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ABSTRACT

In his 1859 paper, Bernhard Riemann used the integral equation f f(x)x > 'dx todevelop an
0

explicit formula for estimating the number of prime numbers less than a given quantity. It is the
purpose of this present work to explore some of the properties of this equation.
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Introduction

Consider the integral equation given below
1) F(s) = [f(x)x* tdx
0

Formula (1) is the integral of f(x) times x ° for x = 0 to o and the resulting integral is denoted by
F(s) (or the transform of f). It must be assumed that f(x) is such that | F(s) | < oo and s is a complex
constant. Since s is constant,

F(s) = constant, F'(s) = (2—1; = %, and fF(s)ds = 0.

Example 1: Apply formula (1) to obtain the transform of f(x) = e™.

Solution. Substitute e™to (1)

F(s)= f e " x *ldx=T(-s), N (s)<0, since F(s)=f e *x'dx, R(s)>0,
0 0
where T'(s) isthe gamma “function” and R(s) is the real part of the complex quantity s.
Unit Step Function (Heaviside Function)

The unit step function or Heaviside function p(x — a) is 0 for x < g, has a jump size 1 at x = a (where
it is usually consider as undefined), and is 1 for x > a, in a formula:

u(x—a) = [0 if x<a a=0.
‘ 1  ifx>a

The transform of p(x — a) is

F(s) = (a>0 and R(s)>0).



Example 2: The Riemann Zeta Function is given by

obtain the transform of Y, u(x—n), n=1,234,...

n=1

F(S)Z;’Q{u(x—l) +/«¢(X—2)+‘u(x—3) + ~-~}X7571dX: —xs[x . —xS

= l(1+2’5+375+4’S+ lZl_ ) R(s)>1.
S Sh=in’
Example 3: Obtain the transform of 7(x Z ul(x , where p is a prime number, p = 2, 3, 5, 7,
p
11, ....
F(s) = f > ulx—p)x f Xx—=2)+ u(x=3)+ u(x=5)+u(x=7)+ ..]x*'dx
0 p 0
1 —s —s —s —S 1 N —s
fr(s):;(2 +37° 4577+ 7+ ) = ;Zp R(s)>1.

p

Dirac’s Delta Function

Consider the function

fx—a) = 1/ if asxsa+r
0 otherwise.
Its integral is
0 a+t 1
I = ff,(x—a)dx = f Zdx = 1.
0 a

We let now let T becomes smaller and smaller and take the limit as 7— 0 (r > 0). This limit is denoted
by é(x — a), that is,

O(x—a) = limf,(x—a)

70



and obtain

S(x—a) = | ® tx=a and [ 6(x=a)dx = 1.
0 otherwise 0

6(x — a) is called the Dirac delta function or the unit impulse function. For a continuous function f(x)
one uses the sifting property of 6(x — a),

f(x)0(x—a)dx = f(a).

ot—3

To obtain the transform of §(x — a), we write

and take the transform

F(s) = [ f.(x—a)x*"dx = i[a_s—(a+ rTs] = a*——9  g>0 and R(s)>0.
) 7s s

Take the limit as T— 0. By I’Hopital’s rule, the quotient on the right has the limit 1/a. Hence, the right
side has the limit a®*". The transform of §(x — a) define by this limit is

F(s)= a>o.
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Example 4: Obtain the transform of Y. xd(x—n) and ), & (x—n) .

n=1 n=1

00 00

xé(x—n)}xSIdx:Z:nS = £(s), R(s)>1,

n=1 n=1

)

00

P

é(x—n)}x51dx:in(s+l) = £(s+1), R(s)>0.



The Riemann Transform

If f(x) is a function defined for all x> 1, its Riemann transform is the integral of f(x) times x °~'
for x =1to o. Let’s denote it by F(s) or R{f},

@) F(s)=R{f}=]f(x)x* "dx.

e

The given function f(x) in (2) is called the inverse transform of F(s) and is denoted by R"{F}; that is,

Example 5: Let f(x)=1, find F(s).

Solution. From (2) we obtain by integration

00

- % (R(s)>0).

=S

Rif}=R{1}=

H%g

o 1
x Tdx=—=x
S 1

Example 6: Let f(x)=x", where ais constant. Find F(s).

Solution. From (2),

-1 (R(s—a)>0).

THEOREM 1: Linearity of the Riemann Transform

The Riemann transform is a linear operation; that is, for any functions f(x) and g(x) whose transforms
exist and any constants a and b the transform of af(x) + bg(x) exists, and

Riaf (x)+bg(x)} = aF(s) + bG(s).

Example 7: Find the transforms of cosh(alnx) and sinh(alnx).



Solution. Since cosh(alnx)Z%(x“ + x ‘) and sinh(aln x):%(x“ — x *), we obtain from

Example 6 and Theorem 1,

R{Cosh(alnx)}=%(R(x“)+R(x_a))=—( R ): s

5

oo =) - i = 3 L)< e

Example 8: Let f(x)= x“', where i is the imaginary operator (i=v—1) . Find F(s).

Solution. From Example 6

- = . - = 5 + i
S—adl S—al s+ ol S+«

2 2°
S +ta

Example 9: Cosine and Sine

Derive the formulas

R{cos(alnx)} = —— and R{sin(elnx)] = %,
s’+a s+a

Solution. From Example 8 and Theorem 1

ai

x“ = cos(alnx) + isin(alnx)

R{x“} = R{cos(alnx)] + iR|[sin(alnx)} , thus

R{cos(alnx)} = —— and R{sin(elnx)] = %,
s’+a s+a

THEOREM 2: s-Shifting Theorem
If f(x) has the transform F(s) (where s > k for some k), then x°f(x) has the transform F(s — a)

(where s —a > k). In formulas,

R{x'f(x)} = F(s—a)

or, if we take the inverse on both sides ~ x°f(x) = R '{F(s—a)).




PROOF: We obtain F(s — a) by replacing s with s — a in the integral in (1), so that

F(s—a) = ]jx(sa)lf(x)dx = fxis*l[xaf(x)]dx = R{xf(x)}.

1
Example 10: From Example 9 and the s-Shifting theorem one can obtain the Riemann
transform for

R{x‘cos(alnx)} = ———— and R{x%in(alnx)} = —%— .

Existence and Uniqueness of Riemann Transforms

A function f(x) has a Riemann transform if it does not grow too fast, say, if for all x > 1 and some
constants M and k it satisfies

3) F(x)] < Mx".

THEOREM 3: Existence Theorem for Riemann Transforms

If f(x) is defined and piecewise continuous on every finite interval on x > 1 and satisfies (3) for all
x > 1 and some constants M and k, then the Riemann transform R{f} exists for all s > k.

PROOF Since f(x) is piecewise continuous, x *f(x) is integrable over any finite interval on the
X-axis,

o0

J

1

R} =

Mx*x*'dx = l
s—k

< ]jb“(x)b(_s_ldx <

e

Uniqueness. If the Riemann transform of a given function exists, it is uniquely determined and if two
continuous functions have the same transform, they are completely identical

Transforms of Derivatives

THEOREM 4: Riemann Transform of Derivatives
The transforms of the first and second derivatives of f(x) satisfy

@ R(f') = (s+1)F(s+1) — f(1)
® R(f') = (s+2)(s+1)F(s+2) — (s+1)f(1) —f'(1)
Formula (4) holds if f(x) is continuous for all x > 1 and satisfies (3) and f’(x) is piecewise continuous on every finite

interval for x > 1. Formula (5) holds if f and f’ are continuous for all x > 1 and satisfy (3) and f is piecewise continuous
on every finite interval for x > 1.




PROOF: Using integration by parts on formula (4)

R{f]

= S 8

00

1

The proof of (5) now follows by applying integration by parts twice on it, that is

R{f"]

Repeatedly using integration by parts as in the proof of (5) and using induction, we obtain the

following Theorem.

— g

—f(1) + (s+1)| flx)x 7

oo]

1

0

+ (s+2)_f f(x)xdx

1

—f'(1) = (s+1)f(1) + (s+2)(s+1)F(s+2).

Frlxx e = [P (xc T+ (s+1)f F(0xc

fr(x)x*dx = [f(x)x 1|7 + (s+1)ff(x)x7572dx = —f(1) + (s+1)F(s+1).

(s+n—2)(s+n—=3)--f

THEOREM 5: Riemann Transform of the Derivative f™ of Any Order

().

R{f"} = (s+n)(s+n—1)---(s+1)F(s+n) — (s+n—1)(s+n—2)---f(1) —

'(1) — =

Letf, f’, ..., """ be continuous for all x= 1 and satisfy (2). Furthermore, let { be piecewise continuous on every
finite interval for x > 1. Then the transform of [ satisfies

Example 11: Let f(x) = x°. Then f(1) = 1, f(x) = 2x, (1) = 2, f’(x) = 2. Obtain

R{f}, R{f’}, and R{f”}
R{f]

Solution. F

and (5),

(s)




The Riemann Transform and the Laplace Transform

The Laplace transform is the integral of f(y) times e from y = 0 to o where f(y) is defined for all y > 0.
It is denoted by L{f},

6) Lif) = fly)e™dy.

The Riemann transform is given below

o0

7) R{f} = [f(x)x* "dx.

1

Replace x = ¢’ (or y = Inx) in formula (8) and since x = 1 to o, y = 0 (In1) to o (In).

fy)e ¥dy,

—

Flx)x " 'dx = ]:f(ey)esyyd(ey) -

o 38

which is formula (6).

The Bilateral Laplace Transform

Formula (6) is usually called the Unilateral Laplace transform since the integral is evaluated from
0 to c. The integral below is known as the Bilateral Laplace transform because the integral is taken
from -oo to oo,

®) Biff = | fly)e”dy.

Now, consider the integral equation
) ff(x)x_s_ldx,
0

Replace x = ¢’ (or y =Inx) in formula (4) and since x = 0 to oo, y = -00 to oo, thus

s

Jrea = Jreerde) = [ rinea.

which is (8).



Riemann Transform: General Formulas

Formula

Name

F<s>:R[f<x>}:?f(x)x-s-ldx

Definition of Transform

Inverse Transform

Linearity

s-Shifting Theorem

Table: Some Riemann Transforms

f(X):Ril{F(S)} F(S)ZT f(X)X_S_ldX
1
1 1 1
s
2 X 1
s—1
3 x¢ 1
s—a
4 x“ 1
S—ai
5 cos(alnx) s
2 2
s‘+a
6 sin(alnx) —
sS+ta
7 cosh(alnx) s
s —a




8 sinh(aln x) a
2 2
s°—a
9 x"cos( alnx) s—b
(s=bf+a’
10 bsin(al _a
x'sin(aInx) (—bf+ o
1 2 s+a’
1 cos(aInx )| ln( S )
12 1 . arctan-%
——sin( aln x) s
Inx
13 2 | s’—d’
lnx{l cosh(alnx)| m( > )
14 1 b o a s—a
Inx (X X ) ln(—s_b)
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