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ABSTRACT

The proposition of this paper is simple: the s parameter on any transform integral is a constant and not 
an independent variable. Every transform integral is a different independent system that has its own set 
of parameters.  The integral is evaluated through all values of the independent variable such that it is 
constant.

Introduction

The transform integrals such as the Laplace transform, the Mellin transform, and the Fourier transform,
use s as one of the parameters in their integral equations.  Where s a constant parameter that is 
independent of the independent variable.

But because the transform integral is a single integral, it only need a single independent variable as one 
of its parameters; a double integral requires two independent variables, a triple integral needs three, and
so on.

The integral is taken for all values of t, which means that the resulting integral will be a constant 
quantity.  Therefore, the only reason that s is independent of t is that it is a constant.  If s is a variable, 
then it should also depend on t.

Because of this constant/variable dual role of s (or any parameter of same), some hypotheses or proofs 
are constructed through the use of tricks. Riemann in his 1859 paper [1] used several tricks to arrived at
his desired outcomes: the faulty analytic continuation of ζ (s) , using the Poisson summation to prove
his invalid functional equation(which it does not), and the tricks he used to obtained his formula for the
approximate number of primes less than a given quantity.
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The Laplace Transform

The Laplace transform of f(t) is given by

(1) F (s)=∫
0

∞

f (t)e−st dt ,

where t is the independent variable, s is a complex constant, and z = st as the complex variable.   The 
function f(t) and ℜ(s ) are such that the integral in (1) is finite, │F(s)│<∞.  Since the integral is 
obtained for all t > 0,

F(s)= constant .

The derivative of F(s) with respect to s is 0/0 and all the integral associated with F(s) will be zero

F'(s)= dF
ds

= 0
0

 and ∫
s

s

F(s)ds=0

and so

1
2π i∫s

s

F(s )est ds =0.

For example, the Laplace transforms for

f (t )= μ(t ), eatμ(t ), e
iωo tμ (t) ,   and  cos(ω ot )μ (t ) ,

are

F (s)= 1
s

,
1

s−a
,

1
s−iωo

,   and  
s

s2+ω o
2 ,

which are all constants, such that

∫
s

s

F(s )ds =∫
s

s
ds
s

=∫
s

s
ds

s−a
=∫

s

s
ds

s−iω o

=∫
s

s
sds

s2+ωo
2
=0.

Because F(s) is constant,  all you can do on F(s) is to do a what-if analysis: what is F(s) if s  = 2, or 4, 
or 5, etc.

A complex function F(z) with a complex variable z which is similar in form to F(s) constitute an 
entirely different independent system.  The function F(z) is a variable and is valid for every value of z 
in which │F(z)│ <∞,

(2) F (z )= 1
z

z≠0;
1

z−a
   z≠a;

1
z−iω o

   z≠iωo ;
z

z2+ω o
2    z≠±iω o .



Consider another integral system, the contour integral

(3) f (τ )= 1
2π i

∫
C

F (z)eτ z dz

where z is a complex variable, τ is a real constant, and f(τ) is a constant.  We can also consider (3) as the
transform integral of F(z).  The contour integrals on simple closed paths for (2) are

f (τ )=1 , eaτ , e
iωoτ , cos(ωoτ ),

which are all constants.  A real function f(t) with a real variable t which is similar in form to f(τ) is an 
entirely different independent system.
 

The Mellin Transform

The Mellin transform of f(t) is given by

(4) M(s)=∫
0

∞

t s−1 f (t )dt

where t is the independent variable and s is a complex constant.  The function f(t) and ℜ(s ) are such 
that the integral in (4) is finite, │M(s)│<∞.  Since the integral is obtained for all t>0,

M(s)=constant .

The derivative of M(s) with respect to s is 0/0 and all integral associated with M(s) will be zero

M'(s) = dM
ds

= 0
0

   and   ∫
s

s

M (s)ds =0

and so

1
2π i∫s

s

M (s)t−sds=0.

Consider the contour integral

f (τ )= 1
2π i

∫
C

M (z )τ−zdz        τ≠0 ,

where z is a complex variable, τ is a real constant, and f(τ) is the transform integral of M(z).  A real 
function f(t) with real variable t that is similar in form to f(τ) is an entirely different independent 
system.



The following are constant quantities:

ζ (s)=∑
n=1

∞

n−s ,  Γ(s)=∫
0

∞

e−t t s−1 dt ,  Γ(s)ζ (s)=∫
0

∞ ts−1

et−1
dt ,  π

− s
2Γ(s

2 )ζ (s ), etc.

Riemann’s Bag of Tricks

 Consider now the contour integral

(5) ∫
C

(−z )s−1

ez−1
dz = ∫

z1

z2 (−z)s−1

ez−1
dz

where z1 and z2 are the endpoints of the path C and s is constant.
                         
The trick that Riemann used in his 1859 paper was to employ two different values for s in getting two 
contour integrals of (5) and then equating them.  But it is clear from (5) that the contour integral is 
dependent on:  the value of s, the endpoints of path C, and on the chosen path itself.

The contour integral of (5)

I1(s)  =  ∫
+∞

+∞ (−z)s−1

e z−1
 dz             z=x+i0 ,     ℜ(s)>1,

is 

I1(s)  =  ∫
+∞

+∞ (−x)s−1

ex−1
 dx  = (−1)s−1(∫∞

0
xs−1

ex−1
 dx  +  ∫

0

∞ xs−1

ex−1
 dx)

                              I1(s)  =  (−1)s−1(−∫
0

∞ xs−1

ex−1
 dx  + ∫

0

∞ xs−1

ex−1
 dx) = 0.

which is valid.  Obtaining the second contour integral of (5) using the Residue theorem is undefined but
Riemann got around this by excluding the pole at z =0, 

I2(s)=−2π i{(−0)s−1 + sin(π s
2 )2sπ s−1ζ (1−s)}=undefined        ℜ(s)<0.

The equation 

I 2(s )=−2π i sin(π s
2 )2sπ s−1ζ (1−s)



is, therefore, not a valid contour integral of (5).  Because I1(s) ≠ I2(s), we have an invalid equation

(6)  ζ (s) ≠ 2sπ s−1sin(π s
2 )Γ(1−s)ζ (1− s).

But Riemann, instead of recognizing that the equation he obtained was faulty invoked a magic spell: 
ANALYTIC CONTINUATION.  By invoking analytic continuation, Riemann made an invalid 
equation (6) to become valid.

It is now widely accepted by post-modernist mathematicians that

(7) ζ (s)=∑
n=1

∞ 1
ns      ℜ(s)>1 ,

and

(8) ζ (s) = 2sπ s−1sin(π s
2 )Γ(1−s )ζ (1− s)      ℜ(s )<0 ,

Now (7) is valid while (8) is not. For example, if you substitute s = 2 in (7), 

ζ (2)=∑
n=1

∞ 1
n2 = π 2

6
,  

while for (8)

ζ (2) = 22π sin(π )Γ(−1)ζ (−1)=4π (0)(∞)(∞)= undefined .

If s = -2 in (7)

ζ (−2)=∑
n=1

∞

n2=∞ ,

and s = -2 in (8)

ζ (−2) = 2−2π−3 sin(−π)Γ(3)ζ (3)= 1
4π 3 (0)(2)(1.202)=0.

Notice that the same value of s has a different value of ζ (s) which is absurd.

Another trick that Riemann used on the same paper:  using the Poisson summation formula to “prove” 
the invalid equation

(9)   π
− s

2 Γ( s
2)ζ (s)  ≠  π

−(1−s
2 )

Γ(1−s
2 )ζ (1−s) ,

which was obtained from (8).  Riemann used “analytic continuation” as “proof” to an invalid equation. 

In the Poisson summation formula shown below



(10) ∑
n=−∞

∞

e−π x (t +nT )2

 = 1
T

∑
n=−∞

∞ 1
√x

e
−π

x
(n/T )2

e
2π int

T ,

t is the only independent variable while x (>0) is constant.  The role of x is to make the summation on 
both sides of (12) to converge either slowly or rapidly.  Thus, if we want to compute the sum on both 
sides of (12) at t = 0, T = 1, and with an appropriate value of x, we have

(11)  ∑
n=−∞

∞

e−π n
2
x = 1

√x
∑

n=−∞

∞

e
−π

n2

x

and since x is constant, the integrals on both sides of (13) will be zero, that is

∫
x

x

{∑
n=−∞

∞

e−π n2 x}dx=∫
x

x { 1

√x
∑

n=−∞

∞

e
−π n2

x }dx

0 =0

Hence the Poisson summation formula can neither prove nor disprove (9), and in the equation below

(12)                                              π
− s

2Γ( s
2)ζ (s)=∫

0

∞

x
s
2
−1{∑n=1

∞

e−π n2 x}dx ,

x is a variable.   The Poisson summation formula and the equation above are, therefore, two different 
independent systems.

Multiplying (12) by
s (s−1)

2
, and using (11), and then setting s = ½ + it, Riemann obtained the real 

equation

s(s−1)
2

π
− s

2 Γ( s
2)ζ (s) = 

1
2

 −  (t 2  − 
1
4)∫1

∞

x
−3
4 cos( t

2
 logx){∑n=1

∞

e−π n2 x}dx

Riemann’s setting s = ½ + it is not appropriate since (12) does not converge at that value of s.  Thus, at 
s = ½ + it

s(s−1)
2

π
− s

2 Γ( s
2)ζ (s) ≠ 

1
2

 −  (t 2  − 
1
4)∫1

∞

x
−3
4 cos( t

2
 logx){∑n=1

∞

e−π n2 x}dx .



The rest of Riemann’s tricks were done in obtaining his formula for estimating the number of primes 
less than a given quantity.   I just want to point out that 

1
2π i∫s

s
logζ (s)

s
ts ds=0.

 

Thus, his formula for obtaining the number of primes less than x, that is

f (x) = Li(x ) − ∑
α {Li(x

1
2

+α i) + Li(x
1
2
−α i)} + ∫

x

∞ 1

x2−1

dx
xlog x

+ logξ (0)

is not true.

The Fourier Transform

The Fourier transform of f(t) is given by

(13)     F (ν )=∫
−∞

∞

f (t )e−2π iν tdt

where t is the independent variable and the fundamental frequency ν is constant.  The function f(t)  is 
such that the integral in (13) is finite, │F(ν)│<∞.  Since the integral is obtained for all t and ν is 
constant

F (ν )=constant ,

and the formula for the inverse Fourier transform is zero, that is

  ∫
ν

ν

F(ν )e2π iν td ν =0.

The derivative of F(ν) with respect to ν is 0/0 and all the integral associated with F(ν) will be zero

F' (ν ) = dF
dν

= 0
0

   and   ∫
ν

ν

F(ν )dν =0.

Aperiodic Functions Don’t Have Fourier Series Representations

According to the prevailing interpretation, the Fourier transform can be used to obtain the continuous 
spectra of aperiodic functions.  Aperiodic functions don’t have any frequency content since they don’t 
have Fourier series representations.



Let f(t) be any aperiodic function with a period T approaching ∞, and whose integral for all t is finite,

∫
−∞

+∞

f (t )dt =k <∞ .  

All its Fourier coefficients {cn} will be zero

cn= lim
T→∞

1
T
∫
−∞

+∞

f (t )e
−2π i nt

T dt= lim
T→∞

1
T
∫
−∞

+∞

f (t )dt= lim
T→∞

k
T

= 0 ,

and its fundamental frequency νo will be zero

ν o= lim
T→∞

1
T

=0 ,

and all its harmonics are zero, nνo = 0.

The periodic function e−2π iν t in (14) has only one frequency ν (i.e., its fundamental frequency).  If 
you say that ν is a variable independent of t, then that is clearly false since the angular speed ω is the 
derivative of the angular displacement θ with respect to time t, that is  

ω = dθ
dt

.

If ω is constant, then we have a periodic function with fundamental frequency ν and the angular 
displacement θ= ωt = 2πνt is used for the periodic function e−2π iν t . While if ω is a variable,  then the
angular displacement  θ = ½αt2 must be used with zero initial θ and zero initial ω. The angular 
acceleration α is now the constant parameter and the new transform integral is now

F (α )=∫
−∞

∞

f (t )e
−i

α t2

2 dt .

The term ν simply means that the fundamental frequency νo is a continuous quantity or that it can take 
any value on a continuous scale.  In fact, the concept of frequency vanishes when ω is a variable and 
the function will be aperiodic.  For example, the Fourier transform of f (t )=1      −τ /2<t<τ /2

F (ω )= ∫
−τ /2

τ /2

e−iω t dt= ∫
−τ /2

τ /2

cos(ω t )dt−i ∫
−τ/2

τ /2

sin(ω t )dt

F (ω )= 2∫
0

τ /2

cos(ω t )dt = 2
ω sin(ω τ

2 )



Conclusions

(a) The s parameter used in any transform integral is a constant.
(b) Because s is constant, the transform integral is also constant.
(c) Any function that is similar in form to the transform integral is a different independent system.
(d)  The concept of analytic continuation is often used to justify an invalid result(s) and is being 

applied inappropriately.
(e) An aperiodic function doesn’t have a Fourier series representation.
(f) The fundamental frequency of a periodic function is a constant that can take on any value on a 

continuous scale.
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