MAIN GENERAL ASSEMBLY 2022 # DeDNAed: cluster decorated recognition elements on DNA origami for enhanced raman spectroscopic detection methods M.Janßen^{1,2,4}, J. Hann^{1,2,4}, A. Morschhauser^{1,2,3,4}, S. Hartmann², D. Reuter², T. Otto^{1,2,3,4} - ¹TU Chemnitz, Institute of Opto Electronic Systems - ²TU Chemnitz, Centre for Microtechnologies - ³Fraunhofer ENAS, Technologie-Campus 3, 09126 Chemnitz, Germany - ⁴TU Chemnitz, Research Center for Materials, Architectures and Integration of Nanomembranes, Rosenbergstr. 6, 09126 Chemnitz, Germany *Corresponding author: Julia Hann (phone 0371/531-34156, E-Mail: <julia.hann@zfm.tu-chemnitz.de) ## **Concept:** - DNA Origami represent a new and simple method for selfassembly of 2D- and 3D-structures - DNA Origami offer a native resolution of approx. 5,2 nm for the decoration with functional elements (nanoparticles, sensing elements, etc.) - In this project DNA Origami is used as a nanobreadboard to integrate a biological recognition element in the center of an array of gold nanoparticles for surface enhanced raman spectroscopy ### Methods: - Immobilization of DNA Origami for characterization and formation of meta-structures - bond-resistant layers and bond-attractive structures for the Origami deposition were created using chemical vapor deposition and lithography - Plasma- and chemical activation of the wafers to favor immobilization at bond-attractive sites # Folding Polding DNA Origami Scaffold Staples Figure 1: Visualization of the DNA Origami folding mechanism during the self-assembly Figure 2: Conceptional picture of the DNA Origami sensor approach ### Results: - Heterogenous self-assembly of the DNA-Origami - Selective immobilization of DNA Origami on the Wafers - Comparison of different activation methods and surface modifications for the selective immobilization of DNA Origami ### Outlook: - Functionalization of the DNA-Origami - Single occupancy of DNA Origami in bond-attractive structures - SERS measurement of functionalized Origami - Integration into a microfluidic device for use in a PoC scenario Figure 3: Schematic of the surface functionalization of the SiO₂ Wafers prior to Origami deposition Figure 4: SEM-Image of the Array structure on SiO₂-Wafer Figure 5: DNA-Origami selectively immobilized in an array on SiO₂-Wafer Acknowledgement: DeDNAed has received funding from the European Union's Horizon 2020 Research & Innovation Programme under grant agreement no 964248