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Abstract

Let λf (n), σ(n) and ϕ(n) be the nth Hecke eigenvalue of normalized cuspidal Hecke
eigenform, the sum-of-divisors function and the Euler totient function, respectively.
In this paper, we investigate the asymptotic behavior of the summatory function∑

n≤x

λjf (n)σb(n)ϕc(n)

as x → ∞, where j ≥ 9 is any fixed integer. This generalizes the previous work in
this direction.

1. Introduction

The Fourier coefficients of automorphic forms are interesting and important re-

search objects in modern number theory. Let Hk be the set of normalized primi-

tive holomorphic cusp forms of even integral weight k for the full modular group
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Γ = SL(2,Z), which consists of the eigenfunctions for all the Hecke operators Tn.

The Fourier coefficients of f ∈ Hk at the cusp ∞ admits the Fourier expansion

f(z) =

∞∑
n=1

λf (n)n
k−1
2 e(nz), e(z) := e2πiz,

where λf (n) ∈ R are the normalized Fourier coefficients (Hecke eigenvalues) of f ,

and λf (1) = 1. It is well-known that the Hecke eigenvalues λf (n) satisfy the Hecke

relation

λf (n)λf (m) =
∑

d|(m,n)

λf

(
mn

d2

)
,

where m and n are positive integers. In 1974, P. Deligne [7] proved the celebrated

Ramanujan−Petersson conjecture which asserts that

|λf (n)| ≤ d(n), (1)

where d(n) denotes the classical divisor function.

The Inequality (1) implies that for any prime number p, there exist two complex

numbers αf (p), βf (p) such that

λf (p) = αf (p) + βf (p), |αf (p)| = |βf (p)| = αf (p)βf (p) = 1. (2)

The average behavior of Hecke eigenvalues of normalized cuspidal Hecke eigen-

forms is an important topic in modern number theory. In 1927, Hecke [11] proved

that ∑
n≤x

λf (n)� x
1
2 . (3)

Later, the upper bound in Inequality (3) was improved by several authors (see, for

example, [7, 12, 25]). In particular, Wu [27] has shown that∑
n≤x

λf (n)� x
1
3 logρ x,

where

ρ =
102 + 7

√
21

210

(
6−
√

21

5

) 1
2

+
102− 7

√
21

210

(
6 +
√

21

5

) 1
2

− 33

35
= −0.118 · · · .

In the 1930s, Rankin [24] and Selberg [26] independently proved the asymptotic

formula ∑
n≤x

λ2f (n) = cfx+O(x3/5) (4)
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for any ε > 0, where cf > 0 is a positive constant depending on f . Very recently,

the exponent in Equation (4) was improved to 3
5 − δ in place of 3

5 by Huang [13],

where δ ≤ 1/560. This remains the best possible result to date.

In 2015, Manski, Mayle and Zbacnik [20] considered the average behavior of a

hybrid arithmetic function and proved that∑
n≤x

da(n)σb(n)ϕc(n) = xb+c+1P2a−1(log x) +O
(
xb+c+ra+ε

)
where a, b, c ∈ R and 1

2 ≤ ra < 1, here Pl(t) denotes the polynomial of t with degree

l. Later, Li [19] and Cui [6] investigated the average behavior of the sum∑
n≤x

λjf (n)σb(n)ϕc(n) (5)

for 1 ≤ j ≤ 6. Very recently, Wei and Lao [28] refined the results for j = 2, 4, 6 and

gave the asymptotic behavior of Equation (5) for j = 7, 8.

Inspired by the above results, in this paper we consider the asymptotic behavior

of Equation (5) for j ≥ 9 by invoking the recent work of Newton and Thorne

[21, 22] which asserts that symrf is an automorphic cuspidal representation of

GL(r+ 1) for all r ≥ 1. The well-known analytic properties, such as the individual

and averaged convexity or subconvexity bounds for the associated L-functions, also

play an important role in the proof of the main result. More precisely, we prove the

following theorem.

Theorem 1.1. Let b, c ∈ R, and let f ∈ Hk be a Hecke eigenform. Let j ≥ 9 be

any given positive integer. Then:

(i) For j = 2l an even integer, we have∑
n≤x

λjf (n)σb(n)ϕc(n) = xb+c+1PAj−1(log x) +Of
(
x
b+c+1− 420

105·22l+1−80Al−63Cl+63
+ε)

for any ε > 0, where Pl(t) denotes a polynomial in t with degree l, and Al and Cl
are given by

Al =
(2l)!

l!(l + 1)!
, Cl =

3 · (2l)!
(l − 1)!(l + 2)!

.

(ii) For j = 2l + 1 an odd integer, we have∑
n≤x

λjf (n)σb(n)ϕc(n) = Of
(
x
b+c+1− 3

3·22l−Bl
+ε)

for any ε > 0, where Bl is given by

Bl = 2
(2l + 1)!

l!(l + 2)!
.
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Throughout the paper, we always assume that f ∈ Hk is a Hecke eigenform.

Also, let ε > 0 be an arbitrarily small positive constant that may vary in different

contexts. The symbol p always denotes a prime number.

2. Preliminaries

In this section, we review some relevant facts about the symmetric power L-functions

and collect some important lemmas which play an important role in the proof of

the main result in this paper.

Let f ∈ Hk be a Hecke eigenform. The Hecke L-function associated with f(z) is

defined by

L(f, s) =

∞∑
n=1

λf (n)

ns
=
∏
p

(
1− αf (p)

ps

)−1(
1− βf (p)

ps

)−1
, <(s) > 1,

where the local parameters αf (p) and βf (p) are defined as in Equation (2).

We can also define the jth symmetric power L-function attached to f by

L(symjf, s) :=
∏
p

j∏
m=0

(
1− αf (p)j−mβf (p)m

ps

)−1
(6)

for <(s) > 1. We can rewrite it as a Dirichlet series

L(symjf, s) =
∏
p

(
1 +

λsymjf (p)

ps
+ . . .+

λsymjf (pk)

pks
+ . . .

)

:=
∞∑
n=1

λsymjf (n)

ns
, <(s) > 1. (7)

It is well-known that λsymjf (n) is a real multiplicative function. And from Equations

(2), (6), (7) and Hecke operator theory, we infer that

λf (pj) =

j∑
m=0

αf (p)j−2m = λsymjf (p), j ≥ 1. (8)

Let πf be an automorphic cuspidal automorphic representation of GL2(AQ). It is

well-known that an automorphic cuspidal representation π of GL2(AQ) is associated

with a primitive form f , and hence an automorphic function L(πf , s) coincides

with L(f, s). Denote by symjπf the jth symmetric power lift of πf . For 2 ≤
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j ≤ 8, the automorphy of symjπf were proved by a series of important work of

Gelbart and Jacquet [9], Kim and Shahidi [15, 16, 17], Dieulefait [8], and Clozel

and Thorne [3, 4, 5]. Very recently, Newton and Thorne [21, 22] showed that there

exists a cuspidal automorphy representation of GLj+1(AQ) whose L-function equals

L(symjf, s) for all j ≥ 1. Hence for j ≥ 1, the L-function L(symjf, s) is an entire

function and satisfies a functional equation of certain Riemann-type with degree

j + 1.

In the next lemma, we introduce the truncated Perron’s formula, which is given

in Karatsuba and Voronin by [14, pp. 334-336].

Lemma 2.1. Suppose that the series f(s) =
∑
n≥1 ann

−s converges absolutely in

<(s) > 1, and |a(n)| ≤ A(n), where A(n) is a positive monotonously increasing

function and ∑
n≥1

|an|n−σ = O
(
(σ − 1)−α

)
for some α > 1 as σ → 1+. Then∑

n≤x

an =
1

2πi

∫ b+iT

b−iT
f(s)

xs

s
ds+O

(
xb

T (b− 1)α

)
+O

(
xA(2x) log x

T

)
holds for any 1 < b ≤ b0, T ≥ 2, x = N + 1

2 (the constants in O-terms depend on

b0).

Next, we introduce a series of helpful lemmas which are important in the proof

of the main results in this paper. First of all, we give the decompositions of the

generating L-functions into some lower degree L-functions, which is significant in

the computations via Perron’s formula. Next, we invoke the subconvexity bounds

for some associated L-functions, which gives better results.

Lemma 2.2. Let b, c ∈ R and j ≥ 9 be a fixed integer, and let f ∈ Hk be a Hecke

eigenform. Let j = 2l be an even integer, and define

Lj,b,c(s) =

∞∑
n=1

λjf (n)σb(n)ϕc(n)

ns
.

Then

Lj,b,c(s) = ζ(s− b− c)AlL(sym2lf, s− b− c)

×
∏

1≤r≤l−1

L(sym2rf, s− b− c)Cl(r)Uj,b,c(s),

where Al and Cl(r) are given by

Al =
(2l)!

l!(l + 1)!
, Cl(r) =

(2l)!(2r + 1)

(l − r)!(l + r + 1)!
.
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The L-function Lj,b,c(s) is of degree 2j and all coefficients are nonnegative, and

Uj,b,c(s) is a Dirichlet series which converges absolutely and uniformly in the half-

plane <(s) > b+ c+ 1
2 .

Proof. Since λjf (n)σb(n)ϕc(n) is a multiplicative function, then for <(s) � 1 we

have the Euler product

Lj,b,c(s) =
∏
p

(
1 +

∑
k≥1

λjf (pk)σb(pk)ϕc(pk)

pks

)

=
∏
p

(
1 +

λjf (p)σb(p)ϕc(p)

ps
+
λjf (p2)σb(p2)ϕc(p2)

p2s
+ . . .

)
.

In the half-plane <(s) > b+ c+ 1
2 , the p-th coefficient of the L-function determines

the analytic properties of Lj,b,c(s).

By Equation (8) and [18, Lemma 7.1], we get

λjf (p)σb(p)ϕc(p) = λf (p)j(p+ 1)b(p− 1)c

=

(
Al +

∑
1≤r≤l−1

Cl(r)λsym2rf (p) + λsym2lf (p)

)
(p+ 1)b(p− 1)c

since in this case j = 2l is an even integer.

Let s = σ + it. By following an argument similar to that of Wei and Lao [28,

Lemma 2.4], we get

Lj,b,c(s) =
∏
p

(
1 +

λjf (p)(1 + χ(p))

ps−b−c
+O

(
p2(b+c−σ) + p(b+c−1−σ)

))
:= ζ(s− b− c)AlL(sym2lf, s− b− c)

×
∏

1≤r≤l−1

L(sym2rf, s− b− c)Cl(r)Uj,b,c(s),

where the Dirichlet series Uj,b,c(s) converges absolutely and uniformly in the half-

plane <(s) ≥ b+ c+ 1
2 + ε and Uj,b,c(s) 6= 0 with <(s) = b+ c+ 1.

Lemma 2.3. Let b, c ∈ R and j ≥ 9 be a fixed integer, and let f ∈ Hk be a Hecke

eigenform. Let j = 2l + 1 be an odd integer, and define

L∗j,b,c(s) =

∞∑
n=1

λjf (n)σb(n)ϕc(n)

ns
.

Then

L∗j,b,c(s) = L(f, s− b− c)BlL(sym2l+1f, s− b− c)

×
∏

1≤r≤l−1

L(sym2r+1f, s− b− c)Dl(r)U∗j,b,c(s),
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where Bl and Dl(r) are given by

Bl = 2
(2l + 1)!

l!(l + 2)!
, Dl(r) =

(2l + 1)!(2r + 2)

(l − r)!(l + r + 2)!
.

The L-function Lj,b,c(s) is of degree 2j, and U∗j,b,c(s) is a Dirichlet series which

converges absolutely and uniformly in the half-plane <(s) > b+ c+ 1
2 .

Proof. This follows essentially the same argument as in Wei et al. [28] and note

Lau and Lü [18, Lemma 7.1].

Lemma 2.4. For any ε > 0, we have

ζ(σ + it) �
(
1 + |t|

)max{ 13
42 (1−σ),0}+ε,

L(f, σ + it) �
(
1 + |t|

)max { 2
3 (1−σ),0}+ε,

L(sym2f, σ + it) �
(
1 + |t|

)max { 27
20 (1−σ),0}+ε.

uniformly for 1
2 ≤ σ ≤ 2 and |t| ≥ 1.

Proof. The first result is the new breakthrough of Bourgain [2], the second is due

to Good [10], and the third result follows from the work of Aggarwal [1].

Now, we state some basic definitions and analytic properties about general L-

functions. A general L-function L(φ, s) is a Dirichlet series (associated with the

object φ) that admits an Euler product of degree m ≥ 1, namely

L(φ, s) =

∞∑
n=1

λφ(n)

ns
=
∏
p<∞

m∏
j=1

(
1− αφ(p, j)

ps

)−1
,

where αφ(p, j), j = 1, 2, · · · ,m are the local parameters of L(φ, s) at a finite prime

p. Suppose that this series and its Euler product are absolutely convergent for

<(s) > 1. We denote the gamma factor by

L∞(φ, s) =

m∏
j=1

π−
s+µφ(j)

2 Γ

(
s+ µφ(j)

2

)
with local parameters µφ(j), j = 1, 2, · · · ,m of L(φ, s) at ∞. The complete L-

function Λ(φ, s) is defined by

Λ(φ, s) = q(φ)
s
2L∞(φ, s)L(φ, s),

where q(φ) is the conductor of L(φ, s). We assume that Λ(φ, s) admits an analytic

continuation to the the whole complex plane C and is holomorphic everywhere
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except for possible poles of finite order at s = 0, 1. Furthermore, it satisfies a

functional equation of the Riemann-type

Λ(φ, s) = εφΛ(φ̃, 1− s)

where εφ is the root number with |εφ| = 1 and φ̃ is dual of φ such that λφ̃(n) =

λφ(n), L∞(φ̃, s) = L∞(φ, s) and q(φ̃) = q(φ). We say that L-function L(φ, s) satis-

fies the Ramanujan conjecture if λφ(n)� nε for any ε.

From above we observe that the L-functions L(symjf, s), j ≥ 1 are general L-

functions in the sense of Perelli [7]. For the general L-functions, we have the fol-

lowing averaged or individual convexity bounds.

Lemma 2.5. Assume that L(s) is a general L-function of degree m. Then∫ 2T

T

∣∣L(σ + it)
∣∣2dt� Tm(1−σ)+ε,

uniformly for 1
2 ≤ σ ≤ 1 and T ≥ 1, and

L(σ + it)�
(
1 + |t|

)max{m2 (1−σ),0}+ε
,

uniformly for 1
2 ≤ σ ≤ 1 + ε and |t| ≥ 1.

Proof. This follows from the results of Perelli’s mean value theorem and convexity

bounds for general L-functions [7].

3. Proof of Theorem 1.1

We firstly consider the case that the j = 2` is an even integer. By applying Lemma

2.1, we obtain

∑
n≤x

λjf (n)σb(n)ϕc(n) =
1

2πi

∫ b+c+1+ε+iT

b+c+1+ε−iT
Lj,b,c(s)

xs

s
ds+O

(
xb+c+1+ε

T

)
,

where s = σ+ it and 1 ≤ T ≤ x is some parameter to be chosen later. For the sake

of simplicity, by Lemma 2.2 we will write

Lj,b,c(s) = Hj,b,c(s− b− c)Uj,b,c(s),

where

Hj,b,c(s) := ζ(s)AlL(sym2lf, s)
∏

1≤r≤l−1

L(sym2rf, s)Cl(r).
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By shifting the line of integration to the parallel segment with <(s) = b+ c+ 1
2 + ε

and invoking Cauchy’s residue theorem, by Lemma 2.2 we have∑
n≤x

λjf (n)σb(n)ϕc(n) = Ress=b+c+1

{
Lj,b,c(s)

xs

s

}

+
1

2πi

{∫ b+c+ 1
2+ε+iT

b+c+ 1
2+ε−iT

+

∫ b+c+ 1
2+ε−iT

b+c+1+ε−iT
+

∫ b+c+1+ε+iT

b+c+ 1
2+ε+iT

}
Lj,b,c(s)

xs

s
ds

+O

(
xb+c+1+ε

T

)
:= xb+c+1PAl−1(log x) + J1 + J2 + J3 +O

(
xb+c+1+ε

T

)
, (9)

where the term xb+c+1PAl−1(log x) comes from the residue of the function

Lj,b,c(s)
xs

s

at s = 1, and Pl(t) denotes a polynomial of t with degree l.

Let

Hj,b,c(s) = ζ(s)AlGj,b,c(s)L(sym2f, s)Cl(1),

where

Gj,b,c(s) := L(sym2lf, s)
∏

2≤r≤l−1

L(sym2rf, s)Cl(r).

It is not hard to find that Gj,b,c(s) is an L-function of degree 22l −Al − 3C1(1).

Now we need to handle the three terms J1, J2 and J3. For the integrals over the

horizontal segments J2 and J3, we have

J2 + J3 �
∫ 1+ε

1
2+ε

∣∣Hj,b,c(σ + iT )
∣∣xb+c+σT−1dσ

� xb+c
∫ 1+ε

1
2+ε

∣∣Hj,b,c(σ + iT )
∣∣xσT−1dσ.

By Lemmas 2.4-2.5, we have

J2 + J3 � xb+c max
1
2+ε≤σ≤1+ε

xσT ( 13
42Al+

27
20Cl(1)+

1
2 (2

2l−Al−3Cl(1)))(1−σ)+εT−1

� xb+c+1+ε

T
+ xb+c+

1
2+εT 22l−2− 2

21Al−
3
40Cl(1)−1+ε. (10)
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For J1, by Lemmas 2.4 and 2.5 and the Cauchy-Schwarz inequality, we have

J1 � xb+c+
1
2+ε

∫ T

1

∣∣∣∣Hj,b,c

(
1

2
+ it

)∣∣∣∣t−1dt+ xb+c+
1
2+ε

� xb+c+
1
2+ε log T max

1≤T1≤T/2

(
max

T1≤t≤2T1

T−11

∣∣∣∣ζ(1

2
+ it

)∣∣∣∣Al
×
∣∣∣∣L(sym2f,

1

2
+ it

)∣∣∣∣Cl(1)−1(∫ 2T1

T1

∣∣∣∣L(sym2f,
1

2
+ it

)∣∣∣∣2dt) 1
2

×
(∫ 2T1

T1

∣∣∣∣Gj,b,c(1

2
+ it

)∣∣∣∣2dt) 1
2
)

+ xb+c+
1
2+ε

� xb+c+
1
2+εT

13
84Al+

27
40 (Cl(1)−1)+

3
4+(22l−Al−3Cl(1))× 1

4−1+ε + xb+c+
1
2+ε

� xb+c+
1
2+εT 22l−2− 2

21Al−
3
40Cl(1)−

37
40+ε. (11)

Therefore, from Equations (9)-(11), we have

∑
n≤x

λjf (n)σb(n)ϕc(n) = xb+c+1PAj−1(log x) +O

(
xb+c+1+ε

T

)

+O

(
xb+c+

1
2+εT 22l−2− 2

21Al−
3
40Cl(1)−

37
40+ε

)
. (12)

On taking T = x
420

105·22l+1−80Al−63Cl(1)+63 in Equation (12), we get∑
n≤x

λjf (n)σb(n)ϕc(n) = xb+c+1PAj−1(log x) +O
(
x
b+c+1− 420

105·22l+1−80Al−63Cl(1)+63
+ε)

.

This completes the case that j = 2l.

Now we turn to the case that j = 2l + 1. By applying Lemmas 2.1 and 2.3 and

shifting the line of integration to the parallel segment with <(s) = b+ c+ 1
2 + ε, we

obtain ∑
n≤x

λjf (n)σb(n)ϕc(n) =

1

2πi

{∫ b+c+ 1
2+ε+iT

b+c+ 1
2+ε−iT

+

∫ b+c+ 1
2+ε−iT

b+c+1+ε−iT
+

∫ b+c+1+ε+iT

b+c+ 1
2+ε+iT

}
L∗j,b,c(s)

xs

s
ds

+O

(
xb+c+1+ε

T

)
:= I1 + I2 + I3 +O

(
xb+c+1+ε

T

)
, (13)

where s = σ + it and 1 ≤ T ≤ x is a parameter to be chosen later.
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For the sake of simplicity, by Lemma 2.3 we write

L∗j,b,c(s) = H∗j,b,c(s− b− c)U∗j,b,c(s),

where

H∗j,b,c(s) := L(f, s)BlL(sym2l+1f, s)
∏

1≤r≤l−1

L(sym2r+1f, s)Dl(r).

And let

H∗j,b,c(s) = L(f, s)BlG∗j,b,c(s)L(sym3f, s)Dl(1),

where

G∗j,b,c(s) := L(sym2l+1f, s)
∏

2≤r≤l−1

L(sym2r+1f, s)Dl(r).

It is obvious that G∗j,b,c(s) is an L-function of degree 22l+1 − 2Bl − 4Dl(1).

Next we begin to handle the three terms I1, I2 and I3. For I1, using Lemmas 2.4

and 2.5 and the Cauchy-Schwarz inequality, we have

I1 � xb+c+
1
2+ε

∫ T

1

∣∣∣∣H∗j,b,c(1

2
+ it

)∣∣∣∣t−1dt+ xb+c+
1
2+ε

� xb+c+
1
2+ε log T max

1≤T1≤T/2

(
max

T1≤t≤2T1

T−11

∣∣∣∣L(f, 1

2
+ it

)∣∣∣∣Bl
×
∣∣∣∣L(sym3f,

1

2
+ it

)∣∣∣∣Dl(1)−1(∫ 2T1

T1

∣∣∣∣L(sym3f,
1

2
+ it

)∣∣∣∣2dt) 1
2

×
(∫ 2T1

T1

∣∣∣∣G∗j,b,c(1

2
+ it

)∣∣∣∣2dt) 1
2
)

+ xb+c+
1
2+ε

� xb+c+
1
2+εT

1
3Bl+

1
2×

1
2×4×(Dl(1)−1)+

1
2×

1
2×4+(22l+1−2Bl−4Dl(1))× 1

4−1+ε

+xb+c+
1
2+ε

� xb+c+
1
2+εT 22l−1− 1

6Bl−1+ε. (14)

For the integrals over the horizontal segments I2 and I3, by Lemmas 2.4 and 2.5 we

have

I2 + I3 �
∫ 1+ε

1
2+ε

∣∣H∗j,b,c(σ + iT )
∣∣xb+c+σT−1dσ

� xb+c
∫ 1+ε

1
2+ε

∣∣H∗j,b,c(σ + iT )
∣∣xσT−1dσ

� xb+c max
1
2+ε≤σ≤b

xσT ( 2
3Bl+

1
2 (2

2l+1−2Bl))(1−σ)+εT−1

� xb+c+1+ε

T
+ xb+c+

1
2+εT 22l−1− 1

6Bl−1+ε. (15)
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Combining Equations (13)-(15), we obtain

∑
n≤x

λjf (n)σb(n)ϕc(n)� xb+c+1+ε

T
+ xb+c+

1
2+εT 22l−1− 1

6Bl−1+ε. (16)

On taking T = x
3

3·22l−Bl in Equation (16), we have∑
n≤x

λjf (n)σb(n)ϕc(n)� x
b+c+1− 3

3·22l−Bl
+ε
.

This completes the proof of Theorem 1.1.
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