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1.- INTRODUCTION

This document provides an overview of the vast landscape of AI/ML frameworks. It
identifies the most relevant open-source developments in the area of ML model training
and inference and, in particular, those that cover the lifecycle of AI model management.
The focus is set on MLOps frameworks, which provides an extension of the DevOps
methodology to develop, train, and deploy ML models via automated procedures that
encompass both software, data, security and infrastructure. This study is key for the
AI4EOSC project, as it provides a guide for future research and improves the
decision-making regarding the design and implementation of the platform architecture.
By gaining a deeper understanding of the current state of the field, WP3, WP4 and WP5,
can make more conscious decisions. Moreover, the study can also help WP6
understand the current state of the field of MLOps frameworks and facilitate the task of
implementing and tuning up their applications to take advantage of the AI/ML
ecosystem. Thus, the aim of this document is not to select the proper AI/ML
technologies to implement in the project’s solution, but to provide an overview of the
tools and frameworks available in the field.

The document also introduces the platform requirements specification, together with
the methodology designed for requirements gathering, inspired by the Dynamic System
Development Method (DSDM) Agile Project Framework, which is based on use cases
definition and the identification of Personas, Epics, User Stories and Requirements.
This is key for the actions made in WP6, which has performed the actual requirements
collection following the methodology proposed and described in this document.

1.1.- SCOPE OF THE DOCUMENT
The aim of the AI4EOSC “Artificial Intelligence for the European Open Science Cloud” is
to deliver an enhanced set services for the development of AI, ML and DL models and
applications in the EOSC. The services will make use of advanced features such as
distributed, federated and split learning; provenance metadata; event-driven data
processing services or provisioning of AI/ML/DL services based on serverless
computing. The vision of the AI4EOSC project is to increase the service offer in the EU
landscape by expanding the European Open Science Cloud (EOSC) ecosystem to
support the effective utilization of state of the art AI techniques by the research
community [Alzubaidi2021, Dong2021, Dargan2020]. To this aim, this document
summarises the results of a technology scouting procedure to identify the state of the
art concerning AL/ML frameworks. It also includes an initial platform requirements
specification, identifying the methodology employed for requirements gathering. The
actual requirements are included in deliverable D6.1 “Analysis of user applications,
collection of requirements” which is due on month 6, alongside this document.
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1.2.- TARGET AUDIENCE
The “State of the art landscaping and initial platform requirements specification” is to
be publicly released. The target audience comprises both the technical partners
involved in WP4 and WP5 together with use case owners in WP6. It also aims at
external AI practitioners interested in a digested summary of the state-of-the-art on
AI/ML frameworks.

1.3.- STATE OF THE ART AI LANDSCAPING IN THE RECENT YEARS

According to Matt Turck [MTu2022], the year 2020 was the year of resilience and
vibrancy, especially in the context of the worldwide coronavirus pandemic [MTu2020].
The spectacular effect of the lock-down and online communication made the two years
of digital transformation happen in two months. Cloud and data technologies such as
data infrastructure, machine learning (ML) and Artificial Intelligence (AI) as well as data
driven applications are at the heart of digital transformation. As a result, many
companies in the data ecosystem have not just survived, but to the contrary they have
thrived in an otherwise overall challenging political and economic context. Examples of
such companies are Snowflake, a data warehouse provider, Palantir, a data analytics
platform, Datadog and many more. This evolution is a trend that started ten years ago,
and continues to bloom intensively in the next incoming decades. The evolution is
formed based on the wide landscape and “state of the union” of the data and AI
ecosystem.

The need for data quality solutions for AI and ML leads to the modern data stack
(building all sorts of data pipelines) becoming mainstream as one of the key trends in
data and AI infrastructure. The technology transition shift was from the Hadoop
ecosystem to Cloud technology services like Kubernetes with data governance,
cataloguing, and lineage. The big shift in this direction has been the enormous
scalability and elasticity of Cloud computing and services as well as Cloud data
warehouses (for example, Amazon Redshift, Snowflake, Google BigQuery, Microsoft
Synapse companies) with the rise of an AI-specific infrastructure data stack such as
DataOps, MLOps and AIOps [AI-Infra2022]. Overall, data governance continues to be a
key requirement for enterprises, whether across the modern data stacks or ML
pipelines. Orchestration engines are evolving. Beyond early entrants like Airflow and
Luigi, a second generation of engines has emerged such as Prefect and Metaflow as
well as other ML lifecycle management engines. Those products are open source
workflow management systems, using high level languages (Python) and designed for
modern infrastructures that create abstractions to enable automated data processing
such as job scheduling and visualise data flows through directed acyclic graphs
(DAGs). Pipeline complexity (as well as other considerations, such as bias mitigation in
ML or even drift detection) also creates a huge need for MLOps and DataOps
solutions, in particular around data lineage (metadata search and discovery), to
understand the flow of data and monitor failure points. The main difference between
DataOps and MLOps is that DataOps improves the availability, accessibility, and
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integration of data, while MLOps aims to facilitate the deployment of ML models in
production environments.

The year 2021 and the year 2022 were busy years for MLOps and DataOps as well as
the rise of ModelOps as a subset of MLOps [MTu2021]. The fundamental trend is that
every company is becoming not just a software company, but also a data company.
While Big Data warehouse and data lake vendors are pushing their customers towards
centralizing all things on top of their platforms [GoogleUnifying2022], here is the
emerging push in data mesh with the decentralization general concept, i.e., different
teams are responsible for their own data products. Recently, ML models are getting
more deployed and embedded. Four years ago, it was unusual to find a company
already deploying models in production, and two years ago, it was unusual to find a
company with 50 models in production. Today, two independent surveys estimate that
1/3 of companies that use AI already have more than 50 models in production:
Algorithmia in 2021 said about 40%, and Arize in 2022 said 36% [VentureBeat2022].
On the one hand, it is time for real time MLOps accompanied with data and model
curation, together with drift detection, defined as the process of detecting a significant
change in the concept previously learned by a model or a change related to data
distributions [Cespedes2022]. During the development of ML/DL models, it is
imperative that metrics are continually stored and monitored. The reverse
Extract-Transform-Load (ETL) is more emphasised in the deployment context of AI/ML
models.

The art landscaping reflects the recent transition from focusing on modelling to the
underlying data used to train and evaluate models with the support from specialised
hardware for speeding up general purpose computation (GPU/TPU/FPGA). The
evolution is dynamic and involving in the context of the responsible development of
human-centric and trustworthy AI systems with the most notable document “European
Union Guideline on Ethics in Artificial Intelligence: Context and Implementation” as well
as other worldwide data regulation and protection laws [EUguidelines] [GDPR], [CCPA],
[APPI]. After 4 years of GDPR since 2018, there are two high contrasts: 1) the rise of
distributed data analytics using AI/ML with the need for cross-organization data
sharing and 2) the rise of data privacy protection and data security. First, in order to
address the problem of enabling collaboration between different organizations without
the need to share their raw data, several distributed ML architectures emerge. The most
prominent is federated learning (FL), which we will focus on in Section 2.2.2, but many
others are also on the rise, such as gossip or split learning. In terms of data privacy
protection, there are also numerous techniques that are increasingly used in real use
cases. Among them, in addition to the classic techniques focused on anonymizing
sensitive data (e.g. k-anonymity, l-diversity or t-closeness among many others),
differential privacy (DP) has experienced a great boom in recent years, and is present in
numerous applications as exposed in [OpenMinedDP]. These transitions are more
important and visible in the art landscaping more than ever, and this will continue to be
an innovation area over the next incoming years.
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1.4.- STRUCTURE OF THE DOCUMENT
After the introduction, this document includes four main sections:

● The “AI/ML Landscape of Frameworks and Tools” describes the approaches
from centralised learning to distributed learning, together with the evolution of
large-scale AI/ML frameworks and tools, including a summary of AI/ML
privacy-preserving tools.

● The “Landscape of AI/ML Lifecycle Management” introduces the MLOps
approach and its relationship with Cloud computing. It identifies the most
relevant MLOps frameworks and provides a tabular summary of the main
capabilities supported by these frameworks.

● The “Platform Requirements Specification” describes the methodology
employed for requirements gathering, inspired by the Agile Project Framework,
which is used as the basis for actual requirements gathered and described in
D6.1 “Analysis of user applications, collection of requirements”.
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2.- AI/ML LANDSCAPE OF FRAMEWORKS AND TOOLS

Recently, digitization and globalization have led companies and institutions of many
different kinds to collect a vast amount of data. This can range from industrial and
banking data to medical data. The large volume of information collected on a daily
basis requires thorough analysis in order to infer new knowledge or make predictions,
which has led to many advances in ML and DL techniques. However, the great value of
such information also implies an imperative need to ensure the security and privacy of
the analyzed data [Sainzpardo2023].

2.1 - CENTRALISED LEARNING
The main characteristic of the federation is cooperation between parties and it is also
applied to FL with AI/ML approaches. Classically, the ML process in many life areas
follows the Cross-Industry Standard Process for Data Mining cycle (CRISP-DM)
[Shearer2000], which consists of six steps:

1. business understanding,
2. data understanding,
3. data preparation,
4. modelling,
5. evaluation and
6. deployment.

The whole CRISP-DM cycle is repetitive. It can be divided into two groups as follows.

● The development phase is the group of the first five phases. It can be repeated
with different settings according to the evaluation results.

● The deployment phase is critical for real production under repetitive requisites;
it implies online evaluation, monitoring, model maintenance, diagnosis, and
retraining.

Currently, data science is an interdisciplinary field to extract knowledge and insights
from data to solve analytically complex business problems using AI/ML. The data
science process goes through exploratory, data preparation, model planning, model
building, communicating results, and operationalizing steps [Ngu2019]. The change in
data generation and data collection lead to changes in data processing, data modelling
as well as DevOps and MLOps operations.

The classic approach of applying ML to decentralised data (i.e. with several data
owners) in a centralised way consists of sending the data from each and every one of
the clients or data owners to a central server (Fig. 01), training the model that returns
the prediction, and then sending the prediction back to the corresponding client in each
case [Sainzpardo2023].
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Fig. 01 Diagram of the ML centralised approach [Sainzpardo2023]

2.2 - DISTRIBUTED LEARNING, FEDERATED LEARNING AND SPLIT LEARNING
From the data protection viewpoint, especially in the context of the European Union
(EU) General Data Protection Regulation (GDPR), businesses (and companies) should
collect the data they need but no more and companies have to promote transparency
and guard privacy for sensitive data protection and have the ability to react quickly and
professionally to data breaches [Ngu2022]. Here it is suitable to note that sensitive
(and usually distributed) data is not only personal data, which is protected under
various privacy and compliance regulators. Security information and business data are
also sensitive data, which have very similar protection requirements like personal data.

Fig. 02 Scheme of a federated learning (FL) approach [Sainzpardo2023]
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Privacy-preserving machine learning (PPML) techniques, such as distributed learning,
federated learning (FL), split learning (SL) or gossip learning (GL), aim to address siloed
and unstructured data including privacy and regulation of data sharing and incentive
models for data transparent ecosystems (Fig. 02).

2.2.1 Distributed Learning
The demand for AI has grown significantly over the past decade, and this growth has
been fueled by advances in ML techniques and the ability to leverage hardware
acceleration. However, to increase the quality of predictions and render ML solutions
feasible for more complex applications, a substantial amount of training data is
required. Due to the demand for processing training data, especially in the PPML
context, there is a need for distributing the ML workload across multiple sites, and
turning the centralised learning into a distributed learning. These distributed manners
present new challenges: the efficient parallelization of the training process across
(private) network(s) of machines and the creation of a coherent model
[Verbraeken2020].

In general, in order to produce robust data-driven learning systems, large amounts of
labelled data are required. This means that the data must be processed and labelled
with prior knowledge by domain experts before it is centralized in a single place for use
to build models with an acceptable level of accuracy. While in some cases this is not
difficult to achieve (e.g., datasets that are owned by a single entity) in other cases it is
difficult or impossible to obtain a good quality and sufficiently large dataset. This is the
case for distributed datasets that cannot be aggregated or merged in a single location,
due to a number of different reasons such as privacy concerns or even legal or ethical
issues. In this context, the concept of distributed learning (other words: distributed ML)
arises, and can be defined as ML/DL algorithms and systems designed to improve
performance, preserve privacy, and scale to more training data and larger models
[Mah2017], [Heg2019], [SuW2022], [Sainzpardo2023]. This approach is especially
useful when the nature of the data itself implies a decentralization thereof, such as in
the case of collaboration between different organizations, or in the case of data
distributed in different locations belonging to an ecosystem with limited connectivity so
that they can be centralized, for example in the case of IoT sensors.

2.2.2 Federated Learning
Federated learning (FL) is a collaborative and decentralised approach to ML, based on
the idea of data decentralisation. It was firstly introduced by McMahan in 2017
[Mah2017] and refers to a technique that allows to build data driven models exploiting
distributed data without the need to centrally store it (Fig. 02). The main idea in FL is
closely related to PPML [Dua2016], especially in the context of deep learning
[Shokri2015], [Verbraeken2020].

There are scenarios in which it is beneficial or even mandatory to isolate different
subsets of the training data from each other. The furthest extent of this is when a
model needs to be trained on datasets that each live on different machines or clusters
and may under no circumstance be co-located or even moved. Four different
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architectures can be proposed in addition to FL as an alternative to distributed ML
performed over different clients, without data communication between them, as
presented in [SuW2022] as follows.

● All-reduce architecture: it simply consists of removing the dependency on the
central server of the FL schema.

● Ring-all-reduce architecture: proposed as an alternative to the all-reduce
architecture in order to reduce bandwidth consumption, consists of setting up
the clients on a ring structure.

● Gossip Learning (GL) or gossip architecture is presented in [Heg2019]. This
configuration is a variation of FL in which no central server is required. Instead,
clients directly share their updates among them, and they can conditionally or
randomly choose which clients they will communicate with. In this approach the
aggregation takes place in a distributed manner.

● Neighbour architecture: similar to the gossip architecture, in this case each
client only communicates with its neighbours.

Another approach to training models in a privacy-sensitive context is the use of a
distributed ensemble model. This allows perfect separation of the training data
subsets, with the drawback that a method needs to be found that properly balances
each trained model’s output for an unbiased result. Parameter server–based systems
can be useful in the context of privacy, as the training of a model can be separated
from the training result. FL systems can be deployed where multiple parties jointly learn
an accurate DNN while keeping the data itself local and confidential.

2.2.3 Split Learning
Split Learning (SL) is distributed DL and inference without sharing raw data as
proposed by the MIT Media Lab's [SplitLearningMIT]. The intuitive idea of the simplest
SL configuration: each client trains a neural network up to a specific layer (cut layer).
The output at that layer is sent to the server (or another client, depending on the
configuration) which completes the training without seeing the raw data. This
completes a round of forward propagation. Gradients are back propagated from the
last layer to the cut layer. The gradients in the cut layer are sent back to the initial client.
The rest of the backpropagation is completed by the initial client.

2.2.4 Other Machine Learning paradigms and Composite AI
ML is an application in which algorithms can learn from experience without being
explicitly programmed. Like humans, machines can have different approaches to learn
the material. Those different approaches are called ML paradigms, and they present a
way how a computer learns from data. The three most well-known learning paradigms
are: supervised learning, unsupervised learning and reinforcement learning. The
boundaries between learning paradigms are also blurred in many shades. We can
briefly list more examples of ML paradigms: hybrid learning (semi-supervised learning,
weak-supervision learning, self-supervised learning, multi-instance learning, transfer
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learning, active learning), statistical learning/inference (inductive learning, deductive
learning, transductive learning), and learning technique paradigms (multi-label learning,
one-shot learning, few-shot learning, multi-task learning, online learning, adaptive
learning, incremental learning, ensemble learning), and many more [Lheureux2017]
[Emmert2022]. The list is not closed and it gets longer day by day along with research
involvement.

In the context of the distributed and federated learning presented in the previous
section, it is suitable to mention other machine learning paradigms that also emerge
from the classic ML concept in the similar context as follows:

● Incremental learning: is a ML approach in which the learning process takes
place each time new data are available, adjusting the learning process learned
based on the new samples [Belouadah2021]. This type of technique does not
require a sufficiently large training set before starting to train the ML models, as
new samples will be incorporated gradually over time [Geng2009].

● Ensemble learning: The idea is to use different ML models in order to improve
the predictions obtained individually with each one of them [Dong2020]. Some
classic examples are bagging methods (such as Random Forest, which
combines different decision trees) boosting models, such as AdaBoost or
Gradient Tree Boosting. However, it is also possible to combine different
models, using for example a voting ensemble, or the stacked generalization
method, which allows to reduce the bias of the models. These methods are
implemented, among others, in the ensemble package of the Python sklearn
library [EnsembleSKL].

● Reinforcement Learning: is an area of ML in which new effective strategies to
be followed are proposed based on experimentation with data. That is, the AI
learns based on its own experience and interacts with the environment in order
to find the optimal behaviour. For this purpose, positive or negative rewards are
available, and based on its own experience the machine will reinforce the
actions according to whether the reward it obtains is positive or negative
[Botvinick2019]. In short, the aim is for the machine itself to learn how to
optimize the decision process [RLOptim].

It is particularly interesting to mention a concept that is especially in the state of the
art: Composite AI [EmergingTech2020] [CompositeAI2023]. Essentially, as its name
suggests, the objective of this tool is to combine different AI techniques in order to
obtain substantial improvements in the results. It should be noted that ML and DL
models require a large amount of labeled data to be sufficiently accurate, which is not
always possible. Moreover, in many cases it may be even more convenient to use
background knowledge models, NLP or symbolic AI among other tools [ColossalAI].
With this motivation arises the concept of composite AI, to carry out a combination of
different AI techniques in order to take advantage of the strengths of each of them, and
creating synergies to solve increasingly complex problems (without the need for such
large amounts of data as in the case of ML/DL models), and faster [CompositeAI2020].
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2.2.5 Differential Privacy and Homomorphic Encryption
In addition to the previously exposed techniques for PPML, it is also important to focus
on other techniques that can be applied in combination with the above to add an
additional layer of privacy in both data processing and analysis. That is, other Privacy
Enhancing Technologies (PETs) for ML are presented below (see [Soykan2022] for
further details in these techniques).

Differential Privacy (DP) belongs to the latest methods of preserving privacy. The main
thought behind differential privacy is that absence of a single record does not impact
the overall dataset characteristics. The implementation of differential privacy was
proposed in [Dwork2014] with the additional ε parameter defining the level of privacy.
In particular, this technique is of great interest when combined with DL modelling. For
example, if it is applied to the weights or gradients of a model prior to sending it to the
server in an FL scheme, an additional layer of privacy is added, which can be key since
information from the original data can be extracted from the parameters which define a
model.

Homomorphic Encryption (HE) is a cryptography paradigm that allows computation to
be performed on the encrypted data. HE ensures that performing an operation on
encrypted data and decrypting the result is equivalent to performing analogous
operations without any encryption [Acar2018]. HE can be divided into:

● Fully Homomorphic Encryption (FHE): with FHE, business can analyze and
process sensitive data while maintaining privacy and compliance controls. With
this technology, internal or external parties can conduct data analysis and
processing without requiring data to be exposed (decrypted) [Gentry2009],
[IBM2021]. FHE allows to perform any number of operations so it is very
expensive computationally in practice [OL2023]. Theoretically, any function can
be computed.

● Somewhat Homomorphic Encryption (SWHE): it is a scheme more feasible in
practice, but limits the number of operations that can be performed on
encrypted data.

● Partial Homomorphic Encryption (PHE): allows only one type of operation to be
performed (any number of times). It is a straightforward and efficient scheme
despite its limitations.

In this context, two techniques that focus on privacy preservation, especially in order to
enable secure collaboration between entities are as follows.

● Secure Multi-Party Computation (SMPC) aims to achieve the collaboration of
different entities while preserving the privacy and confidentiality of their
information. It is a generic cryptographic paradigm that enables computation
process distribution across multiple parties, preserving any single party to
reveal their private input and output data.
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● Secure Model Aggregation (SMA): in the same way as SMPC, the SMA goal in a
FL scheme is to operate on encrypted models for the server so that when
aggregation is performed, the individual contribution of each client involved is
not known [SAFL2021].

The most important driver in the emergence of federated learning models is privacy.
These techniques are developed in which privacy-aware approaches as training data is
not shared among the collaborating parties, but it is arguable that existing solutions
meet all the privacy requirements [Soykan2022]. PETs constitute a set of methods that
can be used to improve privacy containing different building blocks including SMPC,
HE, DP, as well as confidential computing using Trusted Execution Environments (TEE).

Tool Advantages Disadvantages

Federated
Learning (FL)

- The data does not leave the
device/institution that generates
it (no exchange of raw data).
- More diverse data to train the
models.
- Reduced latency and
communication costs.
- Continuous improvement of
models using data from
different clients.
- Useful both with ML and DL
models.

- Corruption of models by
attackers.
- Nodes may be intermittent.
- Requires more power and
memory of devices to train the
model.

Split Learning
(SL)

- No exchange of raw data.
- Useful when each data owner
has little data
- Low memory cost.
- Communication efficiency.

- Corruption of models by
attackers.
- Computationally complex when
using huge amounts of data.
- With the definition outlined in
this study, it can be used only
when the model is a neural
network.

Differential
Privacy (DP)

- Robust and simple algorithms.
- Balance between privacy and
utility.
- Impossible to know if an
individual is in the database.

- Large number of records
required-
- Noise can affect analysis.

Homomorphic
Encryption
(HE)

- Operate on encrypted data.
- The result will also be
encrypted.

- Very expensive
computationally.
- Very long computation time.

Table 01 Summary of advantages and disadvantages of four main privacy
preserving techniques: FL, SL, DP and HE
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During this section the focus has been put especially on four widely used techniques
that reflect the state of the art of privacy preserving tools: Federated Learning, Split
Learning, Differential Privacy and Homomorphic Encryption. Although all of them are
widely used techniques, it is important to be aware of the advantages as well as the
disadvantages of using each of them as summarised and presented in Table 01.

2.3 - EVOLUTION OF LARGE-SCALE AI/ML FRAMEWORKS AND TOOLS
The most popular and the most used frameworks and tools for centralised (ML) and
deep learning (DL), with the dominance of Tensorflow (in general) and PyTorch (in
research) were summarised in our work “Machine learning and deep learning
frameworks and libraries for large-scale data mining: a survey” [Ngu2019] published as
the Open Access output of the DEEP-HybridDataCloud project EU H2020-777435 in
2019. Currently, the most popular ML/NN/DL frameworks and tools are presented in
Table 01 with following short descriptions and functional notations.

Logo ML/DL
framework

GitHub
Stars

ML DL Licence and Note

Tensorflow 171.0 K ✓ ✓ Apache 2.0

PyTorch 62.1 K ✓ ✓ specific open-source licence
for each module

Keras 57.2 K ✓ Apache 2.0
built on top of Tensorflow 2

Scikit-Learn 52.7 K ✓ BSD 3-clause

XGBoost 23.7 K ✓ Apache 2.0
ensemble learning

fast.ai 23.3 K ✓ Apache 2.0
wrapper for PyTorch

MXNet 20.2 K ✓ Apache 2.0

PaddlePaddle 19.4 K ✓ Apache 2.0

deeplearning4j 12.7K ✓ Apache 2.0
DL for JVM

Colossal-AI 6.7 K ✓ Apache 2.0, parallelism
wrapper for Big DL models
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Logo ML/DL
framework

GitHub
Stars

ML DL Licence and Note

H2O 6.1 K ✓ ✓ Apache 2.0

MindSpore 3.2 K ✓ Apache 2.0
new and growing one

Table 02  The most popular framework and tools for centralised ML and DL

Tensorflow [Tensorflow] is an end-to-end open-source platform for ML and DNN. It has
a comprehensive, flexible ecosystem of tools, libraries, and community resources that
enables building and deploying ML-powered applications. It was originally developed by
researchers and engineers working on the Google Brain team to conduct ML/DNN
research. Today, Tensorflow is the most used DL framework, which allows the creation
of optimised static graphs with eager execution to achieve more dynamic behaviour.

Keras [Keras] follows the motto “Deep Learning for humans”. Keras follows best
practices for reducing cognitive load: it offers consistent and simple APIs; provides
clear and actionable error messages. Keras also has extensive documentation and
developer guides. It declares itself as exascale machine learning. Built on top of
TensorFlow 2, Keras is an industry-strength framework that can scale to large clusters
of GPUs or an entire TPU pod.

PyTorch [PyTorch] follows the motto “Tensors and Dynamic neural networks in Python
with strong GPU acceleration” with its most notable adoption of a Dynamic
Computational Graph (DCG). The growing popularity of PyTorch can be clearly seen in
Fig. 04, which presents the trend of the different frameworks used in the research
implementations listed in the portal “Papers with Code” [Frameworks2022].

Scikit-Learn [Scikit-Learn] is an open-source, simple and efficient tool for predictive
data analysis. it is accessible to everybody, and reusable in various contexts. Built on
NumPy, SciPy, and matplotlib for ML. The project was started in 2007 and since then
many volunteers have contributed. It is currently maintained by a team of volunteers.

XGBoost [XGBoost] is an optimized distributed gradient boosting library designed to be
highly efficient, flexible and portable. It implements ML algorithms under the Gradient
Boosting framework. XGBoost provides a parallel tree boosting (also known as GBDT,
GBM) that solves many data science problems in a fast and accurate way. The same
code runs on major distributed environments (Kubernetes, Hadoop, SGE, MPI, Dask)
and can solve problems beyond billions of examples. XGBoost has been developed and
used by a group of active community members.

MXNet [MXNet] is a DL framework designed for both efficiency and flexibility. It allows
the mixing of symbolic and imperative programming to maximize efficiency and
productivity. At its core, MXNet contains a dynamic dependency scheduler that
automatically parallelizes both symbolic and imperative operations on the fly. MXNet is
portable and lightweight, scalable to many GPUs and machines. MXNet has support for
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Python, Java, C++, R, Scala, Clojure, Go, Javascript, Perl, and Julia. Gluon (or GluonCV)
is its common wrapper library for Computer Vision with PyTorch.

PaddlePaddle [PaddlePaddle] is an open-source (since 2016) Python library for
enabling deep learning. It’s the first independent research and development deep
learning platform in China. It includes more than 200 pre-trained models which can help
to accelerate development in industrial applications. As other ML/DL frameworks, it
uses tensors to represent data and can be used in distributed learning tasks.

The Eclipse Deeplearning4J (DL4J) [DL4J] ecosystem is a set of projects intended to
support all the needs of a JVM based DL application. This means starting with the raw
data, loading and preprocessing it to building and tuning a wide variety of simple and
complex DL networks. Because Deeplearning4J runs on the JVM, it can be used within
a wide variety of JVM based languages other than Java, like Scala, Kotlin, Clojure and
so on. The DL4J motto is “Suite of tools for deploying and training DL models using the
JVM”.

H2O [H2O] is an in-memory platform for distributed, scalable ML. It uses familiar
interfaces like Python, R, Scala, Java, JSON and the Flow notebook/web interface, and
works seamlessly with big data technologies like Hadoop and Spark. H2O provides
implementations of many popular ML algorithms including ensemble learning
(XGBoost, Random Forests) as well as DNN algorithms. H2O also provides a fully
automatic ML algorithm (H2O AutoML), i.e., in simple, unified interfaces to a variety of
ML algorithms in H2O.

Fig. 03  Notable Neural Network and Deep Learning frameworks

The landscape of large-scale ML/DL frameworks and tools are dynamic and involved.
Tensorflow is still the leading one with production-grade fame with Keras built on top
of Tensorflow 2. PyTorch continues in its growing trend as a popular research
framework. Except for the above-mentioned software products, a lot of other
ML/NN/DL tools are here, for example, fast.ai [fast.ai] and deeplearning4j. Another
popular DL framework like CNTK [CNTK] is no longer being developed, Caffe2 [Caffe2]
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is in archive (Facebook), or Chainer [Chainer] is in the maintenance phase with limited
development. New frameworks are also coming with growing popularity like MindSpore
[MindSpore], which is a new open source DL training/inference framework that could be
used for mobile, edge and cloud scenarios. Another interesting one in this unified
direction is Colossal-AI [Colossal-AI], which provides a tool to write distributed Big DL
models in an unified way.

The number of ML/DL frameworks and tools are still high and in a dynamic evolving
state with the dominance of PyTorch in research (Fig. 04).

Fig. 04 Research paper implementation grouped by framework. Extracted from Papers
with code [Frameworks2022].

In the following sections we jump from the traditional centralised ML/DL frameworks
and tools to the distributed and federated learning ones, highlighting the main libraries
involved. All of these frameworks are privacy-aware, preserving federated learning.
However, their privacy implementations are in various realisation levels such as
planned, partial or full level. Several of them provide more assurance and protection like
secured/encrypted mechanism or peer-to-peer networking among data owners and
data scientists. The landscape is highly dynamic with development changing, new or
planned feature integrating, product merging and so on.

The list of federated learning (FL) frameworks is presented in Table 02 and the list of
Homomorphic Encryption (HE) and Differential Privacy (DP) libraries is presented in
Table 03. The short notation of each framework includes its popularity (by number of
GitHub Stars), special features, open-source licence and a note. The description of
each framework is presented in the following subsections after the tables.
Abbreviations in the Table header are: Homomorphic Encryption (HE), Differential
Privacy (DP), Secured/Encrypted (SE), Peer-to-Peer networking (P2P).
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Logo Federated Frameworks GitHub
Stars

SE P2P Licence and
Note

Tensorflow/Federated 2.0 K Apache 2.0

Tensorflow/Privacy 1.7 K Apache 2.0

Tensorflow Encrypted 1.1 K ✓ Apache 2.0

OpenMined/PySyft 8.5 K Apache 2.0

OpenMined/PyGrid 615 ✓ Apache 2.0

OpenMined/SyMPC 83 ✓ MIT

FATE 4.8 K Apache 2.0

FedML 2.3 K Apache 2.0

Flower 1.9 K Apache 2.0
wrapper

LatticeX-Foundation/Rosetta 504 LGPL 3.0

Intel/OpenFL 391 Apache 2.0

IBM Federated Learning 367 Specific
open-source
licence

NVIDIA/Flare 284 Apache 2.0

CapePrivacy/TF-Trusted 86 Apache 2.0

Table 03  Notable Federated Learning Frameworks
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Logo Framework GitHub
Stars

HE DP Licence

HElib 2.9 K ✓ Apache 2.0

Microsoft/SEAL 2.8 K ✓ MIT

OpenMined/TenSEAL 504 ✓ Apache 2.0

Paillier 476 ✓ GPLv3

OpenFHE 199 ✓ BSD-2-Clause

Opacus 1.3 K ✓ Apache 2.0

Diffprivlib 667 ✓ MIT

OpenMined/PyDP 361 ✓ Apache 2.0

Table 04  Homomorphic Encryption and Differential Privacy Libraries (12.2022).

2.3.2 Secure and Private Tensorflow family
Tensorflow Federated [TF-Federated] is a framework for implementing FL. It is an
open-source framework for ML and other computation on decentralised data.
Tensorflow Federated enables developers to simulate the included FL algorithms on
their model and data, as well as to experiment on novel algorithms. The building blocks
provided by Tensorflow Federated can also be used to implement non-learning
computations, such as aggregated analytics over decentralised data. The framework
consists of two layers of interfaces 1) Federated Learning API, which is a set of
high-level interfaces to apply the included implementations of FL and evaluation to the
existing Tensorflow models; 2) Federated Core API is a set of low-level interfaces for
concisely expressing novel federated algorithms by combining Tensorflow with
distributed communication operator within strongly-typed functional programming
environment. Tensorflow Federated claims to be architecture-agnostic, which means
the ability to compile all code into an abstract representation and as a result, it can be
deployed in a diverse environment.

Tensorflow Privacy [TF-Privacy] is a Python library, which includes implementations of
TensorFlow optimizers for training ML models with privacy for training data.

Tensorflow Encrypted [TF-Encrypted] is a framework for Encrypted Machine Learning
in Tensorflow. It allows the design and implementation of private ML within distributed
systems. Tensorflow on its own offers an optimised engine for executing local and
distributed computations as well as a high-level interface for expressing these
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computations. Tensorflow Encrypted provides a basic multi-party computation (MPC)
type and passive security under single corruption, which relies on two cryptographic
primitives, namely additive secret sharing and secure channel between all participants
[Dahl2018]. Tensorflow Encrypted can be seen as a bridge between Tensorflow and the
Microsoft SEAL library.

Here are several interesting but less notable frameworks in the secure and private FL
such as Tensorflow-based Rosetta [Rosetta], or CapePrivacy TF-Trusted [TF-Trusted],
which allows the execution of several Tensorflow models inside an Intel SGX device.

2.3.3 The OpenMined Syft family
Syft is OpenMined's open-source stack that provides secure and private Data Science
in Python [OpenMined]. Syft decouples private data from model training, using
techniques like FL, differential privacy, and encrypted computation. The OpenMined
Syft family of frameworks is the most popular approach compared to the previous
Tensorflow family frameworks. Syft family of frameworks represents a vision of an
ecosystem for creating and developing private, AI-powered solutions. The OpenMined
Syft family comes with Duet [PySyft], which provides fast prototyping tools such as
Jupyter notebook in order to facilitate the user experience.

PySyft [PySyft] is the flagship of the OpenMined Syft family. PySyft augments DL
frameworks for servers and IoT with privacy-preserving capabilities. PySyft has several
other co-frameworks for different platforms, such as KotlinSyft [KotlinSyft] (Kotlin
library for Android), SwiftSyft [SwiftSyft] (Swift library for iOS) or Syft.js [Syft.js] for web
and Node, built in Javascript.

PyGrid [PyGrid] is the software providing a peer-to-peer network of data owners and
data scientists who can collectively train AI models using PySyft. PyGrid contains
Hagrid (HAppy GRID!), which is a command-line tool that speeds up its deployment.

The Syft family also contains TenSeal [TenSEAL], which is a library for homomorphic
encryption operations on tensors, built on top of Microsoft SEAL [MS-SEAL] to enhance
the family software product by cryptography capacity. SyMPC [SyMPC] is a library
which extends PySyft (version ≥ 0.3) with SMPC support. It allows computing over
encrypted data, and to train and evaluate neural networks. PyDP [PyDP] is a Python
library which provides ε-differential privacy algorithms, such as the laplace mechanism.
The features of SyMPC and PyDP are planned to be progressively integrated into the
main framework PySyft.

PySyft-Tensorflow [PySyftTF] is a fusion collaboration attempt between the Syft family
and Tensorflow family. The framework (56 GitHub stars) brings secure, private DL to
Tensorflow, however, it will be deprecated soon in favour of PySyft as recently
announced in [PySyftTF] GitHub repository. We can see in this fusion-shattering
example the dynamical evolving state in this applied research area.
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2.3.4 Other Federated Frameworks and Tools
Other libraries that are interesting to highlight here are those that implement
techniques for homomorphic encryption, as well as those that implement differential
privacy algorithms. Some of them are presented below.

Related to Homomorphic Encryption (HE):

● Microsoft SEAL [MS-SEAL]: Microsoft SEAL is an easy-to-use open-source (MIT
licensed) HE library developed by the cryptography and privacy research group
at Microsoft. The library is written in modern standard C++ and is easy to
compile and run in many different environments.

● HElib [HElib] is an open-source software library that implements homomorphic
encryption. It supports the Brakerski Gentry Vaikuntanathan FHE scheme (BGV)
scheme with bootstrapping and the approximate number Cheon-Kim-Kim-Song
homomorphic encryption scheme (CKKS) scheme. HElib also includes
optimizations for efficient homomorphic evaluation, focusing on effective use
of ciphertext packing techniques and on the Gentry-Halevi-Smart optimizations.

● Paillier [Paillier] is a Python 3 library implementing the Paillier Partially
Homomorphic Encryption. The homomorphic properties of the Paillier
cryptosystem are 1) Encrypted numbers can be multiplied by a non encrypted
scalar; 2) Encrypted numbers can be added together; 3) Encrypted numbers can
be added to non encrypted scalars.

● OpenFHE [OpenFHE] is an open-source library for open-source for performing
Fully Homomorphic Encryption. It includes efficient implementations for the
most common FHE schemes such as BGV and Brakerski-Fan-Vercauteren
scheme (BFV) for integer arithmetic and CKKS for real-numbers arithmetic,
among others. This library is written in C++.

Related to Differential Privacy (DP):

● Opacus is a library that enables training PyTorch models with differential
privacy [Opacus]. It supports training with minimal code changes required on
the client, has little impact on training performance, and allows the client to
online track the privacy budget expended at any given moment.

● Diffprivlib is IBM general-purpose library for experimenting with, investigating
and developing applications in, differential privacy [Diffprivlib].

Turning back to the libraries that implement federated learning architectures and
algorithms, the following libraries are worth mentioning:

● Intel OpenFL [OpenFL] OpenFL is a Python 3 framework for FL. It is designed to
be a flexible, extensible and easily learnable tool for data scientists. OpenFL is
hosted by Intel, aims to be community-driven, and welcomes contributions back
to the project. It supports aggregation algorithms like FedAvg, FedProx, FedOpt,
and FedCurv (presented in works [Mah2017], [Li2020], [Reddi2020],
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[Shoham2019]) with Tensorflow, PyTorch implementations as well as
implementation with other DL frameworks.

● Flower [Flower] is a Python library which provides a unified approach to FL,
analytics, and evaluation. It is a FL framework that offers a stable language and
ML framework-agnostic implementation of a FL system. The framework allows
for the rapid transition of existing ML training pipelines into a FL setup to
evaluate their convergence properties and training time in a federated setting.
Another advantage of Flower is its support for extending FL implementations to
mobile and wireless clients, with heterogeneous compute, memory and network
resources [Beutel2020]. Flower federates any workload, any ML framework, and
any programming language. Flower provides API wrapper for Tensorflow,
Tensorflow Lite, PyTorch, PyTorch Lightning, Hugging Face, MXNet, JAX, and
Scikit-Learn.

The list of FL frameworks is long [LF-AI-Data-Landscape], which reflects the high
interest of the research community to address the secured privacy concerns. Many of
them have promising features for federated learning in a dynamic fast development
stage. We can list here several of them such as FATE [Fate] (Federated AI Technology
Enabler) is an open-source project hosted by the Linux Foundation; FedML [FedML] is
an open-source library whose aim is to facilitate research and production related to
federated learning; IBM Federated Learning [IBM-FL] is a Python framework for FL in an
enterprise environment; NVIDIA Flare [Flare] (Federated learning application runtime
environment); Sherpa.ai FL: framework for FL and Differential Privacy includes both
DNN and classical ML approaches [Ludwig2020]. Different use cases are presented in
[Rodriguez2020] together with the analysis of the software functionalities and a review
of other frameworks; and many more similar products. The evolution has been starting,
however these frameworks are currently in a highly dynamic continual development
state, i.e., fast changing with many improvements and incompatibility issues.

2.4 - SUMMARY OF AI/ML AND PRIVACY PRESERVING TOOLS
This is a highly dynamic and evolving environment with a lot of frameworks and tools,
which indicates intensive research interests in the PPML area aiming to address siloed
and unstructured data including privacy and regulation of data sharing (like GDPR,
CCPA) and incentive models for data transparent ecosystems.

● Theoretically, FL has all CL/ML tasks like supervised learning, unsupervised
learning or reinforcement learning including neural network implementation.
Practically, current implementations of FL libraries and frameworks are in
various levels of quality and realisation (e.g., the lack of DL layer types) in
comparison with the implementation of classical ML/DL frameworks.

● The highly evolving state of frameworks and tools for distributed and FL leads
to the unstable development of intelligent software. The most frequent obstacle
is the inconsistency among library versions, which can break up or slow down
the development phase of AI models. The appreciated use of the
containerization approach may significantly help to overcome this obstacle.
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● Requirements on high computational power including the requirement on high
memory consumption due to the underlying cryptographic and secure
technologies such as Homomorphic Encryption (HE) and Differential Privacy
(DP).

● In the special case of Fully Homomorphic Encryption (FHE) the requirement on
computational power and memory consumption is exceptionally high, which
leads to, in many cases, impossible realisation of secured distributed model
training (data at use) and a lot of difficulties also in the inference (data at use).
The reason is the tremendous overhead of FHE schemes.

● Here is a lack of access to such high computational power, which enables the
secure AI research realisation within AI communities of practitioners.

● The requirement for the network communication (V as Volume) is not so high,
because of distributed computing on distributed data, especially with
Differential Privacy (DP). Usually, the exchanged data among clients and servers
are models, model parameters and metadata for model updates. However,
network communication and network performance can be a bottleneck for
distributed learning when the model updates are large and/or intensive (V as
Velocity).

● The realisation of the networking elements like model aggregation, parameter
aggregation is not stable with current FL architecture realisations (vertical
and/or horizontal FL architectures). Here is an obstacle to configure such a
distributed learning network composed, even private, of servers and clients at
large scale for AI/ML practitioners.

Requirements on secure assurance for sensitive data protection in distributed
computing environments are for all three data states: data at rest, data in motion and
data in use. The concrete requirements are different from application to application.
Some of them require the assurance of all states, others can require certain states
based on their need.

Page 29 of 68 D3.1 State of the art landscaping and initial
platform requirements specification



3 - LANDSCAPE OF AI/ML LIFECYCLE MANAGEMENT

Efficient development of reliable AI/ML applications and services is based on software
development methodologies such as Development and Operations (DevOps) and
Machine Learning Operations (MLOps). DevOps can be seen as an extension of Agile
software development principles [Agi2022], [AgilePF], which is a set of practices aimed
at improving the effectiveness of software development practitioners, teams, and
organisations. DevOps combines software development (Dev) and IT operations (Ops)
aiming to shorten the development life cycle and provide continuous integration and
continuous delivery (CI/CD) with high software quality assurance. DevOps
encompasses culture and people within an organisation, with the goal of improving
collaboration between the development team and information technology (IT)
operations. DevOps components are:

● Plan,
● Code,
● Build,
● Test,
● Release,
● Deploy,
● Operate and
● Monitor.

Key features of DevOps architecture are:

● Automation,
● Collaboration,
● Integration and
● Configuration management.

However, there is no “one size fits all” and, as a result, there is a wide variety of DevOps
tools [Bha2022].

Fig. 05 Machine learning operations MLOps = ML+Dev+Ops [Ngu2022]

MLOps is modelled on the existing discipline of DevOps. It is a set of practices that
aims to deploy and maintain ML models in production reliably and efficiently
[GoogleMLOps2020] (Fig. 05). DevOps and MLOps tools help organisations to deal with
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the challenges that come with the implementation of DevOps practices. Apart from
MLOps, in recent years, there is also the rise of DataOps, ModelOps, and AIOps.

● MLOps (Machine Learning Operations) applies DevOps principles to developing,
deploying, and managing ML models.

● ModelOps is a subset of MLOps that enable organisations to operationalize ML
models

● DataOps is the practice of applying DevOps principles to data engineering and
management.

● AIOps (Artificial Intelligence for IT Operations) uses AI and ML techniques to
automate IT issues such as detection, diagnosis, and resolution.

The main differences between DataOps and MLOps are as follows.

● DataOps is a process-oriented methodology to improve the quality of data,
increase the efficiency of analytics, and reduce the time cycle of data analytics.
DataOps improves the availability, accessibility, and integration of data.

● MLOps combines operations with ML. It automates and streamlines the entire
ML lifecycle, from production to development, deployment to retraining,
encompassing DevOps practices such as Continuous Integration and
Continuous Deployment (CI/CD) for efficient model management. The aim of
MLOps is to facilitate the deployment of ML models in production environments.

Implementation of DevOps and MLOps tools in organisations in a mature operational
state can not be done in a short time. It requires a cooperative effort in shifting culture
to break down communication silos, which will enable better software and ensure
enhanced transparency in the entire chain [Ngu2022].

According to [GoogleMLOps2020], ML and other software systems are similar in
continuous integration of source control, unit testing, integration testing, and
continuous delivery of the software module or the package. However, in ML, there are a
few notable differences:

● CI (Continuous Integration) is no longer only about testing and validating code
and components, but also testing and validating data, data schemas, and
models.

● CD (Continuous Delivery) is no longer about a single software package or a
service, but a system (ML training pipeline) that should automatically deploy
another service (e.g. model prediction service).

● CT (Continuous Training/Testing) is a new property, unique to ML systems, that
is concerned with automatically retraining and serving the models.

One next crucial thing to deal with ML is metadata, which is data about experiments
and model training runs such as debugging, visualising, monitoring model training in
order to get to the best model. It is a good practice to log anything (alias metadata)
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that happens during the ML run such as: data version, code version, environment
configuration, hyperparameters, training metrics and losses, hardware metrics (CPU,
GPU, TPU), memory consumption during training/inference, evaluation and test metrics
(f-score, acc, roc-auc on test and validation datasets), model predictions and domain
specific metadata. MLOps need to deal also with above-mentioned metadata as well as
pipeline metadata.

Furthermore and in general, governance is the backbone of MLOps [Governance2022].
Governance initiatives in MLOps fall into categories: data governance (for ensuring
appropriate use and management of data) and process governance (well-defined
processes to ensure the life cycle of the model, and all records have been kept).

3.1 AI INFRASTRUCTURE LANDSCAPE
With the increasing availability of huge amounts of data, the ML pipelines for
large-scale learning tasks can be exploited to provide an additional level of challenge. It
is a common opinion that such tasks cannot be managed by all users to exploit and
utilise computational resources in large-scale and distributed e-Infrastructures properly.
Most of them, in fact, have domain knowledge in specific fields, but lacking
technological or infrastructure knowledge. Therefore, support by the infrastructure
layer must break down the complexity of the task and allow scientists to focus on their
respective activities, i.e. modelling of the problem, evaluating and interpreting the
results of the intelligent algorithms [ALG2020]. There is a complex demand for AI
development accompanied with the need for massive resources to support it. The
advent of cloud technology offers a powerful infrastructure for AI and ML development
and deployment, which is well-known as AI Infrastructure.

Data engineers, data scientists, analysts, and anyone working in any kind of a data role
have to juggle an ever-increasing number of scheduled tasks [WMR2021]
[Zeydan2022]. Workflow Management Platforms (WMP) help automate all the
processes. One notable moment of the entrant modern open-source WMP for data
engineering automation started in 2014 with Airbnb’s Airflow project.

● The Airflow [Airflow] project is written in Python, and its workflows are created
via Python scripts as DAGs. Workflow orchestration is based on the principle
"configuration as code". Airflow works best with workflows that are mostly static
and slowly changing. It is not a streaming solution, but it is often used to
process real-time data, pulling data off streams in batches.

● Spotify’s Luigi [Luigi] is another similar project. Luigi is a Python package that
builds complex pipelines of batch jobs. Spotify uses Luigi to build long-running
pipelines of thousands of tasks that stretch across days or weeks. Luigi doesn’t
use DAGs but it connects “tasks” and “targets” as pipelines [WMR2021].

However, Airflow in particular and early entrance WMPs in general, were not designed
to execute data pipelines directly like ML/AI code in the learning cycle required in the
Data Science process (Fig. 06). ML/AI code specifies the need to pass data and
metadata between the tasks, to be dynamic and parameterized, to run in parallel such
as in hyper-parameter tuning manner or distributed learning, or the requirement for a
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more flexible and low latency scheduler [Hewage2022]. This is the reason for the
emergence of the next generation of modern WMP like MLflow, MetaFlow, Prefect,
Dagster and other products grouped as MLOps platforms [DataCamp2022]. The
common aim of all MLOps platforms is MLOps management within AI Infrastructure.

Fig. 06 Simplified learning life cycle for a ML application [ALG2020].

The AI Infrastructure landscape report [AI-Infra2022] was released in October 2022. In
the report a number of notable products have been analysed to define and validate at
what degree they comply and support the different categories/features as main
components of their workflow and workload management environment/system. From
that original list, the most notable open-science products are selected based on works
[Hewage2022] and appended relevant MLOps platforms in Table 05. A list of these
categories (sorted by the feature importance from AI infrastructure management with
MLOps products) together with their brief feature description is as follows:

● Orchestration (O) coordinates and manages the individual workflows that
resulted from disassembling the end-to-end ML pipeline.

● Distributed Training (DT): when the workload to train a model is split up and
shared among multiple mini processors, called worker nodes. These worker
nodes work in parallel to speed up model training. Typically used for training
deep neural networks in deep learning [DistLearn].

● Code Management (CM) is the process of handling changes to the application
source code with control versioning.

● Model Development (MDV) involves data acquisition from multiple trusted
sources, data processing for building the model, choosing an algorithm to build
the model and eventually building the model [KDNuggets-MDV].

● Model Testing/Validation (MTV) is about accurately checking (e.g. unit tests)
the expected behaviour of the model and providing metrics/plots to summarise
the performance on a validation/test dataset.

● Model Inference (MI) is the process of inferring results from input(i.e. live and
unseen) data on a fully trained model.

● Model Deployment (MDP) is the process of putting/launching the ML model to
a production environment to be used for the intended purpose.
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● Experiment Tracking and Metadata Store (ETMS) is a main mechanism to log
relevant metadata and results (often when building a model the team has to try
different models, hyperparameters and/or training/test data sets). It helps to
evaluate, identify, and reproduce experiments.

● Data Versioning and Management (DVM) is the process of handling changes
(from different teams) in the datasets (used as input in a training model)
through a specific version number. A tool to manage and organise these
different generated versions is essential to enable reproducibility.

Except for the above-mentioned features, there are also more desired features such as
Feature Management (FM) and Model Versioning and Management (MVM). FM is also
called in several MLOps product documentations a Feature Store (FS), and MVM as a
Model Store (MS). These features can stay along as a MLOPs product feature or they
can be seen as a part of the ETMS feature.

Product
(platform)

GitHub
Stars

O DT CM MDV MTV MI MDP ETMS DVM

MLflow 13.4 K ✓✓ ✓✓ ✓✓

Kubeflow 12.2 K ✓✓ ✓✓ ✓✓ ✓✓

Prefect 10.9 K ✓✓ ✓✓

Dagster 6.2 K ✓✓ ✓✓ ✓✓

MetaFlow 6.2 K ✓✓ ✓✓ ✓

Pachyderm 5.7 K ✓✓ ✓ ✓✓ ✓✓ ✓✓ ✓✓ ✓ ✓ ✓✓

ClearML 4.0 K ✓✓ ✓✓ ✓✓ ✓✓ ✓ ✓✓ ✓✓ ✓✓ ✓✓

Seldon core 3.6 K ✓✓ ✓✓ ✓✓ ✓✓ ✓

Polyaxon 3.2 K ✓✓ ✓✓ ✓✓ ✓✓ ✓✓ ✓✓ ✓✓ ✓✓ ✓

Flyte 3.1 K ✓✓ ✓✓ ✓✓ ✓✓ ✓✓ ✓✓ ✓✓ ✓ ✓✓

ZenML 2.6 K ✓✓ ✓✓ ✓✓ ✓✓ ✓✓ ✓✓ ✓✓ ✓✓

TFX 1.9 K ✓✓ ✓✓ ✓✓ ✓✓ ✓ ✓✓ ✓✓ ✓ ✓✓

MLeap 1.4 K ✓✓ ✓✓

MLRun 898 ✓✓ ✓✓ ✓ ✓✓ ✓ ✓✓ ✓✓ ✓✓ ✓✓

Table 05 Notable Open Source MLOps Platforms

Abbreviations in the Table header: Orchestration (O), Distributed Training (DT), Code
Management (CM), Model Development (MDV), Model Testing/Validation (MTV), Model
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Inference (MI), Model Deployment (MDP), Experiment Tracking & Metadata Store
(ETMS), Data Versioning and Management (DVM).

In Table 05, we have marked the following support levels: empty=no support (means
that the feature is not supported, not available, or not functional), 1x (✓=partially
supported, means that some but not all aspects of the feature are supported, or that
the feature has limited functionality), 2x (✓✓=supported, means that all aspects of the
feature are supported, and it is expected to function as intended without any
limitations). The reason is the fast changing and evolving state of MLOps products in
the AI Infrastructure landscaping. The number of desired features/abilities are
increasing, for example, there is a tendency to break DVM into DVM, FM, and MVM or a
tendency to break ETMS into FS, MS and the rest of metadata. Such similar tendencies
can be temporary (or not temporary based on concrete product development), which
may reflect in their documentations evolving with time.

The list of all existing MLOps platforms is flourishing, so we can talk about fast
expansion of them. Except for MLOps platforms, here are a long list of similar products
oriented to ML life-cycle management such as Microsoft FLAM [FLAM], Neural Network
Intelligence (NNI) [NNI], Epistasis Lab TPOT [TPOT] or Orchest [Orchest] (currently only
beta version). The boundaries between MLOPs platforms and ML life-cycle
management products are also not clear and not strict, whereas in general, MLOps
products are more closely related to AI Infrastructure management [AI-Infra2022]
[NeptuneAI2022] in comparison with ML life-cycle management products. It is suitable
to note several products are oriented just to selected features, for example, DVC [DVC]
is for data version control.

Fig. 07 Calculated degree of the category compliance for MLOps products
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The list is long and dynamically involved as all of these products are fast evolving in the
recent time [RockeScience2022]. The most common features of the most notable
open-source MLOps products presented in Table 05 are as follows.

● All products presented in Table 05 are open-source under Apache 2.0 licence.
The exception is Pachyderm with its specific open-source licence.

● All of the above-presented MLOps products support Python, Tensorflow (and
Keras as a part of Tensorflow 2) for DL, and Scikit-learn for ML. Most of them
support Jupyter Notebook (except for MLFlow and MLeap). PyTorch is also
supported by almost all of the products (except for Pachyderm and MLeap)
[NeptuneAI2022-Menzli].

● Minority supported languages from a part of these products are R, Java, Scala,
Go, C++, shell and Jsonnet.

Fig. 08 Calculated percentage score of category support levels

Even platforms with a similar scope have different concepts and strategies, making
them hard to compare directly. Table 05 consists of 14 open-source MLOps products
analysed across 9 features/abilities (O, DT, CM, MDV, MTV, MI, MDP, ETMS, DVM). The
overall product's score (degree of category compliance) results is shown in Fig. 07:

● ClearML, TFX, MLRun and ZenML supported partly or fully all the categories,
scoring the highest degree of compliance.

● A moderated level compliance (i.e. > 66%) was achieved for ML products like:
Pachyderm, Flyte and Polyaxon.

● Whereas, Seldon core and Kubeflow recorded a medium score (i.e. 50%).
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● Eventually, a low level compliance (i.e. <22%) was observed for MLflow, MLeap,
Prefect, Dagster, and MetaFlow products.

Not all above-mentioned MLOps features (O, DT, CM, MDV, MTV, MI, MDP, ETMS, DVM)
in Table 05 are fully supported by all presented MLOps products. A graph with the
current status of each category support level is given in Fig. 08. The partially-supported
state is frequent as well as currently no-support or in the development plan.

● The category DVM is the most supported among all products;
● The category CM and MDV are the least supported ones;
● The remaining categories are at a moderate level (>50%) supported by the

selected products.

From these above-mentioned 14 MLOps products (Table 05), Padycherm, ClearML,
Polyaxon are more or less commercial MLOps products with an open source
free/community version/licence. The limitations of their free open source versions are
in the number of users, the resource scale and supported levels of services.

AI infrastructure with a MLOps product for management can provide various auxiliary
software products (available as Docker images) oriented to specific needs of their
users like label annotator such as CVAT (Computer Vision Annotation Tool) [CVAT],
blockchain node/client like Polkadot [Polkadot] or Advanced Ethereum Client
[Parity-Ethereum]. These blockchain nodes (clients) require the same secure and
distributed technology for collaborative communication as federated learning.

3.2 MLOPS PLATFORMS
In the following sections, we present a concise presentation of the most notable in the
next generation of MLOps products for AI Infrastructure management for intelligent
softwares based on product vendor documentations and the most recent AI landscape
evaluation reports  [AI-Infra2022] [NeptuneAI2022].

3.2.1 MLflow

Logo

URL https://mlflow.org/

Motto An open source platform for the ML lifecycle

Open-Source https://github.com/mlflow/mlflow/ (13.4K GitHub stars)

MLflow [MLflow] is a platform to streamline ML development, including tracking
experiments, packaging code into reproducible runs, and sharing and deploying
models. MLflow offers a set of lightweight APIs that can be used with any existing ML
application or library (TensorFlow, PyTorch, XGBoost, etc), wherever (e.g. in notebooks,
standalone applications or the cloud). MLflow's current components are:
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● MLflow Tracking: tracking experiments to record and compare parameters and
results;

● MLflow Projects: packaging ML code in a reusable, reproducible form in order to
share with other data scientists or transfer to production;

● MLflow Models: managing and deploying models from a variety of ML libraries
to a variety of model serving and inference platforms;

● MLflow Model Registry: providing a central model store to collaboratively
manage the full lifecycle of an MLflow Model, including model versioning, stage
transitions, and annotations.

Insights: MLflow can be classified into the group of model metadata storage and
management MLOps products. It has the following main supported features (Table 05):
Model Inference (MI) and Experiment Tracking and Metadata Store (ETMS). It is great
as a basic ML lifecycle platform to manage the whole ML lifecycle that includes
experimentation, reproducibility, deployment, and a central model registry. The tool is
library-agnostic, meaning usable with any ML library and in any programming language.

3.2.2 Kubeflow

Logo

URL https://www.kubeflow.org/

Motto The ML toolkit for Kubernetes. Kubeflow is the cloud-native
platform for ML operations - pipelines, training and deployment.

Open-Source https://github.com/kubeflow/kubeflow (12.2K GitHub stars)

The Kubeflow project [Kubeflow] is dedicated to making deployments of ML workflows
on Kubernetes simple, portable and scalable. Its goal is not to recreate other services,
but to provide a straightforward way to deploy best-of-breed open-source systems for
ML to diverse infrastructures.

Insights: Kubeflow has the following supported features (Table 05): Orchestration (O),
Distributed Training (DT), Model Development (MDV), and Experiment Tracking and
Metadata Store (ETMS). Kubeflow can also be classified into the group of orchestration
and workflow pipelines MLOps products. It is the ML toolkit for Kubernetes to maintain
ML systems by packaging and managing Docker containers.

3.2.3 Prefect

Logo
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URL https://www.prefect.io/opensource/

Motto You should love your workflows again

Open-Source https://github.com/PrefectHQ/prefect (10.9K GitHub stars)

The Prefect 2 [Prefect2] is the second-generation dataflow coordination and
orchestration platform from Prefect. Prefect 2 has been designed from the ground up
to handle the dynamic, scalable workloads that the modern data stack demands. It is
powered by Prefect Orion, a brand-new, asynchronous rules engine.

Insights: Prefect has two major concepts, Workflow and Task as the next data
orchestration tool for Python. These concepts are quite similar to an Airflow DAG and
nodes inside DAG. However, Prefect claims that it is much better than Airflow
[Prefect-vs-Airflow] thanks to the result of years of experience working on Airflow and
related projects with an user-friendly, lightweight API backed by a powerful set of
abstractions that fit most data-related use cases.

Prefect treats workflows as standalone objects that can be run any time, with any
concurrency, for any reason. A schedule is a predefined set of start times with a flow
parameter to define workflow time dependency.

3.2.4 Dagster

Logo

URL https://dagster.io/

Motto An orchestration platform for the development, production, and
observation of data assets.

Open-Source https://github.com/dagster-io/dagster (6.2K  GitHub stars)

Dagster [Dagster] is an orchestrator that's designed for developing and maintaining
data assets, such as tables, data sets, ML models, and reports. It is built to be used at
every stage of the data development lifecycle - local development, unit tests,
integration tests, staging environments, all the way up to production. Dagster can be
used as the orchestration engine for machine learning pipelines (feature pipelines,
training pipelines, and batch inference pipelines).

Insights: Dagster and Prefect (both launched in 2018) are often compared to each
other in the context of the Airflow next generation [Airflow-Prefect-Dagster]. Prefect
adheres to a philosophy of negative engineering, built on the assumption that the user
knows how to code and makes it as simple as possible to take that code and build it
into a distributed pipeline, backed by its scheduling and orchestration engine. Dagster
takes a first-principles approach to data engineering. It is built with the full
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development lifecycle in mind, from development, to deployment, to monitoring and
observability.

3.2.5 Metaflow

Logo

URL https://metaflow.org/

Motto A framework for real-life data science

Open-Source https://github.com/Netflix/metaflow (6.2K GitHub stars)

Metaflow [Metaflow] is a human-friendly Python/R library that helps scientists and
engineers build and manage real-life data science projects. Metaflow was originally
developed at Netflix to boost productivity of data scientists who work on a wide variety
of projects from classical statistics to state-of-the-art DL. It is a Python library,
providing a framework to structure Python code as a directed acyclic graph (DAG)
describing a number of steps of work (e.g., data loading, model training, and
evaluation) that will be executed, as well as dependencies between them. These steps
can be run either locally or distributed using AWS Batch.

Insights: Netflix open-sourced Metaflow in 2019. Metaflow helps to design a workflow,
run it at scale, and deploy it to production. It versions and tracks experiments and data
automatically with the ability to inspect results easily in notebooks. Today, Metaflow
powers thousands of ML and data science applications at companies like Netflix, CNN,
SAP, 23andMe, Realtor.com, REA, Coveo, and Latana. Commercial support for Metaflow
is provided by Outerbounds.

3.2.6 Pachyderm

Logo

URL https://www.pachyderm.com/

Motto Data-Centric Pipelines and Data Versioning

Open-Source https://github.com/pachyderm/pachyderm (5.7K  GitHub stars)

Pachyderm [Pachyderm] is cost-effective at scale, enabling data engineering teams to
automate complex pipelines with sophisticated data transformations across any type
of data. It provides parallelized processing of multi-stage, language-agnostic pipelines
with data versioning and data lineage tracking (CI/CD engine for data). Its main
features are:
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● Data-driven pipelines automatically trigger based on detecting data changes.
● Immutable data lineage with data versioning of any data type.
● Autoscaling and parallel processing built on Kubernetes for resource

orchestration.
● Uses standard object stores for data storage with automatic deduplication.
● Runs across all major cloud providers and on-premises installations.

Insights: Pachyderm combines data lineage with end-to-end pipelines on Kubernetes.
It’s available in three versions, Community Edition (open-source), Enterprise Edition, and
Hub Edition (still a beta version). Pachyderm has moved some components of
Pachyderm Platform to a source-available limited licence. Pachyderm serves, above all,
for data processing and orchestration. It can be classified into data and pipeline
versioning MLOps product group with data versioning principles:

● Repository – a Pachyderm repository is the highest level data object. Typically,
each dataset in Pachyderm is its own repository.

● Commit – an immutable snapshot of a repo at a particular point in time.
● Branch – an alias to a specific commit, or a pointer, that automatically moves as

new data is submitted.
● File – files and directories are actual data in your repository. Pachyderm

supports any type, size, and a number of files.
● Provenance - to track the dependencies and relationships among datasets.

3.2.7 ClearML

Logo

URL https://clear.ml/

Motto ClearML - Auto-Magical CI/CD to streamline your ML workflow.
Experiment Manager, MLOps and Data-Management

Open-Source https://github.com/allegroai/clearml/ (4.0 K GitHub stars)

ClearML [ClearML] declares to turn a ML experiment into MLOps with only
2-lines-of-code and it can easily develop, orchestrate, and automate ML workflows at
scale. ClearML comes with Free (up to 3 users), Pro, Scale and Enterprise price plans.

Insights: ClearML is a ML/DL development and production suite containing 4 main
modules:

● Experiment Manager - automagical experiment tracking, environments and
results);

● MLOps - Orchestration, Automation & Pipelines solution for ML/DL jobs (K8s /
Cloud / bare-metal);

● Data-Management - Fully differentiable data management & version control
solution on top of object-storage like Amazon Amazon Simple Storage Service
(S3), Google Storage (GS), Azure storage or Network-Attached Storage (NAS);
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● Model-Serving - deploy new model endpoints in under 5 minutes, includes
optimized GPU serving support backed by Nvidia-Triton, with out-of-the-box
Model Monitoring.

ClearML enables many MLOps features (Table 05), for example, to track and upload
metrics and models, reproduce experiments, create bots that send Slack messages
based on experiment behaviour, manage data (store, track, and version control),
remotely execute experiments on any compute resource you have available with
ClearML Agent, automatically scale cloud instances according to resource needs with
ClearML's GPU Compute, AWS Autoscaler, and GCP Autoscaler GUI applications, run
hyperparameter optimization and build pipelines from code.

3.2.8 Seldon Core

Logo

URL https://www.seldon.io/solutions/open-source-projects/core

Motto An open source platform to deploy ML models on Kubernetes at
massive scale

Open-Source https://github.com/SeldonIO/seldon-core (3.6K GitHub stars)

Seldon Core [SeldonCore] declares itself as the standard open-source platform for
rapidly deploying ML models on Kubernetes at massive scale. It converts ML models
(Tensorflow, Pytorch, H2o, etc.) or language wrappers (Python, Java, etc.) into
production REST/gRPC (Google Remote Procedure Call) microservices. Seldon handles
scaling to thousands of production ML models and provides advanced ML capabilities
out of the box including Advanced Metrics, Request Logging, Explainers, Outlier
Detectors, A/B Tests, Canaries and more.

Insights: Seldon Core is the open-source framework for easily and quickly deploying
models and experiments at scale with the following summary:

● Simplify model deployment with various options like canary deployment;
● Monitor models in production with the alerting system when things go wrong;
● Use model explainers to understand why certain predictions were made.

Seldon Core can also be classified into the group of model deployment and serving
MLOps products.

3.2.9 Polyaxon

Logo
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URL https://polyaxon.com/

Motto MLOps Tools for Managing & Orchestrating the ML LifeCycle

Open-Source https://github.com/polyaxon/polyaxon (3.2K  GitHub stars)

Polyaxon [Polyaxon] is a platform for building, training, and monitoring large scale DL
applications with the aim to solve reproducibility, automation, and scalability for ML
applications. Polyaxon deploys into any data centre, cloud provider. It supports all the
major DL frameworks such as Tensorflow, MXNet, Caffe, Scikit-learn, and Torch.
Polyaxon makes it faster, easier, and more efficient to develop DL applications by
managing workloads with smart containers and node management (also with GPU).

Insights: Polyaxon can also be classified into the group of run orchestration and
workflow pipelines MLOps products. The tool can be deployed into any data center,
cloud provider, and can be hosted and managed by Polyaxon. When it comes to
orchestration, Polyaxon can maximise the usage of the cluster by scheduling jobs and
experiments via their command-line interface (CLI), dashboard, software development
kits (SDKs), or REST application programming interface (API).
Polyaxon is, in general, a commercial product but it has an open-source version. It
comes with three versions: Community Edition (open source free tool), Hybrid Cloud
and Enterprise Edition. It is a well documented platform, with technical reference docs,
getting started guides, learning resources, guides, tutorials, changelogs, and so on.

3.2.10 Flyte

Logo

URL https://flyte.org/

Motto Kubernetes-native workflow automation platform for complex,
mission-critical data and ML processes at scale

Open-Source https://github.com/flyteorg/flyte ( 3.1K GitHub stars)

Flyte [Flyte] is open-source Kubernetes-native workflow automation platform for
complex, mission-critical data and ML processes at scale. It has been tested at Lyft,
Spotify, Freenome, and others. Flyter’s main features are as follows.

● Kubernetes-native workflow automation platform
● Ergonomic SDKs in Python, Java, and Scala to develop Flyte workflows
● Versioned, auditable, and reproducible pipelines
● Data-aware and strongly-typed
● Resource-aware and deployments at scale

Insights: Flyte is a community-driven and community-owned software. Flyte is more
than a workflow engine, it uses workflow as a core concept, and task (a single unit of
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execution) as a top-level concept. Multiple tasks arranged in a data producer-consumer
order creates a workflow. Flyte is a platform for ML project maintenance released by
Lyft with

● Large-scale project support;
● Improved reproducibility;
● Multi-language support such as Python, R, Java, Scala. Julia.

Flyte has been tested out by Lyft internally before they released it to the public. It has a
proven record of managing more than 7,000 unique workflows totaling 100,000
executions every month. Flyte can also be classified into the group of testing and
maintenance MLOps products.

3.2.11 ZenML

Logo

URL https://docs.zenml.io/

Motto Build portable, production-ready MLOps pipelines

Open-Source https://github.com/zenml-io/zenml ( 2.6K GitHub stars)

ZenML [ZenML] is an extensible, open-source MLOps framework for creating portable,
production-ready MLOps pipelines. It's built for Data Scientists, ML Engineers, and
MLOps Developers to collaborate as they develop to production. ZenML offers a simple
and flexible syntax, is cloud- and tool-agnostic, and has interfaces/abstractions catered
toward ML workflows. The aim is to have all favourite tools in one place to tailor a
workflow that caters to specific needs.
Insights: In ZenML, a Stack represents a set of configurations for user-selected MLOps
tools and infrastructure. For instance:

● Kubeflow for ML workflow orchestration;,
● Amazon S3 bucket as an storage to save ML artifacts;
● Weights & Biases for experiment tracking;
● Seldon or KServe for model deployment on Kubernetes.

Apart from the infrastructure required to run ZenML itself, ZenML also boasts a ton of
integrations into popular MLOps tools. The ZenML Stack concept ensures that these
tools work nicely together, therefore bringing structure and standardization into the
MLOps workflow. However, ZenML assumes that the stack infrastructure for these
tools is already provisioned. Currently, there is no native mechanism to distribute
large-scale workloads onto computing workloads for ZenML users.
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3.2.12 Tensorflow Extended

Logo

URL https://www.tensorflow.org/tfx

Motto Tensorflow Extended (TFX) is an end-to-end platform for deploying
production ML pipelines

Open-Source https://github.com/tensorflow/tfx (1.9K GitHub stars)

Tensorflow Extended (TFX) is a Google production-scale ML platform based on
TensorFlow. It provides a configuration framework to express ML pipelines consisting
of TFX components. TFX pipelines can be orchestrated using Apache Airflow and
Kubeflow Pipelines. Both the components themselves as well as the integrations with
orchestration systems can be extended. TFX components interact with a ML Metadata
backend that keeps a record of component runs, input and output artifacts, and runtime
configuration. This metadata backend enables advanced functionality like experiment
tracking or warm-starting/resuming ML models from previous runs.

TFX libraries include
● TensorFlow Data Validation (TFDV),
● TensorFlow Transform (TFT),
● TensorFlow Model Analysis (TFMA),
● TensorFlow Metadata (TFMD),
● ML Metadata (MLMD).

TFX requires Apache Beam is an open source, unified model for defining both batch
and streaming data-parallel processing pipelines to implement data-parallel pipelines
executed on, e.g., Apache Flink, Apache Spark, Google Cloud Dataflow, and others.

Insights: The current version of TFX 1.0.0, which is the initial post-beta release of
TFX, which provides stable public APIs and artifacts along with nightly built packages.
TFX popularity is still not in the top but growing thanks to the popularity of the
Tensorflow family.

3.2.13 MLeap

Logo

URL https://combust.github.io/mleap-docs/

Motto Deploy ML Pipelines to Production
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Open-Source https://github.com/combust/mleap ( 1.4K GitHub stars)

MLeap [MLeap] aims to deploy ML data pipelines and algorithms not to be a
time-consuming or difficult task. MLeap allows data scientists and engineers to deploy
ML pipelines from Spark and Scikit-learn to a portable format and execution engine. Its
main goals are as follows.

● Allow to build data pipelines and train algorithms with Spark and Scikit-Learn
● Extend Spark/Scikit/TensorFlow by providing ML pipelines

serialization/deserialization to/from a common framework (Bundle.ML)
● Use MLeap Runtime to execute pipeline and algorithm without dependencies on

Spark or Scikit (numpy, pandas, etc)

Insights: MLeap is a common serialization format and execution engine for ML
pipelines. It supports Spark, Scikit-learn and Tensorflow for training pipelines and
exporting them to an MLeap Bundle. For portability, MLeap is built on the JVM and only
uses serialization formats that are widely-adopted.

3.2.14 MLRun

Logo

URL https://www.mlrun.org/

Motto ML automation and tracking

Open-Source https://github.com/mlrun/mlrun (898 GitHub stars)

MLRun [MLRun] is an open MLOps platform for quickly building and managing
continuous ML applications across their lifecycle. MLRun integrates into a
development and CI/CD environment and automates the delivery of production data,
ML pipelines, and online applications. It aims to reduce engineering efforts, time to
production, and computation resources and to break the silos between data, ML,
software, and DevOps/MLOps teams and to enable collaboration and fast continuous
improvements.

Insights: In MLRun the assets, metadata, and services (data, functions, jobs, artifacts,
models, secrets, etc.) are organized into projects. Projects can be imported/exported
as a whole, mapped to git repositories or IDE projects (in PyCharm, VSCode, etc.),
which enables versioning, collaboration, and CI/CD. Project access can be restricted to
a set of users and roles. MLRun support the following MLOps tasks:

● Project management and CI/CD automation,
● Ingest and process data,
● Develop and train models,
● Deploy models and applications,
● Monitor and alert.
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MLRun ecosystem supports the newest data stores, development tools, services,
platforms such as:

● Data stores: object (S3, GS, az), files, NFS, Pandas/Spark DF, BigQuery,
Snowflake, Redis, Iguazio V3IO object/key-value;

● Event sources: HTTP, cron, Kafka, Iguazio V3IO streams;
● Execution frameworks: Nuclio, Spark, Dask, Horovod/MPI, K8s Jobs;
● Dev environments: PyCharm, VSCode, Jupyter, Colab, AzureML, SageMaker,

Codespaces;
● ML frameworks: scikit-learn, XGBoost, LGBM, Tensorflow/Keras, PyTorch;
● Platforms: Kubernetes, AWS EKS, Azure AKS, GKE, VMWar, Local (e.g.,

Kubernetes engine on Docker Desktop), Docker, Linux/KVM, NVIDIA DGX;
● CI/CD: Jenkins, Github Actions, Gitlab CI/CD, KFP.

However, currently the number of GitHub stars of the product is still not high despite
promising its MLOps options and features.

3.3 SUMMARY OF MLOPS PLATFORMS AND AI LIFECYCLE MANAGEMENT
The MLOps scene is exploding with a multitude of products available in order to
address different tasks concerning the ML lifecycle. The rapid expansion of MLOps
platforms is only one part of the overall AI landscape. Although at the first glance all
MLOps platforms have the same goal of supporting the ML lifecycle, when entering in
the details, these platforms have different goals, which opens up space for different
platforms to take different approaches. The number of all existing (widely just
so-called) MLOps products is much higher (more than 250 listed software products)
[RockeScience2022] than the above presented top open-source ones [DataCamp2022].
There are also other approaches to classify MLOps products, e.g., into sub-groups with
narrowed purposes as follows.

● Model metadata storage and management.
● Data and pipeline versioning.
● Hyperparameter tuning.
● Run orchestration and workflow pipelines.
● Model deployment and serving.
● Production model monitoring.

The boundaries among MLOps product sub-groups are also blurry (not strict). One
MLOps product can belong to more groups or get lost/evolved with time going and
feature requirements evolving. It is difficult to decide on the best criteria for a MLOps
platform and it can be tempting to look for the popularity (e.g., the score of GitHub
stars) or the completeness of features/abilities [Thoughtworks2021], e.g.,
Orchestration (O), Distributed Training (DT), Code Management (CM), Model
Development (MDV), Model Testing/Validation (MTV), Model Inference (MI), Model
Deployment (MDP), Experiment Tracking & Metadata Store (ETMS), Data Versioning
and Management (DVM) [AI-Infra2022]. Newly appearing products with more
supporting features may have less stars just because they have a shorter lifetime on
the market, but it does not mean they are not attractive or competent enough. There is
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a risk of preferring popularity or number of desired supporting features (or vice versa)
to dominate considerations because:

● Although product popularity is a good indicator to filter out low-ranked products,
which are new or not so good quality, popularity is not inline with the number of
supported features of MLOps products.

● All products are evolving and adding new features over time.
● Higher range of features can come at a cost of inflexibility and higher cost to

maintain.
● Many use cases do not require a wide range of features.
● If required features are missing, it is often sufficient to add supplementary tools.

The best compromise (or balance) between popularity and the number of supported
features belong to Pachyderm, ClearML, and Polyaxon (see Table 05). Pachyderm has
the most partially supported features (in-progress evolving). However, it is oriented to
be commercial with an open source free version. The similar commercial plans with
open source free version are with ClearML and Polyxagon, which has the highest
number of supported features.

The next interesting ones are Flyte, TFX (pre-release beta version), and MLRun. Their
popularity is still not very high and the number of features is promising. It is clear that
there is no perfect solution “one size fits all”, when it comes to ML/AI and the same is
valid for MLOps products.

Also according to the Neptune.ai comparison report released in December 2022
[NeptuneAI2022], a competent MLOps platform has to have (at least) the following
features/abilities:

● Orchestration (O): ability to spin up a service (compute, network and storage
management) based on that model artefact to train and consequently to deploy
them at the end of the process.

● Model Development (MDV): ability to build model artefacts that contain all the
information needed to preprocess data and generate a result.

● Model CI/CD/CT including Model Deployment (MDP) and Model Inference (MI):
ability to mark models as ready for staging and production, and run them
through a CI/CD/CT process.

● Experiment Tracking and Metadata Store (ETMS): ability to track the code that
builds them, and the data they were trained and tested on.

● Data Versioning and Management (DVM): ability to keep track of how the
models, their code, and their data, are related, e.g., for drift monitoring.

The purpose of an MLOps platform is to automate tasks involved in building
ML-enabled systems and to make it easier to get value from ML pipelines. There are
many steps involved in building ML models and getting value from them such as
exploring and cleaning the data, executing a long-running, iterative or incremental
training process as well as deploying and monitoring a model. An MLOps platform can
be thought of as a collection of tools for achieving the tasks involved in getting value
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from ML. A good platform is not only a collection of tools, but it has to fit together to
provide consistency in how activities are handled and also consistency across the
organisation as a single platform for different use cases.

In the context of AI landscape, AI/ML lifecycle management including AI infrastructure,
the DEEP-Hybrid-DataCloud framework (in short DEEP framework, developed as the
output of the DEEP-HybridDataCloud project EU H2020-777435) is a distributed
architecture to provide ML practitioners with a set of tools and cloud services that
cover the whole ML development cycle: ranging from the models creation, training,
validation and testing to the models serving as a service, sharing and publication. The
DEEP framework allows transparent access to existing e-Infrastructures, concretely the
European Open Science Cloud (EOSC), effectively exploiting distributed resources for
the most compute-intensive tasks coming from the ML development cycle. Moreover,
the DEEP framework provides scientists with a set of cloud-oriented services to make
their models publicly available, by adopting a serverless architecture and a DevOps
approach, allowing an easy share, publish and deploy of the developed models
[ALG2020]. Currently, the DEEP framework is actively supporting use cases coming
from the EOSC, the EOSC DIH, the EGI-ACE (like INRAE and JRC) and now iMagine
Horizon Europe projects.

The AI4EOSC project will be built on top of the DEEP-Hybrid-DataCloud outcomes and
the EOSC compute platform and services. It will deliver an enhanced set of advanced
services for the development of Artificial Intelligence (AI), Machine Learning (ML) and
Deep Learning (DL) models and applications in the EOSC. These services will be
bundled together into a comprehensive platform providing advanced features such as
distributed, federated and split learning; novel provenance metadata for AI/ML/DL
models; event-driven data processing services or provisioning of AI/ML/DL services
based on serverless computing. The main outcomes of the AI4EOSC project will serve
as a catalyst for researchers, facilitating the collaboration, easing access to high-end
pan-European resources and reducing the time to results; paired with concrete
contributions to the EOSC exploitation perspective, creating a new channel to support
the build-up of the EOSC Artificial Intelligence and Machine Learning community of
practice.
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4.- METHODOLOGY FOR PLATFORM REQUIREMENTS SPECIFICATION

The AI4EOSC platform, that is deeply described in deliverable D3.2. Initial high-level
architecture specification, is an integration of several technologies to provide advanced
features to train and develop machine learning and deep learning models. It is based in
the previous DEEP platform [DEEP-Platform] and will deliver new high-level services
and functionalities, targeting direct exploitation by scientific teams, allowing them to
reduce the time to results and increase productivity by building better analytics tools,
products, and services leveraging AI/ML/DL, with focus on advanced features like
federated learning, split learning or distributed training. Initially, the platform has to
meet the onboarded use-case applications needs. For that, in this section we describe
the methodology followed by WP6 to collect all the use case requirements, information
that is key to WP3, WP4 and WP5, to properly design and develop the AI4EOSC
platform.

A requirement is a service, function or feature that a user needs. We can categorise a
requirement into two different categories:

● Functional: what it does (functionality, features)
● Non-functional: how well it performs against defined parameters.

Requirements evolve and emerge during the project. Moreover, as one of the objectives
of the WP3 is to incorporate user input as the basis of the services development
through the whole development and implementation processes, carrying out a
co-design methodology, we need a methodology to avoid unnecessary rework and to
manage complexity of requirements specification.

In this section we describe the proposed methodology for gathering user requirements
for the three use cases of the project: Agrometeorological forecasts, Integrated plant
protection scenario, and Automated Thermography. The actual data collection for
requirements is done by WP6 and the results are collected in D6.1 “Analysis of user
applications, collection of requirements”.

4.1.- REQUIREMENT ANALYSIS METHODOLOGY
The proposed approach in requirements gathering is inspired by the DSDM Agile
Project Framework [AgilePF]. Thus, the requirements will be formulated by focusing on
personas and looking at the framework from the point of view of the users of the
framework (use cases and future new users).

The requirements elicitation process will take place by following five steps, as depicted
in Figure 9:

● Step 1: Gather information from the Use Case and the architecture of the
application.

● Step 2: Define the Epics of the application.
● Step 3: Define the User Stories resulting from the Epics. The User Stories are

always presented using the point of view of different user profiles (Personas).
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● Step 4: Formulate the Requirements which results from the User Stories.
● Step 5: Define which AI4EOSC platform component (tool) is involved in each

Requirement.

Fig. 09 Flowchart of the proposed methodology.

In the next subsections we will analyse deeply each one of the steps.

Step 1: Use case definition
The first step of the requirements elicitation process is to individually analyze and
collect relevant technical information from the Use Cases. The relevant information is,
but not limited to:

● Data structure, acquisition, and storage
● Data processing  (for cleansing and training), in terms of:

○ Hardware requirements: GPUs, CPUs, RAM, Storage
○ Software requirements: Tools involved, i.e. application architecture (and

limitations detected in those tools) and execution environment (CLI, GUI
- Notebooks, etc.)

● Model inference: Non-functional requirements such as time constraints
● Model distribution (license, packaging, adherence to FAIR principles, etc.)

In AI4EOSC, WP6 has been in charge of interviewing each use case to know in depth all
of them. For that, a set of questions organized in 7 different categories has been
prepared, gathering information from data sources, data preparation, modelling
(registry, serving and monitoring), code and CI/CD. This information is collected and
properly analyzed and presented in D6.1 “Analysis of user applications, collection of
requirements”.
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Step 2: Epics
An epic is a high-level description of a usage situation that can be broken down into a
number of smaller tasks (User stories). Epic descriptions can be represented mainly
with a short title and a brief description, and must be related to a use case and have an
unique identifier. Epics can also be versioned, thus adapting to the evolution of the use
case. Table 06 collects all the fields of an epic, with a short description and an example
of each of them.

Field name Explanation Example

Epic ID A unique id with the format <Use
Case No.>.E<Epic No.>

UC1.E01

Title A short sentence representing the
Epic

Train an AI model for
carrot vs parsnip detection

Description A short description, usually one or
two paragraphs

To efficiently detect if an
image is a carrot or a
parsnip using the
AI4EOSC platform with our
mobile application, we
need to train an AI model.
Images acquired via the
cameras need to be
preprocessed, labeled and
stored for long-term use.

Use Case The related use case UC1

Owner The person in charge of it John Doe
(john@doe.com)

Version A sequence of numbers that
identifies the state of the epic

1.0

Table 06 Template for Epics.

Step 3: User Stories
A User Story is a requirement expressed from the perspective of an end-user (Persona).
Starting from an epic, this is divided into several user stories that focus on a unique
feature or functionality, clearly mention the persona and are described as a one phrase
statement.

A Persona is a fictional character that represents a potential user. Personas need to be
defined right at the beginning of this step, because the user stories are defined for the
different personas identified in each use case. For example, the Application architect,
the AI Model developer, the Infrastructure provider, the AI4EOSC Platform admin, or the
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Application end user for each use case can be possible profiles directly involved with
the AI4EOSC platform. The proposed list of personas has been aligned with WP6, and
the details together with a description of each one of the profiles observed is available
in D6.1 “Analysis of user applications, collection of requirements”.

Fig. 10 Schema of a user story and an example

Knowing the actors of the scene, we can now proceed to describe the user stories.
Figure 10 represents the typical structure of a user story, and an example of it. Each
user story can be seen as a short request that expresses the needs of a Persona. Table
07 collects all the information related with a user story, and exemplifies all of the fields
considered.

Field Name Explanation Example

User Story ID An unique id with the format <Epic
No.>.S<Story No.>

UC1.E01.US01

User Story Title A short sentence representing the
User story

Provision computing
resources for AI model
training

Priority One of the following:
● Must have: The system

(AI4EOSC platform) must
implement this user story to be
accepted.

● Should have: The system
should implement this user
story: some deviation from the
requirement as stated may be
acceptable.

● Nice to have: The system
should implement this user
story, but may be accepted
without it.

Must Have

Persona The fictional character that will act Application Architect
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as the end user of this story. The
Personas must be described in
advance.

Description As a <persona> when <performing
an action> I want to <to
something> so that <I can
achieve some goal>

As the “Application
Architect” I need to have
access to computing
resources with at least 16
GB of RAM and a GPU so
that I can train an AI
model

Need/Purpose The objective that the persona
wants to achieve through the story

Train the AI model on
dynamically provisioned
computing resources

Epic ID The Epic related with the user
story

UC1.E01

Use Case The use case related with the user
story

UC1

Owner The person in charge of it Jane Doe (jane@doe.com)

Version A sequence of numbers that
identifies the state of the user
story

1.0

Table 07 Template for User Stories.

Step 4: Requirements
In this step user stories are transformed into requirements. A requirement is a
functionality that a user (Persona) needs (involving at least one technological
component of the AI4EOSC platform). Requirements are organized in different
categories and have a level of priority and status associated. Each requirement needs
to be associated with AI4EOSC Platform Components, those that will be in charge of
supplying the requirement. Ideally requirements should be mapped to a single (or few)
components to reduce the granularity. Table 08 collects all the data related to a
requirement, and exemplifies it.

Field Name Explanation Example

Requirement ID An unique id with the format <Use
Case No.>.Req<Requirement No.>

UC1.Req01

Title A short sentence representing the
requirement

Access to computing
power
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Priority One of the following:
● Must have: The system

(AI4EOSC platform) must
implement this requirement to
be accepted.

● Should have: The system
should implement this
requirement: some deviation
from the requirement as stated
may be acceptable.

● Nice to have: The system
should implement this
requirement, but may be
accepted without it.

Must Have

Required for (User
Story)

The user story related with the
requirement

UC1.E01.US01

Category One of the following tentative list:
● Computing requirements
● Storage requirements
● Data transfer requirements
● Software Quality Assurance
● Monitoring requirements

Computing requirements

Description Describe the intention of the
requirement

I need a virtual machine
powerful enough to train
an AI model

Rationale Justification of the requirement,
why is this needed.

To train the AI model,
computing resources are
needed

Tool AI4EOSC Platform Component in
charge of supplying the
requirement

AI4EOSC Training
Dashboard

Acceptance
Criteria

Metrics, objectives required to
achieve the expected outcome of
the requirement

16Gb of RAM and a CPU
at least.

Supporting
Materials

References that illustrate and
explain the requirement

-

Tentative
scheduling

Tentative scheduling of
accomplishment

M8

Status One of the following:
● Defined
● In Progress

Defined
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● Implemented
● In Testing
● Cancelled

Use Case The use case related with the
requirement

UC1

Requester The person who requests Jane Doe (jane@doe.com)

Owner The person in charge of it John Doe
(john@doe.com)

Version A sequence of numbers that
identifies the state of the
requirement

1.0

Table 08 Template for Requirements.

Step 5: Assets
In this step, all requirements from the Use Cases are consolidated and mapped to the
AI4EOSC assets (i.e. the key tools of the AI4EOSC platform, such as Infrastructure
Manager, PaaS Orchestrator, etc., as described in D3.2 “Initial high-level architecture
specification”). In this phase existing requirements may be reformulated in a more
detailed way; and additional requirements may be added. Requirements for the assets
will be mapped to relevant Use-Case requirements.

4.2.- IMPLEMENTING THE METHODOLOGY
To effectively implement the described methodology, we rely on a living document,
stored in a shared space, with the information of personas, epics, user stories and
requirements. With this approach, user communities from each use case and technical
teams from AI4ESOC (mainly WP4, WP5 and WP6) can interact among these shared
document, that acts as a repository of requirements to analyze and fine-tune them in an
iterative approach, thus fostering co-design.

The document has been created as a Shared Google Spreadsheet available to the
involved AI4EOSC partners, so that they can access, analyze and verify the needs of the
use cases. The document contains 4 main sheets, where data is structured in Epics,
User Stories and Requirements, all of them quantitatively represented in a visual sheet
as Figure 11 shows. This scenario leads us to maintain a continuously updated set of
requirements for the AI4EOSC platform.
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Fig. 10 Screenshot of the visual sheet of the requirements repository

Detailed information about the actual collection and requirements from the use cases,
based on the methodology described here, is provided in D6.1 “Analysis of user
applications, collection of requirements”.
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5.- CONCLUSIONS

This document has provided a comprehensive and up-to-date overview of the most
relevant technologies available in the field of AI/ML/DL. Several frameworks, tools and
solutions have been analysed and presented in summary in this report, which will be a
key input for the design and specification of the AI4EOSC platform architecture. It will
improve decision-making in the next steps of the project, not only for WP3 but also for
other work packages such as WP4 and WP6. As mentioned, the aim of the deliverable
is not to give a winning solution for the project at this point, but to analize the available
solutions with the perspective of the project, as described in section 3.3 of this
document.

Moreover, the document has described the methodology to collect the requirements of
the AI platform taking as the main input the requirements of its initial users, the three
use cases of the project, from WP6. As the requirements might evolve during the
project, we have also proposed a co-design approach to maintain a live repository of
requirements to track the evolution of the needs of the three use cases during the
project. This work is actually complemented with the information presented in D6.1
“Analysis of user applications, collection of requirements”, where the methodology is
used as the basis for the actual requirements gathered directly from the three use
cases: Agrometeorology, Integrated Plant Protection and Automated Thermography.
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