- Single occupancy of DNA Origami in bond-attractive structures
- SERS measurement of functionalized Origami
- Integration into a microfluidic device for use in a PoC scenario

Figure 3: Schematic of the surface functionalization of the SiO₂ Wafers prior to Origami deposition

Figure 4: SEM-Image of the Array structure on SiO₂-Wafer

Figure 5: DNA-Origami selectively immobilized in an array on SiO₂-Wafer

Acknowledgement: DeDNAed has received funding from the European Union's Horizon 2020 Research & Innovation Programme under grant agreement no 964248

