{ "DETAILS": { "NAME": "Doodleverse/Segmentation Zoo/Seg2Map SegFormer models for segmentation of xBD/damaged buildings in RGB 768x768 high-res. images", "DATE": "2023-02-06", "URL":"10.5281/zenodo.7613175", "CITATION":"Buscombe, D. (2022) Doodleverse/Segmentation Zoo/Seg2Map SegFormer models for segmentation of xBD/damaged buildings in RGB 768x768 high-res. images. Zenodo data release 10.5281/zenodo.7613175", "QUERIES": "https://github.com/Doodleverse/segmentation_zoo/issues", "CREDIT":"Daniel Buscombe, @MARDAScience", "INTENDED_PURPOSE":"High-resolution (UAV) image segmentation", "KEYWORDS": { "1": "image segmentation", "2": "The Doodleverse", "3": "Segformer", "4": "aerial", "5": "semantic segmentation", "6": "buildings", "7": "Seg2Map", "8": "Machine Learning" } }, "DATASET": { "NAME": "XBD (custom subset)", "SOURCE": "https://github.com/DIUx-xView/xView2_baseline", "CITATION": "Gupta, R., Hosfelt, R., Sajeev, S., Patel, N., Goodman, B., Doshi, J., Heim, E., Choset, H. and Gaston, M., 2019. xbd: A dataset for assessing building damage from satellite imagery. arXiv preprint arXiv:1911.09296.", "NUMBER_LABELED_IMAGES": 4046, "CLASSES": { "0": "null", "1": "building" }, "N_DATA_BANDS": 3, "BAND_NAMES": { "0": "red", "1": "green", "2": "blue" } }, "MODEL": { "TARGET_SIZE": [768,768], "NAME": "segformer" }, "TRAINING": { "BATCH_SIZE": 7, "PATIENCE": 15, "MAX_EPOCHS": 100, "VALIDATION_SPLIT": 0.6, "RAMPUP_EPOCHS": 20, "SUSTAIN_EPOCHS": 5, "EXP_DECAY": 0.9, "START_LR": 1e-5, "MIN_LR": 1e-5, "MAX_LR": 1e-3, "MODE": "all" }, "AUGMENTATION": { "AUGMENTATION_USED": true, "AUG_ROT": 5, "AUG_ZOOM": 0.05, "AUG_WIDTHSHIFT": 0.05, "AUG_HEIGHTSHIFT": 0.05, "AUG_HFLIP": true, "AUG_VFLIP": false, "AUG_LOOPS": 10, "AUG_COPIES": 3 } }