
	
	
	
	
	
	
	
	
	
	
	
	

Hepatocyte	Growth	Factor	
	

Jeffrey	S.	Rubin1	and	Donald	P.	Bottaro*2	
	

1Laboratory	of	Cellular	and	Molecular	Biology	and	2Urologic	Oncology	Branch,	
National	Cancer	Institute,	National	Institutes	of	Health,	Bethesda,	MD	20892	USA	

	
	

*To	whom	correspondence	should	be	addressed:	don.bottaro@nih.gov	
ORCID	ID	0000-0002-5057-5334	



Rubin	and	Bottaro,	Hepatocyte	Growth	Factor	
	

	
	

2	

Contents	 	 	 	 	 	 	 	 	 page	
	
About	this	review	 	 	 	 	 	 	 	 3	
Abstract	 	 	 	 	 	 	 	 	 4	
1.	Hgf	Function	in	Development	and	Adulthood	 	 	 	 5	

1.1	Embryonic	Development	 	 	 	 	 5	
1.1.1	Embryonic	Development	in	Rodents		 	 5	
1.1.2	Embryonic	Development	in	Other	Vertebrates	 7	

1.2	Maturity	and	Homeostasis	 	 	 	 	 8	
1.2.1	Postnatal	Nervous	System	Development	 	 8	
1.2.2	Mammary	Gland	Development	 	 	 9	
1.2.3	Renal	and	Pulmonary	Homeostasis	 	 	 9	
1.2.4	Vascular	System	Homeostasis		 	 	 10	
1.2.5	Liver	Regeneration	 	 	 	 	 10	
1.2.6	Skin	Repair	 	 	 	 	 	 11	

2.	Hgf	Function	in	Disease	 	 	 	 	 	 	 11	
2.1	Cancer	 	 	 	 	 	 	 	 11	

2.1.1	Hepatocellular	Carcinoma	 	 	 	 12	
2.1.2	Head	and	Neck	Squamous	Cell	Carcinoma	 	 12	
2.1.3	Papillary	Thyroid	Carcinoma	 	 	 	 12	
2.1.4	Lung	Cancer	 	 	 	 	 	 13	
2.1.5	Breast	Cancer		 	 	 	 	 	 13	
2.1.6	Genitourinary	Malignancies	 	 	 	 14	
2.1.7	Brain	Tumors	 	 	 	 	 	 14	
2.1.8	Colorectal	and	Gastric	Carcinomas	 	 	 15	
2.1.9	Other	Malignancies	 	 	 	 	 15	

2.2	Other	Diseases	 	 	 	 	 	 	 16	
3.	Critical	Hgf	Interactions	 	 	 	 	 	 	 16	

3.1	Activation	of	pro-Hgf	 	 	 	 	 	 16	
3.2	Cell-surface	Heparan	Sulfate	Proteoglycans	 	 	 17	
3.3	The	Met	Receptor	Tyrosine	Kinase	 	 	 	 19	

4.	Major	Sites	of	Hgf	Expression	 	 	 	 	 	 21	
4.1	Tissues	and	Organs	 	 	 	 	 	 21	
4.2	Subcellular	Localization		 	 	 	 	 22	

5.	Regulation	of	Hgf	Production	 	 	 	 	 	 22	
6.	Phenotypes	Associated	with	hgf	or	met	Alteration	 	 	 24	
7.	mRNA	Splice	Variants	 	 	 	 	 	 	 25	
Acknowledgments	 	 	 	 	 	 	 	 27	
References	 	 	 	 	 	 	 	 	 28	



Rubin	and	Bottaro,	Hepatocyte	Growth	Factor	
	

	
	

3	

About	this	review	
	

The	default	animal	model	context	used	in	this	review	is	Mus	musculus.	Consistent	
with	currently	accepted	practice,	the	following	nomenclature	for	hepatocyte	growth	factor	
and	its	cell	surface	receptor	(Met)	is	used:	Hgf	and	Met	denote	the	mouse	proteins,	HGF	and	
Met	(in	context)	denote	the	human	proteins	and	all	other	species	as	indicated,	hgf	and	met	
denote	the	mouse	genes,	and	HGF	and	MET	denote	the	human	genes	and	those	of	all	other	
species	as	indicated.	

This	review	is	focused	on	Hgf	per	se,	not	Met,	although	by	necessity	very	basic	
information	about	Met	is	included.	In	addition	to	its	vital	roles	in	development,	maturation	
and	homeostasis,	the	Hgf/Met	pathway	contributes	to	oncogenesis	through	several	
mechanisms,	including	MET	gene	mutation,	rearrangement	and/or	amplification,	defects	in	
receptor	attenuation	or	downregulation	systems,	or	other	means	of	pathway	activation	
that	may	be	ligand-independent	or	exhibit	reduced	ligand	dependency.	These	mechanisms	
are	covered	in	greater	depth	in	reviews	on	Met,	indicated	in	the	text.	We	focus	here	
specifically	on	those	instances	where	evidence	suggests	that	Hgf	is	a	critical	contributor	to	
oncogenesis	or	disease	progression.	

This	review	was	completed	and	reviewed	by	three	colleagues	with	expert	
knowledge	of	the	field	in	2011.	Updates	intended	to	bring	the	review	current	to	2022	are	in	
progress	and	will	be	submitted	as	new	versions,	per	the	Zenodo	DOI	versioning	policy	
(https://help.zenodo.org).	Reader	comments	intended	to	aid	the	update	process	are	
welcome.	

	
Historic	alternative	names	for	Hepatocyte	Growth	Factor	
	
	 F-TCF;	Fibroblast-derived	tumor	cytotoxic	factor;	Hepatocyte	growth	factor;	
Hepatocyte	growth	factor	alpha	chain;	Hepatocyte	growth	factor	beta	chain;	Hepatocyte	
growth	factor	precursor;	Hepatopoeitin-A;	Hepatopoietin	A;	HGF;	Hgf;	HGF/SF;	HGFB;	
HPTA;	Lung	fibroblast-derived	mitogen;	NK1;	NK2;	PRGF	(Plasminogen	related	growth	
factor);	Scatter	factor;	SF;	SF/HGF	
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Abstract	
	

Polypeptide	growth	factors	have	been	intensively	studied	since	their	initial	
discovery	as	pivotal	regulators	of	cell	proliferation	and	differentiation	in	multicellular	
organisms	more	than	70	years	ago.	Despite	their	name,	many	elicit	multiple	cellular	
responses	during	embryogenesis	and	throughout	adulthood;	dysregulated	signaling	can	
also	contribute	to	disease.	Few	factors	illustrate	these	principles	as	thoroughly	as	
hepatocyte	growth	factor	(Hgf),	also	known	as	scatter	factor	(SF).	As	evident	from	its	
pseudonyms,	Hgf	pleiotropism	has	been	a	striking	feature	from	its	initial	discovery	more	
than	two	decades	ago	by	several	groups	with	interests	in	liver	regeneration,	cell	growth	
control,	motility	and	morphogenesis.	Thousands	of	scientific	publications	now	document	
the	critical	contributions	of	Hgf	signaling	to	normal	development,	adult	homeostasis	and	
several	forms	of	cancer.	

Hgf	protein	and	the	related	macrophage	stimulating	protein	(MSP;	also	known	as	
Hgf-like	protein)	comprise	a	small	but	distinct	growth	factor	subfamily	related	to	
plasminogen	serine	proteinases,	though	they	are	devoid	of	proteolytic	activity.	In	humans,	
a	single	gene	encodes	five	HGF	isoforms	produced	through	mRNA	splicing:	two	full-length	
forms	that	differ	by	only	five	residues	and	three	substantially	shorter	forms.	The	more	
abundant	full-length	forms	are	secreted	as	inactive	single	chain	polypeptides	that	are	
proteolytically	converted	to	biologically	active	disulfide-linked	heterodimers	at	the	target	
cell	surface.	All	isoforms	bind	strongly	to	heparan	sulfate	proteoglycan,	a	feature	that	
profoundly	influences	their	local	and	systemic	distribution,	receptor	binding,	and	biological	
impact.	Hgf	signaling	is	primarily	paracrine:	it	is	secreted	by	mesenchymal	cells	in	many	
tissues	and	acts	on	a	broad	spectrum	of	cellular	targets	that	express	the	receptor	tyrosine	
kinase	known	as	Met.	Hgf-related	research	has	identified	molecular	pathways	important	
for	tissue	protection,	tissue	regeneration	and	oncogenesis,	with	the	promise	to	advance	
tissue	engineering,	regenerative	medicine	as	well	as	cancer	diagnosis	and	treatment.		
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1.	Hgf	Function	in	Development	and	Adulthood	
	
In	their	succinct	and	comprehensive	reviews	of	Hgf/Met	signaling,	Rosario	and	

Birchmeier	(2003;	2004)	parallel	the	late	evolutionary	appearance	of	hgf	and	met	genes	
and	the	processes	of	placentation,	liver	development	and	long-range	muscle	progenitor	cell	
migration.	Accordingly,	we	have	emphasized	Hgf	signaling	in	these	vertebrate	processes,	as	
well	as	in	nervous	system	development,	in	the	following	summary.	In	most	of	these	
developmental	processes,	throughout	adulthood,	and	in	disease,	Hgf	stimulates	cell	
proliferation	and/or	survival,	motility,	and	morphogenesis	encompassing	shape	change	
and	extracellular	matrix	turnover.	Hgf	was	discovered	on	the	basis	of	these	activities	
during	liver	regeneration	(Nakamura	et	al.,	1984;	Thaler	and	Michalopoulos,	1985;	
Nakamura	et	al.,	1989;	Miyazawa	et	al.,	1989;	Zarnegar	and	Michalopoulos,	1989)	and	
independently	in	the	context	of	cultured	epithelial	cell	growth	and	motility	(Stoker	and	
Perryman,	1985;	Stoker	et	al.,	1987;	Gherardi	et	al.,	1989;	Gherardi	and	Stoker,	1990;	
Rubin	et	al.,	1991;	Montesano	et	al.,	1991;	Weidner	et	al.,	1991;	Chan	et	al.,	1991).	cDNA	
cloning	of	the	HGF	gene,	first	reported	in	1989,	made	the	identity	of	hepatocyte	growth	
factor,	scatter	factor,	and	a	lung	fibroblast-derived	epithelial	cell	mitogen	unambiguous	and	
merged	diverse	research	efforts	that	have	grown	to	advance	the	fields	of	signal	
transduction,	cancer	biology	and	regenerative	medicine.	

	
1.1	Embryonic	Development	
	
1.1.1	Embryonic	Development	in	Rodents	
	

The	genes	encoding	Hgf	and	its	cell-surface	receptor,	Met,	are	expressed	during	
gastrulation	and	throughout	subsequent	phases	of	vertebrate	embryonic	development	
(Stern	et	al.,	1990;	Sonnenberg	et	al.,	1993;	Andermarcher	et	al.,	1996).	Early	in	mouse	
gastrulation,	both	genes	are	expressed	in	the	endoderm	and	in	the	mesoderm	along	the	
rostro-intermediate	part	of	the	primitive	streak	and	later,	in	the	node	and	in	the	notochord.	
Neither	gene	is	expressed	in	the	ectodermal	layer	during	gastrulation	(Andermarcher	et	al.,	
1996).	This	overlapping	expression	of	hgf	and	met	genes	persists	into	the	earliest	phases	of	
organogenesis	in	the	heart,	condensing	somites	and	neural	crest	cells	(Andermarcher	et	al.,	
1996).	Thereafter,	a	distinct	pattern	of	expression,	characterized	by	the	presence	of	Hgf	
protein	in	mesenchymal	tissues	and	Met	protein	in	the	surrounding	ectoderm,	begins	in	the	
branchial	arches	and	in	the	limb	buds.	By	E13	(13	days	postcoitum)	in	the	developing	
mouse,	only	this	second	pattern	of	expression	is	observed	in	differentiated	somites	and	
several	major	organs	such	as	lungs,	liver,	placenta,	muscle	and	gut	(Sonnenberg	et	al.,	1993;	
Andermarcher	et	al.,	1996;	Birchmeier	and	Gherardi,	1998;	Ishikawa	et	al.,	2001).	These	
observations	suggest	that	a	shift	from	autocrine	to	paracrine	signaling	takes	place	in	early	
organogenesis	and	predominates	throughout	the	remainder	of	development	and	
maturation.	Andermacher	et	al.	(1996)	proposed	that	during	gastrulation,	Hgf	affects	the	
fate	of	migrating	mesodermal	cells	and	may	play	a	role	in	axis	determination,	whereas	
during	organogenesis	and	thereafter,	the	expression	patterns	of	hgf	and	met	are	consistent	
with	the	signaling	exchange	between	mesenchymal	and	epithelial	cell	compartments	that	
regulates	the	morphogenesis	and	differentiation	of	a	variety	of	embryonic	organs.	At	these	
later	stages	of	development,	hgf	is	expressed	within	somites,	neural	crest	cells,	branchial	
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arches,	liver,	heart,	nervous	system,	and	mesenchyme	surrounding	the	olfactory	canal,	
kidney,	gut,	limb	bud,	lung,	and	liver;	met	transcripts	are	found	in	neural,	endothelial	and	
muscle	cells,	and	a	variety	of	epithelia	(Sonnenberg	et	al.,	1993;	Woolf	et	al.,	1995;	
Andermarcher	et	al.,	1996;	Thewkes	and	Seeds,	1996;	Birchmeier	and	Gherardi,	1998;	
Ishikawa	et	al.,	2001).	Functional	studies	using	tissue	explants	and	cultured	cells	confirm	
the	suspected	role	of	Hgf	in	epithelial	branching	morphogenesis	(Santos	et	al.,	1994;	Woolf	
et	al.,	1995;	Ohmichi	et	al.,	1998).	For	example,	hgf	and	met	are	expressed	in	the	
mesenchyme	and	epithelium,	respectively,	of	the	developing	lung,	where	Hgf	and	fibroblast	
growth	factors	synergize	to	promote	epithelial	proliferation,	branching	and	tubulogenesis	
(Ohmichi	et	al.,	1998).	

The	expression	of	met	and	hgf	genes	in	ventral	motor	neurons	of	the	mouse	and	rat	
embryonic	spinal	cord	is	also	consistent	with	a	role	in	tissue	patterning	through	the	
regulation	of	migratory	and	morphogenic	processes,	such	as	axon	guidance	(Sonnenberg	et	
al.,	1993;	Ebens	et	al.,	1996;	Wong	et	al.,	1997).	Functional	studies	provide	evidence	that	
Hgf	guides	axons	of	spinal	motor	neurons	to	their	distant	muscle	targets	in	the	limbs	
(Ebens	et	al.,	1996;	Wong	et	al.,	1997;	Yamamoto	et	al.,	1997)	and	acts	as	an	essential	
survival	factor	for	a	subpopulation	of	limb-innervating	motoneurons	(Wong	et	al.,	1997;	
Yamamoto	et	al.,	1997).	Both	hgf	and	met	are	also	expressed	in	the	brain	and	retina	during	
development	(E12	-	13)	and	in	the	adult,	where	signaling	supports	neuron	survival	and	
maturation	(Jung	et	al.,	1994;	Honda	et	al.,	1995;	Yamagata	et	al.,	1995;	Hamanoue	et	al.,	
1996;	Achim	et	al.,	1997;	Sun	et	al.,	1999;	Thewkes	and	Seeds,	1999).	In	neocortical	
explants,	Hgf	induced	neurite	outgrowth,	and	in	mesencephalic	cultures,	Hgf	increased	the	
number	and	development	of	tyrosine	hydroxylase-positive	neurons	and	enhanced	
dopamine	uptake	(Hamanoue	et	al.,	1996).	In	the	developed	brain,	hgf	is	expressed	in	
neurons,	primarily	in	the	hippocampus,	cortex,	and	the	granule	cell	layer	of	the	cerebellum,	
as	well	as	in	ependymal	cells,	the	chorioid	plexus,	and	the	pineal	body.	met	is	expressed	in	
neurons,	preferentially	in	the	CA-1	area	of	the	hippocampus,	the	cortex,	and	the	septum,	as	
well	as	in	the	pons	(Jung	et	al.,	1994;	Honda	et	al.,	1995;	Yamagata	et	al.,	1995;	Thewkes	
and	Seeds,	1999).	Evidence	suggests	a	neurotrophic	function	for	Hgf	in	the	CNS,	supporting	
the	survival	and	reconstruction	of	specific	neurons	in	response	to	cerebral	injury	(Honda	et	
al.,	1995).	Hgf	attracts	and	promotes	the	growth	of	cranial	motor	axons	(Caton	et	al.,	2000).	
Various	types	of	glial	cells	and	neurons	have	been	shown	to	respond	to	Hgf	in	vitro.	Hgf	
induces	c-Fos	expression	and	activates	the	Ras	pathway	in	brain	neurons	(Streit	et	al,	
1997),	stimulates	Schwann	cell	growth	(Krasnoselsky	et	al.,	1994)	and	promotes	axon	
outgrowth	of	embryonal	carcinoma	cells	(Yang	and	Park,	1993).	Hgf	stimulates	neurite	
outgrowth	in	sensory	and	sympathogenic	neurons,	as	well	as	enhanced	survival	and	
differentiation	from	progenitors	(Maina	et	al.,	1997;	1998).	

Loss	of	hgf	or	met	function	in	mice	with	homozygous	gene	deletion	is	embryonic	
lethal	between	days	E12.5	and	E15.5	(Schmidt	et	al.,	1995;	Uehara	et	al.,	1995;	Bladt	et	al.,	
1995).	hgf	and	met	null	mice	exhibit	very	similar	phenotypes,	further	supporting	the	
concept	that	Met	is	the	only	receptor	for	Hgf,	and	Hgf	the	only	ligand	for	Met	(Birchmeier	et	
al.,	2003).	Defects	in	the	proliferation	and	survival	of	cells	in	the	liver	and	placenta	result	in	
arrested	organogenesis	of	these	and	other	tissues,	highlighting	the	importance	of	Hgf	
stimulated	mitogenicity	and	survival	in	target	cells.	These	animal	models	also	consistently	
underscore	the	importance	of	Hgf	as	a	potent	and	critical	regulator	of	cell	migration.	
Skeletal	muscle	progenitor	cells	that	form	limb,	tongue,	and	diaphragm	musculature	
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normally	delaminate	from	the	epithelial	dermomyotome	of	the	somites	by	an	epithelial-to-
mesenchymal	transition	and	migrate	to	their	final	destination	where	they	complete	
differentiation.	Loss	of	Hgf	signaling	in	mice	homozygous	for	met	deletion	results	in	
defective	delamination	and	migration	of	muscle	progenitors	from	the	dermomyotome	and	
failure	to	form	the	skeletal	muscles	of	the	limb	and	diaphragm	(Bladt	et	al.,	1995;	Maina	et	
al.,	1996;	Dietrich	et	al.,	1999;	Birchmeier	et	al.,	2003;	Christ	and	Brand-Saberi,	2002).	
Conversely,	hgf	overexpression	in	transgenic	mouse	embryos	induces	the	inappropriate	
formation	of	skeletal	muscle	in	the	CNS	through	dysregulated	migration	of	Met	containing	
myogenic	precursor	cells	to	the	neural	tube	(Takayama	et	al.,	1996).	Melanoblasts	were	
also	aberrantly	localized	to	inappropriate	sites	within	the	E12.5	transgenic	embryo,	
including	the	neural	tube,	and	melanocytes	were	found	within	the	transgenic	adult	in	a	
number	of	abnormal	ectopic	sites,	including	the	CNS	(Takayama	et	al.,	1996).	Mice	bearing	
conditional	deletions	of	hgf	or	met	have	been	used	to	demonstrate	the	functional	relevance	
of	pathway	activation	at	later	developmental	stages	and	in	adulthood.	For	example,	Met	
and	epidermal	growth	factor	receptor	jointly	regulate	final	nephron	number	and	collecting	
duct	morphology	(Ishibe	et	al.,	2009).	Mice	with	a	targeted	mutation	of	the	gene	encoding	
urokinase	plasminogen	activator	receptor,	an	important	Hgf	activator,	have	decreased	Hgf	
levels	and	a	substantial	reduction	in	neocortical	GABAergic	interneurons	at	embryonic	and	
perinatal	ages,	leading	to	changes	in	circuit	organization	and	behavior	(Powell	et	al.,	2001;	
2003).	Mice	with	targeted	mutation	of	two	critical	carboxylterminal	tyrosine	residues	in	
Met	were	found	to	be	phenotypically	similar	to	met	null	animals.	In	contrast,	targeting	one	
of	those	sites	and	thereby	disrupting	the	consensus	for	Grb2	binding	allowed	development	
to	proceed	to	term,	but	caused	a	striking	reduction	in	limb	muscle	mass	coupled	to	a	
generalized	deficit	of	secondary	fibers,	revealing	a	role	for	Hgf	signaling	in	late	myogenesis	
(Maina	et	al.,	1996).	Hgf	signaling	in	maturation	and	adulthood	are	discussed	further	
below.	

	
1.1.2	Embryonic	Development	in	Other	Vertebrates	
	

Developmental	studies	in	other	vertebrates	confirm	and	extend	results	found	using	
mice.	Exogenous	HGF	applied	to	chick	embryos	generated	supernumerary	axial	structures	
resembling	the	primitive	streak	and/or	neural	plate,	suggesting	that	it	may	participate	in	
the	induction	of	these	structures	(Stern	et	al.,	1990).	Chick	embryos	express	HGF	in	
Hensens's	node,	the	limb	buds,	and	intermediate	and	lateral	plate	mesoderm,	whereas	Met	
is	detectable	in	the	spinal	cord	and	somites;	both	genes	are	expressed	in	the	branchial	
arches,	hindbrain	rhombomere	boundaries	and	circulatory	system	(Théry	et	al.,	1995)	HGF	
supports	the	growth	and	survival	of	sensory	neurons	in	the	dorsal	root	ganglion	
(Funakoshi	and	Nakamura,	2001).	

In	Xenopus	embryos,	HGF	is	expressed	in	mesoderm	starting	at	late	gastrulation	and	
increases	thereafter,	especially	in	the	ventral	mesoderm,	which	primarily	gives	rise	to	
mesenchymal	cells	(Nakamura	et	al.,	1995).	Basic	fibroblast	growth	factor,	and	to	a	lesser	
extent,	Activin	A,	can	stimulate	HGF	expression	in	blastula	animal	cap	cells,	suggesting	that	
signals	known	to	induce	the	ventral	mesoderm	also	drive	early	HGF	expression	there	
(Nakamura	et	al.,	1995).	MET	expression	is	found	in	Xenopus	foregut,	neural	tube,	and	
tailbud	mesenchymal	tissue	(Aoki	et	al.,	1996).	Overexpression	of	mRNAs	encoding	a	
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truncated	MET	transcript	lacking	the	tyrosine	kinase	domain	causes	defects	in	liver,	gut,	
and	kidney	development	(Aoki	et	al.,	1997).	

Consistent	with	other	animal	models,	work	using	zebrafish	has	also	demonstrated	
that	HGF/Met	signaling	is	required	for	liver	development	and	the	long-distance	migration	
of	muscle	progenitor	cells	from	the	somites	to	form	fin	hypaxial	muscle	(Haines	et	al.,	2004;	
Latimer	and	Jessen,	2008).	These	studies	also	further	illustrate	the	importance	of	HGF/Met	
signaling	in	neural	development.	Met	is	necessary	for	deposition	of	pro-neuromasts	by	the	
migrating	posterior	lateral	line	primordia	(Haines	et	al.,	2004;	Latimer	and	Jessen,	2008),	
various	types	of	spinal	cord	primary	motor	neurons	and	many	secondary	motor	neurons	
express	Met	(Tallafuss	and	Eisen,	2008;	Latimer	and	Jessen,	2008),	and	this	is	required	for	
secondary	motor	neuron	formation	and	proper	primary	motor	neuron	axon	development	
(Tallafuss	and	Eisen,	2008).		

	
1.2	Maturity	and	Homeostasis	
	
1.2.1	Postnatal	Nervous	System	Development	and	Homeostasis	
	

Both	hgf	and	met	are	expressed	in	the	adult	brain,	retina	and	olfactory	bulb	(Jung	et	
al.,	1994;	Honda	et	al.,	1995;	Yamagata	et	al.,	1995;	Hamanoue	et	al.,	1996;	Achim	et	al.,	
1997;	Thewkes	and	Seeds,	1996,	1999).	At	the	cellular	level,	HGF	mRNA	expression	has	
been	found	in	the	microglia	of	the	rat	brain,	while	MET	mRNA	is	expressed	in	neurons	as	
well	as	astrocytes	and	microglia	(Yamagata	et	al.,	1995).	Most	of	the	neurons	were	Met	
positive,	and	HGF	stimulated	activation	of	Met	and	Ras	in	these	cells	(Yamagata	et	al.,	
1995).	Layer	specific	expression	of	hgf	and	met	mRNA	and	protein	occurs	in	the	adult	
cerebral	cortex:	hgf	is	expressed	in	layers	IV	and	V	and	Met	in	layers	II-III,	IV,	V	and	the	
hippocampus	(Thewkes	and	Seeds,	1999).	Hgf	treatment	of	primary	hippocampal	cell	
cultures	modulated	the	expression	of	presynaptic	and	scaffolding	proteins	of	the	N-methyl-
d-aspartate	(NMDA)	receptor	complex,	suggesting	that	Hgf	promotes	the	maturation	of	
excitatory	synapses	in	young	hippocampal	neurons	(Nakano	et	al.,	2007).	

Cerebellar	development	is	primarily	postnatal	and	requires	extensive	cell	
proliferation	and	migration.	hgf	and	met	are	both	expressed	in	the	cerebellum:	Met	is	
localized	in	granule	cell	precursors	and	cultures	of	these	cells	proliferate	in	response	to	Hgf	
(Ieraci	et	al.,	2002).	Hgf	function	in	postnatal	cerebellar	development	was	further	explored	
using	genetically	engineered	mice	where	one	met	allele	harbored	a	hypomorphic	met	
mutation	at	the	Grb2-binding	site	(Ieraci	et	al.,	2002).	These	mice	display	reduced	
cerebellar	size,	foliation	defects	and	balance	impairments,	suggesting	that	normal	
cerebellar	development	and	function	require	Hgf	signaling	(Ieraci	et	al.,	2002).	These	and	
other	reports	reinforce	the	concept	that	Hgf	is	neurotrophic	in	postnatal	development	and	
may	help	maintain	CNS,	visual	and	olfactory	system	homeostasis.	HGF	also	promotes	
oligodendrocyte	progenitor	cell	proliferation	and	delays	their	differentiation	into	
myelinating	oligodendrocytes	during	early	postnatal	development	in	the	rat;	subsequent	
down-regulation	of	HGF	mRNA	in	the	striatum	observed	between	postnatal	days	7	to	14	
presumably	permits	differentiation	and	myelination	to	proceed	(Ohya	et	al.,	2007).	
Schwann	cells,	responsible	for	nerve	myelination	in	the	peripheral	nervous	system,	also	
express	met	mRNA	(Krasnoselsky	et	al.,	1994).	Although	Schwann	cells	are	normally	
quiescent	in	adulthood,	nerve	injury	and	certain	diseases	such	as	type	1	neurofibromatosis	
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trigger	proliferation	through	several	mitogenic	pathways,	including	that	of	HGF	
(Krasnoselsky	et	al.,	1994).	

Other	evidence	indicates	roles	for	Hgf	in	the	natural	reconstruction	of	central	and	
peripheral	neuronal	networks	in	response	to	injury,	and/or	as	a	potential	therapeutic	
agent	to	facilitate	wound	repair.	Both	hgf	and	met	expression	are	increased	in	reactive	
astrocytes	in	the	subacute	to	chronic	stage	of	spinal	cord	injury	in	rats	(Shimamura	et	al.,	
2007).	HGF	gene	transfer	attenuated	brain	ischemic	injury	in	rats,	without	cerebral	edema,	
through	angiogenic,	neuroprotective	and	neuriotogenic	activities,	as	well	as	prevention	of	
gliosis	(Shimamura	et	al.,	2004;	2006	).	Intrastriatal	administration	of	HGF	protein	also	
potently	protected	hippocampal	neurons	against	postischemic	delayed	neuronal	death	
(Miyazawa	et	al.,	1998).	

	
1.2.2	Mammary	Gland	Development	
	

The	mammary	gland	undergoes	morphogenetic	differentiation	cyclically	during	the	
menstrual	cycle,	pregnancy	and	lactation.	hgf	and	met	are	expressed	and	hgf	is	regulated	
temporally	during	mouse	mammary	development	and	differentiation	(Niranjan	et	al.,	1995;	
Yang	et	al.,	1995).	Hgf	secreted	by	fibroblasts	acts	on	mammary	myoepithelial	and	luminal	
epithelial	cells	expressing	Met,	promoting	tubulogenesis	in	underlying	myoepithelial	cells,	
branching	of	the	epithelial	ductal	tree	and	motogenesis	in	both	cell	types	(Niranjan	et	al.,	
1995;	Yang	et	al.,	1995;	Niemann	et	al.,	1998).	Neuregulin,	another	important	regulator	of	
mammary	gland	differentiation	produced	by	fibroblasts	and	acting	on	the	epithelium,	
stimulates	lobulo-alveolar	budding	and	milk	protein	production	(Yang	et	al.,	1995,	
Niemann	et	al.,	1998).	In	organ	culture,	branching	morphogenesis	and	lobulo-alveolar	
differentiation	of	the	mammary	gland	was	abolished	by	blocking	expression	of	endogenous	
Hgf	and	neuregulin,	and	morphogenesis	was	rescued	by	the	addition	of	recombinant	Hgf	
and	neuregulin	(Yang	et	al.,	1995).	Experimental	hgf	overexpression	induces	a	range	of	
alterations	in	virgin	mouse	mammary	gland	architecture,	including	enhanced	of	ductal	end	
bud	size	and	numbers	and	hyperplastic	branching	morphogenesis	(Yant	et	al.,	1998).	Hgf	is	
a	significant	contributor	to	oncogenesis	and	disease	progression	in	breast	cancer,	as	
detailed	below.	

	
1.2.3	Renal	and	Pulmonary	Homeostasis	
	

Tissue	fibrosis	is	a	common	pathological	consequence	of	chronic	injury	to	kidneys	
and	lungs.	Initial	responses	to	injury	in	both	systems	include	signaling	cascades	associated	
with	tissue	repair	and	regeneration	that	include	the	production	and	secretion	of	growth	
factors	(including	Hgf),	chemokines	and	cytokines,	inflammatory	cell	recruitment,	
extracellular	matrix	(ECM)	production,	cell	proliferation	and	differentiation,	and	matrix	
remodeling.	With	chronic	injury	these	carefully	orchestrated	events	are	not	properly	
regulated,	leading	to	ECM	overproduction,	abnormal	ECM	organization,	fibrotic	lesions	and	
tissue	scarring.	Mice	with	conditional	knockout	of	met	in	the	collecting	duct	of	the	kidney	
were	more	susceptible	to	interstitial	fibrosis	and	tubular	necrosis	after	unilateral	ureteral	
obstruction,	and	had	diminished	capacity	for	tubular	cell	regeneration	after	release	of	the	
obstruction	(Ma	et	al.,	2009).	When	conditional	met	knockout	was	targeted	to	renal	
podocytes,	mice	developed	more	severe	podocyte	apoptosis	and	albuminurea	than	control	
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littermates	when	subjected	to	nephrotoxic	renal	damage	(Dai	et	al.,	2010).	In	addition	to	
these	insights	into	the	cellular	basis	of	Hgf	antifibrotic	effects,	our	understanding	of	its	
molecular	basis	has	also	progressed	substantially.	Hgf	produced	in	response	to	injury	
antagonizes	the	actions	of	transforming	growth	factor-beta	(TGF-β),	a	critical	profibrotic	
agent,	thereby	inhibiting	fibrosis	and	preserving	normal	organ	architecture	and	function	
(reviewed	in	Liu,	2004;	Mizuno	et	al.,	2008;	Crosby	and	Waters,	2010;	Panganiban	and	Day,	
2010).	The	reciprocal	effects	of	the	Hgf	and	TGF-β	signaling	pathways	are	well	
documented,	and	occur	via	direct	modulation	of	intracellular	effectors	downstream	of	TGF-
β	and	Hgf	receptors	in	common	target	cells	as	well	as	by	eliciting	opposing	activities	in	cells	
targeted	independently	(Yo	et	al.,	1998;	Gao	et	al.,	2002;	Mizuno	et	al.,	2004).	TGF-β	
induced	apoptosis	of	podocyte,	endothelial	and	tubular	epithelial	cells,	epithelial-to-
mesenchymal	transition	by	tubular	epithelial	cells,	and	myofibroblastic	activation,	are	key	
pathogenic	events	that	are	opposed	by	Hgf	signaling	(reviewed	by	Bottinger	and	Bitzer,	
2002).	An	abundance	of	findings	support	the	therapeutic	use	of	exogenous	HGF,	the	HGF	
gene,	or	the	induction	of	endogenous	HGF	expression,	for	the	treatment	of	a	wide	range	of	
chronic	fibrotic	disorders	in	both	kidney	(Mizuno	et	al.,	2001,	1998;	Dworkin	et	al.,	2004;	
Dai	et	al.,	2004;	Herrero-Fresneda	et	al.,	2006;	reviewed	in	Liu	and	Yang,	2006;	Mizuno	et	
al.,	2008)	and	lung	(Dohi	et	al.,	2000;	Mizuno	et	al.,	2005;	Watanabe	et	al.,	2005).	

	
1.2.4	Vascular	System	Homeostasis	
	

Hgf	production	in	the	vascular	system	is	positively	regulated	by	prostaglandins	and	
Hgf	itself,	and	negatively	regulated	by	angiotensin	II,	TGF-β,	glucose	and	hypoxia	(reviewed	
in	Morishita	et	al.,	2002).	hgf	is	induced	in	cardiac	and	skeletal	muscle	in	animal	models	of	
ischemic	injury	(Aoki	et	al.,	2000)	and	serum	Hgf	levels	are	increased	with	hypertension,	
peripheral	artery	disease	and	myocardial	infarction	(reviewed	in	Morishita	et	al.,	2002).	
Exogenous	administration	of	the	Hgf	protein	or	gene	promotes	angiogenesis	without	the	
increased	permeability	often	observed	with	vascular	endothelial	cell	growth	factor	(VEGF)	
treatment	(Aoki	et	al.,	2000;	Taniyama	et	al.,	2001;	Morishita	et	al.,	2004).	Hgf	promotes	
angiogenesis	directly	(Sengupta	et	al.,	2003)	but	also	by	inducing	VEGF	expression	(Wojta	
et	al.,	1999;	Gille	et	al.,	1998),	and	the	two	factors	appear	to	act	synergistically	on	the	
vasculature	(Van	Belle	et	al.,	1998;	Xin	et	al.,	2001).	These	and	other	findings	support	the	
use	of	Hgf	for	therapeutic	angiogenesis	to	treat	peripheral	artery	disease,	myocardial	
infarction	and	restenosis	after	angioplasty.	Recent	clinical	trials	indicate	that	HGF	gene	
therapy	is	safe	and	effective	for	the	treatment	of	critical	limb	ischemia	(Powell	et	al.,	2008;	
Shigematsu	et	al.,	2010).			

	
1.2.5	Liver	Regeneration	
	

HGF	signaling	is	well	established	as	a	primary	driver	of	liver	regeneration	
(Nakamura	et	al.,	1984;	Thaler	and	Michalopoulos,	1985;	Zarnegar	and	Michalopoulos,	
1989;	Nakamura	et	al.,	1989;	Miyazawa	et	al.,	1989;	Okajima	et	al.,	1991;	and	others).	
Comprehensive	studies	of	tissue	selective	hgf	overexpression	or	met	suppression	in	
genetically	engineered	animal	models	confirm	and	extend	earlier	studies	(Borowiak	et	al.,	
2004;	Huh	et	al.,	2004;	Paranjpe	et	al.,	2007;	Shiota	and	Kawasaki,	1998).	In	addition	to	
demonstrating	that	Hgf	was	essential	for	liver	regeneration,	these	reports	showed	that	Hgf	
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was	critical	for	liver	cell	transition	from	G1	to	S-phase	via	the	MAPK/Erk	pathway	and	
protection	against	apoptosis.	A	more	recent	study	using	met	suppression	engineered	
selectively	in	hepatocytes,	as	opposed	to	all	liver	cell	types,	further	revealed	that	Hgf	
signaling	was	also	critical	for	progression	from	G2	to	M	phase	via	Erk-mediated	activation	
of	the	immediate	early	genes	c-Fos	and	Egr-1,	among	others	known	for	orchestrating	G2/M	
transition	(Factor	et	al.,	2010).	In	addition	to	stimulating	the	proliferation	of	mature	
hepatocytes,	emerging	evidence	indicates	that	Hgf	contributes	to	the	differentiation	and	
maturation	of	hepatic	progenitor	cells	(Kamiya	et	al.,	2001).	Treatment	of	animals	with	
exogenous	HGF	protein	or	the	HGF	gene	promotes	survival	in	various	experimental	animal	
models	of	acute	hepatic	failure	(Kosai	et	al.,	1998;	Nomi	et	al.,	2000)	and	prevents	fibrosis	
associated	with	liver	cirrhosis	(Kaibori	et	al.,	1997;	Matsuda	et	al.,	1997).	Clinical	trials	of	
recombinant	human	HGF	for	treatment	of	patients	with	fulminant	hepatic	failure	are	in	
progress	(Ido	and	Tsubouchi,	2009).	

	
1.2.6	Skin	Repair	
	

Damage	to	the	epidermis	and	dermis	of	the	skin	requires	reepithelialization	of	the	
epidermis	and	the	transient	formation	of	dermal	granulation	tissue.	During	
reepithelialization,	keratinocytes	from	the	wound	edge	form	the	hyperproliferative	
epithelium,	which	proliferates	and	migrates	over	the	injured	dermis	and	the	granulation	
tissue.	In	addition	to	other	important	soluble	regulators	of	skin	repair	such	as	epidermal	
and	fibroblast	growth	factor	family	ligands	and	transforming	growth	factor-β,	locally	
secreted	Hgf	is	involved	in	granulation	tissue	formation	and	reepithelialization	(Yoshida	et	
al.,	2003,	Chmielowiec	et	al.,	2007).	Engineered	overexpression	or	exogenous	application	of	
Hgf	protein,	or	exogenous	hgf	gene	transfer,	to	treat	full-thickness	skin	wounds	accelerates	
both	processes,	as	well	as	vascularization,	in	rodent	models	(Toyoda	et	al.,	2001;	Yoshida	et	
al.,	2003;	Bevan	et	al.,	2004;	Kunugiza	et	al.,	2006).	In	conditional	met	mutant	mice,	skin	
wound	closure	occurred	only	though	a	small	population	of	keratinocytes	that	had	escaped	
conditional	mutation	designed	to	inactivate	kinase	activity,	i.e.	in	those	keratinocytes	with	
wild	type	met,	reinforcing	the	conclusion	that	Hgf/Met	signaling	is	required	for	full-
thickness	skin	wound	repair	(Chmielowiec	et	al.,	2007).	

	
	

2.	Hgf	Function	in	Disease	
	
2.1	Cancer	
	

The	Hgf/Met	signaling	axis	has	been	implicated	in	a	broad	spectrum	of	human	
cancers.	Met	contributes	to	oncogenesis	through	several	mechanisms,	including	gene	
mutation,	rearrangement	and/or	amplification,	other	active	signaling	networks,	defects	in	
receptor	attenuation	or	downregulation	systems,	as	well	as	paracrine	or	autocrine	ligand-
driven	activation.	Some	of	these	mechanisms	are	covered	in	greater	depth	in	reviews	on	
Met.	We	focus	here	on	instances	where	evidence	suggests	that	Hgf	is	a	potentially	critical	
contributor	to	oncogenesis	or	disease	progression.	Evidence	of	oncogenesis	specifically	
associated	with	the	phenotypes	of	genetically	engineered	mice	can	be	found	in	the	
Phenotypes	section,	below.	
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2.1.1	Hepatocellular	Carcinoma	
	

Gains	in	human	chromosome	7q,	where	both	HGF	and	MET	genes	are	located,	occur	
in	approximately	16%	of	hepatocellular	carcinoma	(HCC)	cases	(Moinzadeh	et	al.,	2005;	
growth	factor	signaling	in	HCC	is	reviewed	in	Breuhahn	et	al.,	2006).	HGF	signaling	drives	
the	transcriptional	activation	of	MET	in	HCC	(Seol	et	al.,	2000),	and	HGF	is	overexpressed	in	
the	HCC	microenvironment	relative	to	normal	adult	liver	levels	(Selden	et	al.,	1994;	
Noguchi	et	al.,	1996).	Secretion	by	stellate	cells	and	myofibroblasts	is	apparently	induced	
by	tumor	cell	signals;	HGF,	in	turn,	stimulates	tumor	cell	invasiveness	(D'Errico	et	al.,	1996;	
Neaud	et	al.,	1997;	Guirouilh	et	al.,	2000,	2001).	The	criticality	of	HGF	in	human	HCC	
oncogenesis	remains	unclear;	HGF	expression	levels	did	not	correlate	with	patient	survival	
or	clinicopathological	parameters	in	at	least	one	study	(Ueki	et	al.,	1997),	whereas	later	
reports	show	that	higher	HGF	serum	levels	negatively	correlate	with	patient	survival	time	
(Vejchapipat	et	al.,	2004)	and	positively	correlate	with	tumor	size	(Yamagamim	et	al.,	
2002).	Similarly,	there	are	conflicting	reports	regarding	the	role	of	Hgf	in	HCC	animal	
models.	Transgenic	hgf	expression	in	mice	accelerated	chemically	induced	
hepatocarcinogenesis,	suggesting	an	oncogenic	effect	(Bell	et	al.,	1999;	Horiguchi	et	al.,	
2002),	yet	conditional	met	knockout	also	accelerated	chemically	induced	
hepatocarcinogenesis,	suggesting	a	suppressor	effect	(Takami	et	al.,	2007;	Marx-Stoetling	
et	al.,	2009).	Consistent	with	the	latter,	HCC	cell	lines	injected	into	the	portal	veins	of	hgf	
transgenic	mice	displayed	significantly	lower	rates	of	experimental	liver	metastasis	than	
control	littermates	(Shiota	et	al.,	1996),	and	recombinant	HGF	treatment	of	rats	on	
carcinogenic	diets	did	not	increase	HCC	incidence	(Nakanishi	et	al.,	2006).	

	
2.1.2	Head	and	Neck	Squamous	Cell	Carcinoma	
	

Human	head	and	neck	squamous	cell	carcinoma	(HNSCC)	show	significantly	
increased	HGF	levels	relative	to	normal	mucosa,	which	correlated	a	poorly	differentiated	
tumor	type	and	decreased	survival	rates	(Takada	et	al.,	1995).	Locally	increased	HGF	
production	is	likely	to	be	due,	at	least	in	part,	to	SCC	cell	secretion	of	interleukin-1	(Hasina	
et	al.,	1999).	Squamous	cell	carcinoma	cells	are	responsive	to	esophageal	submucosal	
fibroblast-derived	HGF	with	increased	invasiveness	(Matsumoto	et	al.,	1994;	Iwazawa	et	
al.,	1996).	Additional	information	on	HGF	in	HNSCC	is	available	in	a	comprehensive	recent	
review	(De	Herdt	and	Baatenburg	de	Jong,	2008).	

	
2.1.3	Papillary	Thyroid	Carcinoma	
	

Overexpression	of	both	human	HGF	and	MET	is	found	in	most	papillary	thyroid	
carcinomas	(PTC),	but	not	other	thyroid	tumor	types.	Although	paracrine	HGF	sources	have	
been	identified,	at	least	one	study	reported	that	the	majority	of	these	cases	appear	to	
possess	autocrine	HGF/Met	signaling	(Trovato	et	al.,	1998);	this	latter	point	is	
controversial	(Oyama	et	al.,	1998).	Increased	MET	and	HGF	expression	is	associated	with	a	
high	risk	for	metastasis	and	recurrence	in	children	and	young	adults	with	PTC	(Ramirez	et	
al.,	2000).	Cell	lines	established	from	thyroid	carcinomas	are	responsive	to	HGF	with	
increased	motility	and	invasiveness,	increased	chemokine	and	VEGF	production	involved	in	
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the	recruitment	of	dendritic	cells	and	new	blood	vessels,	respectively	(de	Luca	et	al.,	1999;	
Scarpino	et	al.,	1999,	2000,	2003).	

	
2.1.4	Lung	Cancer	
	

Early	studies	demonstrated	the	presence	of	HGF	in	pleural	effusion	fluid	obtained	
from	patients	with	metastatic	spread	to	the	pleura	(Kenworthy	et	al.,	1992)	and	that	HGF	
was	an	autocrine	factor	for	normal	bronchial	epithelial	cells	as	well	as	lung	carcinoma	cells	
(Tsao	et	al.,	1993).	These	findings	have	been	confirmed	and	extended	by	dozens	of	other	
reports	(e.g.	Olivero	et	al.,	1996;	Eagles	et	al.,	1996),	including	those	demonstrating	
significantly	increased	serum	HGF	levels	and	tissue	levels	in	lung	cancer	patients	
(Takigawa	et	al.,	1997;	Yamashita	et	al.,	1998)	and	one	report	that	surgery	exacerbates	this	
condition	(Uchiyama	et	al.,	1999).	MET	is	well	expressed	in	normal	bronchial	epithelium	
and	both	small	cell	and	non-small	cell	lung	cancers.	Somatic	MET	mutations	in	these	tumor	
types	are	relatively	frequent	(5	-	13%),	occurring	primarily	in	the	juxtamembrane	and	
extracellular	domains	(reviewed	in	Ma	et	al.,	2008).	These	do	not	appear	to	confer	ligand	
independence,	but	rather	defects	in	ligand-induced	receptor	degradation	and/or	other	
mechanisms	that	result	in	aberrantly	sustained	signaling	or	increase	ligand	sensitivity	(Ma	
et	al.,	2008;	Kong-Beltran	et	al.,	2006;	Peschard	and	Park,	2003).	Evidence	of	autocrine	HGF	
signaling	in	normal	bronchiolar	epithelium	and	in	non-small	cell	lung	cancer,	also	has	been	
reported	(Tsao	et	al.,	2001).	Cigarette	smoking	induced	overexpression	of	HGF	in	type	II	
pneumocytes	and	lung	cancer	cells	(Chen	et	al.,	2006),	and	HGF	inhibited	cigarette	smoke	
extract	induced	apoptosis	in	human	bronchial	epithelial	cells	(Togo	et	al.,	2010).	Consistent	
with	these	findings,	a	neutralizing	monoclonal	antibody	directed	against	HGF	significantly	
reduced	tumor	burden	in	mice	treated	with	a	tobacco	carcinogen	(Stabile	et	al.,	2008).	
Sustained	HGF	treatment	of	lung	adenocarcinoma	cells	harboring	activating	EGFR	
mutations	conferred	resistance	to	EGFR-directed	TK	inhibitors,	foreboding	yet	another	
route	to	oncogenic	HGF	signaling	in	this	disease,	and	suggesting	that	inhibition	of	both	EGF	
and	HGF	pathways	might	offer	greater	therapeutic	efficacy	for	its	treatment	(Yano	et	al.,	
2008;	Turke	et	al.,	2010).	

	
2.1.5	Breast	Cancer		
	

Analysis	of	breast	tumor	HGF	levels	in	a	large	cohort	revealed	a	wide	range	of	
concentrations,	but	breast	cancer	patients	with	high	values	had	a	significantly	shorter	
relapse-free	survival	and	overall	survival	when	compared	to	those	with	low	values;	in	fact,	
HGF	levels	were	a	better	independent	predictor	of	relapse-free	and	overall	survival	than	
lymph	node	involvement	(Yamashita	et	al.,	1994;	Nagy	et	al.,	1996).	Serum	HGF	levels	were	
also	significantly	higher	than	those	of	healthy	controls	in	about	one-third	of	breast	cancer	
patients,	a	finding	significantly	associated	with	node	status,	tumor	size	and	histological	
evidence	of	venous	invasion	(Taniguchi	et	al.,	1995;	Toi	et	al.,	1998;	Sheen-Chen	et	al.,	
2005).	Removal	of	the	primary	tumor	decreased	the	serum	HGF	levels,	suggesting	that	the	
elevation	was	tumor-related	(Taniguchi	et	al.,	1995).	Almost	all	patients	with	recurrent	
breast	cancer	also	had	increased	serum	HGF	level,	and	patients	with	liver	metastases	had	
higher	levels	compared	to	those	with	other	sites	of	metastases	(Taniguchi	et	al.,	1995;	
Maemura	et	al.,	1998;	Eichbaum	et	al.,	2007).	Consistent	with	these	findings,	the	expression	
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of	HGF	activator	is	increased	in	breast	cancer	specimens,	while	the	cognate	inhibitors	HAI-
1	and	HAI-2	are	expressed	to	a	significantly	lower	level	in	poorly	differentiated	breast	
tumors;	HAI-2	expression	was	also	inversely	correlated	with	nodal	involvement	and	tumor	
spread	(Parr	et	al.,	2004;	Parr	and	Jiang,	2006).	Somatic	mutations	and	functional	
polymorphisms	in	the	HGF	gene	promoter	cause	increased	HGF	production	in	breast	
cancer;	51%	of	African	Americans	and	15%	of	individuals	of	mixed	European	descent	with	
breast	cancer	harbor	a	promoter	truncation	variant	in	their	breast	tumors	that	which	is	
associated	with	increased	cancer	incidence	and	a	substantially	younger	age	of	disease	
onset	than	those	with	a	wild-type	genotype	(Ma	et	al.,	2009).	

	
2.1.6	Genitourinary	Malignancies	
	

Inherited	missense	mutations	in	the	human	HGF	receptor	gene,	MET,	were	first	
found	in	individuals	with	hereditary	papillary	renal	carcinoma	(HPRC)	type	1;	similar	
somatic	mutations	were	also	found	in	a	small	subset	(13%)	of	sporadic	papillary	renal	
carcinoma	(PRC)	tumor	samples	(reviewed	in	Dharmawardana	et	al.,	2004).	Trisomy	of	
human	chromosome	7,	which	contains	both	MET	and	HGF	genes,	occurs	in	95%	of	sporadic	
papillary	renal	carcinoma	and	virtually	all	HPRC	cases,	where	there	is	always	non-random	
duplication	of	the	mutant	MET	allele	(Dharmawardana	et	al.,	2004).	The	biochemical	and	
biological	impact	of	HPRC-associated	MET	mutations	have	been	investigated	in	several	
model	systems,	confirming	their	suspected	oncogenic	potential	(Dharmawardana	et	al.,	
2004).	Although	the	role	of	HGF	binding	in	the	oncogenicity	of	HPRC	and	PRC-associated	
MET	mutations	was	initially	perceived	as	minimal,	a	study	specifically	addressing	this	issue	
indicated	that	ligand	binding	may	contribute	significantly	to	oncogenic	potential	(Michieli	
et	al.,	1999).	Several	lines	of	evidence	suggest	a	role	for	HGF	in	human	prostate	cancer	
(reviewed	in	Knudsen	and	Edlund,	2004;	Hurle	et	al.,	2005).	MET	is	expressed	in	normal	
human	prostatic	epithelium	and	HGF	in	the	underlying	normal	stroma.	Here	again,	a	
reciprocal	relationship	appears	to	exist	between	HGF	and	TGF-β	in	terms	of	biological	
activity	on	prostate	epithelium	(HGF	pro-survival	and	proliferation	vs	TGF-β	pro-
apoptosis)	and	regulation	of	local	expression	(Knudsen	and	Edlund,	2004;	Hurle	et	al.,	
2005).	MET	expression	was	frequently	(~50%)	found	in	localized	prostate	tumor	samples	
and	virtually	all	prostate	cancer	metastases	(Knudsen	and	Edlund,	2004).	The	increased	
frequency	of	MET	expression	and	loss	of	androgen	responsiveness	in	advanced	disease	is	
consistent	with	the	finding	that	androgen	receptor	negatively	regulates	MET	expression	
(Verras	et	al.,	2007).	Plasma	HGF	level	was	found	to	be	an	independent	predictor	of	
metastasis	to	lymph	nodes	and	disease	recurrence	following	surgery	in	patients	treated	for	
localized	prostate	cancer	(Gupta	et	al.,	2008),	and	higher	plasma	HGF	levels	in	hormone	
refractory	patients	were	associated	with	a	decreased	patient	survival	(Humphrey	et	al.,	
2006).	Moreover,	among	174	cytokines	analyzed	in	a	collection	of	prostatic	fluid	samples,	
HGF	was	the	most	increased	in	patients	with	extensive	disease	compared	to	those	with	
minimal	disease	(Fujita	et	al.,	2008).	

	
2.1.7	Brain	Tumors	
	

HGF	and	MET	are	expressed	in	human	glioma	and	medulloblastoma,	where	
increased	relative	abundance	frequently	correlate	with	tumor	grade,	tumor	blood	vessel	
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density,	and	poor	prognosis.	Overexpression	of	HGF	and/or	MET	in	brain	tumor-derived	
cells	enhances	their	tumorigenicity	and	growth,	while	inhibition	of	HGF	or	Met	in	
experimental	tumor	xenografts	suppresses	tumor	growth	and	angiogenesis	(Li	et	al.,	2005;	
Kim	et	al.,	2006;	reviewed	in	Abounader	and	Laterra,	2005).	A	recent	pilot	study	reported	
that	elevated	levels	of	HGF	in	human	cerebrospinal	fluid	were	associated	with	mortality	
and	recurrence	of	glioblastoma,	suggesting	that	cerebrospinal	fluid	HGF	level	could	be	of	
prognostic	value	for	this	disease	(Garcia-Navarrete	et	al.,	2010).	Consistent	with	the	
suspected	role	of	Hgf	in	glioma	progression,	a	potent,	highly	selective,	orally	bioavailable	
Met	ATP	binding	antagonist	significantly	inhibited	intracranial	brain	tumor	malignancy	and	
growth	in	mice	(Guessous	et	al.,	2010).	Early	results	from	human	clinical	trials	are,	
unfortunately,	not	as	promising.	A	recent	phase	II	study	evaluated	the	efficacy	and	safety	of	
AMG	102	(rilotumumab),	a	fully	human	monoclonal	antibody	against	HGF,	in	60	patients	
with	recurrent	glioblastoma.	The	study	showed	that	AMG	102	monotherapy	at	doses	up	to	
20	mg/kg	was	not	associated	with	significant	antitumor	activity	in	this	heavily	pretreated	
patient	group,	although	one	objective	response	was	observed	per	investigator	assessment	
but	not	central	assessment	(Wen	et	al.,	2011).	Trials	with	other	HGF	or	Met	targeted	agents	
are	underway.	
	
2.1.8	Colorectal	and	Gastric	Carcinomas	
	

Overexpression	of	Met	protein	and/or	amplification	of	MET	was	found	in	50%	of	
primary	human	colorectal	carcinomas	and	70%	of	liver	metastases,	suggesting	that	Met	
abundance	contributes	to	disease	progression	(Di	Renzo	et	al.,	1995).	MET	gene	
amplification	also	occurs	with	10-13%	frequency	in	human	gastric	cancer	(Smolen	et	al.,	
2006)	via	the	breakage-fusion-bridge	mechanism,	wherein	recurrent	breaks	occur	in	
chromosomal	common	fragile	sites	upon	replication	stress	(Hellman	et	al.,	2002).	Studies	
of	human	cultured	colorectal	tumor	cells	and	tumor	tissue	samples	indicated	increased	
activation	of	pro-HGF,	coincident	with	modestly	increased	HGF	activator	abundance	and	
dramatically	decreased	levels	of	HGF	activator	inhibitor-1	(Kataoka	et	al.,	2000).	Several	
selective	Met	kinase	inhibitors	show	potent	anti-tumor	activity	in	gastric	tumor-derived	
xenografts	(Christensen	et	al.,	2003;	Smolen	et	al.,	2006;	Zhou	et	al.,	2007;	Buchanan	et	al.,	
2009)	and	colon	derived	xenografts	(Zhang	et	al.,	2010).	A	genome-wide	expression	
analysis	of	colon	tumor	specimens	identified	MACC1	as	an	independent	prognostic	
indicator	of	metastasis;	interestingly,	MET	is	a	transcriptional	target	downstream	of	
MACC1,	and	expression	of	the	latter	promoted	HGF-induced	colon	tumor	cell	proliferation,	
invasion	as	well	as	tumor	growth	and	metastasis	in	xenograft	models	(Stein	et	al.,	2009).	

	
2.1.9	Other	Malignancies	
	

MET	is	normally	expressed	in	melanocytes	and	the	acquisition	of	HGF	expression	
has	been	reported	in	melanoma	(Halaban	et	al.,	1993;	Natali	et	al.,	1993;	Saito	et	al.,	1994).	
hgf	transgenic	mice	display	a	high	frequency	of	metastatic	melanoma	in	increased	
sensitivity	to	UV	radiation	induced	carcinogenesis,	as	noted	in	the	Phenotypes	section,	in	
fact,	several	mouse	models	of	melanoma	indicate	the	prevalence	of	Hgf	pathway	
involvement	(reviewed	in	Walker	et	al.,	2002).	In	some	sarcomas,	MET	is	overexpressed	in	
malignancy	similar	to	many	carcinomas,	where	Hgf	is	delivered	locally	in	a	paracrine	
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manner.	However,	many	sarcomas	naturally	express	HGF	and	acquire	MET	expression,	
resulting	in	autocrine	pathway	activation	and	enhanced	oncogenesis.	Sarcomas	where	the	
Hgf	pathway	has	been	strongly	implicated	include	rhabdomyosarcoma	(Chen	et	al.,	2007;	
Rees	et	al.,	2006;	Taulli	et	al.,	2006;	Jankowski	et	al.,	2003),	leiomyosarcoma	(Gao	et	al.,	
2009),	and	clear	cell	sarcoma	(Davis	et	al.,	2010)	and	osteosarcoma	(MacEwan	et	al.,	2003;	
Coltella	et	al.,	2003).	

	
2.2	Other	Diseases	

	
In	some	cases,	enhanced	Hgf	signaling	in	response	to	a	pathologic	condition	may	

contribute	to	disease	progression;	this	may	be	a	common	mechanism	of	paracrine	Hgf	
enhancement	of	tumorigenesis	and	cancer	progression.	Glial	cells	in	the	neuroretinas	and	
epiretinal	membranes	of	patients	with	proliferative	vitreoretinopathy	(PVR)	and	
proliferative	diabetic	retinopathy	respectively	show	increased	HGF	levels,	and	both	glial	
and	pigmented	retinal	epithelial	cells	express	Met,	suggestive	of	autocrine	and/or	
paracrine	roles	of	HGF	in	glial	cell	responses	during	proliferative	vitreoretinal	disorders	as	
well	as	in	retinal	neovascularization,	by	stimulating	of	VEGF	release	(Hollborn	et	al.,	2004;	
Cui	et	al.,	2007).	

	
	

3.	Critical	Hgf	Interactions	
	
3.1	Activation	of	pro-Hgf	

	
Full-length	single	chain	Hgf	isoforms	undergo	proteolytic	cleavage	at	Arg495-

Val496	to	become	biologically	active	heterodimers	consisting	of	a	69	kDa	alpha	(or	heavy)	
chain	disulfide-linked	to	a	34	kDa	beta	(or	light)	chain	(Miyazawa	et	al.,	1989;	Nakamura	et	
al.,	1989).	This	conversion	is	essential	for	Hgf	signaling	via	its	cognate	receptor	Met	on	
target	cell	surfaces	(Gak	et	al.,	1992;	Hartmann	et	al.,	1992;	Lokker	et	al.,	1992;	Naka	et	al.,	
1992,	Naldini	et	al.,	1992).	The	inability	of	single	chain	Hgf	to	signal	is	not	due	to	poor	
receptor	binding,	as	both	single	and	two	chain	Hgf	forms	have	similar	receptor	binding	
affinities	(Lokker	et	al.,	1992;	Kirchhofer	et	al.,	2004).	Rather,	it	is	most	likely	attributable	
to	structural	changes	that	occur	upon	proteolytic	activation:	like	the	activation	of	
plasminogen	and	related	serine	proteases,	the	activation	loop	of	Hgf	undergoes	
conformational	changes	that	are	characteristic	of	the	protein	family	(reviewed	in	Maun	et	
al.,	2010).	For	plasminogen	and	other	proteases,	these	changes	result	in	a	catalytically	
active	state,	while	for	Hgf,	they	allow	binding	interactions	between	the	nascent	Hgf	light	
chain	aminoterminus	and	the	Met	sema	domain	that	are	critical	for	Met	kinase	activation	
and	signaling	(Kirchhofer	et	al.,	2004;	Maun	et	al.,	2010).	

Several	serine	proteases	are	capable	of	proper	cleavage	and	activation	of	Hgf	in	
vitro	including	Hgf	activator	(HGFA)	(Shimomura	et	al.,	1992;	Miyazawa	et	al.,	1993;	
Shimomura	et	al.,	1995),	matriptase	(Lee	et	al.,	2000),	hepsin	(Herter	et	al.,	2005;	
Kirchhofer	et	al.,	2005),	urokinasetype	plasminogen	activator	(uPa;	Mars	et	al.,	1993),	
tissue	plasminogen	activator	(tPA;	Mars	et	al.,	1993),	plasma	kallikrein	(Peek	et	al.,	2002),	
factor	XIa	(Peek	et	al.,	2002),	and	factor	XIIa	(Shimomura	et	al.,	1995).	Of	note,	cleavage	by	
uPA	occurs	stoichiometrically	following	the	formation	of	a	stable	complex	between	uPA	
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and	pro-Hgf	while	each	is	bound	to	their	respective	receptor	on	the	cell	surface	(Naldini	et	
al.,	1995).	In	addition,	cleavage	of	pro-Hgf	by	plasma	kallikrein	and	factor	XIa	occurs	at	
both	Arg495	as	well	as	within	the	K4	domain	of	the	alpha	chain	at	Arg425-His426	with	no	
apparent	impact	on	HGF	function	(Peek	et	al.,	2002).	Demonstration	of	Hgf	activation	in	
vivo	has	been	limited	to	HGFA	(Miyazawa	et	al.,	1996)	and	uPA	(Mars	et	al.,	1995;	Shimizu	
et	al.,	2001),	thus	the	physiologic	relevance	of	many	of	these	Hgf	activators	is	yet	to	be	
established.	

Proteolytic	conversion	of	full-length	pro-Hgf	to	the	active,	two	chain	form	is	further	
controlled	by	the	Kunitz-type	inhibitors	Hgf	activator	inhibitor-1	(HAI-1),	HAI-1B	(a	splice	
variant	of	HAI-1)	and	HAI-2	(also	known	as	placental	bikunin).	Each	of	these	inhibitors	
consists	of	two	Kunitz	domains,	the	first	of	which	(KD1)	is	responsible	for	the	inhibition	of	
Hgf	activators	(Denda	et	al.,	2002;	Kirchhofer	et	al.,	2003).	HAI-1	and	HAI-1B	inhibit	HGFA,	
matriptase,	and	hepsin	potently	(Kirchhofer	et	al.,	2003;	Shia	et	al.,	2005),	while	HAI-2	
additionally	inhibits	a	broader	spectrum	of	serine	proteases	including	plasma	kallikrein	
and	factor	XIa	(Delaria	et	al.,	1997).	In	addition	to	protease	inhibition,	HAI-1	promotes	
localized	activation	of	pro-Hgf	through	reversible	binding	and	sequestration	of	HGFA	on	
the	target	cell	surface	for	concentrated	release	under	the	appropriate	circumstances,	such	
as	tissue	injury	or	local	inflammation	(Kataoka	et	al.	2000).	Several	groups	have	
demonstrated	that	an	increased	ratio	of	Hgf	activators	to	HAI-1	or	HAI-2	correlates	with	
malignant	progression	and	poor	prognosis	in	a	variety	of	carcinomas	(Betsunoh	et	al.,	
2007;	Kataoka	et	al.,	2000;	Oberst	et	al.,	2002;	Vogel	et	al.,	2006),	emphasizing	the	
important	balance	between	Hgf	activators	and	their	cognate	inhibitors	for	normal	Hgf	
pathway	activation	in	tissue	homeostasis.	A	recently	reported	crystallographic	structural	
analysis	of	HGFA	and	HAI-1	further	refines	our	understanding	of	this	remarkably	complex	
system	of	regulating	Hgf	activity,	and	sheds	new	light	on	the	structural	basis	for	the	
restricted	substrate	specificity	of	HGFA	toward	Hgf	and	the	highly	related	family	member	
macrophage	stimulating	protein	(Eigenbrot	et	al.,	2010).	

	
3.2	Cell-surface	Heparan	Sulfate	Proteoglycans	

	
The	interaction	between	Hgf	and	heparan	sulfate	(HS)	proteoglycans	is	broadly	

relevant	to	Hgf	biology	and	was	discovered	in	early	Hgf	studies.	Hgf	was	observed	to	be	
bound	to	the	extracellular	matrix	of	isolates	from	normal	adult	rat	liver	(Masumoto	and	
Yamamoto,	1991)	and	low	affinity	(relative	to	Met)	Hgf	binding	sites	(Kd	=	250	-	400	pM)	
observed	on	a	variety	of	cultured	target	cell	types	were	sensitive	to	displacement	by	
exogenously	added	soluble	heparin	(Naldini	et	al.,	1991).	Many	affinity	chromatography	
purification	schemes	exploited	this	strong	heparin	binding	to	efficiently	isolate	Hgf	from	
low-abundance	sources	(Nakamura	et	al.,	1987;	Gohda	et	al.,	1988;	Zarnegar	et	al.,	1989;	
Rosen	et	al.,	1989;	Gherardi	et	al.,	1989;	Selden	and	Hodgson,	1989;	Weidner	et	al.,	1990;	
Rubin	et	al.,	1991).	Several	later	studies	demonstrated	the	broader	functional	relevance	of	
HS	in	Hgf	binding,	Met	activation	and	cellular	responses	(Weidner	et	al.,	1993;	Kato	et	al.,	
1994;	Strain	et	al.,	1994;	Zioncheck	et	la.,	1995;	Schwall	et	al.,	1996;	Hartmann	et	al.,	1998;	
Sakakura	et	al.,	1999;	Day	et	al.,	1999;	Sergeant	et	al.,	2000;	Seidel	et	al.,	2000;	Willians	and	
Clark,	2003;	Karihaloo	et	al.,	2004).	When	injected	intravenously,	Hgf	has	an	early	phase	
half-life	of	4	min	(Liu	et	al.,	1997);	however,	when	administered	as	a	complex	with	heparin,	
plasma	disappearance	is	much	slower,	consistent	with	clearance	by	hepatic	uptake	(Kato	et	
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al.,	1994).	Moreover,	intravenous	injection	of	soluble	heparin	into	normal	humans	results	
in	a	significant	and	immediate	increase	in	serum	Hgf	concentration	(Seidel	et	al.,	1999).	
These	and	other	observations	suggest	that	circulating	Hgf	is	rapidly	sequestered	by	HS	
present	on	luminal	vascular	surfaces,	which	may	constitute	a	widely	distributed	reservoir	
of	Hgf.	Similar	to	fibroblast	growth	factor	(FGF)	signaling,	which	requires	not	only	FGF-HS	
binding,	but	also	FGF	receptor-HS	interaction	(Mohammadi	et	al.,	2005),	evidence	suggests	
that	HS	may	facilitate	Hgf	signaling	through	interactions	with	both	Hgf	and	Met	(Rubin	et	
al.,	2001).	

Substantial	progress	has	been	made	in	identifying	HS	binding	sites	in	Hgf.	Early	
studies	of	deletion	mutants	implicated	the	HGF	N	domain	(Okigaki	et	al.,	1992),	and	
particularly	its	hairpin	loop	region,	in	HS	binding	(Matsumoto	et	al.,	1991;	Mizuno	et	al.,	
1994).	The	demonstration	that	recombinantly	expressed	HGF	N	domain	retained	the	HS	
binding	properties	of	full-length	HGF	directly	established	that	the	primary	determinants	of	
HS	binding	resided	there	(Sakata	et	al.,	1997;	Lyon	et	al.,	2004).	Putative	HS	binding	
residues	in	N	domain,	selected	on	the	basis	of	similarity	to	consensus	HS	binding	motifs,	
were	investigated	by	using	site-directed	replacement	with	alanine	with	only	modest	
biological	impact	(Sakata	et	al.,	1997;	Kinosaki	et	al.,	1998).	Candidate	selection	based	on	
structural	modeling,	combined	with	functional	analysis	of	opposite	charge	amino	acid	
substitution	mutants,	more	strongly	implicated	residues	R74	and	R77	(human	residues	
R73	and	R76)	in	HS	binding	over	earlier	studies	of	alanine	substitutions	at	these	positions	
(Hartmann	et	al.,	1998).	

Efforts	to	identify	HS	binding	residues	were	considerably	refined	upon	solving	high	
resolution	three-dimensional	structures	of	N	domain	and	NK1	proteins.	Using	the	solution	
structure	of	N	domain,	residues	K61,	K63,	and	R74	(human	K60,	K62	and	R73)	were	
proposed	as	a	primary	HS	binding	site	(Zhou	et	al.,	1998).	Crystallographic	analysis	of	NK1	
reinforced	this	concept	and	distinguished	a	secondary	site	at	R77	and	R79	(human	R76	and	
R78)	with	potential	contributions	from	R36	and	R37	(human	R35	and	R36;	Ultsch	et	al.,	
1998).	A	second	NK1	crystallography	study	identified	R74	and	R77	as	most	important	for	
HS	binding	(Chirgadzi	et	al.,	1999).	Combined	NMR	spectral	analysis	and	fluorescence	
binding	studies	provided	functional	evidence	of	primary	HS	binding	by	K61,	K63,	and	R74,	
and	secondary	binding	by	R36,	R37,	R77,	and	K79	(Zhou	et	al.,	1999).	Subsequent	co-
crystallographic	structural	analysis	of	NK1	and	HS	supported	a	pivotal	role	for	R74	in	HS	
binding,	with	contributions	from	main	chain	atoms	of	T62,	K64	and	G80	and	the	side	chains	
of	K59,	K61,	T62,	K63,	and	R77	(Lietha	et	al.,	2001).	HS	and	dermatan	sulfate	(DS)	bind	to	
the	same	sites	on	NK1,	NK2	and	full-length	Hgf,	which	have	identical	glycosaminoglycan	
(GAG)	binding	properties	(Sakata	et	al.,	1997;	Lyon	et	al.,	2004).	

Both	heparan	sulfate	(HS),	which	is	a	component	of	proteoglycans	present	on	most	
cell	surfaces,	and	the	closely	related	GAG	heparin,	which	is	produced	by	mast	cells,	display	
a	wide	range	of	fine	structural	variability.	These	GAGs	are	composed	of	a	linear	chain	of	10-
200	disaccharide	units	of	N-acetyl-D-glucosamine	linked	to	D-glucuronic	acid.	The	
disaccharide	repeat	unit	can	be	modified	to	include	N-	and	O-sulfation	(6-O	and	3-O	
sulfation	of	the	glucosamine	and	2-O	sulfation	of	the	uronic	acid)	and	epimerization	of	
beta-D-glucuronic	acid	to	alpha-L-iduronic	acid.	Together,	these	five	modifications	give	rise	
to	32	combinations,	thereby	exceeding	the	complexity	of	proteins,	which	are	made	up	of	20	
typical	amino	acids.	On	this	basis,	HS-GAGs	may	be	the	most	information-dense	
biopolymers	in	nature	(reviewed	in	Sasisekharan	and	Venkataraman,	2000).	This	
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structural	variety	can	confer	a	high	degree	of	selectivity	in	protein	binding,	with	significant	
impact	on	processes	such	as	signal	transduction.	

Substantial	progress	has	also	been	made	in	identifying	the	compositional	and	
structural	determinants	within	heparin	and	HS-containing	proteoglycans	that	define	
selectivity	for	Hgf	binding.	Hgf	binds	to	syndecans	-1,	-2	and	-4;	high	affinity	binding	sites	
are	contained	within	the	N-sulfated	domains	of	HS,	although	the	N-sulfates	themselves	
contribute	far	less	than	nonsulfated	alpha-L-iduronic	acid	residues	(Lyon	et	al.,	1994;	
Ashikari	et	al.,	1995).	Disaccharide	analyses	indicated	that	affinity	is	more	closely	
associated	with	6-0-sulfation	of	alpha-D-N-sulfoglucosamine	residues	than	with	sulfation	at	
any	other	position,	implying	that	the	structural	specificity	of	Hgf-HS	interaction	is	
significantly	different	from	that	of	the	fibroblast	growth	factor	family	(Lyon	et	al.,	1994,	
Ashikari	et	al.,	1995).	Another	feature	that	distinguishes	Hgf	from	other	known	HS-binding	
growth	factors	is	the	ability	to	bind	DS,	which	is	found	on	decorin	and	biglycan	(Lyon	et	al.,	
1998).	The	minimum	oligosaccharide	chain	length	for	high	affinity	Hgf	binding	is	a	
tetrasaccharide	for	HS	but	a	hexasaccharide	for	DS	(Lyon	et	al.,	2004).	DS	is	synthetically	
and	compositionally	distinct	from	HS,	and	although	both	contain	idurate	domains	of	
variable	length,	the	sulfation	of	HS	occurs	primarily	within	these	domains,	whereas	DS	
sulfation	is	more	uniformly	distributed.	DS	is	an	abundant	matrix	component	of	the	stromal	
compartment	of	many	organs,	implying	that	retention	there	must	be	overcome	for	Hgf	
delivery	to	target	epithelial	and	endothelial	cells,	where	HS	predominates	over	DS	in	
basement	membranes.	This	compositional	gradient	of	Hgf-binding	GAGs	is	thought	to	
control	Hgf	diffusion	from	source	to	target,	and	act	as	a	reservoir	from	which	relatively	
high	Hgf	concentrations	could	be	released	in	a	spatially	and	temporally	restricted	manner	
through	matrix	turnover	under	various	physiological	and	pathological	conditions	(Lyon	et	
al.,	1998).	

HS	and	DS	interactions	with	Hgf	and	Met	may	promote	receptor	activation	and	
downstream	signaling	through	several	mechanisms.	Hgf	binding	to	cell-surface	HS	increase	
local	Hgf	concentrations	and	promote	an	intrinsic	tendency	for	Hgf	to	self-associate,	which	
may	in	turn	facilitate	and	stabilize	receptor	clustering,	kinase	activation	and	potentially	the	
recruitment	of	intracellular	effectors	(Schwall	et	al.,	1996;	Sakata	et	al.,	1997;	Hartmann	et	
al.,	1998;	Lietha	et	al.,	2001;	Kemp	et	al.,	2006;	Tolbert	et	al.,	2007).	However,	many	details	
as	to	how	these	GAGs	promote	receptor	activation	and	signaling	remain	unclear.	HS-Met	
interactions	are	substantially	weaker	than	HS-	or	DS-Hgf	interactions,	and	their	
contribution	to	the	stability	a	ternary	Hgf-HS-Met	complex	may	not	be	critical	for	all	Hgf	
responses	(Lyon	et	al.,	2002).	Small	HS	or	DS	oligosaccharides	thought	to	capable	of	
binding	only	Hgf	alone	appear	to	be	sufficient	for	Met	and	Erk	activation,	and	subsequent	
migration	(Lyon	et	al.,	2002).	These	questions	illustrate	the	complexity	of	Hgf	signaling	
regulation	and	highlight	the	need	for	further	investigation	into	the	roles	of	GAGs	in	this	
process.	

	
3.3	The	Met	Receptor	Tyrosine	Kinase	

	
Hgf	shares	several	structural	motifs	and	approximately	38%	amino	acid	sequence	

identity	with	plasminogen.	Each	is	synthesized	as	a	single	polypeptide	chain	which	is	
cleaved	at	a	conserved	site	to	generate	a	biologically	active	disulfide-linked	heterodimer.	
The	heavy	chain	of	the	dimer	(~60	kDa	in	Hgf)	is	derived	from	the	amino-terminus	of	the	
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precursor	and	contains	multiple	kringle	domains	(K;	four	in	Hgf,	five	in	plasminogen).	
Kringle	domains	(~80	amino	acids)	have	a	characteristic	folding	pattern	determined	by	
three	internal	disulfide	bonds	and	additional	conserved	sequences	(Patthy	et	al.,	1984).	
The	Hgf	light	chain	(~34	kDa),	like	that	of	plasminogen,	has	the	structure	of	a	serine	
protease,	but	two	non-conservative	substitutions	within	the	catalytic	triad	render	Hgf	
devoid	of	proteolytic	activity	(reviewed	in	Matsumoto	and	Nakamura,	1996).	

The	human	HGF	gene	encodes	full-length	HGF	and	two	truncated	isoforms	(NK1	and	
NK2)	which	consist	of	the	amino-terminal	domain	(N)	linked	in	tandem	with	the	first	one	
(K1)	or	two	(K1+K2)	kringle	domains,	respectively.	All	three	isoforms	bind	to	Met	(Bottaro	
et	al.,	1991;	Chan	et	al.,	1991;	Lokker	et	al.,	1992);	like	full-length	HGF,	NK1	stimulates	
mitogenesis,	motogenesis	and	morphogenesis,	though	at	reduced	potency	and	with	greater	
HS	dependence,	suggesting	that	the	primary	Met	binding	site	is	contained	within	this	
fragment	(Montesano	et	al.,	1998;	Stahl	et	al.,	1997).	NK2	can	competitively	antagonize	
mitogenicity	stimulated	by	HGF	or	NK1,	but	retains	motogenic	activity,	activating	the	Met	
kinase	and	a	subset	of	those	intracellular	signaling	pathways	activated	by	either	HGF	or	
NK1	(Day	et	al.,	1999).	Within	NK1,	the	N	domain	contains	the	HS	binding	site	(as	described	
in	detail	above;	Okigaki	et	al.,	1992;	Mizuno	et	al.,	1994;	Sakata	et	al.,	1997;	Zhou	et	al.,	
1998;	Kinosaki	et	al.,	1998;	Hartmann	et	al.,	1998;	Zhou	et	al.,	1999;	Lietha	et	al.,	2001)	and	
K1	contains	the	primary	site	of	Met	interaction	(Lokker	et	al.,	1994;	Rubin	et	al.,	2001).	

Although	a	high-resolution	structure	of	the	NK1-Met	complex	has	not	yet	been	
obtained,	several	crystallographic	studies	of	NK1	have	refined	the	basic	principles	of	HGF-
Met	interaction	obtained	from	functional	studies	(Ultsch	et	al.,	1998;	Chirgadze	et	al.,	1999;	
Watanabe	et	al.,	2002).	In	addition	to	the	relatively	high	affinity	Met	binding	site	within	
NK1,	full-length	HGF	has	a	lower	affinity	Met	binding	site	in	the	light	chain	(serine	
protease-like	domain)	that	binds	to	the	Met	Sema	domain;	high-resolution	structures	have	
been	obtained	for	this	intreaction	(Stamos	et	al.,	2004;	Kirchhofer	et	al.,	2004;	Kirchhofer	et	
al.,	2007;	Gherardi	et	al.,	2006).	As	noted	in	section	3.1,	single	chain	pro-Hgf	binds	with	
high	affinity	to	Met,	but	upon	conversion	of	pro-Hgf	to	the	active	two-chain	heterodimeric	
form,	it	undergoes	a	structural	change	from	a	compact,	closed	conformation	to	an	
elongated,	open	conformation	which,	through	interaction	with	the	Met	Sema	domain,	
results	in	Met	kinase	activation	(Stamos	et	al.,	2004;	Kirchhofer	et	al.,	2004;	Kirchhofer	et	
al.,	2007;	Gherardi	et	al.,	2006).	There	are	conflicting	reports	regarding	the	localization	of	
the	high	affinity	Hgf	binding	site	within	the	Met	ectodomain.	Gherardi	and	colleagues	
(2006)	reported	the	structure	of	a	complex	between	two-chain	Hgf	and	the	Met	
ectodomain	in	which	the	NK1	portion	of	Hgf	contacted	the	one	face	of	the	seven-blade	beta-
propeller	Sema	domain	of	Met	(that	harboring	the	loops	connecting	the	beta-strands	b-c	
and	d-a),	whereas	the	light	chain	bound	the	opposite	("b")	face.	In	contrast,	Basilico	and	
colleagues	(2008)	reported	that	the	NK1	region	of	Hgf	bound	to	the	more	carboxyl	terminal	
Met	Ig-like	loops	(the	so-called	Met	"stalk"	region),	specifically	loops	3	and	4.	Ultimately,	
further	structural	and	functional	analysis	will	help	clarify	this	apparent	discrepancy.	
Despite	remaining	uncertainties	regarding	the	structure	of	the	Hgf-Met	signaling	complex,	
the	existing	structural	studies	have	provided	significant	insights	into	strategies	to	
artificially	modulate	Hgf-driven	Met	kinase	activation.	As	mentioned	above,	by	altering	a	
secondary	HS	binding	site	in	K1,	Lietha	and	colleagues	(2001)	engineered	a	potent	
competitive	antagonist	of	Met	activation.	Kirchhofer	and	colleagues	(2007)	altered	
residues	in	the	amino-terminus	of	the	Hgf	light	chain	that	impaired	the	conformational	
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change	accompanying	Hgf	activation,	and	similarly	generated	a	potent	competitive	
antagonist	of	native	Hgf-Met	interaction	and	signaling.	More	recently,	Tolbert	and	
colleagues	(2010)	reported	on	the	structural	basis	of	competitive	mitogenic	antagonism	by	
NK2,	and	generated	mutant	forms	that	acquired	mitogenic	activity.	
	
	
4.	Major	Sites	of	Hgf	Expression	

	
4.1	Tissues	and	Organs	

	
hgf	is	expressed	in	many	organs	throughout	the	body	from	early	embryonic	

development	through	adulthood.	As	noted	above,	a	large	collection	of	work	suggests	that	
Hgf	is	typically	produced	in	the	tissue	stroma	and	acts	in	a	paracrine	manner	on	epithelial	
and	endothelial	cells,	and	other	cell	types	as	noted	below	(reviewed	in	Zarnegar,	1995).	

Early	tissue	extraction	and	immunohistochemical	staining	of	rabbit	specimens	
demonstrated	HGF	in	the	pancreas,	small	intestine,	salivary	glands,	thyroid	and	brain	
(Zarnegar	et	al.,	1990).	Subsequent	immunolocalization	studies	of	human	and	rat	tissues	
confirmed	and	extended	these	findings,	revealing	significant	staining	of	surface	epithelia,	
prostatic	and	seminal	vesicle	epithelia,	distal	renal	tubules	and	collecting	ducts,	
megakaryocytes,	granulocytes	and	placental	tissues,	and	more	moderate	staining	of	
respiratory,	gastrointestinal,	biliary	and	uterine	epithelium	and	in	macrophages	and	
vascular	endothelium	(Wolf	et	al.,	1991;	Defrances	et	al.,	1992;	Tsuda	et	al.,	1992).	Because	
Hgf	binds	strongly	to	heparan	sulfate	proteoglycans	found	in	abundance	in	most	
extracellular	matrices,	immunohistochemical	localization	studies	must	be	interpreted	
carefully,	preferably	in	the	company	of	independent	experimental	methods,	where	the	
question	of	the	cellular	origin	of	Hgf	is	concerned.	In	the	absence	of	other	independent	
experimental	means,	immunohistochemical	studies	have	provided	reliable	information	
concerning	the	relative	spatial	and	temporal	abundance	of	Hgf	on	a	tissue	and	organ	level.	
In	the	aforementioned	studies,	protein	staining	patterns	may	be	as	much	an	indication	of	
Hgf's	targets	as	its	site	of	synthesis.	This	presumably	accounts	for	the	strong	
immunostaining	of	epithelia,	as	there	is	little	evidence	of	Hgf	expression	by	isolated	normal	
epithelial	cells.	Northern	analysis	of	rat	tissue	specimens	revealed	a	diverse	pattern	of	
expression	generally	consistent	with	protein	staining	results,	with	some	differences	in	
relative	signal	intensities	(Tashiro	et	al.,	1990).	In	particular,	lung	had	the	highest	level	of	
hgf	transcript,	though	only	a	moderate	level	of	protein	staining,	suggesting	that	lung-
derived	Hgf	is	released	into	the	circulation	for	systemic	distribution,	consistent	with	
reports	of	hgf	induction	in	the	lung	following	injury	in	distant	organs	(Yanagita	et	al.,	1992;	
1993).	Many	tissues	that	show	modest	levels	of	Hgf	production	under	normal	conditions	
can	display	significantly	increased	production	during	wound	healing,	tissue	repair	and	
regeneration.	For	example,	Hgf	production	is	dramatically	elevated	during	skeletal	muscle	
regeneration,	where	it	promotes	myoblast	proliferation	and	inhibits	myotube	formation	
(Hayashi	et	al.,	2004).	

hgf	mRNA	transcript	and/or	protein	has	been	detected	in	cultured	fibroblasts	
derived	from	many	organs,	including	the	lung,	stomach,	colon,	breast,	prostate	and	skin	
(Rubin	et	al.,	1991).	The	mRNA	transcript	also	has	been	observed	in	other	cells	such	as	
alveolar	macrophages	(Wolf	et	al.,	1991;	Yanagita	et	al.,	1992),	peripheral	leukocytes	(Seki	
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et	al.,	1990)	and	the	HL-60	promyelocyte	leukemic	cell	line	(Nishino	et	al.,	1991).	There	is	a	
consensus	that	Hgf	is	synthesized	in	the	liver	by	non-parenchymal	cells	(Kinoshita	et	al.,	
1989);	in	situ	hybridization	revealed	hgf	mRNA	transcript	in	Kupfer	and	endothelial	cells	
(Noji	et	al.,	1990).	However,	cell	fractionation	followed	by	Northern	blot	analysis	indicated	
that	the	fat-storing,	Ito	cell	is	responsible	for	expression	in	the	normal	liver	(Schirmacher	
et	al.,	1992;	Ramadori	et	al.,	1992;	reviewed	in	Schirmacher	et	al.,	1993).	

	
4.2	Subcellular	Localization	

	
Full-length	Hgf	isoforms	are	each	synthesized	as	a	single	polypeptide	chain,	pre-pro-

Hgf,	containing	an	amino-terminal	signal	peptide	sequence	for	insertion	into	the	rough	
endoplasmic	reticulum	(RER)	and	ultimately,	secretion.	Maturation	of	pre-pro-Hgf	is	
presumed	to	follow	a	conventional	subcellular	pathway	for	secreted	proteins,	i.e.	from	RER	
to	the	Golgi	apparatus	to	secretory	vesicles	that	ultimately	fuse	with	the	plasma	membrane	
allowing	protein	release	into	the	extracellular	environment.	There	is	evidence	for	both	N-
linked	(Hara	et	al.,	1993)	and	Olinked	glycosylation	(Shimizu	et	al.,	1992)	of	Hgf	during	
maturation,	and	presumably	removal	amino-terminal	31	amino	acid	signal	peptide	occurs	
prior	to	secretion	(Miyazawa	et	al.,	1991).	The	secreted	single	chain	Hgf	precursor	(pro-
Hgf)	is	biologically	inactive	and	later	converted	in	the	active	two-chain	disulfide-linked	
heterodimer	by	proteolytic	cleavage	(as	described	in	detail	above)	in	the	extracellular	
space,	in	plasma,	or	on	target	cell	surfaces.	
	
	
5.	Regulation	of	Hgf	Production	
	

Several	exogenous	agents	alter	the	magnitude	of	Hgf	production.	Protein	kinase	C-
activating	phorbol	esters	stimulate	Hgf	secretion	by	fibroblasts	in	culture,	and	this	is	
reversed	by	concomitant	administration	of	dexamethasone	(Gohda	et	al.,	1992).	Other	
tumor	promoters	which	induce	liver	hyperplasia	also	increase	the	plasma	Hgf	
concentration	(Lindroos	et	al.,	1992).	Hepatotoxins	such	as	carbon	tetrachloride	and	D-
galactosamine	induce	a	rapid	and	transient	rise	in	hgf	transcript	level	in	the	liver	and	other	
tissues	(Yanagita	et	al.,	1992;	Okajima	et	al.,	1990;	Zarnegar	et	al.,	1991;	Kinoshita	et	al.,	
1991),	accompanied	by	an	increase	of	circulating	Hgf	protein	(Zarnegar	et	al.,	1991;	
Kinoshita	et	al.,	1991).	

Profound	liver	damage	dramatically	also	stimulates	hgf	expression,	and	hgf	
transcript	levels	rise	substantially	soon	after	partial	hepatectomy	(Yanagita	et	al.,	1992;	
Zarnegar	et	al.,	1991;	Kinoshita	et	al.,	1991)	or	unilateral	nephrectomy	(Nagaike	et	al.,	
1991).	Normally,	both	singlechain	and	active	two-chain	Hgf	are	present	in	liver,	the	former	
being	in	greatest	abundance.	Following	partial	hepatectomy	the	liver	displays	two	phases	
with	regard	to	Hgf	production,	activation	and	metabolism	(Pediaditakis	et	al.,	2001).	
During	the	first	three	hours,	Hgf	is	rapidly	consumed,	in	part	from	hepatic	stores,	with	a	
decrease	in	overall	abundance	of	both	single-chain	and	active	two-chain	Hgf	species;	only	
active	Hgf	is	seen	in	the	plasma	during	this	period	(Pediaditakis	et	al.,	2001).	During	the	
second	phase,	there	is	a	pronounced	reappearance	of	both	single-chain	and	two-chain	Hgf,	
and	the	level	of	Hgf	activation	(proteolytic	conversion	from	single	to	two-chain	form)	
increases	5-fold	(Pediaditakis	et	al.,	2001).	The	factors	responsible	for	the	dramatic	
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cessation	of	liver	growth	following	partial	hepatectomy,	once	the	correct	liver	mass	has	
been	reached,	remain	unknown.	One	early	study	showed	that	an	initial	rise	in	hgf	
expression	was	followed	by	a	period	of	active	cell	proliferation,	then	an	increase	in	a	~	1.5	
kb	transcript	that	may	correspond	to	the	Hgf/NK2	isoform	(Zarnegar	et	al.,	1991).	
Production	of	this	competitive	Hgf	mitogenic	antagonist	after	a	wave	of	hepatocyte	
proliferation	could	provide	a	mechanism	for	attenuating	liver	regeneration	as	it	nears	
completion,	although	other	mechanisms	for	attenuating	growth,	such	as	increased	integrin	
signaling	via	integrin	linked	kinase,	are	clearly	involved	(Apte	et	al.,	2009).	

Transient	increases	in	plasma	Hgf	levels	are	rapidly	regulated	by	blood	clearance,	
organ	uptake	and	biliary	excretion	(Appasamy	et	al.,	1993).	For	example,	plasma	
concentrations	of	radiolabeled	HGF	injected	into	rats	peaked	within	15	minutes;	HGF	was	
distributed	primarily	to	the	liver	and	kidneys,	and	it	appeared	in	the	bile	within	3	minutes,	
peaking	in	50	minutes	(Appasamy	et	al.,	1993).	Consistent	with	a	critical	role	in	HGF	uptake	
and	clearance,	the	short-term	impact	of	partial	hepatectomy	was	significantly	decreased	
blood	clearance	(Appasamy	et	al.,	1993),	and	patients	with	fulminant	hepatic	failure	
display	chronically	elevated	plasma	levels	of	HGF	(Gohda	et	al.,	1986;	Tsubouchi	et	al.,	
1991).	

The	induction	of	hgf	expression	at	locations	distant	from	sites	of	injury	suggest	that	
systemic	factor(s)	might	regulate	in	this	process	(Yanagita	et	al.,	1992;	Kono	et	al.,	1992).	
Nakamura	and	colleagues	have	referred	to	such	a	systemic	regulator	as	'injurin'	and	
proposed	that	it	recruits	Hgf	production	by	distant	tissues	which	release	it	into	the	
circulation	in	response	to	injury.	An	apparently	novel	protein	isolated	from	the	serum	of	
rats	subjected	to	partial	hepatectomy	or	ischemic	insult	has	been	reported	to	stimulate	
HGF	synthesis	in	other	rats	or	in	cell	lines	in	vitro	(Matsumoto	et	al,	1992).	Interleukin	1	
(IL-1),	tumor	necrosis	factor-α,	the	phorbol	ester,	tetradecanoylphorbol	13-acetate	(TPA),	
cAMP-elevating	agents,	PKA-activating	agents,	growth	factors,	1,25-dihydroxyvitamin	D3	
and	inflammatory	cytokines	can	independently	increase	hgf	expression,	and	the	
combination	of	IL-1	and	TPA	exerts	a	synergistic	effect	(Matsumoto	et	al.,	1992;	Li	et	al.,	
2005).	TGF-β	and	glucocorticoids	can	block	hgf	induction	elicited	by	IL-1	and	TPA	as	well	
as	by	other	stimuli	(Ramadori	et	al.,	1992;	Gohda	et	al.,	1992;	Matsumoto	et	al.,	1992).	Co-
culture	of	Hgf-producing	fibroblasts	with	epithelial	cells	can	inhibit	Hgf	expression	
(Kamalati	et	al.,	1992).	Thus,	a	variety	of	factors	act	locally	and	systemically	to	regulate	Hgf	
production.	

HGF	expression	is	also	regulated	upon	infection	of	mammalian	hepatocytes	by	
Plasmodium,	the	causative	agent	of	malaria	(Carrolo	et	al.,	2003).	Plasmodium	sporozoites	
migrate	through	several	hepatocytes,	breaching	plasma	membranes	and	effectively	injuring	
the	liver,	before	infection	is	finally	established.	This	injury	induces	Hgf	production,	and	the	
ensuing	activation	of	Met	renders	hepatocytes	susceptible	to	infection	by	induces	
rearrangements	of	the	host-cell	actin	cytoskeleton	that	are	required	for	the	early	
development	of	the	parasites,	and	protects	infected	cells	from	apoptosis	(Carrolo	et	al.,	
2003;	Leiriao	et	al.,	2005).	
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6.	Phenotypes	Associated	with	hgf	or	met	Alteration	
	
As	indicated	earlier,	loss	of	hgf	or	met	function	in	mice	with	homozygous	gene	

deletion	is	embryonic	lethal	between	days	E12.5	and	E15.5	(Schmidt	et	al.,	1995;	Uehara	et	
al.,	1995;	Bladt	et	al.,	1995).	hgf	and	met	null	mice	exhibit	very	similar	phenotypes,	further	
supporting	the	concept	that	Met	is	the	only	receptor	for	Hgf,	and	Hgf	the	only	ligand	for	Met	
(Rosario	and	Birchmeier,	2003).	Defects	in	the	proliferation	and	survival	of	cells	in	the	liver	
and	placenta	result	in	arrested	organogenesis	of	these	and	other	tissues,	highlighting	the	
importance	of	Hgf	stimulated	mitogenicity	and	survival	in	target	cells.	These	animal	models	
also	consistently	underscore	the	importance	of	Hgf	as	a	potent	and	critical	regulator	of	cell	
migration.	Skeletal	muscle	progenitor	cells	that	form	limb,	tongue,	and	diaphragm	
musculature	normally	delaminate	from	the	epithelial	dermomyotome	of	the	somites	by	an	
epithelial-to-mesenchymal	transition	and	migrate	to	their	final	destination	where	they	
complete	differentiation.	Loss	of	Hgf	signaling	in	mice	homozygous	for	met	deletion	results	
in	defective	delamination	and	migration	of	muscle	progenitors	from	the	dermomyotome	
and	failure	to	form	the	skeletal	muscles	of	the	limb	and	diaphragm	(Bladt	et	al.,	1995;	
Maina	et	al.,	1996;	Dietrich	et	al.,	1999;	Birchmeier	et	al.,	2003;	Christ	and	Brand-Saberi,	
2002).	

Conversely,	hgf	overexpression	in	transgenic	mouse	embryos	induces	the	
inappropriate	formation	of	skeletal	muscle	in	the	CNS	through	dysregulated	migration	of	
Met-containing	myogenic	precursor	cells	to	the	neural	tube	(Takayama	et	al.,	1996).	
Melanoblasts	were	also	aberrantly	localized	to	inappropriate	sites	within	the	E12.5	
transgenic	embryo,	including	the	neural	tube,	and	melanocytes	were	found	within	the	
transgenic	adult	in	a	number	of	abnormal	ectopic	sites,	including	the	CNS	(Takayama	et	al.,	
1996).	

Mice	bearing	conditional	deletions	of	hgf	and	met	have	been	used	to	demonstrate	
the	functional	relevance	of	pathway	activation	at	later	developmental	stages	and	in	
adulthood.	For	example,	Met	and	epidermal	growth	factor	receptor	jointly	regulate	final	
nephron	number	and	collecting	duct	morphology	(Ishibe	et	al.,	2009).	Mice	with	
conditional	knockout	of	met	in	the	collecting	duct	of	the	kidney	were	more	susceptible	to	
interstitial	fibrosis	and	tubular	necrosis	after	unilateral	ureteral	obstruction,	and	had	
diminished	capacity	for	tubular	cell	regeneration	after	release	of	the	obstruction	(Ma	et	al.,	
2009).	When	conditional	met	knockout	was	targeted	to	renal	podocytes,	mice	developed	
more	severe	podocyte	apoptosis	and	albuminurea	than	control	littermates	when	subjected	
to	nephrotoxic	renal	damage	(Dai	et	al.,	2010).	Mice	with	a	targeted	mutation	of	the	gene	
encoding	urokinase	plasminogen	activator	receptor,	an	important	Hgf	activator,	have	
decreased	Hgf	levels	and	a	substantial	reduction	in	neocortical	GABAergic	interneurons	at	
embryonic	and	perinatal	ages,	leading	to	changes	in	circuit	organization	and	behavior	
(Powell	et	al.,	2001;	2003).	Mice	with	targeted	mutation	of	two	critical	carboxylterminal	
tyrosine	residues	in	met	were	found	to	be	phenotypically	similar	to	met	null	animals.	In	
contrast,	targeting	one	of	those	sites	and	thereby	disrupting	the	consensus	for	Grb2	
binding	allowed	development	to	proceed	to	term,	but	caused	a	striking	reduction	in	limb	
muscle	mass	coupled	to	a	generalized	deficit	of	secondary	fibers,	revealing	a	role	for	Hgf	
signaling	in	late	myogenesis	(Maina	et	al.,	1996).	

Hgf	function	in	postnatal	cerebellar	development	was	explored	using	genetically	
engineered	mice	where	one	met	allele	harbored	a	hypomorphic	met	mutation	at	the	Grb2-
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binding	site	(Ieraci	et	al.,	2002).	These	mice	display	reduced	cerebellar	size,	foliation	
defects	and	balance	impairments,	suggesting	that	normal	cerebellar	development	and	
function	require	Hgf	signaling	(Ieraci	et	al.,	2002).		

Tissue	selective,	conditional	hgf	overexpression	or	met	gene	suppression	in	mice	
also	established	that	Hgf	is	essential	for	liver	regeneration	(Borowiak	et	al.,	2004;	Huh	et	
al.,	2004;	Paranjpe	et	al.,	2007;	Shiota	and	Kawasaki,	1998).	These	reports	further	showed	
that	Hgf	was	critical	for	liver	cell	transition	from	G1	to	S-phase	via	the	MAPK/Erk	pathway	
and	protection	against	apoptosis.	A	more	recent	study	using	met	suppression	engineered	
selectively	in	hepatocytes,	as	opposed	to	all	liver	cell	types	during	liver	regeneration,	
further	revealed	that	Hgf	signaling	was	also	critical	for	progression	from	G2	to	M	phase	via	
Erk-mediated	activation	of	the	immediate	early	genes	c-Fos	and	Egr-1,	among	others	
known	for	orchestrating	G2/M	transition	(Factor	et	al.,	2010).	

Genetically	engineered	animal	models	have	also	revealed	that	Hgf	is	involved	in	
granulation	tissue	formation	and	reepithelialization	in	skin	wound	repair	(Yoshida	et	al.,	
2003,	Chmielowiec	et	al.,	2007).	Engineered	overexpression	or	exogenous	application	of	
Hgf	protein,	or	exogenous	hgf	gene	transfer,	to	treat	full-thickness	skin	wounds	accelerates	
both	processes,	as	well	as	vascularization,	in	rodent	models	(Toyoda	et	al.,	2001;	Yoshida	et	
al.,	2003;	Bevan	et	al.,	2004;	Kunugiza	et	al.,	2006).	In	conditional	met	mutant	mice,	skin	
wound	closure	occurred	only	though	a	small	population	of	keratinocytes	that	had	escaped	
conditional	mutation	designed	to	inactivate	kinase	activity,	i.e.	in	those	keratinocytes	with	
wild	type	met,	reinforcing	the	conclusion	that	Hgf/Met	signaling	is	required	for	full-
thickness	skin	wound	repair	(Chmielowiec	et	al.,	2007).	

Chronic,	ubiquitous	overexpression	of	hgf,	including	truncated	Hgf	isoforms,	results	
in	tumorigenesis	and	tumor	metastasis	in	a	variety	of	tissues	and	organs,	particularly	
malignant	melanoma	with	liver	metastasis	(Takayama	et	al.,	1997;	Otsuka	et	al.,	1998,	
2000;	Horiguchi	et	al.,	2002;	Sharp	et	al.,	2002),	significantly	increases	the	frequency	of	
environmentally	driven	skin	and	liver	carcinogenesis	(Noonan	et	al.,	2000;	Horiguchi	et	al.,	
2002),	as	well	as	the	frequency	of	renal	tubular	hyperplasia,	polycystic	disease	and	
glomerulosclerosis,	vascularization	and	granulation	tissue	formation	(Takayama	et	al.,	
1997;	Toyoda	et	al.,	2001),	and	chemicallyinduced	liver	fibrosis	(Hagiwara	et	al.,	2008).	
These	studies,	as	well	as	the	studies	of	HPRC	Type	1	in	humans	(see	section	2.1.6),	provide	
clear	evidence	of	the	oncogenic	and	pro-metastatic	potential	of	aberrant	Hgf	signaling	at	
the	organismal	level.	On	the	other	hand,	studies	of	transgenic	hgf	mice	have	also	shown	
that	Hgf	ameliorates	high-fat	diet-induced	fatty	liver	(Kosone	et	al.,	2007)	inhibits	
chemically-induced	acute	liver	injury	(Otsuka	et	al.,	2002),	and	that	NK2	overexpression	
inhibits	liver	regeneration	after	partial	hepatectomy	(Otsuka	et	al.,	2005).	

	
	

7.	mRNA	Splice	Variants	
	
Five	splice	variants	of	the	human	HGF	gene	have	been	identified.	
Transcript	variant	1	(NCBI	Accession:	NM_000601)	encodes	the	longest	isoform	

(isoform	1;	NP_000592)	with	728	amino	acids.	
Transcript	variant	2	(NM_001010931)	lacks	multiple	3'	exons	but	includes	an	

alternate	3'	exon	relative	to	variant	1.	The	encoded	protein	(isoform	2;	NP_001010931;	
also	known	as	NK2;	Chan	et	al.,	1991)	is	truncated	after	the	second	kringle	domain,	
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contains	290	amino	acids	and	has	a	distinct	carboxyl-terminus	relative	to	isoform	1.	NK2	
protein	binds	Met	(Bottaro	et	al.,	1991;	Chan	et	al.,	1991)	and	has	intrinsic	motogenic	
activity	of	modestly	lower	potency	than	mature	HGF	isoform	1	(Stahl	et	al.,	1997).	
However,	NK2	can	competitively	antagonize	mitogenicity	and	morphogenicity	stimulated	
by	mature	HGF	isoform	1	through	Met	(Chan	et	al.,	1991;	Stahl	et	al.,	1997;	Montesano	et	
al.,	1998).	These	in	vitro	observations	are	consistent	with	the	phenotype	of	transgenic	mice	
expressing	NK2	(Otsuka	et	al.,	2000;	Otsuka	et	al.,	2005).	

Transcript	variant	3	(NM_001010932)	lacks	an	in-frame	coding	segment	present	in	
isoform	1.	The	encoded	protein	isoform	3	contains	723	amino	acids	but	lacks	the	sequence	
"FLPSS"	at	positions	162	-	166	(163	-	167	in	mouse)	within	the	first	kringle	domain	of	
isoform	1.	

Transcript	variant	4	(NM_001010933)	combines	the	the	3'	truncation	of	variant	2	
and	internal	deletion	of	isoform	3.	The	encoded	protein	(isoform	4;	NP_001010933)	
contains	285	amino	acids	and	is	identical	to	NK2	except	it	lacks	the	sequence	"FLPSS"	at	
positions	162	-	166	in	isoforms	1	and	2.	

Transcript	variant	5	(NM_001010934)	lacks	multiple	3'	exons	and	has	an	alternate	
3'	segment	that	is	distinct	from	either	isoform	1	or	2.	The	encoded	protein	isoform	5	
(NP_001010934;	also	known	as	NK1;	Lokker	et	al.,	1992;	Hartmann	et	al.,	1992;	Cioce	et	al.,	
1996;	Stahl	et	al.,	1997;	Montesano	et	al.,	1998)	contains	210	amino	acids	with	a	unique	
carboxyl	terminal	sequence	immediately	following	kringle	1.	Isoform	5/NK1	binds	Met	and	
has	intrinsic	motogenic	activity	of	modestly	lower	potency	than	mature	isoform	1.	The	
mitogenic	and	morphogenic	activities	of	this	isoform	are	controversial.	Early	reports	found	
that	NK1	had	mixed	agonist/antagonist	activities	relative	to	isoform	1	(Lokker	et	al.,	1992,	
1993;	Hartmann	et	al.,	1992;	Cioce	et	al.,	1996).	Later	reports,	where	recombinantly	
expressed	protein	was	more	thoroughly	characterized	both	physically	and	biologically,	
suggest	that	NK1	is	a	better	agonist	than	previously	thought,	with	mitogenic	and	
morphogenic	potency	approximately	30-fold	lower	than	mature	isoform	1	in	cultured	cell	
models	(Stahl	et	al.,	1997;	Montesano	et	al.,	1998;	Ultsch	et	al.,	1998).	The	conclusions	of	
these	latter	in	vitro	studies	are	also	consistent	with	the	phenotype	of	transgenic	mice	
expressing	NK1	(Otsuka	et	al.,	1998;	Jakubczak	et	al.,	1998).	

Splice	variants	murine	hgf	are	less	well	characterized.	The	NCBI	lists	NM_010427	as	
the	reference	sequence	for	the	M	musculus	hgf	mRNA	and	NP_034557	as	its	encoded	
protein,	which	contains	728	amino	acids	and	presumably	corresponds	to	the	longest	
human	variant	encoding	isoform	1.	At	least	three	murine	isoform	sequences	have	been	
identified:	isoform	CRA_a	(NCBI	Accession	EDL03238),	encoding	211	amino	acids;	isoform	
CRA_b	(EDL03239),	encoding	728	amino	acids;	and	isoform	CRA_c	(EDL03240),	encoding	
723	amino	acids.	Thus	CRA_a,	CRA_b	and	CRA_c	appear	to	correspond	most	closely	to	
human	isoforms	5,	1	and	3,	respectively.		
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