CellPhe user guide

CellPhe is a pattern recognition toolkit for the unbiased characterisation of cellular phenotypes within time-lapse
videos. The toolkit is available on GitHub as an R package together with a user-friendly interactive GUI. This
manual aims to guide users through the complete CellPhe workflow with a reproducible worked example.

1 CellPhe R package

1.1 Installing CellPhe

After downloading the CellPhe code from GitHub ()
as a zip file using the green Code tab, the uncompressed file should be renamed as just CellPhe. Install dependencies
in R:

install.packages(c("ptinpoly", "tiff", "smotefamily", " RImageJROI"))
library(ptinpoly)

library (tiff)

library(smotefamily)

library(RImageJROI)

install.packages(c("randomForest", "el071", "factoextra", "tree"))
library(randomForest)

library(e1071)

library(factoextra)

library(tree)

In a Terminal window, in the directory above the one where the (uncompressed) CellPhe code is, type:

$ R CMD build CellPhe
$ R CMD INSTALL CellPhe_0.0.0.9000.tar.gz

Alternatively, the R package can be installed directly in R by running the following lines of code:

install.packages("devtools")
library(devtools)
install_github("uoy-research/CellPhe")
library(CellPhe)

To follow the worked example included in this manual, ensure that the example data sets are within your current R
working directory.
The interactive CellPhe GUI can be accessed here:

1.2 Extraction of time series variables

The function copyFeatures() copies the tracking information (frame and cell identifiers) and any chosen features
extracted by the tracking software from an input csv file. Currently CellPhe accepts input data from either Phase-
Focus or TrackMate software, using source = "Phase" or source = "Trackmate". For example, for PhaseFocus
generated data, volume and sphericity features are copied as these rely on phase information. Only cells that are
tracked for a minimum of minframes are included. Output is a dataframe with each row corresponding to a cell
tracked on one frame. The first three columns give the FrameID, CellID and the name of the corresponding ROI
file containing the boundary information (as output by either PhaseFocus or TrackMate) which are followed by a

column for each copied feature. Note that ROIs must contain full boundary coordinates. Files output by TrackMate
only give the coordinates of the vertices of a polygon, but interpolation can be performed to extract full coordinates
using ImageJ. An ImageJ macro, with instructions for use, is provided within the CellPhe GitHub repository.

The output from copyFeatures() is then read into the function extractFeatures() which calculates a further 72
features related to size, shape, texture and movement for each cell on every non-missing frame, as well as the cell
density around each cell on each frame. If the frame rate is input by the user then velocity will be calculated using
this information (framerate), otherwise a default value of 1 will be used, which does not affect the discriminatory
power of the variable.

The cell time series output by extractFeatures() can be saved as an RDS (R Data File) and used as input
to the CellPhe GUI for interactive data exploration. Alternatively, the time series can be input to the function
varsFromTimeSeries () which calculates variables that summarise the cells’ behaviour over time, providing both
summary statistics and indicators of time-series behaviour at different levels of detail obtained via wavelet analysis.
The output is a dataframe that can be used in multivariate analysis, e.g. for classification or clustering.

The example below uses data from a PhaseFocus experiment:

library('CellPhe')

trial_name <- "05062019_B3_3"
basedir <- "data"
input_feature_table <- sprintf("/s//s_Phase-FullFeatureTable.csv", basedir, trial_name)

min_frames <- 50

feature_table <- copyFeatures(input_feature_table, min_frames, source = "Phase")

roi_folder <- sprintf("Ys/%s_Phase", basedir, trial_name)
image_folder <- sprintf("Ys/%s_imagedata", basedir, trial_name)

new_features <- extractFeatures(feature_table, roi_folder, image_folder, framerate = 0.0028)

saveRDS (new_features, file = "my_data.rds")

tsvariables <- varsFromTimeSeries(new_features)

1.3 Segmentation error prediction and removal

An optional step within the CellPhe workflow is the prediction of segmentation errors within a data set. This requires
ground truth data sets of correctly segmented cells and those identified as segmentation errors. For accurate results,
it will likely be necessary to compile new ground truth data sets for each cell type you work with due to heterogeneity
between cell types. Ground truth data sets can be established by inspecting cells within image visualisation software
such as ImageJ, noting cell IDs of correctly segmented cells and segmentation errors, and subsetting your feature
table of extracted time series variables to only include these cells. Note that once ground truth data is available
for a particular cell type, this can be re-used for further experiments involving the same cell type, including for
example, different drug treatments. Ensure that you have one output file for correctly segmented cells and one for

segmentation errors.

You will then be ready to predict segmentation errors in R. The CellPhe R package includes two functions for this:
predictSegErrors() and predictSegErrors_Ensemble(). Both work by training a number of decision trees that
are then used to predict whether or not a new set of cells contain any segmentation errors. Final classifications are
made via a voting system, where a cell is classified as segmentation error if more than a defined proportion of decision
trees predict it as such. predictSegErrors_Ensemble() adds further stringency to the prediction of segmentation
errors by calling predictSegErrors () multiple times and a cell is given a final classification of segmentation error if
it receives a vote for this class in at least half of the repeated runs. Both functions output a list of the cells predicted
as segmentation errors.

read in ground truth feature tables of correctly segmented cells and segmentation errors

correctsegs = read.csv("CorrectSegs.csv", header = TRUE)
segerrors = read.csv("SegErrors.csv", header = TRUE)

read in data sets for segmentation error prediction

UntreatedTraining = read.csv("UntreatedTraining.csv", header = TRUE)
TreatedTraining = read.csv("TreatedTraining.csv", header = TRUE)
UntreatedTest = read.csv("UntreatedTest.csv", header = TRUE)
TreatedTest = read.csv("TreatedTest.csv", header = TRUE)

add a column of true class labels to each data set

UntreatedTraining<-addGroupInfo(UntreatedTraining, "Untreated")
TreatedTraining<-addGroupInfo(TreatedTraining, "Treated")
UntreatedTest<-addGroupInfo(UntreatedTest, "Untreated")
TreatedTest<-addGroupInfo(TreatedTest, "Treated")

form training and test sets

Training = rbind(UntreatedTraining, TreatedTraining)
Test = rbind(UntreatedTest, TreatedTest)

The predictSegErrors_Ensemble () function can then be used for segmentation error prediction. Default parameters
are set as follows:

e num, number of decision trees to be trained = 50
e K, number of repeated runs of predictSegErrors() to be performed = 10
e proportion, proportion of votes needed for a final classification of segmentation error to be made = 0.7

but these can be customised to suit your own requirements.

The removePredictedSegErrors() function can be used to remove any identified segmentation errors prior to
downstream analysis.

identify segmentation errors within training and test sets

segErrors_Training<-predictSegErrors_Ensemble(segerrors, correctsegs, 50, 10, Training[,-1],
Training[,2], 0.7)

segErrors_Test<-predictSegErrors_Ensemble(segerrors, correctsegs, 50, 10, Test[,-1],
Test[,2], 0.7)

removePredictedSegErrors(Training, 2, segErrors_Training)
removePredictedSegErrors(Test, 2, segErrors_Test)

1.4 Calculating separation scores

Separation scores can be calculated to identify discriminatory variables for feature selection. The higher the separation
score, the better a variable is at discriminating between the two cell populations. The calculateSeparationScores()
function can be used to obtain a table of separation scores. The output is a data frame, where the first column lists
the variable indices, the second column lists the variable names and the third lists the separation scores. A threshold
can be set to only display separation scores above a defined threshold, and the calculateOptimalThresh argument
can be set to TRUE to determine the optimal separation threshold as described within the CellPhe paper. Note that
the default threshold is 0 unless otherwise defined.

UntreatedTraining<-subset(Training, Training$Group == "Untreated")
TreatedTraining<-subset(Training, Training$Group == "Treated")

To obtain the full list or separation scores:

sepscores<-calculateSeparationScores(UntreatedTraining[,-c(1,2)], TreatedTraining[,-c(1,2)])

or to only store a list of separation scores above the optimal separation threshold:

sepscores<-calculateSeparationScores(UntreatedTraining[,-c(1,2)], TreatedTraining[,-c(1,2)],
calculateOptimalThresh = TRUE)

Separation scores can then be used for feature selection by subsetting the full training and test sets so that only
variables with separation scores above the desired threshold are retained.

Training = cbind(Training[,c(1,2)], Training[,sepscores[,2]])
Test = cbind(Test[,c(1,2)], Test[,sepscores[,2]])

1.5 Cell population ensemble classification

CellPhe’s cellPopulationClassification() function can be used for training and testing of an ensemble of classi-
fiers, namely Linear Discriminant Analysis (LDA), Random Forest (RF) and Support Vector Machines (SVM). The
function outputs a table of predicted classes, with the first, second and third columns corresponding to predictions
from LDA, RF and SVM respectively. The fourth column lists final predicted class labels for each cell based on a

majority vote system.

R’s table () function can be used to obtain a confusion matrix of ensemble classification results so that classification
accuracy scores can be calculated.

classifications<-cellPopulationClassification(Training[,-c(1,2)], Test[,-c(1,2)],
as.factor(Training[,1]))

table(Real = Test[,1], Predicted = classifications[,4])

2 CellPhe GUI

The interactive CellPhe GUI provides a user-friendly platform for data exploration, cell type classification and
identification of heterogeneous clusters. The GUI can be used to visualise cell time series and extract time series
variables from feature tables in the same way as the varsFromTimeSeries() function, output files can then be ex-
plored in real-time or saved for future use. Discriminatory variables can be identified with ease through calculation
of separation scores, beeswarm plots, PCA, UMAP and t-SNE. Furthermore, all plots are interactive, facilitating
identification and isolation of single cells for further investigation. Training and test sets can be uploaded for ensem-
ble classification, with options for supervised and unsupervised classification. Classification models can be validated
within the GUI through confusion matrices, accuracy metrics and ROC curves. The CellPhe GUI also facilitates hi-
erarchical and k-means clustering for identification of heterogeneous cell subsets. Clustering outputs are interactive,
allowing the user to determine the optimal number of clusters within their data and explore feature importance.

	CellPhe R package
	Installing CellPhe
	Extraction of time series variables
	Segmentation error prediction and removal
	Calculating separation scores
	Cell population ensemble classification

	CellPhe GUI

