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Abstract: Air pollution is still a major public health issue, which makes monitoring air quality
a necessity. Mobile, low-cost air quality measurement devices can potentially deliver more coherent
data for a region or municipality than stationary measurement stations are capable of due to their
improved spatial coverage. In this study, air quality measurements obtained during field tests of our
low-cost air quality sensor node (sensor-box) are presented and compared to measurements from the
regional air quality monitoring network. The sensor-box can acquire geo-tagged measurements of
several important pollutants, as well as other environmental quantities such as light and sound. The
field test consists of sensor-boxes mounted on utility vehicles operated by municipalities located in
Central Switzerland. Validation is performed against a measurement station that is part of the air
quality monitoring network of Central Switzerland. Often not discussed in similar studies, this study
tests and discusses several data filtering methods for the removal of outliers and unfeasible values
prior to further analysis. The results show a coherent measurement pattern during the field tests and
good agreement to the reference station during the side-by-side validation test.

Keywords: air quality monitoring; particulate matter; sensor validation; low-cost; mobile sensor nodes

1. Introduction

Air pollution continues to be a concern as short- and long-term exposure to classical
pollutants pose short- and long-term negative effects on human health. A recent study
conducted by Juginović et al. [1] shows that, even though levels of air pollution have
decreased since 1990 in Europe, it still remains a major public health issue. The recent WHO
global air quality guideline recommends setting interim targets and progressing towards
lower maximum levels of particulate matter (e.g., PM2.5 and PM10), ozone, nitrogen, sulfur
dioxide (SO2), and carbon monoxide [2]. Switzerland has shown success in controlling air
pollution [3], for example, in the case of SO2. However, PM is still a concern. Recently,
Chen et al. [4] and Rodopoulou et al. [5] conducted fine particle exposure assessment
studies in Europe and reported potentially increased mortality given the exposure to
several compounds that are found in dust particles. For example, particles of vanadium,
chosen as an indicator of petroleum combustion in Chen et al. [4], were shown to increase
health risks. Swiss regulatory limit values for average annual particulate matter pollution
levels are 20 µg/m3 and 10 µg/m3 for PM10 and PM2.5, respectively. The daily average limit
value for PM10 is 50 µg/m3 [6]. Recent WHO guidelines are even stricter, recommending
yearly average values of 15 µg/m3 and 5 µg/m3 for PM10 and PM2.5 and daily average
values of 45 µg/m3 and 15 µg/m3 for PM10 and PM2.5, respectively [2].

The decarbonization of our energy consumption calls for combustion-based sources of
particulate matter, such as those from burning oil, to be phased out. However, non-exhaust
sources of particulate matter, such as those from vehicle’s braking systems and wear of
tires, might not be as easily eliminated if people simply switch to electrical vehicles [7].
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Continuous monitoring of the air is therefore very important to steer towards significant
health improvements globally. Low-cost sensors present a possibility to increase the
density of measurements in a given region in a cost-effective way. For this purpose, many
different sensors are available on the market. These vary not only in working principle and
performance, but also in price [8–10].

The standard reference method for measuring particle mass concentration and size
distribution in ambient air is the gravimetric method, which uses filters to collect the
different particle sizes. Weighing of the filters prior to and after the sample collection
allows one to determine the particle mass concentration. Even though this method is found
to be accurate, sensitive, and robust, it has some disadvantages. Due to the integrative
method, results are only available with a time-delay (usually in the range of days) and not
in real-time [11,12]. Therefore, other methods can be used to obtain real-time measurements
and higher time resolution. Direct-reading, low-cost sensors typically can be categorized
into one of two working-principles: optical particle counters (OPC) and photometers. Both
types are based on the light-scattering principle, where the aerosol particles are passed
through a light beam. OPC sensor types measure the intensity of the light scattered by
each single particle and calculate the size distribution of the particles thereof. Photometers,
however, measure the total amount of light scattered by the aerosol particles present in the
sensor and calculate the particle concentration in the air [13,14].

Several studies have looked at validating and calibrating particulate matter (PM2.5,
PM10) measured with low-cost optical sensors. The results of these studies are varied.
An overview is presented in Table 1, where information about the experimental setup,
as well as results are presented. While the PM sensor used in the study presented here
is of the OPC type, studies using both measuring principles, OPC and photometry, have
been looked at. Most studies discussed below have been carried out with side-by-side
testing, meaning the low-cost sensor nodes are located directly adjacent to the reference
station. One study conducted by Penza et al. [15] in Bari, Italy, employed a network of
11 sensor nodes, including one mobile node. These results, however, were not compared
side-by-side with a reference station, but with the closest air quality monitoring station.
An analysis of three sensor nodes showed good agreement with the monitoring station
data (mean absolute error of 5.6 µg/m3). A side-by-side study conducted in Aveiro, Por-
tugal by Borrego et al. [16], resulted in relatively low correlations (r2: 0.13–0.36 for PM10
and 0.07–0.27 for PM2.5). The measurements for this study were taken at an urban traffic
location in the city center. In a study conducted by Castell et al. [17] with 24 identical
commercial sensors in Oslo, it was shown that the performance varies from unit to unit.
The calibration was conducted with linear regression in this case. As a conclusion, it is
suggested that the calibration of the nodes should be carried out in an environment similar
to where they will be deployed. Other recent studies were carried out in Seoul, where
sensor nodes were co-located with reference monitoring stations: Lee et al. [18] applied a
combined (linear and non-linear) calibration method called SMART (Segmented Model
and Residual Treatment) to the PM data, while Park et al. [19] developed a calibration
model called HybridLSTM, combining a deep neural network and a long short-term mem-
ory neural network in order to improve the correlation. During a field test conducted in
Helsinki, measurements of PM2.5 concentrations were performed using portable air quality
sensors [20]. Indoor as well as outdoor measurements were performed. It was found
that all measurements were consistent through validation among themselves. The mea-
surements also showed good agreement with a nearby reference station. Arroyo et al. [21]
carried out a study in Badajoz, Spain, where two portable devices for outdoor air quality
measurements were placed adjacent to a reference station located in a traffic hot-spot. The
applied calibration methods were simple linear regression, multiple linear regression, and
a multilayer perceptron artificial neural network. Depending on the selected calibration
method, the PM sensors showed a good performance when compared to the reference
station. Another study carried out at two different locations in Italy—Ispra (North Italy)
and Brindisi (South Italy)—evaluated the accuracy of PM10 measurements acquired with
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low-cost sensor nodes [22]. The portable sensor nodes were placed side-by-side with
reference stations for a duration of approximately five months with a sampling rate of one
sample per minute. Mean and maximum error (compared to reference station data) were
calculated as 9.0 µg/m3 and 41.7 µg/m3, respectively. This result was judged as a good
agreement. In Motlagh et al. [23], the opportunities and challenges of a large-scale deploy-
ment of air quality sensors are discussed, including use cases, as well as key requirements.
The results of a testbed deployment in Helsinki are presented, where sensors of different
types have been placed in three different environments (industry, residential, and mixed).
The mobile sensors were calibrated with data from fixed reference stations located in the
vicinity of the sensors.

Most of the studies presented above contain one of the two situations: either a side-
by-side comparison of stationary sensor nodes, or an evaluation of portable sensor nodes,
where the closest available reference station is used for calibration. Our analyses presented
in this paper aim at evaluating the suitability and reliability of air quality data acquired
with mobile low-cost sensor nodes of the OPC type. Therefore, we develop a low-cost
sensor node (sensor-box) that can be mounted on a vehicle and perform field tests with
utility vehicles of municipalities in Central Switzerland. Our sensor-box measures air
quality, temperature, humidity, ambient sound, and ambient light. Side-by-side compar-
isons against reference stations let us validate our measurements and design raw data
filters. Here, we present the performance of our temperature and PM10 measurements in
field tests and a validation with a reference station operated by the regional air quality
monitoring network.

Table 1. Overview of experiments and field tests comparing particulate matter measurements from
low-cost sensors to reference instruments.

Location Experiment Setup and Main Conclusions

Sensor type; low-cost sensor make; position relative to reference station; environment; results

Aveiro, Portugal [16] Optical; Shinyei PPD42, Shinyei PPD20V, others; side-by-side; outdoors
PM10: r2 (0.13–0.36); PM2.5: r2 (0.07–0.27)

Oslo, Norway [17]
Optical; AQMesh units; side-by-side; outdoors (dense traffic vs. calm traffic)
PM10: r2 = 0.53 (dense traffic), r2 = 0.68 (calm traffic); PM2.5: r2 = 0.40 (dense traffic), r2 = 0.84 (calm traffic);
Average match score for PM10 0.91, PM2.5 0.48

Ispra and Brindisi, Italy [22]

Optical; Shinyei PPD20V; side-by-side; outdoors. Period December 2013–March 2014, 1 sample per minute, two
locations one rural setting and one industrial site
Accuracy of the calibrated optical particle sensor has been calculated as mean error and max error compared to the
PM10 referenced analyzer. They are estimated at 9.0 µg/m3 and 41.7 µg/m3

Bari, Italy [15]
Optical; Shinyei PPD20V; various locations indoors and outdoors; 11 nodes (10 stationary and 1 mobile mounted
on public bus); results are compared to closest air quality monitoring station.
MAE 1: 5.6 µg/m3, Accuracy 2 in node 1, 2, and 3 is 24.8%, 21.6%, and 20.5%)

Helsinki, Finland

Ref. [23]: various types; make not specified; outdoors in 3 different environments (industry with congested traffic;
residential with low traffic; mixed residential and university); 100 mobile sensors; 12 fixed sensors; additional
sensors side-by-side with reference stations; absolute error after calibration with data in the vicinity of reference
stations: PM10 (2.88–17.84 µg/m3); PM2.5 (1.38–9.09 µg/m3)
Ref. [20]: Optical; Panasonic; personal exposure, indoor and outdoor; comparison to reference station 7 km away:
R = 0.5

Seoul, South Korea
Ref. [18]: Optical; PMS7003 (Plantower Inc.); outdoors; side-by-side; after calibration (combined linear and
non-linear): PM2.5 RMSE = 4.70 µg/m3, R2 = 0.89
Ref. [19]: Optical; Sensirion SPS30; side-by-side; PM2.5 after calibration (neural network): R2 (0.59–0.93)

Badajoz, Spain [21]
Optical; Alphasense OPC-N3; side-by-side, portable sensor-box validation with a mobile reference measurement
station, PM2.5, PM10 at 3 s resolution, averaged over 10 min and 1 h,
PM10: R2 (0.48–0.78); PM2.5: R2 (0.22–0.64)

1 Mean Absolute Error, 2 Defined as percentage ratio MAE divided by reference data mean.

In Section 2, the methods and equipment used for the data acquisition and processing
are described. The setup for the validation measurement and the field tests is presented.
Furthermore, a short overview of historic air quality monitoring data from Central Switzer-
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land is given. Section 3 presents the results obtained from both the validation measurements
as well as the field test campaign. A filtering method for processing the raw data is in-
troduced, and the obtained measurements are compared to data from reference stations.
Finally, in Section 4, conclusions are drawn from the presented study and possible future
work is suggested.

2. Materials and Methods
2.1. Low-Cost Sensor Node

In the study presented in this article, we develop a low-cost sensor node (sensor-box)
to measure ambient air quality (NO2, O3, TVOC, CO2eq, PM1, PM2.5, PM10), temperature,
humidity, ambient sound, and ambient light. It can be mounted on top of a utility vehicle
and records geo-tagged measurements. The idea is to acquire environmental data as the
vehicle is operated by personnel of a municipality to perform tasks such as garbage pick
up and gardening. This operation creates a data set of spatially distributed measurements
within a community.

Our sensor-box prototype is comprised of several low-cost sensing devices, which
are housed in a water-resistant plastic enclosure. The sensor-box can be mounted on top
of a vehicle using magnets, therefore acting as a mobile air quality measurement unit.
An overview of the sensor-box layout can be seen in Figure 1. Two microcontrollers (FiPy
and ESP32) (A) are used for collection of data from the sensors, intermittent storage, data
transmission, and power management. The reason two microcontrollers are used instead of
one is that the processing of sound measurements is computationally very intensive. While
sound data are processing, no other signals can be processed. Therefore, an additional
microcontroller reduces computation time. Data can be transmitted via low-power wide-
area networks (LoRa), local area networks (WiFi), and broadband (LTE). In this case, we
focus on the demonstration of LTE functionality. The LTE antenna (B) used by the FiPy
microcontroller is also shown in Figure 1. Additional components include: GPS antenna (C);
DC/DC converter (D) to step down the car battery voltage (i.e., 12 V, or 24 V) to 5 V; TSL2691
sensor (E) to measure light and IR data; electrochemical sensors OX-A431 and NO2-A43F
from Alphasense (F) to measure O3 and NO2; three CMA-4544PF-W microphones (G);
and SHT35 and SGP30 sensors from Sensirion (H) to measure temperature and humidity
and TVOC and CO2eq, respectively. The focus in this study is on the performance of the
PM3015SN sensor from Cubic (I) to measure particulate matter PM10 concentrations [24].
Table 2 shows the most important specifications of the PM sensor, including the accuracy
of the measurement. The air circulation of the sensor box is enhanced by the fan of the
PM-sensor and an externally mounted snorkel. Additionally, the ground plate of the box
has several holes.

Once a box is mounted on a vehicle by magnets and connected to the power supply
it automatically starts to record data. The measurements are taken in cycles, as shown
in the software flow chart in Figure 2. When the sensor-box is connected to a power
source, the start-up (boot process) is automatically initiated. The SD card, which contains
software libraries and sufficient space for data storage, is connected to the micro-controllers.
The libraries are then loaded and a box-specific ID identifies the sensor-box. As a next
step, the sensors and the GPS modules are initialized, meaning the GPS is searching for
satellite signals. If, after several attempts, a GPS signal cannot be found, the boot process
restarts. Start-up of the sensor-box is completed once the GPS signal has been acquired.
The measurement cycles will then start: each sensor takes a measurement, and the time
and geo-location are recorded as well. The system then proceeds to store the data locally
on the SD card, before the LTE module tries to establish a connection to the network. If
a connection can be established, the data are sent to the server for storage. If the LTE
connection cannot be established, the data are stored locally on the SD card and uploaded
later, when a connection can be established. A cycle of measurements, data storage, and
transmission is carried out approximately every 30 s. The PM sensor requires a short
time (≤8 s) for start-up before it can take measurements (time to first reading). The boot
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process of the cycle shown in Figure 2 takes long enough for the PM sensor to ensure such
a start-up time.

Table 2. Specifications of the Cubic PM3015SN particulate matter sensor [24] 1.

Specifications Value

Operating principle Laser scattering

Measured particle size range 0.3–10 µm

Measurement range 0–5000 µg/m3

Resolution 1 µg/m3

Working condition −15 to 70 ◦C, 0–95% RH

Measurement accuracy PM1.0 and PM2.5 0–100 µg/m3, ±5 µg/m3

101–1000 µg/m3, ±15% of reading
Condition: 25 ± 2 ◦C, 50 ± 10% RH

Measurement accuracy PM10 0–100 µg/m3 ± 30 µg/m3

101–1000 µg/m3 ± 30% of reading
Condition: 25 ± 2 ◦C, 50 ± 10% RH

Response time 1 s

Time to first reading ≤8 s
1 Data sheet not available online, contact manufacturer.

Figure 1. The sensor-box: (A) microcontrollers (FiPy; here ESP8266 instead of ESP32), (B) LTE antenna,
(C) GPS antenna, (D) DC/DC converter, (E) Light sensor, (F) O3 and NO2 sensors, (G) Sound sensors,
(H) Temperature/Humidity and TVOC/CO2 sensors, (I) PM sensor, (J) Magnets.

In the study presented in the subsequent sections, a total of 15 sensor-boxes have been
deployed. Each sensor-box is labeled with a number ID from 1 to 15.
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No

Start-up (boot process) Measurement Data storage and transmission

Connect SD card

Load libraries and box-ID
(individual ID assigned to 

each sensor-box)

Initialize sensors and GPS
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ready?

Read data:

• Position
• Time
• Sensors:

o Temperature
o Humidity
o Sound
o Light
o NO2, O3
o TVOC, CO2eq
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Store data in CSV-format on SD card

Connect LTE

LTE
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• Upload current data to server
• Upload previously not uploaded 

data to server and erase JSON file 

Wait for GPS 
or reboot

Yes

Reboot
Store data in JSON file on 
SD card for later upload

Yes

No

Figure 2. Software flow chart: sensor-box data acquisition and transmission cycles.

2.2. Sensor Node Cost

The sensor node presented in this study is considered low-cost in comparison to
more high-grade air quality measurement devices. The price range of different types of
air quality monitoring stations is discussed in Motlagh et al. [23]. There, it is mentioned
that a professional-grade measurements station with high-precision sensing instruments
can reach costs in the range of hundreds of thousands of dollars. In comparison, low-cost
portable monitoring stations typically do not exceed costs of USD 2500. Streuber et al. [25]
uses two types of low-cost sensing units for comparison in a laboratory setting: the in-
house developed air-monitoring platform GeoAir2, which is based on a Sensirion SPS30
PM sensor, and an Alphasense OPC-N3 PM sensing unit. The GeoAir2 comes at a cost
of USD 250–350, depending on equipment, while the Alphasense OPC-N3 is mentioned
to cost USD 500. Bean [26] evaluated four different brands of low-cost particulate matter
sensors during a measurement campaign. It is also mentioned, that all four sensors cost less
than USD 300 each. The cost of air quality sensors is also mentioned in Castell et al. [17],
stating that the price for fixed-site monitoring stations with certified reference instruments
ranges from EUR 5000 to 30,000, whereas the cost for commercial low-cost sensor nodes
varies between EUR 500 and 5000.

The cost of the sensor-box used in this study lies between EUR 600 and 1000 for the
complete sensor node. The PM sensing device costs in the range of EUR 40–50. Therefore,
it falls into the category of low-cost sensor nodes.

2.3. Validation Setup

In order to validate the sensor-box measurements, the sensor-boxes are set up to have
nearly the same environment as the in-luft measurement station. This way, the influence of a
changing environment as experienced on mobile sensor-boxes can be eliminated. Therefore,
a comparison to a reference instrument was performed. In this study, a set of three boxes
with the IDs 1, 2, and 7 were considered. The sensor-boxes were placed side-by-side with a
reference instrument part of the air quality monitoring network in-luft (Section 2.5). This
validation campaign was held from mid October 2021 to the start of January 2022 next to
an in-luft station located in Stans. During this period, three sensor boxes were mounted
on the cabinet of the reference station as shown in Figure 3. Two of the three sensor-boxes
were mounted on top of the gray plastic box. In the following, this sensor-box setup is
annotated as “normal”. The third sensor-box was placed inside the gray plastic box. This
third sensor-box was left without a cover in order to have similar environmental conditions
as the reference station, since the closed sensor boxes have limited air circulation. To ensure
improved air circulation in the gray box, an air fan was mounted.

The specifications of the measurement device Fidas200 used in-luft are shown in
Table 3. It can be observed that the Fidas200 device is a more advanced measurement device
than the low-cost PM3015SN employed in the low-cost sensor-box. The Fidas200 is based
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on the OPC measurement method, working with a volumetric air flow of approximately
0.3 m3/min [27]. In addition, the device is equipped with a heating device, reducing the
humidity of the incoming air before measuring its PM concentration. This is important for
optical measuring devices, as humidity increases the particle diameters, therefore changing
the refractive properties, which in turn results in an increased sensor output signal [13,28].
The mass concentration would therefore be overestimated.

Table 3. Technical specifications of the reference PM measurement station, Fidas200 [3,27].

Specifications Value

Operating principle Laser scattering
Particle range 0.18–18 µm
Resolution 0.1 µm/m3

Working condition 5 to 40 ◦C
Measurement accuracy PM2.5 9.7%
Measurement accuracy PM10 7.5 %
Response time <2 s

Figure 3. Validation campaign: sensor-boxes with IDs 1, 2 and 7 placed at the in-luft reference station
in Stans.

2.4. Field Tests Setup

The sensor-boxes are mounted on the roof of a municipal utility vehicle using four
89 N adhesive force magnets, provided the roof is magnetic. The four magnets are directly
attached to the plastic enclosure, as can be seen in Figure 1J. In order to ensure that the
magnetic forces are sufficient and a loss of the sensor-box during vehicle operation can
be ruled out, the adhesive forces of the magnets when mounted to the sensor-box were
tested in the lab. The GPS antenna unit is also attached to the roof with a magnetic surface.
The power for the box is directly provided by the car battery (12 V or 24 V, depending on
the vehicle) by routing a cable from the battery to the box. Figure 4 shows the sensor-box
mounted on the roof of a municipal utility vehicle.
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Figure 4. Sensor-box mounted on a utility vehicle from the municipality of Cham.

During the pilot-phase of the measurement campaign, 14 communities agreed to
have sensor-boxes mounted on their vehicles. One sensor-box was mounted per pilot
(i.e., community). The first pilots started operating at the end of April 2021, and the pilot
phase ended in April 2022. Some of the pilots were decommissioned earlier, such that
data from 4 months to 1 year were gathered with the corresponding pilots. Table 4 shows
an overview of the pilots and the respective campaign duration. With this time-span all
the seasonal effects such as temperature, rainfall, heating season, and summer season are
covered in the collected data. During the campaign, the system was continuously improved
and adapted to fix common bugs on the hardware and software sides.

Table 4. Pilot overview of the field test measurement campaign.

Community Start End Duration (Months)

Hergiswil April 2021 April 2022 12
Rheinfelden (AEW) May 2021 July 2021 3

Stansstad May 2021 November 2021 6
Lostorf May 2021 April 2022 11
Stans May 2021 November 2021 6
Horw May 2021 April 2022 11

Lungern June 2021 April 2022 10
Kriens June 2021 April 2022 10
Olten June 2021 April 2022 10

Malters June 2021 March 2022 9
Cham June 2021 April 2022 10

Emmenbruecke June 2021 April 2022 10
Luzern July 2021 April 2022 9
Ebikon September 2021 April 2022 7

2.5. Air Quality Monitoring Data from Central Switzerland

Monitoring stations are operated by national and cantonal environmental offices
in order to fulfill regulations such as those established by the Swiss Federal Act on the
Protection of the Environment and by the Ordinance on Air Pollution Control. In the case
of Central Switzerland, six cantons operate a network of fixed monitoring stations (in-luft)
that measure air quality [29]. There are currently ten locations where in-luft measurements
of concentrations of nitrogen-oxides (NOx), particle matter (PM10, PM2.5, PM1, and soot),
ozone (O3), ammonia, and volatile organic compounds (VOC) are taken. Here, we use
part of these public data to validate our sensor-box PM10 measurements and to verify the
measurements during the pilot tests.

According to the in-luft measurements in the year 2020, pollution levels for particulate
matter PM10 and PM2.5 complied with regulations in every location. Higher concentrations
were observed at sites with heavy traffic in larger cities. Daily mean limit values were also
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complied with at each location. However, large-scale phenomena, such as the arrival of
Saharan dust, caused larger concentrations at the end of March. Elevated concentrations
also usually occur during the winter months, driven by temperature inversions and poor
mixing of air masses in urban streets. In rural and higher-altitude areas, particulate matter
concentrations were the lowest [3].

At a national level, data from the Swiss Federal Office for the Environment (BAFU)
show that between 1986 and 2019, PM10 pollution levels decreased by 60%. The influence
of the reduced economic activity due to the COVID-19 pandemic may be observed in these
measurements. BAFU’s monthly report from June 2022 shows that hourly and daily values
are occasionally higher than desired [30,31]. However, as well the regional in-luft data,
yearly pollution levels from July 2021 to June 2022 are below Swiss regulatory limit values.
Nevertheless, given their impact on human health, fine and ultra-fine particulate matter
pollution (such as PM2.5, PM1, and soot) should be further reduced.

2.6. Quality Control of Raw Air Quality Data

Research work that uses low-cost sensors for measuring particulate matter pollution
does not typically discuss the processing of raw sensor data that might be necessary to
apply before performing calibration against a reference station. In recent work carried
out by Cummings et al. [32], the top and bottom 0.5% of measurements are removed to
account for outliers, and data lacking geotags are also removed. However, emissions
from nearby vehicles are not filtered out in an attempt to retain insights regarding traffic
density and pedestrian’s exposure to high pollutant concentrations. Earlier work, such
as that carried out by Borrego et al. [16], describes approaches used to use uncertainty
metrics to meet European guidelines for data quality. Technical documents describe the
quality control processes applied in practice [3,33–36]. These include automated checks
and those performed by analysts. LaGuardia and Hafner [33] describe two of such steps
for data quality control, starting first automated checks on ranges, rate of change, sticking
values, and drifts. All of these are flagged and can be edited at a later stage by an ana-
lyst via a web interface that allows for the comparison of hourly data values to nearby
stations and batch editing of data to apply bias and scaling corrections. Generic aspects
of the measurement procedures and data quality assurance steps are also described in
Zentralschweizer Umweltfachstellen [3]. Data are collected continuously in the measuring
stations, and these raw values are aggregated in time and consolidated in a database where
the following plausibility checks are performed: violation of threshold values, jumps,
identical values, and certain device states are imputed with statistical methods. In addition
to these automated quality checks, calibrations are also performed regularly as described
in Zentralschweizer Umweltfachstellen [3]. Particularly, PM10 and PM2.5 measurements
are calibrated with gravimetric fine dust measurements.

Part of this study is the pre-processing of the raw sensor data before further analysis
is performed on the data. Therefore, the last stage of our pre-processing pipeline prior
to validation of the sensor-box is removing statistical outliers. Several approaches were
tested aiming at removing the minimum amount of data in order to keep extreme values
but remove statistical or physically unfeasible values. In order to select the most suitable
filtering method for the mobile pilots, seven filtering methods were tested on the data sets
gathered during this validation. Among others, the methods described in Leys et al. [37]
and Kulanuwat et al. [38] were also tested. An overview and description of the seven
filtering methods is given in Table A1 in the Appendix A. Filters 1 and 2 are applied to
the complete data sets, while Filters 3–7 are applied to the data using a sliding window
with a given window size. Symmetrically around each data point of the data set, an upper
and lower band for the window is calculated. The data point is then evaluated against
the thresholds: if it falls outside the upper or lower threshold, it is considered to be an
outlier and removed. For all the filtering methods with a moving window, Filter 1 (fixed
upper limit) is applied first before applying the moving window filter as this removes
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points that are known to be non-physical, such as, e.g., a constant value of 1000 µg/m3

over several hours.
When comparing the hourly sensor-box data to the hourly in-luft station data, the suit-

ability of each method is analyzed using time-series plots, scatter plots, histogram plots,
Pearson correlation coefficient RP, and Spearman’s rank correlation coefficient RS. The re-
sults of this pre-processing step are described in Section 3.1.

2.7. Data Analysis and Validation Methods

The data analysis is carried out in two steps: first a suitable filtering method for
the raw data is selected based on the validation measurements described in Section 2.6.
Subsequently, the selected filter is applied to the raw data set prior to all further analyses.
In order to validate the sensor-box PM data, it is compared to the reference data obtained by
the Fidas200 air quality station. For this purpose, the correlation between reference data and
sensor-box data is calculated using Pearson correlation coefficient RP and Spearman’s rank
correlation coefficient RS. Furthermore, Mean Absolute Error (MAE), Root-Mean-Squared
Error (RMSE), Slope, Intercept, and Sensor bias are calculated for each sensor-box. Sensor
bias is calculated based on Mean Percentage Error, using the following equation:

Sensor bias =
1
n

n

∑
i=1

CPM10,sensorbox,i − CPM10,inlu f t,i

CPM10,inlu f t,i
∗ 100% (1)

where CPM10 is the measured PM10 concentration at time i measured by either the sensor-
box or the in-luft station. A similar method has been used in Streuber et al. [25]. With
sufficient agreement between reference data and sensor-box validation measurement data,
the mobile sensor-box data acquired during the field study are then also analyzed using the
same metrics. In addition to the statistical methods mentioned above, which are applied
to each individual sensor-box, the low-cost sensors are statistically analyzed against each
other by computing analytical metrics from the resulting metrics calculated previously:
mean, minimum, maximum, standard deviation (SD), variance, and coefficient of variation
(CV) are applied to the resulting data series of RP, RS, slope, intercept, sensor bias, MAE,
and RMSE. This provides an insight about the precision of the low-cost sensor model.
The CV for each statistical metric is calculated as follows:

CV =
SDm

m
∗ 100% (2)

where SDm is the standard deviation and m is the mean value of the respective statistical
metric (e.g., RP) across all sensor-box data sets.

For the analysis of the field study data, the sensor-box data are compared to a nearby
reference station. Apart from the described filtering method, no further sensor calibration
is applied to the data. The sensor-box data, which are acquired in approximately 30 s
intervals, are converted to hourly mean values for comparison with the reference station
data. This is due to the fact, that the highest available resolution of the reference data
is hourly.

3. Results and Discussion
3.1. Validation with Reference Station

Three sensor-boxes were placed right next to the in-luft station in Stans, as described in
Section 2.3. Measurements were recorded over approximately 2.5 months. Table 5 shows an
overview of the validation measurement campaign. The goal of this validation campaign is
to compare the data quality of the low-cost sensor-box measurements to the high-quality
in-luft measurements and derive pre-processing algorithms that account for outliers. Thus,
a filtering method to remove outliers from sensor-box data is developed and evaluated.
This filter can then later be applied to the mobile pilot measurements in order to improve
the data quality, without losing information about extreme values.
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Python libraries were used to develop scripts for data evaluation and manipulation.

Table 5. Stationary sensor-boxes in Stans, Nidwalden.

Sensor-Box ID Start–End Duration Data Points

1 15 October–23 December 2021 2 months 107,338
2 17 November–31 December 2021 1.5 months 71,149
7 15 October–31December 2021 2.5 months 134,768

The in-luft data are available as hourly mean values. Therefore, the sensor-box data
are converted to hourly mean values in order to carry out a comparison. Prior to converting
the sensor-box data, however, a filtering method for outlier removal is applied to the raw
data set. The evaluation of seven filtering methods is described in Section 2.6, and detailed
results of the different methods can be found in tables in the Appendix A. The resulting
correlation coefficients, as well as the number of data points removed for the analysis of
the filtering methods without sliding window (no filter vs. Filters 1 and 2) can be found
in Table A2. The results of the filtering methods with sliding window (Filters 3–7) are
presented in Table A3 for a window size of 1000 data points and in Table A4 for a window
size of 20,000 data points. Window sizes from 100 to 20,000 data points were evaluated.
Figure 5 shows the evaluation of the different filtering methods at window sizes 100 and
20,000, as well as the filtering methods with fixed window (complete data set) for data
recorded with sensor-box 2.

Based on an evaluation of the results of all seven filtering methods, Filter 2 is chosen
for further processing of the data. This method removes all data larger than the specified
percentile from the raw sensor-box data. A value of 99.0% percentile is chosen in this
case. The evaluation of the filtering methods considers the resulting correlations between
sensor-box and in-luft station data, as well as the amount of removed data for each method.
A good balance between the two metrics is required. Looking at the graph shown in
Figure 5, it can be seen that there are several filtering methods yielding a higher Pearson
correlation than Filter 2. However, the increase in RP is accompanied by a much larger
percentage of removed data (e.g., Filters 4 and 7 at window size 20,000). Removing too
much data poses the risk of losing physically relevant phenomena. Therefore, Filter 2,
with a selected percentile of 99.0% provides the best balance between the two metrics.

No filter: Raw data Filter 5 (sliding window): Median + Threshold: 50 μg/m3

Filter 1 (no sliding window): Fixed upper limit: 900 μg/m3 Filter 5 (sliding window): Median + Threshold: 100 μg/m3

Filter 2 (no sliding window): Fixed percentile 0.995 Filter 6 (sliding window): Quantile 0.997

Filter 2 (no sliding window): Fixed percentile 0.99 Filter 6 (sliding window): Quantile 0.99

Filter 3 (sliding window): Mean + 3 x STD Filter 7 (sliding window): Q3 + 1.5 x IQR

Filter 4 (sliding window): Median + 3 x MAD
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Figure 5. Validation with reference station: evaluation of filtering methods using PM10 concentration
measurements recorded with stationary sensor-box 2 between 17 November 2021 and 31 December
2021 in Stans, Nidwalden. Displayed is the Pearson correlation coefficient of in-luft and measurement
data with different thresholds for the data selection.
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Table 6 shows the results of the statistical analysis of the three sensor-boxes used
for validation. When applying Filter 2 (fixed percentile) with a 99.00 percentile to the
sensor-box data, the resulting Pearson correlation coefficients are 0.74, 0.72, and 0.82 for
sensor-boxes 1, 2, and 7, respectively. Looking at bias, it can be seen that two sensor-boxes
(ID 1 and 2) overestimate the PM concentration, while one sensor-box (ID 7) underestimates
the PM concentration. All three slopes are larger than 1, while sensor-box 7 is very close
to 1. Figure 6 shows the comparison between the sensor-box PM10 data of box 7 with the
in-luft data in a time-series graph, as well as in a scatter plot. A good correlation between
the two data sets is observed.

Table 6. Results of statistical analysis of stationary senor-box measurements in Stans, Nidwalden.
Measurements recorded between 15 October 2021 and 31 December 2021. Fixed percentile filtering
method (99.0%) is applied to the raw data. No further calibration applied.

Sensor-Box ID MAE (µg/m3) RMSE (µg/m3) Slope Intercept (µg/m3) RP RS Bias (%)

1 5.44 10.38 1.60 −2.14 0.74 0.88 30.30
2 3.70 8.23 1.28 0.06 0.72 0.87 27.40
7 2.52 4.38 1.01 −0.79 0.82 0.90 −10.73

(a) (b)
Figure 6. PM10 hourly mean data recorded with sensor-box 7 located in Stans in the period from
15 October 2021 to 31 December 2021, compared to hourly mean data recorded at the in-luft station
located in Stans. Fixed-percentile (Filter 2, 99.0%) applied to sensor-box data. N = 1843, RP = 0.82,
RS = 0.90 (a) time series; (b) scatter plot.

Figure 7a–c show the distribution of the PM10 data of sensor-boxes 1, 2, and 7 in a his-
togram. For all three pilots the distribution is similar: the largest share of data points falls
into the range of 0–10 µg/m3, and the second largest share falls in the range of 10–20 µg/m3,
with the number of data points decreasing with increasing PM10 concentration.
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Figure 7. Distribution of hourly mean values of PM10 concentration recorded in Stans, Nidwalden.
(a) Sensor-box 1 recorded between 15 October 2021 and 23 December 2021; (b) Sensor-box 2 recorded
between 17 November 2021 and 31 December 2021; (c) Sensor-box 7 recorded between 15 October
2021 and 31 December 2021.



Sensors 2023, 23, 794 13 of 29

3.2. Influence of Ambient Conditions on PM10 Measurements

In addition to the comparison with the in-luft measurements, the influence of tem-
perature and humidity on the sensor-box measurements was examined. These results can
then be compared with findings reported in literature in order to validate the dependency
of recorded PM concentration with humidity and temperature. For this purpose, the tem-
perature and humidity recorded with sensors located in the same sensor-box were used.
Additionally, PM10 measurements from the in-luft station were compared to sensor-box
measurements to analyze the impact of humidity. Information about the sensors can be
found in Section 2.1. Hourly mean data from boxes 1, 2, and 7 were looked at. For all three
boxes, the following patterns emerged:

Temperature—High PM10 concentrations only emerged at lower temperatures. The re-
verse, however, is not the case: low PM10 concentrations are also found at low temperatures.
Figure 8a shows a scatter plot of hourly mean temperature and PM10 concentrations for
sensor-box 1. As an example, all hourly mean PM10 values of 40 µg/m3 or higher were
recorded at an hourly mean temperature below 10 ◦C. Figure 8b shows the distribution of
the PM10 measurements across the different temperature levels.
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Figure 8. Hourly mean values recorded with sensor-box 1 between 15 October 2021 and 23 December
2021 in Stans, Nidwalden. (a) PM10 concentration vs. temperature; (b) Distribution of three different
PM10 concentration ranges.

Humidity—For the sensor-box readings, high PM10 concentrations only emerged at
higher relative humidity. The reverse, however, is not the case: low PM10 concentrations are
also found at high relative humidity. Figure 9a shows a scatter plot of hourly mean humidity
and PM10 concentrations measured with sensor-box 1, as well as in-luft measurements.
As an example, all hourly mean PM10 values of 40 µg/m3 or higher measured with the
sensor-box were recorded at an hourly mean relative humidity above 75%. The in-luft
measurements, however, do not show such a dependency on humidity: the hourly mean
values of PM10 never exceed concentrations of 30 µg/m3 in the same time period. Figure 9b
shows the evolution of PM10 measurements from both the sensor-box and the in-luft station
in relation to the measured humidity between 4 December 2021 and 24 December 2021.
Here, it can be observed that, while there are periods where both measurements are in good
agreement (e.g., from 4 December to 12 December), there are periods where the sensor-box
measurements far exceed the in-luft measurements (e.g., period around 15 December). It
can further be seen that these high PM10 values only occur during periods of high humidity.

The above observations are consistent with other results reported in literature.
Hernandez et al. [39] carried out a study in Auckland, New Zealand, where meteorological
conditions and PM concentrations were monitored over an eight week period. A negative
correlation between temperature and PM10 concentration and a positive correlation be-
tween humidity and PM10 concentration were reported. In addition, it was also found that
PM10 levels sometimes remained low despite an increase in humidity. Jayaratne et al. [40]
examined the influence of humidity on the measurements of PM concentrations recorded
with a low-cost sensor in Brisbane, Australia. The sensors showed a steady increase in PM
concentrations at high humidity levels above 75%. In some instances, the PM concentration
decreased even at high humidity levels, which was the case in the presence of rain. Ra-



Sensors 2023, 23, 794 14 of 29

masamy Jayamurugan and Chockalingam [41] analyzed the influence of temperature and
relative humidity on PM concentrations in North Chennai, India, during different seasons.
PM levels showed a positive correlation with temperature for all seasons except one, and
negative correlations were found between relative humidity and PM concentrations for
all seasons.
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Figure 9. Hourly mean values recorded with sensor-box 1 between 4 December 2021 and 24 December
2021 in Stans, Nidwalden compared to in-luft data measured in the same time-interval. (a) PM10

concentration vs. humidity; (b) PM10 and humidity time-series data.

The influence of high humidity levels on particulate matter measurements is well-
described in the literature. Alfano et al. [14] mentions that humidity is a relevant environ-
mental parameter and that keeping relative humidity low will avoid the rapid degradation
of the accuracy of low-cost sensor modules. That study also mentions how high levels
of humidity can result in possible coalescent phenomena, which makes the particle size
appear larger and therefore distorts the concentration measurements. This effect is also de-
scribed in Lanki et al. [28] and Santi et al. [13]. Some of the differences between sensor-box
measurements and in-luft measurements observed in Figure 9a,b could be explained by
the fact that the in-luft measurement unit (Fidas200) is equipped with a heating device, as
described in Section 2.3. Therefore, a distortion of measured particle size and concentration
due to humidity is avoided.

Several studies found in literature show similar results. Crilley et al. [42] compared
low-cost OPC sensors placed in an urban setting to reference measurements. There it was
also observed that lower relative humidity resulted in better agreement between low-cost
sensor measurements and reference measurements. Measurements taken at high relative
humidity (i.e., >85%) showed an exponential increase in OPC PM concentration readings in
relation to the reference measurements with increasing humidity levels. Streuber et al. [25]
evaluated two types of low-cost particulate matter sensors in a laboratory setting, using
high and low mass concentrations. It was also observed that the effect of hygroscopic
growth due to increased relative humidity lead to a increased overestimation of the particle
concentration. Wang et al. [43] evaluated the performance of three low-cost PM sensors
based on the light-scattering principle under laboratory conditions. Among others, the in-
fluence of temperature and humidity on the sensor performance was examined. It was
shown that temperature had a negligible effect on the sensor measurement, while relative
humidity affected the sensor performance significantly. Particle mass was overestimated
due to altered absorption properties. Bai et al. [44] conducted a long-term field experiment
where the capabilities of low-cost PM sensors were evaluated. They were co-located with
a reference measurement device. Calibration was carried out using linear and non-linear
regression, as well as an artificial neural network. It is reported that high relative humidity
(i.e., >75%) leads to higher errors in measured PM concentration. Temperature, on the other
hand, was found to have a negligible effect on sensor performance. A study conducted by
Di Antonio et al. [45] also showed an overestimation of measured PM concentrations by
low-cost sensing devices (OPC) at high humidity levels. In this case, the performance of the
OPC device was improved by applying a particle-size distribution-based correction algo-
rithm. Similarly, Zheng et al. [46] reported major influences of high humidity levels (>70%)
on low-cost PM sensors and applied corrections using empirical nonlinear equations.
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As consistently shown in the above-mentioned studies, it can be expected that the
low-cost PM sensor measurements will produce overestimated values of PM concentrations
when exposed to high relative humidity.

3.3. Measurements with Mobile Sensor Nodes

Field-tests were carried out with mobile sensor-boxes mounted on several vehicles
in the region of Central Switzerland. The test-setup is described in Section 2.4. Data were
recorded between April 2021 and April 2022. For the analysis described in this section, only
data recorded until the end of December 2021 are considered. Figures 10 and 11 show the
time-series graph of hourly aggregated data for two selected months—July and December.
Only pilots containing at least 100 mean hourly data points per month are represented on
the graphs.

In Figure 10 (July), it can be seen that some pilots delivered PM10 values of similar
magnitude (e.g., AEW, Cham, Emmenbruecke, Hergiswil, Horw, Kriens, Olten), while
other pilots differ in magnitude (e.g., Lostorf, Malters, Stansstad). Similarly, this can be
observed for the month of December in Figure 11.

Figure 10. PM10 hourly mean data recorded with mobile pilot sensor-boxes in the period from 1 July
2021 to 30 July 2021.

Figure 11. PM10 hourly mean data recorded with mobile pilot sensor-boxes in the period from 1
December 2021 to 31 December 2021.

The acquired data of the mobile sensor nodes are evaluated against data from nearby in-
luft air quality stations where such stations are available. The procedure for the comparison
is as follows: first, a fixed percentile filter (Filter 2 acc. Table A1) is applied to the raw
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sensor-box data (99.0 percentile). Then, the raw sensor-box data are converted to mean
hourly values before being compared against the hourly in-luft data.

Throughout the measurement campaign, it was sometimes required to exchange a
sensor-box at a specific pilot location due to hardware problems. Therefore, in some
cases, multiple sensor-boxes were used sequentially at the same pilot location. At any
given point in time, no more than one sensor-box was deployed at a specific pilot location.
The evaluation is carried out for each box individually so that each data set only contains
data obtained with the same hardware. Data are only evaluated if there are sufficient
data available for several consecutive days. Considering the aforementioned restrictions,
21 usable data sets resulted from the measurement campaign between 1 May 2021 and
31 December 2021. The 21 data sets are labeled with letters from (A) to (U), as shown in
Table 7. The table further shows the pilot location, sensor-box ID, the in-luft station used for
reference, the number of available mean hourly data points, as well as the distance between
in-luft station and pilot, rounded to the nearest integer kilometer value. While the position
of the in-luft station is fixed, for the location of the mobile pilot, the approximate center
of its area of movement is used. The amount of data collected differs widely between the
different sensor-boxes. Sensor-box 2 in Malters only has 75 hourly data points available,
while sensor-box 8 in Cham has 4401 hourly data points available. The difference in the
length of the data set is largely due to the stability of the hardware: some sensor-boxes
already required maintenance a few days after installation (e.g., Pilot Malters 2), while other
boxes were continuously acquiring data without hardware issues over a longer period
of time (e.g., Pilot Cham 8). The results of the statistical analysis of the field study are
presented in Table 8. It can be seen that all data sets except for two ((S) and (U)) have a bias
towards underestimating the actual PM concentration. In addition, all of the slopes are
less than 1. While the validation measurements show a relatively good agreement with
the reference measurements, the field study shows more varied results. The values of RP
range from 0.21 (Pilot Malters 2) to 0.88 (Pilot Horw 3), with 67% of the values being larger
than or equal to 0.5. The median value lies at RP = 0.63. The range of the RS values goes
from 0.21 (Pilot Malters 2) to 0.91 (Pilot Horw 3), with 91% of the values being larger than
or equal to 0.5. The median value lies at RS = 0.73. The correlations compared among the
different pilot sites are also shown in Figure 12.

Figure 12. Pearson correlation RP and Spearman correlation RS for mean hourly PM10 data between
sensor-box and in-luft stations compared among different pilot sites. Evaluation of data collected
between May and December 2021. Fixed percentile filtering method (99.0%) is applied to the raw
sensor-box data.

Table 9 presents the analysis of the statistical measures obtained across all 21 data sets.
There, it can be seen that the average bias is an underestimation of 44%. The intercepts
range from −2.69 µg/m3 to 5.60 µg/m3, while the Mean Absolute Error ranges from
2.49 µg/m3 to 12.52 µg/m3. Considering the magnitude of the bias and seeing that the
average Spearman correlation is 0.61, it is assumed that the errors can largely be attributed
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to systematic errors of the sensor. This error could therefore be reduced with an appropriate
calibration of the sensor (not part of this work).

Table 7. Overview of usable data sets collected between May and December 2021 in Central Switzerland.

Data Set Pilot Sensor-Box In-Luft Station Distance Hourly Data Points

(A) Cham 8 Zug 5 km 4401

(B) Ebikon 14 Ebikon 3 km 240
(C) 6 1878

(D) Emmenbruecke 13 Ebikon 1 km 166
(E) 15 1127

(F)
Hergiswil

5
Stans 5 km

2125
(G) 4 477
(H) 15 1210

(I)

Horw

7

Luzern 4 km

118
(J) 3 1226
(K) 14 155
(L) 4 337

(M) Kriens 9 Luzern 3 km 4073

(N) Luzern 6 Luzern 0 km 252
(O) 12 401

(P) Malters 2 Luzern 9 km 75
(Q) 10 3305

(R) Stans 15 Stans 2 km 1223

(S)
Stansstad

2
Stans 3 km

784
(T) 11 837
(U) 13 2214

Table 8. Results of statistical analysis of pilot data against in-luft data for data collected between May
and December 2021. Fixed percentile filtering method (99.0%) is applied to the raw data. No further
calibration applied.

Data Set MAE
(µg/m3)

RMSE
(µg/m3) Slope Intercept

(µg/m3) RP RS Bias (%)

(A) 6.71 8.39 0.44 0.59 0.69 0.75 −49.71

(B) 6.72 7.58 0.53 −0.51 0.80 0.81 −47.53
(C) 8.36 10.32 0.36 1.09 0.48 0.54 −44.30

(D) 3.47 4.28 0.29 2.85 0.37 0.48 −26.34
(E) 6.95 9.45 0.28 2.78 0.76 0.79 −41.03

(F) 4.89 6.19 0.47 −0.07 0.82 0.86 −57.16
(G) 7.26 8.68 0.44 −1.25 0.60 0.65 −71.36
(H) 5.86 7.59 0.34 1.12 0.63 0.74 −50.16

(I) 3.36 3.88 0.36 −0.07 0.60 0.67 −66.07
(J) 6.89 9.06 0.32 1.13 0.88 0.91 −54.90
(K) 9.18 10.17 0.59 −2.69 0.77 0.73 −61.31
(L) 7.27 8.93 0.25 1.13 0.43 0.69 −62.07

(M) 10.02 12.58 0.23 1.79 0.69 0.76 −58.40

(N) 6.47 7.79 0.46 0.02 0.83 0.80 −52.12
(O) 8.14 10.43 0.53 0.60 0.70 0.79 −45.62

(P) 2.49 3.18 0.09 5.60 0.21 0.21 −1.20
(Q) 12.52 15.00 0.09 1.48 0.44 0.64 −76.81

(R) 4.93 6.05 0.36 1.22 0.75 0.78 −42.14

(S) 2.67 4.27 0.45 3.88 0.39 0.58 47.14
(T) 7.98 11.03 0.04 1.33 0.58 0.54 −72.49
(U) 6.08 9.03 0.52 4.52 0.34 0.62 10.93



Sensors 2023, 23, 794 18 of 29

Table 9. Analysis of statistical metrics across all 21 pilot data sets.

Mean Min. Max. SD Variance CV (%)

RP 0.61 0.21 0.88 0.18 0.03 30.09
RS 0.68 0.21 0.91 0.15 0.02 22.23

Slope 0.35 0.04 0.59 0.15 0.02 42.41
Intercept 1.26 −2.69 5.60 1.86 3.46 147.14

Bias −43.94 −76.82 47.14 29.18 851.48 −66.42
MAE 6.58 2.49 12.52 2.40 5.77 36.49
RMSE 8.28 3.18 15.00 2.88 8.32 34.84

In order to investigate the reason for the spread in RP values, selected pilots with
different data patterns are studied more closely. In the following, two exemplary pilots
from the data sets shown in Table 7 are presented in more detail. The selected pilots differ
in the sense that each shows one of the following characteristics: either a high correlation
between mobile pilot and in-luft data is observed most of the time or a high correlation
between mobile pilot and in-luft data is observed at specific times, while a low correlation
is observed in between.

Figure 13 shows the mean hourly values of PM10 data recorded with the mobile sensor-
box and the stationary in-luft station, both located in Luzern. This is an example of a pilot
showing a good correlation between the sensor-box data and in-luft station data most of
the time. An offset between the two datasets can be observed, with the sensor-box data
generally showing lower values than the in-luft data. This also becomes evident when
looking at the scatter plot shown in Figure 14.

An example of a pilot with intermittent good correlation between sensor-box data and
in-luft data is shown in Figure 15. The mobile sensor-box, as well as the stationary in-luft
station, were located in Ebikon. It can be seen in the time-series graph that the sensor-box
data do not follow the in-luft data as consistently as in the previously mentioned example
of Luzern. Fluctuations in magnitude of the PM10 values can be observed: there are periods
where the sensor-box data match closely the in-luft data and there are periods where the
two data sets barely correlate. In order to better understand the reason for these fluctuations,
the geo-location of the datapoints was considered. Analysis of this pattern showed that the
periods of good correlation occur when the vehicle carrying the sensor-box is not located at
the parking position (i.e., maintenance depot). On the contrary, when the vehicle is located
at the parking position, the correlation is considerably worse. A more detailed analysis of
this pattern is described in the subsequent section. The same pattern was also observed for
other pilot locations such as, e.g., Hergiswil.

Figure 13. PM10 hourly mean data recorded with mobile pilot sensor-box 6 located in Luzern in the
period from 7 July 2021 to 2 September 2021, compared to hourly mean data recorded at the in-luft
station located in Luzern. Data gaps are removed from the graph. Number of mean hourly values:
252; Resulting correlations: RP = 0.83, RS = 0.80.
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Figure 14. PM10 hourly mean data recorded with mobile pilot sensor-box 6 located in Luzern in the
period from 7 July 2021 to 2 September 2021, compared to hourly mean data recorded at the in-luft
station located in Luzern. Number of mean hourly values: 252; Resulting correlations: RP = 0.83,
RS = 0.80.

Figure 15. PM10 hourly mean data recorded with mobile pilot sensor-box 6 located in Ebikon in the
period from 15 October 2021 to 15 November 2021, compared to hourly mean data recorded at the
in-luft station located in Ebikon, Sedel. Data gaps are removed from graph. Number of mean hourly
values: 768; Resulting correlations: RP = 0.67, RS = 0.70.

Looking at a shorter time period (e.g., two weeks) allows for a better understanding
of the fluctuating PM10 values. Figure 16 shows the hourly mean PM10 data of the pilots
located in Ebikon and Hergiswil from 12 December to 27 December 2021. Periods where
the vehicle is thought to be in operation or parked outdoors are marked in red. In the
periods in between, the vehicle was most likely located at the parking position indoors
at the maintenance depot. There is a clear difference in magnitude of the values: during
times when the vehicle was in operation, higher PM10 values were recorded. During the
weekend (18–19 December), as well as during the night-time, when the vehicle was not in
operation, the values remained low.

Based on above-mentioned findings, an additional filter based on the geo-location
of the data points is tested on the data set. At both locations where this pattern occurs,
the data within a radius of 150 m around the maintenance depot is removed. Therefore,
only data when the vehicle is in operation remain. It was observed that such patterns
occurred mainly for pilots where the parking position of the vehicle is located in a closed
building, which also applies to the pilots in Ebikon and Hergiswil. The data set for Ebikon
presented in Figure 15 is filtered by geo-location, removing all data points recorded in the
vicinity of the maintenance depot. The resulting time-series compared to the in-luft data are
shown in Figure 17, whereas the resulting scatter plot is presented in Figure 18. The number
of hourly data points reduces from 768 to 129. The Pearson correlation increases from 0.67
to 0.81, whereas the Spearman’s correlation increases from 0.70 to 0.83. In addition, it can
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be seen from the time-seires graph that the sensor-box data follows the in-luft data more
closely than was the case before the geo-location filter was applied.

Figure 16. PM10 hourly mean data recorded with mobile pilot sensor-boxes located in Ebikon and
Hergiswil in the period from 12 December 2021 to 27 December 2021. Periods where the vehicle is in
operation are marked in red.

Figure 17. PM10 hourly mean data recorded with mobile pilot sensor-box 6 located in Ebikon in the
period from 15 October 2021 to 15 November 2021 compared to hourly mean data recorded at the
in-luft station located in Ebikon, Sedel. Data gaps are removed from graph. Data recorded within a
radius of 150 m around the maintenance depot Ebikon are removed. Number of mean hourly values:
N = 129; Resulting correlations: RP = 0.81, RS = 0.83.

Figure 18. PM10 hourly mean data recorded with mobile pilot sensor-box 6 located in Ebikon in
the period from 15 October 2021 to 15 November 2021 compared to hourly mean data recorded
at the in-luft station located in Ebikon, Sedel. Data recorded within a radius of 150 m around
the maintenance depot Ebikon are removed. Number of mean hourly values: N = 129; Resulting
correlations: RP = 0.81, RS = 0.83.
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3.4. Influence of Distance to Reference Station for Data Validation

It is expected that reference stations, which are located closer to a pilot and have similar
topography and land use, show a better correlation with the collected pilot data in contrast
to reference stations located further away from the pilot. For this purpose, the influence of
the distance between the reference station and the mobile sensor-box is analyzed in this
section. The pilot location Cham is compared to two different reference stations: the in-luft
station Zug and the in-luft station Rigi. An overview of the geographical location of all
three measurement locations is given in Figure 19. The two reference stations not only differ
in terms of distance to the pilot location, but also in altitude and surrounding environment.
The profiles of the two reference stations are described in Table 10. The in-luft station Zug
is relatively close to the pilot location Cham and has a similar surrounding (urban; close to
lake) as the area covered by the mobile sensor-box. The in-luft station Rigi is further away
and has a different surrounding (rural; pre-alpine) compared to the pilot location.

12km

5km

13km

Sensorbox Cham

InLuft Station Zug

InLuft Station Rigi

Figure 19. Geographical location of pilot in Cham and in-luft reference stations Zug and Rigi. (Map
source: Federal Office of Topography).

Table 10. Location profile of in-luft reference stations [47].

Specification Zug Rigi

Geography midlands pre-alpine
Location city center; close to lake rural area; in open field close to forest
Altitude 420 m.a.s.l. 1031 m.a.s.l.

Settlement size 26,000 n/a
Distance to road 24 m n/a

As a first step of this analysis, the two stationary in-luft stations selected are com-
pared to each other. Using hourly mean data sets obtained from the in-luft measurement
stations, a comparison is made for the months of July and November 2021, allowing the
investigation of two different seasons. During the month of July, the PM10 data sets for
the reference stations Zug and Rigi look very similar, and a high Pearson correlation is
observed (RP = 0.90). In autumn (i.e., November), however, the correlation is significantly
lower (RP = 0.43). Time-series data for the two selected months are shown in Figure 20.
Here, the difference between the data obtained in July and November can be seen: whereas
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for both months the values from the Rigi station are generally lower, the difference is larger
in November than in July. In addition, the shapes of the profiles between the two stations
show stronger differences in November than in July. Figure 21 shows the scatter plots of
the PM10 data from the two reference stations. The linear correlation between the two data
sets is higher in July than in November.

(a) July (b) November
Figure 20. Hourly mean PM10 data recorded at in-luft stations Zug and Rigi. (a) N = 740, RP = 0.91;
(b) N = 665, RP = 0.43.

(a) July (b) November
Figure 21. Hourly mean PM10 data measured at in-luft stations Zug and Rigi. (a) N = 740, RP = 0.91;
(b) N = 665, RP = 0.43.

As a next step, the two stationary in-luft reference stations are compared to the mobile
pilot in Cham. Based on the findings from the comparison of the two in-luft reference
stations, it is expected that the comparison with the mobile pilots will show a similar picture.
Therefore, a comparison is made between the data from the mobile pilot located in Cham
and the two reference stations Zug and Rigi during the months of July and November.
Figures 22 and 23 show time-series graphs and scatter plots of the comparison with the
in-luft station in Zug for the months of July and November. The in-luft station Zug is
the closest reference station to the mobile pilot in Cham with a distance of approximately
5 km between in-luft station and pilot parking position. For both months, a relatively high
correlation can be observed between the in-luft station Zug and the mobile pilot in Cham,
whereas for July, it is higher (RP = 0.82) than in November (RP = 0.69). As previously
shown in the comparison between the two in-luft stations Zug and Rigi, during the month
of July, the correlation between the two stations was higher than in November. Therefore, it
is possible that the lower correlation in November for the comparison between sensor-box
Cham and in-luft station Zug stems from the same seasonal effect.

Figures 24 and 25 show time-series graphs and scatter plots of the comparison between
the mobile pilot in Cham and the in-luft station in Rigi for the months of July and November.
The in-luft station Rigi is located further away from the mobile pilot in Cham with a distance
of approximately 13 km between in-luft station and pilot parking position. In addition, it
exhibits a different profile (altitude, surroundings, etc.) than the in-luft station in Zug (refer
to Table 10). For the month of July, the correlation between sensor-box Cham and in-luft
station Rigi is equally high as for the comparison with the in-luft station Zug, even though
the in-luft station Rigi is located several kilometers further away from the mobile sensor-
box and in a different geographical setting. During the month of November, however,
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the comparison shows a very low correlation. These results are in line with the findings
presented previously when comparing the two in-luft stations Zug and Rigi to each other.

(a) July (b) November
Figure 22. PM10 hourly mean data recorded with mobile pilot sensor-box 8 located in Cham compared
to hourly mean data recorded at the in-luft station located in Zug, Postplatz. Data gaps are removed
from the graph. (a) N = 710, RP = 0.82, RS = 0.81; (b) N = 719, RP = 0.69, RS = 0.70.

(a) July (b) November
Figure 23. PM10 hourly mean data recorded with mobile pilot sensor-box 8 located in Cham compared
to hourly mean data recorded at the in-luft station located in Zug, Postplatz. (a) N = 710, RP = 0.82,
RS = 0.81; (b) N = 719, RP = 0.69, RS = 0.70.

(a) July (b) November
Figure 24. PM10 hourly mean data recorded with mobile pilot sensor-box 8 located in Cham compared
to hourly mean data recorded at the in-luft station located in Rigi, Seebodenalp. Data gaps are
removed from the graph. (a) N = 712, RP = 0.82, RS = 0.81; (b) N = 696, RP = 0.23, RS = 0.32.
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(a) July (b) November
Figure 25. PM10 hourly mean data recorded with mobile pilot sensor-box 8 located in Cham compared
to hourly mean data recorded at the in-luft station located in Rigi, Seebodenalp. (a) N = 712,
RP = 0.82, RS = 0.81; (b) N = 696, RP = 0.23, RS = 0.32.

4. Conclusions

Mobile, low-cost sensor nodes offer a promising solution for obtaining a more exten-
sive set of air quality data in communities at a much lower expense compared to existing
stationary, high-precision reference stations. Such a mobile low-cost sensor-box was de-
veloped for the acquisition of air quality data in municipalities. Validation measurements
were conducted where our sensor-boxes were placed directly adjacent to a reference station.
Most studies about low-cost PM sensors found in the literature discuss calibration methods
and results from post-calibration analysis. However, pre-processing stages are often not
mentioned or not the focus of the study. Therefore, using the data from the validation
measurement, in this study, several filtering methods were tested to remove outliers from
the raw data sets before further analyzing the data. A suitable filtering method is applied
in order to improve the data quality, without losing information about extreme values.
After application of these filtering methods, linear correlation coefficients between 0.49
and 0.89 were achieved. Furthermore, the PM10 data of an 8-month field study carried
out in Central Switzerland were analyzed and compared to measurements from station-
ary reference stations. As for the mobile field measurements, 67% of the sensor nodes
achieved a linear correlation of 0.5 or higher, with a maximum of 0.88. Some sensor nodes
showed a consistently good correlation with the reference station, even though there was
a consistent bias towards the underestimation of the actual values observed in most of
the sensor-box data sets. Other sensor nodes showed a good correlation during specific
times only (e.g., for several hours during the day) and a low correlation for the remaining
time. For these sensor nodes, an additional filter that removes measurements recorded at
specific locations with atypical PM10 concentrations (such as a closed parking garage) was
introduced. This yielded an improved correlation with the reference stations.

In addition, it was examined whether the profile of the reference stations (i.e., distance
to mobile sensor-box and surroundings of the station) have an influence on the correlation
between sensor-box data and reference data. This analysis was performed for one mobile
pilot location. It was found that during summer months, the distance to the reference
station, as well as the profile of the reference station, have less of an influence on the PM
correlation than during the autumn or winter months. Therefore, it is recommended to use
the closest and most similar reference station when comparing the mobile sensor-box data
to reference data.

Future work could include the analysis of data acquired over several seasons (e.g., min-
imum 12 months). In addition, a calibration method for the mobile sensor nodes can be
introduced based on the validation measurements and including the influence of humidity.
For this purpose, it must be ensured that the reference station is exposed to the same
conditions as the mobile sensor-box.
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This study has shown methods of data treatment and the resulting statistical metrics
without the application of a calibration, which provided important information about the
use of low-cost PM sensing devices.
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Appendix A. Filtering Methods

Appendix A.1. Definition of Filtering Methods

Table A1. Overview of tested filtering methods for outlier detection applied to raw PM10 data.

Method Description Calculations & Parameters

No filter Raw data No filter is applied. The output of the sensor-box (i.e., raw data) is used
without any additional filtering. n/a

Filter 1 Fixed upper limit All data larger than a specified upper limit value are removed from the
raw sensor-box data. Upper limit = 900 µg/m3.

Filter 2 Fixed percentile All data larger than a specified percentile are removed from the raw
sensor-box data. Percentiles: 99.5%; 99%

Filter 3 Standard deviation

This method is applied to a sliding window. The mean value of the
moving window is calculated. The upper band for this window is defined
as the mean plus a multiple X of the standard deviation (SD) of the
distribution. Each point in the dataset is then evaluated in its respective
window.

Upper threshold: Equation (A1)
Lower threshold = 0 µg/m3

X = 3
Window size: 100 to 20,000 points

Filter 4 Median absolute
deviation (MAD)

Calculation of MAD for each window as described in [37]. The upper
threshold for each window is defined as the Median plus a multiple X of
the MAD. Each point in the dataset is then evaluated in its respective
window.

Upper threshold: Equation (A2)
Lower threshold = 0 µg/m3

X = 3
Window size: 100 to 20,000 points

Filter 5 Fixed threshold

Calculation of an upper threshold for each window according to [38].
The upper threshold for this window is defined as the median plus a
specified fixed threshold T. Any points above the upper threshold are
considered outliers.

Upper threshold: Equation (A3)
Lower threshold = 0 µg/m3

T = 50 µg/m3; T = 100 µg/m3

Window size: 100 to 20,000 points

Filter 6 Quantile
This method is applied to a sliding window. For each window, a specified
quantile is defined as the upper band for this window. Each point in the
dataset is then evaluated in its respective window.

Quantiles: 0.997; 0.99
Window size: 100 to 20,000 points

Filter 7 Interquartile Range
(IQR)

This method is applied to a sliding window. For each window, the Inter
Quartile Range (IQR) is calculated. The upper threshold is defined as the
third quartile Q3 plus a multiple X of the IQR.

Upper threshold: Equation (A4)
Lower threshold = 0 µg/m3

X = 1.5
Window size: 100 to 20,000 points



Sensors 2023, 23, 794 26 of 29

Upper threshold = Mean + X ∗ SD (A1)

Upper threshold = Median + X ∗ MAD (A2)

Upper threshold = Median + T (A3)

Upper threshold = Q3 + X ∗ IQR (A4)

Appendix A.2. Results of Filtering Methods Applied to Sensor-Boxes

Table A2. Results of static filtering methods applied to raw PM10 data: correlation between sensor-box
and in-luft data versus removed data.

Filter 0 1 2 2
(99.5%) (99.0%)

Sensor-box 1
RP 0.62 0.62 0.70 0.74
RS 0.88 0.88 0.88 0.88

Removed data 0.00% 0.00% 0.50% 1.02%

Sensor-box 2
RP 0.46 0.49 0.61 0.72
RS 0.84 0.84 0.86 0.87

Removed data 0.00% 0.02% 0.50% 1.01%

Sensor-box 7
RP 0.02 0.59 0.58 0.82
RS 0.85 0.88 0.88 0.90

Removed data 0.00% 0.58% 0.58% 1.01%

Table A3. Results of sliding window filtering methods applied to raw PM10 data: correlation between
sensor-box and in-luft data versus removed data. Window size = 1000 data points.

Filter 3 4 5 5 6 6 7
(Th. = 50) (Th. = 100) (99.7%) (99.0%)

Sensor-box 1
RP 0.65 0.73 0.77 0.69 0.62 0.63 0.70
RS 0.88 0.87 0.88 0.88 0.88 0.88 0.87

Removed data 1.58% 6.48% 1.53% 0.45% 0.24% 0.83% 5.40%

Sensor-box 2
RP 0.56 0.75 0.78 0.70 0.50 0.52 0.65
RS 0.86 0.90 0.88 0.87 0.84 0.85 0.90

Removed data 1.68% 6.46% 1.72% 0.94% 0.28% 0.84% 5.27%

Sensor-box 7
RP 0.75 0.89 0.85 0.79 0.61 0.65 0.85
RS 0.89 0.91 0.91 0.90 0.88 0.88 0.91

Removed data 2.23% 6.83% 1.28% 0.84% 0.84% 1.43% 5.56%
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Table A4. Results of sliding window filtering methods applied to raw PM10 data: correlation between
sensor-box and in-luft data versus removed data. Window size = 20,000 data points.

Filter 3 4 5 5 6 6 7
(Th. = 50) (Th. = 100) (99.7%) (99.0%)

Sensor-box 1
RP 0.76 0.83 0.81 0.71 0.66 0.71 0.84
RS 0.88 0.88 0.88 0.88 0.88 0.88 0.89

Removed data 2.02% 5.96% 2.49% 0.69% 0.30% 1.05% 5.79%

Sensor-box 2
RP 0.78 0.87 0.82 0.73 0.57 0.71 0.87
RS 0.88 0.90 0.88 0.87 0.86 0.87 0.91

Removed data 1.62% 6.86% 2.30% 1.10% 0.33% 1.20% 6.67%

Sensor-box 7
RP 0.88 0.88 0.86 0.80 0.76 0.86 0.89
RS 0.90 0.91 0.90 0.90 0.88 0.91 0.91

Removed data 2.01% 5.35% 1.42% 0.87% 0.93% 1.72% 5.58%
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