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 Modular multilevel converter (MMC) modules have popped up as among the 

best choices for medium and high-powered uses. This paper proposes a 

control scheme for the entire frequency range of operation for the MMC, 

focusing on supplying a three-phase machine. The machine is required to be 

controlled in the outer as well as the inner loop. Standard field oriented 

control (FOC) manages the three-phase machine in the outer closed loop 

while the inner control has to come up against the problem of energy 

balancing. That is unevenly distributed and stored in the capacitance of the 

upper and lower arms of the converter. There are two operating methods 

used in the inner control loop: a low-frequency method is used for start-up 

and low-speed operation, and a high-frequency method is for higher speed. 

In low-frequency mode (LF-mode), a special control strategy has to be 

implemented to minimize the energy oscillation in the capacitances of the 

converter arms. It makes utilization of the 3-phase machine's common mode 

voltage (Vc) as well as internal circulatory currents to verify a symmetrical 

energy distribution inside this MMC arms and also to avert whatever AC 

currents inside the DC source. 
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1. INTRODUCTION 

The process and control of electrical energy is an essential aspect of power transmission. This task 

was contented by the conception of power converters such as various levels of multilevel inverters like three-

level inverters [1] and five-level inverters [2]. Modular multilevel converter (MMC) has been receiving a lot 

of attention and advancement ever since its inception because of its numerous advantages such as outstanding 

performance, high modularity, easy quantification, as well as low voltage and current rating request for 

switching devices [3], [4]. These would be big benefits of the MMC over conventional two-level as well as 

configuration converter topologies [5]. The initiation of MMC took place in 2002 for the employment of 

high-voltage direct current (HVDC) systems in high-voltage transmission implementations [6]. In 2003, 

Marquardt was the first to present MMC and it turned out to be progressively appealing owing to modularity, 

high efficiency, excellent Vout waveform, redundancy, and avoiding separate dc sources [7]. The first papers 

https://creativecommons.org/licenses/by-sa/4.0/
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concerning the MMC as a motor drive implementation were publicized in 2009 [8]. Considering the 

innovation of the MMC, henceforth the topology has been implemented in traction applications [9], HVDC 

transmission [6], and large electric drives [10], [11], especially for hybrid electric vehicles [12], [13]. This 

paper is concerned with the behaviour of the HVDC link structured on MMC i.e. dynamic stability. Such 

articles describe the structure's key principles, the orientation of the inner elements, and thus the management 

of the MMC. They primarily specialize in a constant frequency operative intent, where almost no special 

management of levelling the internal energy kept within the cell capacitors has been required. The help 

managing that has been conferred does not allow function at a low output frequency. Over the years, so many 

MMC circuit configurations and their computer simulations have been formed, as well as the emergence and 

technological difficulties of classical and model predictive control techniques have been presented [14]. The 

first involvement regarding the MMC's low-frequency mode (LF-mode) has been made in [15]. Its basic 

design has been used in [4] to create an efficient system for MMC low-frequency operation, medium, as well 

as high voltage applications [16]. It also reduces absorbed current energy and dc fault current [17], [18]. Grid 

systems and isolated MMC-based DC-DC (IMMDC) inverter help DC buses match voltage, isolation, and 

transfer power [19]. Such a study elaborates [20]'s strategy for LF-mode associated with the more well-

known high-frequency mode (HF-mode). Initially, the management system converts the three-Iph values, as 

well as the V of the arm capacitance, into space vectors [21] and zero sequence aspects. This technique 

produces inner energy levelling while preventing any Iacon on the DC side. The input, output, as well as inner 

currents all, can be modified independently using the field oriented control (FOC) [2]. 

Those who deliver P transfer from DC supply to the motor or in reverse, as well as internal energy 

transferring here between arms. The real power elements within the converter arms are then assumed for the 

two operative modes. Sizable Vc variations whenever the machine is running at low speed. So, the extenuating 

variables i.e. circulating currents and Vcommon mode are used in the low-frequency spectrum to reduce voltage 

instability [22]. On the flip side, the machine is operated in a high-frequency spectrum when extenuating 

signals are no longer required. The equations have been derived for the employee during a feed-forward 

control system to ensure a constant and symmetrical energy transfer. Finally, modelling an MMC with such a 

time-separate model validated the network [23], [24]. Figure 1 depicts the drive implementation, which 

includes a DC source, the MMC, and the machine as a 3-ph load. The MMC has been divided into three 

stages, each with an upper and lower arm n. One converter arm has been made up of m series-connected cells 

and an inductor. In this arrangement, one cell only needs to be a half-bridge with such a capacitor. 

 

 

 
 

Figure 1. MMC configuration of the 3-phase machine [24] 
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So, every arm could indeed produce a variable voltage upy and uny number of phases by switching 

half-bridges of the cells (y=1...3). This is same ipy and iny. Currents in the arms have been described. The 

MMC produces the 3Vph, ua10, ua20, and ua30 corresponding to a DC source's midpoint 0 on the 3ph-AC 

side. The Vc mode u0 also was described as the voltage between the neutral point of the 3-ph load or motor 

and the DC source's reference potential. 

The structure of an article is as follows. Section 1 describes the introduction. Sections 2 provide 

thorough analysis of motor drive and requirements of variable frequency drive (VFD), motor control with 

MMC employing current control method is described in section 3. Section 4 discussed recommended method 

for horizontal (HBC) and vertical balance control (VBC) of MMC with study system modelling and 

simulation in MATLAB. Section 5 provides and examines the findings of the system simulation of several 

instances. Finally, article is concluded with the conclusion section 6. 

 

 

2. MOTOR DRIVE 

A motor drive regulates the speed, torque, direction, as well as horsepower produced by a motor. In 

electro-mechanical drive systems, a VFD regulates AC motor speed and torque by adjusting the input and 

voltage [25], [26]. The VFD is another technique for regulating the speed of electrical machines. Once users 

investigate electrical machines or electrical generators, users believe that the speed of rotation of the machines 

has been governed by the V and f of the stator side of the motor. Modify the torque (1), to alter the speed. 
 

𝑇 =
𝐾𝑠𝐸

2𝑅

𝑅2+(𝑠𝑋)2
 (1) 

 

Specifically, T is torque generated by the motor; Ks is constant term; E is rotor EMF induced; R is rotor 

inductive resistance; X is rotor-induced reactance; and s is slip of the motor. 

If a motor torque is less than the load torque, the motor speed has been reduced; if a motor torque 

exceeds the load torque, the motor speed is increased. Modifying the stator frequency (f) and the number of 

poles (P) is yet another simple method of controlling the speed of electrical machines [27]-[29]. The 

rotational speed of a rotating magnetic field has been signified by Ns, which further depend solely on the as 

well as P. If the P remains unchanged, the only way to change the Ns is to use (2) to modify the f. 
 

𝑁𝑠 =
120𝑓

𝑃
 (2) 

 

Where Ns is synchronous speed of induction motor, f is stator supply frequency, and P is number of poles of 

the motor. 

On the stator side, parameters such as supply frequency, supply voltage, number of poles, and 

external stator resistance could be operated to regulate the speed. VFD is an abbreviation for variable-

frequency drive, also known as frequency converters that has experienced relatively fast shifts, due primarily 

to the advancement of a microprocessor as well as semiconducting devices and their cheaper costs. Even so, 

the fundamental operating precepts of frequency converters stay intact. A VFD has become a type of motor 

speed controller that controls the frequency and voltage supplied to an induction motor. As shown in the 

block diagram in Figure 2, a VFD primarily consists of a rectifier, an intermediate circuit, as well an inverter 

to transform back dc voltage into the ac voltage. 
 

 

 
 

Figure 2. Schematic representation of VFD 
 

 

Its construction depends on the rectifier and inverter. One transform converted voltage to DC [30], and 

the other does not. It smoothes the inverter's pulsating direct voltage input. The rectifier converts DC to AC. The 
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inverter seems to be the final major component of the VFD drive. In addition to generating the output AC 

voltage and frequency, the inverter process represents the final stage. The ac voltage that is implemented to the 

motor is generated by the inverter. The frequencies converter's fourth major portion, the control loop, also 

referred to as the card, controls the semi-conductors, exchanges data with external hardware, assembles and 

reports problem signals, and protects the converters associated motors. Microprocessors it has enhanced the 

speed of the controller, growing the variety of applications appropriate for drives as well as reducing the number 

of estimations required [31], [32]. A processor in microprocessors has been incorporated into the frequency 

converter and thus can figure out the optimal pulse pattern for each operational state. 

 

 

3. MOTOR CONTROL WITH THE MMC 

Figures 3 and 4 shows the cumulates system model for the MMC and govern mechanisms is shown, 

that offers the reference attributes for the Vout (space vector ua with a magnitude 𝑈̂𝑎 as well as angle γa). In this 

case, a field-or rotor-oriented control serves to completely separately adapt the magnetic flux and torque Mi1 of 

the machine by i*ad and i*aq. In the torque closed loop, a speed controller has been got to add. A zero sequence 

voltage has been provided in the block "computation of Vph" of Figure 3 and will be discussed clearly. 
 

 

 
 

Figure 3. A summary of the MMC-control strategy 
 

 

 
 

Figure 4. A 3-Ph machine's field/rotor control 
 

 

The preferred Vph u*
ay0 forms the input of the MMC-control block, described in the following 

sections, along with the measured V and I of the (ipy, iny) and the load (uay, iay). The "modulator and cell-

balancing" block serves as a link here on its own. It creates the pulse patterns (gpxj, gnxj) for the cell switches 
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based on the required arm voltages u*
py and u*

ny. [33], [34] define a feasible approach that involves cell 

balancing. The energy in the arms has been represented by the total amount of the VC of each arm (uCpy and 

uCny). They are brought back to the MMC-control unit through the modulation scheme. 

 

3.1.  Current control 

It provides a comprehensive explanation of the decoupled control structure for both i/p and Io flow 

[35]. In summary, the Ioiay has been split in half, and also the iey/ phase flows over the DC-source specified in 

(3). It thus causes the arm currents: 
 

𝑖𝑝𝑦 = 𝑖𝑒𝑦 +
𝑖𝑎𝑦

2
, 𝑖𝑛𝑦 = 𝑖𝑒𝑦 −

𝑖𝑎𝑦

2
 (3) 

 

⇒ 𝑖𝑒𝑦 =
1

2
(𝑖𝑝𝑦 + 𝑖𝑛𝑦) ⇒ 𝑖𝑎𝑦 = 𝑖𝑝𝑦 − 𝑖𝑛𝑦 (4) 

 

Independent control of iey and iay is possible by adjusting the difference and the sum of the arm voltages given 

in (4): 
 

𝑖𝑎𝑦 =
1

2𝐿𝑎
(𝑢𝑛𝑦 − 𝑢𝑝𝑦 − 2(𝑅𝑎 ∗ 𝑖𝑎𝑦 + 𝑢𝑖𝑦)) (5) 

 

𝑖𝑒𝑦 =
1

2𝐿
(𝑈𝑒 − (𝑢𝑛𝑦 + 𝑢𝑝𝑦)) (6) 

 

Its requested arm voltages u*py, as well as u*ny, are calculated utilizing voltage loops of every phase 

provided in (5) and (6) of the MMC. A transition matrix C presently transforms one such strategy in αβ0-

coordinates to govern the currents seen in Figure 5. The sub-ordinate input current controllers' input signals 

seem to be the αβ0-elements of the current. 
 

 

 
 

Figure 5. Space current control of the input currents 
 

 

In Figure 6, the α and β indices are the DC and AC amounts for the internal energy density 

controller parameters current flow [36] and thus the LF mode feed-forward component (substring v). The  

0-component transfers DC energy. DC sources cannot generate Iac because they lack AC signals. 

 

3.2.  Functioning mechanisms based on output frequency 

Table 1 interprets output Vph depending on the outputting space vector and zero sequence voltages. 

Identically, the correct output currents inside the phases have been characterized, so although 𝜙𝑎 has been the 

phase difference of the ZL. 
 

𝑖𝑎 = 𝐼𝑎𝑒𝑗(𝑦𝑎−𝜑𝑎) (7) 
 

The input currents to further have Iey, Îey elements, to the input stage provided by (7) and is 

employed for energy balance control as in (8). 
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𝑖𝑒𝑦 = 𝐼𝑒𝑦 + 𝐼𝑒𝑦 𝑐𝑜𝑠( 𝛾𝑒𝑦) (8) 
 
 

 
 

Figure 6. Formation of input current control levels 
 
 

Table 1. Interpretations of Vout 
Name Voltage 

Space vector 𝑢𝑎 = 𝑈𝑎𝑒𝑗𝑦𝑎 

Phase 1 
 

Phase 2 

 
Phase 3 

𝑢𝑎1 = 𝑈𝑎 𝑐𝑜𝑠( 𝑦𝑎) 

𝑢𝑎2 = 𝑈𝑎 𝑐𝑜𝑠( 𝑦𝑎 −
2𝜋

3
) 

𝑢𝑎3 = 𝑈𝑎 𝑐𝑜𝑠( 𝑦𝑎 −
4𝜋

3
) 

Zero sequence voltage 𝑢0 = 𝑈0 + 𝑈0𝐶𝑂𝑆(𝜔0𝑡) 

 

 

The arms power must be recognized when acknowledging balance and coordination in both the HF and LF modes: 
 

𝑝𝑝𝑦/𝑛𝑦 = 𝑢𝑝𝑦/𝑛𝑦 ∗ 𝑖𝑝𝑦/𝑛𝑦 = (
𝑈𝑒

2
∓ 𝑢𝑎𝑦 ∓ 𝑢0) ∗ (𝐼𝑒𝑦 + 𝐼𝑒𝑦 𝑐𝑜𝑠( 𝛾𝑒𝑦) ±

𝑖𝑎𝑦

2
) (9) 

 

The real power components for such 2 operating conditions could be calculated using (9). 

− HF-mode 

In the HF mode, (10) gives a fixed frequency of the Vout: 
 

𝛾𝑎 = 𝜔𝑎𝑡 (10) 
 

Besides the real power supplies of the input and output sides, a further real power component could be 

produced by varying the Ø of the Iinner in (11) 𝛾𝑒𝑦 through relation to the output Vph currents in (11) (Table 2). 
 

𝛾𝑒𝑦 = 𝜔𝑎𝑡 −
2(𝑦−1)𝜋

3
 (11) 

 

 

Table 2. Real power aspects inside the arms for HF mode 
Upper arm Lower arm Real P supply 

+
1

2
𝑈𝑒𝐼𝑒𝑦 

-
1

4
𝑈𝑎𝑦𝐼𝑎𝑦 𝑐𝑜𝑠( 𝜑𝑎) 

+
1

2
𝑈𝑒𝐼𝑒𝑦 

-
1

4
𝑈𝑎𝑦𝐼𝑎𝑦 𝑐𝑜𝑠(𝜑𝑎) 

Real Pin 
 

Real Pout 

−
1

2
𝑈𝑎𝐼𝑒𝑦 +

1

2
𝑈𝑎𝑦𝐼𝑒𝑦 Real balancing P 

 

 

So, the arms have different signs, that element was utilised to balance energies vertically among the 

upper and lower arms by altering the magnitude Îey of an internal current. 

− LF-mode 

The core concepts of the LF mode have been fully discussed in [5], [6]. The Vo and Io are presumed 

to be the DC values provided in (12): 
 

𝛾𝑎 =Constant (12) 
 

In comparison to an HF mode, the Iinner used to balance energy in the arms must correlate to an extra 

zero sequence AC-voltage 𝑈̂0 𝑐𝑜𝑠( 𝜔0𝑡). As a result, the Ø of the inner currents has been provided in (13): 

 

+

+

+

+

+

+

+

+

+

+

0ei


0eDCi


0eDCvi


eACvi 



eACi 


eACi 



eDCvi 



eDCi 



eACvi 



eDCvi 



eDCi 



ei 


ei 





Bulletin of Electr Eng & Inf  ISSN: 2302-9285  

 

An ingenious MMC topology appropriate for motor drives across their entire … (Manoj Dhondiram Patil) 

1403 

𝛾𝑒𝑦 = 𝜔0𝑡 (13) 
 

The uncontrolled AC- Vc modes frequency has been labelled as ω0. Table 3 shows the estimated real 

power components in the LF mode. 
 
 

Table 3. Aspects of real P in the arms for LF-mode 
Upper arm Lower arm Real P supply 

+
1

2
𝑈𝑒𝐼𝑒𝑦  

−
1

2
𝑢𝑎𝑦𝑖𝑎𝑦 

+
1

2
𝑈𝑒𝐼𝑒𝑦 

−
1

2
𝑢𝑎𝑦𝑖𝑎𝑦 

Real Pin 

 
Real Pout 

+
1

4
𝑈𝑒𝑖𝑎𝑦 

−𝑢𝑎𝑦𝐼𝑒𝑦 

−
1

4
𝑈𝑒𝑖𝑎𝑦 

+𝑢𝑎𝑦𝐼𝑒𝑦 +𝑢𝑎𝑦𝐼𝑒𝑦 

Unbalance 
 

caused by DC components 

−
1

2
𝑈0𝐼𝑒𝑦 +

1

2
𝑈0𝐼𝑒𝑦 

Real balancing P 

−𝑈0𝐼𝑒𝑦 

−
1

2
𝑈0𝑖𝑎𝑦 

+𝑈0𝐼𝑒𝑦 

−
1

2
𝑈0𝑖𝑎𝑦 

Additional real power caused by c.m. DC-volt 

 

 

Since the total amount of the real power supplies have to be nil, the Idc for energy transfer from the 

DC source as well as the magnitude of the AC for inner balance is calculated as shown in (14). 
 

𝐼𝑒𝑦 =
1

𝑈𝑒
(𝑢𝑎𝑦𝑖𝑎𝑦 + 𝑈0𝑖𝑎𝑦) (14) 

 

𝐼𝑒𝑦 =
1

𝑈0
(
1

2
𝑈𝑒𝑖𝑎𝑦 − 2𝑢𝑎𝑦𝑖𝑒𝑦 − 2𝑈0𝑖𝑒𝑦) (15) 

 

Users have been afterward utilized in the LF mode for feed-forward control. Since any Iac must be 

presented at the DC-source, the total amount of the Iac must be taken into account. The solution to this 

circumstance has been given in (15). In the LF-m, U0 acts as feed-forward control for the zero sequence 

component of vertical balancing. 
 

∑ 𝐼𝑒𝑦 = −
3𝑈𝑎𝐼𝑎

𝑈𝑒𝑈0
(2𝑈0 𝑐𝑜𝑠(𝜑𝑎)3

𝑦=1 +
1

2
𝑈̂𝑎 𝑐𝑜𝑠( 3𝛾𝑎 − 𝜑𝑎)) (16) 

 

⇒ 𝑈0(𝛾𝑎) = −
1

2

𝑈𝑎

𝑐𝑜𝑠(𝜑𝑎)
𝑐𝑜𝑠( 3𝛾𝑎 − 𝜑𝑎) (17) 

 

The schematic representation in Figure 7 seems to be the result of (16), and (17) for producing the 

Vph by introducing the zero sequence. 
 

 

 
 

Figure 7. An estimation of the Vph, along with zero sequence voltage 
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0Û

DCu

20au

30au



                ISSN: 2302-9285 

Bulletin of Electr Eng & Inf, Vol. 12, No. 3, June 2023: 1397-1412 

1404 

4. PROPOSED METHOD 

The strategies introduced for energy balance in the HF as well as LF modes have now been 

converted into 0- coordinates. One such solution allows the inner energy sources held in the capacitor of each 

arm across total energy control, along the horizontal axis among MMC's 3-Ph as well as the reference point 

among arms p and n. The evaluated and converted amplitude of the Vc in the arms must be filtered due to the 

pulsating energy in the arms. 

 

4.1.  Energy control 

The output of power/phase has been calculated using the following (18): 
 

𝑃𝑎𝑦 =
1

3
.
3

2
. 𝑅 𝑒{ 𝑢𝑎. 𝑖𝑎} =

1

2
(𝑢𝑎𝛼𝑖𝑎𝛼 + 𝑢𝑎𝛽𝑖𝑎𝛽) (18) 

 

It is employed in the feed forward control of the Idc from the source specified by (19). 
 

𝑖𝑒𝐷𝐶𝑣0 =
𝑃𝑎𝑦

𝑈𝑒
 (19) 

 

An energy controller in Figure 8 adjusts to any changes in normal circumstances as well as 

maintains the Vavg of the arm capacitance at U*c. 
 

 

 
 

Figure 8. Energy control 

 

 

4.2.  Horizontal and vertical balance control  

The govern technique through Figure 9 distributes energy equally among the 3 phases, which are 

represented by the sum of uCpy and uCny. The internal DC-currents in αβ -elements cancel out the influence 

change among phase. The VBC in Figure 10 determines the magnitude of the internal currents to confirm that 

the upper and bottom arms have equivalent average energy entirety. The magnitude of the inner currents 

𝑖̂𝑒𝐴𝐶𝛼/𝛽/0 must be switched over based on the Fo, by the inference of the two operating conditions. 
 
 

 
 

Figure 9. Horizontal balance control 
 

 

The inner currents must relate to the HF mode's output frequency 𝜔0 and the LF mode's zero 

sequence voltage frequency 𝜔𝑎. A continuous slider shift inside the interval here is between output limits 

converts the information into HF into LF form 𝜔𝑎1 and 𝜔𝑎2. Figure 11 depicts the VBC concept. The 

magnitude of the inner currents has been magnified by the zero sequence voltage of AC reference curves. 

These α and β aspects are directed directly to the handover blocks with the necessary internal present value. 

The extra DC zero sequence influences 𝑢 ∗0𝐵𝐶𝑠𝑦𝑚 the αβ0 component, which characterizes the distinction 

between the total the three phases' amount of energy, from highest to lowest. 
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Figure 10. Vertical balance control 
 

 

 

 

Figure 11. Vertical balancing in the HF and LF modes 
 

 

Such a technique, as expected, manages to avoid any Iac in the DCsource. Having similar objective is 

accomplished inside the HF mode by using a positive and a negative sequence current mechanism for vertical 

balances [37]. The feed-forward control currents changed in a similar manner, as shown in Figure 12. 
 
 

 
 

Figure 12. Switchover of the feed-forward balancing control 

 

 

5. RESULT AND DISCUSSION 

Computation in MATLAB surrounding a PLECS block set for such MMC validates the suggested 

control approach. To ignore the modulator's switching states as well as cancel the ripple currents inside the 

computation, the arms of the MMCs have been modeled by voltage govern sources. Using given by (20), the 

voltage of the arm capacitance has been determined step by step. 
 

𝑢𝐶𝑥𝑦, 𝑘 = 𝑢𝐶𝑥𝑦, 𝑘 − 1 +
𝑇𝐴

𝐶
.
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𝑢𝐶𝑥𝑦.𝑘−1
 (20) 

 

Filter
3

1cpu

2cnu

2cpu

3cpu

3cnu

1cnu

ˆ
eaci 



ˆ
eaci 



0
ˆ
eaci 


Vertical   

-balance controller



Vertical   

-balance controller

Horizontal   

0-balance controller

Filter

Filter

0

+

+

+

-

-

-

 

0t

ˆ
eACi 


ˆ
eACi 


0

LF-mode

-

1

cos

cos

cos

dq



a

a

a
0

ˆ
eACi 

0k

+
+

+
+

0DCsymu

eACi 


eACi 


switchover

1

1

1

0

0

0

1a

1a

1a

2a

2a

2a

0eACi

eACi 


eACi 


HF-mode

 

0

1

0
1a

2a 0

1

0
1a

2a
0

1

0
1a

2a

1

0
1a

2a

0




3
3

1eI

2eI

3eI

01
ˆ
eI

02
ˆ
eI

03
ˆ
eI

eACvi 



eACvi 



eDCvi 



eDCvi 

 COS



                ISSN: 2302-9285 

Bulletin of Electr Eng & Inf, Vol. 12, No. 3, June 2023: 1397-1412 

1406 

3-αβ0-transformation is given by (21): 
 

[

𝑦𝛼
𝑦𝛽
𝑦0

] = 𝐶. [
𝑥1
𝑥2
𝑥3

] =

[
 
 
 
 
2

3

−1

3

−1

3

0
1

√3

−1

√3
1

3

1

3

1

3 ]
 
 
 
 

. [
𝑥1
𝑥2
𝑥3

] (21) 

 

Polar-to-Cartesian (P2C) and Cartesian-to-polar (C2P) transformations are depicted by the following (22): 
 

[
𝑦𝛼
𝑦𝛽] = 𝑟. [

𝑐𝑜𝑠( 𝜃)
𝑠𝑖𝑛( 𝜃)

] . [
𝑟
𝜃
] = [

√𝑥𝛼2 + 𝑥𝛽2

𝑎𝑟𝑐𝑡𝑎𝑛(
𝑥𝛽

𝑥𝛼
)
] (22) 

 

In (23), rotation of the vector by angle γ is given by: 
 

[
𝑦𝛼
𝑦𝛽] = [

𝑐𝑜𝑠( 𝛾) − 𝑠𝑖𝑛( 𝛾)
𝑠𝑖𝑛( 𝛾) 𝑐𝑜𝑠( 𝛾)

] . [
𝑥𝑑
𝑥𝑞

] (23) 

 

Table 4 depicts the specifications of the modeled MMC. A 3-Iph source with the same (𝜑0 = 0) as the Vo 

space vector could provide the Io. 
 
 

Table 4. Computational specifications for MMC 
Parameters Specifications 

Sampling time TA=125 microsec 
Input DC voltage Ue=100 V 

Arm capacitance C=4,400microF 

Arm capacitance ref. voltage U*C=120 V 

Zero sequence AC-frequency 𝜔0=2 𝜋.50 Hz 

Switchover frequencies 𝜔𝑎1 = 2𝜋. 15𝐻𝑧,𝜔𝑎2 = 2𝜋. 20𝐻𝑧 

 

 

Figure 13 illustrates the outcomes of simulating the HF mode. At, t=0.05 s, the Vout will be set to  

𝑈̂𝑎=40 V, and the output frequency will be set to 40 Hz. The Vcommon mode is display in Figure 14. The DC 

component of the LF mode that is associated with the 3rd harmonic of the Vc mode is preserved, which allows 

for the modulation amplitude to be increased. The addition of the Vc is displayed in Figure 15 for each of the 

six arms, and it is after the step at t is 0.05 s that the efficiency of the inner balancing control can be seen to 

have been achieved. Figure 16 depicts an illustration of each of the concern 3-Ph input currents. As was to be 

expected, there is no discernible presence of an AC component in the overall input current denoted by ie in 

Figure 17. Figure 18 contains illustrations that illustrate the LF mode. 

The extra AC-Vcommon mode is display in Figure 19 seems to be noticeable at the output Vph. An 

energy pulse inside the capacitor of the arm has been moved to significantly high frequencies, as shown in 

Figure 20. As a result, the energy pulse, and thus the required Carm, has been drastically decreased. This 

configuration, depicted in Figures 21 and 22, requires a higher inner AC. In comparison to the HF mode, the 

total amount of these Iac has always been zero. 
 

 

High-frequency operation 

 

 
 

Figure 13. Output phase voltages and currents in the load 
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Figure 14. Common mode voltage 

 

 

 
 

Figure 15. Sum of capacitor voltages 
 
 

 
 

Figure 16. Input current of each phase 
 
 

 
 

Figure 17. Total input current in DC-source 
 

 

Low-frequency operation 
 

 
 

Figure 18. Output Vph and current in the load 
 
 

 
 

Figure 19. Common mode voltage 
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Figure 20. Sum of capacitor voltages 

 

 

 
 

Figure 21. Input current of each phase 

 

 

 
 

Figure 22. Total input current in DC-source 

 

 

Figure 23 depicts the transition between the two control techniques. Figure 24 depicts the mode of V 

of the switchover mode of operation. The frequency and the Vo are risen by 𝑈̂𝑎 = 100
𝑉

𝑠
𝑡 and 𝜔0 = 2 𝜋,  

60 
𝐻𝑧

𝑠
𝑡. The change can be observed at time 0.25 s to 0.3 s. Such results indicate a smooth crossover here 

between LF and HF modes, with very few transients in the Vc of the arms that is shown in Figure 25 than 

during a hard switchover. Figures 26 and 27 show the input current of every phase as well as the total DC of 

the source in the switchover operational mode. 

 

 

Setup of a 3ph system including operation mode 

 

 
 

Figure 23. Output Vph and current in the load 
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Figure 24. Vc mode 
 
 

 
 

Figure 25. Sum of capacitor Vs 
 

 

 
 

Figure 26. Input current of each phase 
 

 

 
 

Figure 27. Total input current in DC-source 

 

 

6. CONCLUSION 

It is addressed a coherent approach for regulate the MMC that could produce Vout across the entire 

frequency range of a 3-Ph machine. The contest of balancing Vc throughout all operating conditions has been 

encountered in this. The remedy has been demonstrated by deriving the decoupled and transmogrified current 

control on the one hand as well as the real balance of power on the other. The control system has been split 

into two operation modes: low and high frequency, with separate governs mechanisms. A sliding switchover 

connects the two strategies. Modeling has been employed to validate this total govern strategy. The findings 

suggest that the inner balance govern works effectively. The control system ensures that no Iac flow through 

the DC source at the same time. To conclude, this methodology seems to be capable of controlling an MMC 

across its entire output frequency range. 
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