
Philip Strömert | February 8th | Ontology Summit 2023
10.5281/zenodo.7623878

Setting up your own ODK ontology repository

https://doi.org/10.5281/zenodo.7623878

Prerequisites: Your Setup

You will need

● ODK installed in a Docker environment
○ docker pull obolibrary/odkfull

● Git (e.g. Github Desktop)

● a GitHub or GitLab account

https://docs.github.com/en/desktop/installing-and-configuring-github-desktop/overview/getting-started-with-github-desktop?platform=windows

Prerequisites: ODK seed wrapper script

● a convenient way
○ to start the ODK Docker container

○ to pass it your working directory, Git username & email

○ and to call the ODK seed method with all its parameters

● download it from the ODK repo

○ seed-via-docker.sh (Mac/Linux) or seed-via-docker.bat (Win)

● it must be in your working directory
○ a temp folder for the seed process output (e.g. ~/my_ODK_saplings)

3

https://raw.githubusercontent.com/INCATools/ontology-development-kit/master/seed-via-docker.sh
https://raw.githubusercontent.com/INCATools/ontology-development-kit/master/seed-via-docker.bat

Creating an ODK based repository

Step 1: Configure ODK parameters in a project.yaml

Step 2: Seed your repository with the wrapper script

Step 3: Upload the repo to GitHub / GitLab

→ Enjoy maintaining your ontology with ODK

4

Step 1: Configure general metadata

5

id (required)
● your ontology acronym

○ used to build file names & term IDs
○ should be lower case, usually ~ 4 characters

title (required)

▪ to generate various default values (e.g. in docs)

more is possible (optional)
▪ e.g. use description, licence or creators

to generate dcterms ontology annotations

Step 1: Configure Git parameters

6

github_org
● your GitHub or GitLab handle / organisation

○ used for some basic configs of the Git repo

○ defaults to your Git username

repo
● set the name of your repository

git_main_branch
● set the name of your main (master) branch

Step 1: Configure pipeline parameters

7

release_artefacts
● six different logical types (sets of axioms) possible

● generated according to these OBO/ROBOT conventions

primary_release
● what logical type is to be your main release artefact

export_formats
● the file formats you want to provide, such as OWL, OBO,

TTL or OBOGraphs JSON

https://github.com/INCATools/ontology-development-kit/blob/master/docs/ReleaseArtefacts.md

Step 1: Configure import modules

8

import_groups products
● lists all the ontologies you want to import

● for OBO ontologies id usually suffices

● but, you can configure much more, e.g.:

○ mirror_from → e.g. for non-OBO ontologies

○ module_type → to customize import modules

○ is_large & use_gzipped → for large ontologies

Step 1: Configure arguments passed to ROBOT

9

robot_java_args
● e.g. set the max RAM used by ROBOT

○ CAVE: give Docker at least ~20% more

for other possible options
● many examples to learn from

https://github.com/INCATools/ontology-development-kit/tree/master/configs

Step 2: Let ODK seed your repo

10

sh seed-via-docker.sh -C project.yaml

● complete git repo

● release artefacts

● README

● templates

○ NTRs

○ contributing

○ code of conduct

Your ODK repository workspace

11

Step 3: Upload the repo to GitHub / GitLab

12

● copy the generated dir to desired place (e.g. $HOME)
● in GitHub Desktop

○ File → Add local repository
○ Publish the repository

● on the command line → instructions provided in seed script output

Enjoy maintaining your ontology with ODK

13

● build import modules automatically
○ add needed terms to the TXT files in ./src/ontology/imports

○ refresh with sh run.sh make refresh-imports

○ customize the module build process via your custom Makefile

● run the release pipeline
○ sh run.sh make prepare_release

● run all QC checks or check the OWL2 DL profile validity
○ sh run.sh make test

○ sh run.sh make validate_profile_cato-edit.owl

Continuous Integration Testing

Developer

edit locally

Make pull
request

CI System
(GH actions)
runs ODK
checks

● No more broken ontologies on “main”
● No more fear you might “break stuff”
● Rich set of checks:

○ OWL profile checking
○ ROBOT report (incl. many best practices)
○ Customisable with SPARQL-based unit

testing
○ Logical consistency

Want to do it yourself?

Check the official documentation in the OBOOK

● how-to: set up the ODK Docker environment

● tutorial: set up an ODK GitHub repository

● tutorial: a complete walk through the core ODK workflows
○ go here to learn more about what you can do with ODK

● reference: frequently used ODK commands

https://oboacademy.github.io/obook/howto/odk-setup/
https://oboacademy.github.io/obook/tutorial/setting-up-project-odk/
https://oboacademy.github.io/obook/tutorial/odk-tutorial-2/
https://oboacademy.github.io/obook/reference/frequently-used-odk-commands/

Thank You

For Your Attention

