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Abstract

Let 7¢(n) denote the number of representations of n as a sum of k squares and t;(n) the
number of representations of n as a sum of k triangular numbers. We give an elementary,
combinatorial proof of the relations

rk(8n—|— k) = thk(n), 1 < k < 7,

where ¢c; =2, co =4, c3 =8, cy =24, c5 = 112, cg = 544 and c; = 2368.

1. Introduction

Let ri(n) denote the number of solutions in integers of the equation
i+ as+ - +ap=n,
and let t;(n) denote the number of solutions in non-negative integers of the equation

ri(r +1 To(we + 1 Tz + 1
1(12 )+2(22 I k(l; )

For example,

9 = (£3)24+07+0% =02+ (£3)? 4+ 0% = 0% + 0> + (£3)?
= (£2)2 4 (£2)2 + (£1)* = (£2)2 + (£1)* + (£2)® = (£1)* + (£2)* + (£2)?,
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and so r3(9) = 30. On the other hand, r3(7) = 0. Also, t3(10) = 9, because the solutions
Of ZEl(Jfl + 1) 1 I‘Q(ZL‘Q —I— 1) 1 l’g(ng + 1)

2
(4,0,0) (three possible permutations), and (3,2, 1) (six possible permutations), giving a
total of nine solutions.

= 10 in non-negative integers are (1, xs,3) =

Geometrically, 7,(n) counts the number of points with integer coordinates on the k-
dimensional sphere x? + 23 + - - - + 2?2 = n. Similarly, 2*¢;(n) counts the number of points
with integer coordinates on the k-dimensional sphere (z1+3)2+(zo+1)%+- - -+ (zp+3)* =
2n + %.

A great deal is known about ri(n) and tx(n). For example, generating functions which
yield explicit formulas for 7 (n) and tx(n) for kK = 2,4,6 and 8 in terms of the divisors of
n, were given by Jacobi [7, pp. 159-170]. On the other hand, explicit formulas for odd
values of k£ are much more complicated. For both even and odd values of k£ > 9, explicit
formulas become even more complicated. For more information, see [4], [5, Chs. 6-9], [6,

Ch. 20] and [8].

In [1], a remarkable connection between tx(n) and ri(8n + k) for 1 < k < 7 was
observed. These relations were independently rediscovered in [3].

Theorem [1, Lemma 2.7], [3].

For any non-negative integer n,

k(k—1)(k—2)(k—3)
48

O

Thus for 1 < k < 7, in order to study the sequence {tx(n)}
the subsequence {ry,(8n + k)},-, of {rr(n)},5¢-

>0+ 1t suffices to study

The proof in [1] relies on Jacobi’s explicit formula for r74(n) in terms of divisors of n.
The proof in [3] uses generating functions, and depends on properties of theta functions.
The purpose of this article is to give an elementary, combinatorial proof of this theorem.

2. Proofs

Lemma. Let

Ay = {5 k1) €2 i+ j+k+1=0 (mod 2),
(20 +1)2+ (25 + 1) + 2k + 1)* + (2L + 1) = 8n + 4},
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B, = {(i,jk)€Z* i+j+k+1=1 (mod?2),
(204 1)+ (2 +1)*+ 2k + 1)+ (2L + 1)* = 8n + 4},
Co = {(i,4, k1) € Z": (20)* 4+ (2))> + (2k)* + (20)* = 8n + 4} .

Then the sets A,,, B,, and C,, are equinumerous. Note that for the set C,,, the condition
i+j7+k+1=1 (mod 2) also holds.

Proof. Define f : A, — B, by

fl, g,k 0) = (i,4,k, =1 —1).

Then f is readily seen to be a bijection, and so A,, and B,, are equinumerous. Similarly,
define g : B, — C,, by

1
gli. g kD) = Slitj+h—l+Litj—k+li+li-j+h+l+l—itj+h+l+1).
Then it may be easily verified that

1
g’l(z',j,k,l):§(i+j+k—l—1,i+j—k+l—1,i—j+k+l—1,—z'+j+k+l—1),

and ¢ is a bijection. Thus B,, and (), are equinumerous. O

Corollary. The number of representations of 8n+ 4 as a sum of four odd squares equals
twice the number of representations of 8n + 4 as a sum of four even squares.

Proof of the Theorem. We will show that each representation of n as a sum of k£ triangular

(k—1)(k—2)(k—3)
48

numbers gives rise to 2F (1 + & ) representations of 8n + k as a sum of k

squares, and that every representation of 8n 4+ k£ as a sum of k squares arises once and
only once in this way.

Suppose

r1(z; +1 Tr(re +1
n:—l(l )+...+ w(@r+1) (1)
2 2
is a representation of n as a sum of k triangular numbers. Then multiplying by 8 and

completing the square gives
8n+k = (£(2x1 + 1)) + - + (£(2z + 1)) (2)

This gives rise to 2 representations of 8n + k as a sum of k odd squares, because there
are 2% possibilities for the signs. Conversely, each of the 2% representations in (2) arises
only from the corresponding representation (1).

If 1 <k <3, then the only way 8n + k may be expressed as a sum of k squares is if
all the squares are odd, and so we have r4(8n + k) = 2¢;(n) in this case.

If4 <k <7and8n+ kis asum of k squares, then parity considerations show that
either all k£ squares are odd, or k — 4 are odd and 4 are even. In the first case, equation
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(2) gives 2% representations of 8n + k as a sum of k odd squares for each instance of (1),
and this accounts for all representations of 8 + k as a sum of k£ odd squares. In the

k
latter case, there are 4 orderings of xy, - -, x; by parity, in which four of the squares

are even and the others odd. Consider the equation
i+ +ar=8n+k (3)

where x1, =9, x3 and x4 are even and the other z;s are odd. The number of such
representations is half the number of representations of 8n+ k as a sum of k£ odd squares.
To see this, rewrite (3) in the form

k
w4l =8n+k—) o,

j=5
and apply the corollary. It follows that the number of representations of 8n + k as a sum

k
of k squares, 4 of which are even, arising from the single representation (1) is 3 (4) ok,

Combining the two cases we complete the proof of the Theorem. O

Remark. It is clear from this proof of the Theorem that extra complications will arise
if £ > 8. In fact, using modular forms it was shown in [2] that for each value of k > 8,
r,(8n + k) /tx(n) is not a constant function of n. Therefore the Theorem does not hold
it k> 8.
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