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EXECUTIVE SUMMARY

The provision of observational data, both satellite and in-situ based, and their integration into appropriate models of the Earth
system are of paramount importance for monitoring the state of the environment and the climate, as required by national and
international programmes, obligations and treaties. Well-documented examples are ozone depletion, atmospheric chemistry and
transport of pollutants, El Nino Southern Oscillation, sea level and global ocean circulation, Arctic sea ice cover, and ice sheet
elevation. In addition, the products and services delivered from numerical weather prediction centres as well as from the growing
number of operational and pre-operational oceanographic monitoring and modelling systems all require access to integrated data
systems. The EuroGOOS Space Panel report (Font et al., 2001), the EuroGOOS operational oceanography data requirements
survey, the IGOS Ocean Theme report (http://www.igospartners.org), and the implementation and operations of EUMETSAT
Satellite Application Facilities (i.e. CM-SAF, OSI-SAF), the Argo profiling float program, the ESA Living Planet program
(SP-1227, 1998) as well as the recent joint EU/ESA Global Monitoring for Environment and Security (GMES) initiative are
fully compliant with this integrated view. Similarly are the requirements for integrated observations outlined in the plans for the
Global Ocean Data Assimilation Experiment (GODAE; http://www.bom.gov.au/bmrc/ocean/GODAE) and the complementing
strategy for Observing the Oceans in the 21st century.

The joint EU and ESA’s GMES initiative, for instance, recognises that satellite-based multi-disciplinary Earth observation is a
fundamental component of monitoring systems. In the context of the marine environment, integrated observing systems and nu-
merical models are capable of producing a large range of information products (output), including physical (i.e. waves, currents,
temperature, etc.), biological (i.e. algae concentration, primary production, etc.) and chemical (oil pollution, etc.) variables.
Established users range from the research community, via operational applications to commercial customers and governmental
entities. The reliability and utilization of these types of information products depend not only upon the performance of the
models and assimilation tools, but also on the availability and quality of the observing systems, telecommunication networks,
data processing and distribution, data access, and rapid information integration, flow and services.

In view of these outlooks and initiatives it is therefore clear that the Study of Impact and Relevance of ESAs earth observation
for Operational oceanography and Climate research (SIREOC) is highly timely and relevant. The main objective of the SIREOC
project (running from 2001 to 2003) has been to assess and quantify the relative impact of different Earth Observation data types
of open ocean variables, Arctic sea ice cover and marine ecosystem for a) climate research and monitoring; and b) operational
ocean prediction systems. This has been undertaken in two parallel and complementary workpackages, notably:

Climate research and monitoring using the MICOM model system, with particular attention on seasonal via inter-annual to
decadal time scales, including trend analyses, such as those characteristic for the equatorial Atlantic, North Atlantic Oscillation
(NAO) and the Arctic Oscillation (AO).

Short-term (days to weeks) prediction capabilities including impact of state estimation and control of the evolving model state
using the TOPAZ configuration of the NERSC model suite.

The Earth Observation data sources include mostly sea surface temperature, sea surface height, chlorophyll-a, and sea ice con-
centration and extent from currently operating satellites including ERS-1 and ERS-2, TOPEX/POSEIDON, NOAA TIROS,
SeaWiFS and DMSP SSMI. In addition the investigation of the impact of simulated Earth Observation data has been performed
to mimic the data flow from the three future ESA Earth Explorer opportunity and core missions, namely Cryosat, GOCE and
SMOS. These are respectively planned for launch in 2004, 2006 and 2007 with the aim to obtain sea-ice thickness, marine geoid
and ocean salinity measurements.

The NERSC model suite contains a physical ocean model (OGCM), an ecosystem model and a sea ice model. Three classes of
input sources are interfaced to this model suite, notably atmospheric forcing fields, remote sensing data and in-situ data. The data
assimilation module, which then combines the observation data fields (available in near real time or off-line) and the model data,
forms the central element of the suite and can be applied to all three models, either individually or in combination. The system, in
turn, is then delivering hindcast, nowcasts and forecasts products. Both global, regional and local model domains can be selected
with accurate bathymetry and land boundaries, and based on a grid generation tool the model domain will also always be defined
with best model resolution in the area of highest interest. Moreover, the system introduces a further downscaling capability by
nesting of high resolution models for the regional and local areas of particular interest.

In the climate change monitoring and research the analysis has been focused on the role SSS play in the Subpolar region,
especially on the deep water formation rate, and the subsequent link to the maximum strength of the Atlantic Thermohaline
Circulation (THC). Four model integrations for the period 1948-2000 were analyzed giving the following main results:
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• The THC shows a marked variability on decadal time scales, and also a significant (increasing) trend over the last three
decades. Both the trend and the variability correlate, in general, to the NAO index.

• The SSS play a pivotal role in the intensity of deep convection, in particular in the Labrador and Irminger Seas, and
thereby also on the actual strength of the THC. For instance, the freshwater anomalies in the early 70ies and the early to
mid 80ies are followed by a rapid decline in the strength of the THC.

Direct validation of these simulation results are difficult as the existence of salinity observations are limited in time and space.
However, by comparison of model and ADCP observations of Atlantic water inflow to the Nordic Seas we are confident that the
above simulations give a realistic picture. It is therefore clearly anticipated that better knowledge of the SSS would lead to much
better description and characterization of the THC and its variability and relation as well as influence on the deep convection rate
of the waters in the Greenland and Labrador Seas.

The main results of the operational oceanography study lead us to conclude that the assimilation of SLA and SST data work
well for HYCOM with the introduction of z-levels in the upper mixed layer. In fact, when compared to results obtained with
the isopycnic coordinate model (MICOM) only, the better representation of the upper layers in HYCOM is clearly revealed in
comparison to profiles from the GTSPP data base. It also appears that assimilation of SLA provides a better advection of signal
vertically into the upper ocean, which is not the case if only SST data was available.

From hindcast and near real time experiments assimilation of SeaWiFS data demonstrate that the ocean colour data, and in par-
ticular the spatial distribution, were very useful for controlling the evolution of the model chlorophyll. As such the assimilation
of these data also had a multivariate impact on other biological variables in the ecosystem model.

The assimilation experiments performed with sea-ice thickness and sea-ice concentration data showed improvement as compared
to free-run experiments without assimilation. This improvement was most noticeable for the experiments with ice concentration,
while the assimilation of ice thickness was somewhat hampered by model bias in the ensemble predictions.

In summary, the SIREOC results have demonstrated that in combination with in-situ data, Earth Observation are necessary both
for climate change monitoring and for operational oceanography. In order to improve our understanding of the Earth system
continuous access to such observations are needed to secure model development and validation as well as to allow for data
assimilation. In the context of operational oceanography, the implementation of the Global Ocean Data Assimilation Experiment
(GODAE) is now entering into an operational demonstration phase from 2003 to 2005. This global experiment is complemented
and supported by several European regional operational oceanography systems including the French MERCATOR project for
the North-East Atlantic, the UK FOAM system, the Mediterranean Forecasting System Pilot Project (MFSPP), and the TOPAZ
system which has been extensively used in this SIREOC project.

The main findings of the SIREOC study is currently also extended with the execution of the MERSEA Strand-1 project funded
in the initial phase of GMES under FP5 from 2003 to 2004. The main deliverables of this project provided in the context of
monitoring for environment and security are to: Deliver reliable, high quality, information products; Report on the problems met
and lessons learnt; and Contribute to longer-term improvement of knowledge, methods and tools.

More detailed information on the goals, approach and status of the MERSEA Strand-1 project can be found at
http://www.nersc.no/˜mersea. In addition it is noteworthy that several of the partners in MERSEA Strand-1 participate in the
complementary ROSES project funded under ESA GMES initial phase. Moreover, the partners of MERSEA Strand-1 and
ROSES are also members of the consortium that submitted the MERSEA Integrated Proposal targeting the GMES issues under
the FP6 call 1.4 Aeronautics and Space. This proposal was selected in June 2003 and is currently undergoing the negotiation for
a final approval and kick-off in January 2004.
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Chapter 1

Introduction

1.1 Motivation

At the onset of the new millennium the number of Earth Observing satellites are growing rapidly for scientific research
and operational application within fields of marine meteorology and oceanography including sea ice covered regions.

As outlined in the Living Planet Program the key modules in an integrated Earth system model are based on com-
bined use of in-situ and satellite observations with modelling and data assimilation tools. This is also a common
view and strategy of the International Programme and Observing System which are defined and established for both
climate research and monitoring and operational applications. Here we mention the World Climate Research Program
(WCRP), International Geopshere and Biosphere Program (IGBP) and Intergovermental Oceanographic Committee
(IOC) under which CLIVAR, GEWEX, CLIC, GCOS, GOOS, EuroGOOS, JGOFS, GAIM, GLOSS and GLOBEC
all highlight the importance of continuous and regular access to Earth Observation data.

Thus, in combination with in-situ data, Earth Observation data have gradually become an important contribution to
improve our understanding of the Earth system and the associated model development and validation. The skill of
model representations of the marine climate and environmental systems has therefore improved dramatically over the
last decade. The increased computational power and improved parameterizations of non-modeled processes have also
contributed to this, and so has data assimilation. In the context of climate research global and regional predictions are
now offered on seasonal , interannual and decadal scales, while the implementation of the Global Ocean Data Assim-
ilation Experiment (GODAE) is under preparation with the aim to go into an operational demonstration phase from
2003 to 2005. European operational oceanography systems in support to GODAE include the French MERCATOR
project for the Atlantic Ocean, the Mediterranean Forecasting System Pilot Project (MFSPP), the UK FOAM global
system and the DIADEM/TOPAZ systems for the North Atlantic - Nordic and Arctic Seas and European coastal zones.

The time is therefore right to undertake a project, such as SIREOC, to investigate the impact and relevance of satellite
data in both climate research and operational oceanography. The motivation behind this project is based on this plus
the fact that models and assimilation methods (notably DIADEM and TOPAZ) required to carry out such a study have
been implemented and undergone gradual validation at the Nansen Environmental and Remote Sensing Center during
the past five years.

It is also clear that the conclusions and recommendations from SIREOC have relevance for ESA’s Ocean Watch
programme preparation as well as the Global Monitoring for Environment and Security (GMES). The latter is an
initiative set up jointly by the European Commission and the European Space Agency to establish by 2008 a Euro-
pean capacity of Global Monitoring for Environment and Security (GMES). It is an integral part of the European
Strategy for Sustainable Development approved at the Gothenborg Summit in June 2001 by the Heads of State and
Government of the countries of the European Union. The commitment to sustainable development, now embedded in
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all Community policies, requires a much enhanced information basis and one of a different nature. The need for pol-
icy decisions to address the environmental, social and economic issues simultaneously, in their interactions and in a
long term perspective necessitates tailored indicators backed by wide-ranging high quality observations and validated
models. The European Union needs independent information to play its part on the global scene, either as a party to
international conventions or to implement and develop European policies. Rapidly developing policies, such as these
related to environment and security, present new information requirements. The interplay between human activities
and the environment needs to be assessed at different territorial levels, from the local to the global, which means that
information can ”zoom” in and out. The increasing influence of human activities on the Earth System as well as the
exposure to natural or technological hazards require rapid reactions.

Thus the mission and challenge of GMES is to contribute to the timely provision of such information necessary to
enable all society agents, each in their own capacity, to take the decisions and actions which will make sustainable
development become a reality. In so doing GMES needs to: (a) objectively identify the combination of causes that
results in the rather low efficiency of the current European capacity to produce policy relevant information; and (b)
specifically propose solutions for a European GMES to be operational and efficient by 2008.

1.2 Objective and workplan

The main objective of this project will be to assess and quantify the relative impact of different Earth Observation
data types for a) climate research and monitoring; and b) operational ocean prediction systems. The impact will
be examined in light of availability of satellite observations of physical oceanographic variables, sea ice variables
and marine ecosystem variables. In so doing the workplan are conducted with specific focus on climate change in
WP2000 and operational oceanography in WP3000.

WP 2000 - Climate Research and Monitoring

The overall goal of this workpackage which focus on climate research and monitoring, with particular attention
on seasonal via inter-annual to decadal time scales, including trend analyses, such as those characteristic for the
equatorial Atlantic, North Atlantic Oscillation (NAO) and the Arctic Oscillation (AO), is to examine the effect of
applying available and planned (simulated) remotely sensed data sets to simulate the mean state and variability in a
state-of-the-art coupled ocean-sea ice model.

To meet this overall goal, three tasks shall be carried out including:

Task 2100: impact assessment,

Task 2200: identification of improvement,

Task 2300: skill assessment.

WP 3000 - Operational Oceanography

The main focus of this workpackage on operational oceanography associated with short-term (weeks to months) pre-
diction capabilities including impact of state estimation and control of the evolving model state, where the DIADEM/TOPAZ
configuration of the NERSC model suite is supplied with Earth Observation of open ocean variables, Arctic sea ice
cover and marine ecosystem data sources, is to assess and quantify the relative impact of different EO data types in
an operational prediction system for physical oceanographic variables, sea ice variables and the marine ecosystem.

To meet this goal the following tasks shall be carried out:
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Task 3100: open ocean physical variables,

Task 3200: Arctic ice cover,

Task 3300: marine ecosystem.

1.3 Key input data sources

Based on available satellite data and other existing observation fields the following key input data sources will be
established.

• Synoptic (daily) atmospheric forcing fields (surface humidity, pressure, vector wind including scatterometer
observations, temperature and humidity, precipitation, short wave radiance, and cloudiness).

• Existing and analysed gridded satellite data fields of sea surface temperature (SST), sea level anomalies (SLA),
ocean color and sea ice extent and concentration.

• Simulated (or constructed) satellite data fields of sea surface salinity (SSS), sea-ice thickness, and absolute
dynamic topography (derived from combined use of altimetry and the marine geoid).

• Monthly mean SST fields from the Integrated Global Ocean Services System Products Bulletin which is acces-
sible from (http://ingrid.ldeo.columbia.edu/SOURCES/IGOSS/).

In particular the following specifics are given for the various data sets:

Combined TOPEX/POSEIDON and ERS-2 data set produced by the CLS Space Oceanography Division as part of
the European Union’ Environment and Climate project DUACS (ENV4-CT96-0357). This data set is available on a
0.25◦ by 0.25◦ grid, at 10 days averages from October 1992 to December 2000. SeeLe Traon et al.(1995, 1998);
Ducet et al.(2000) for references. CLS also makes available a joint satellite based SLA/SST data fields.

Ocean Color: SeaWiFS data were processed at Joint Research Centre (JRC), Ispra, Italy for the DIADEM project.

SSM/I brightness temperature for sea ice are obtained from National Snow and Ice Data Center (NSIDC), Boulder
and converted to concentration and extent fields using NERSC based algorithms (NORSEX algorithm).

Simulated altimeter waveform (and ice thickness) data are obtained from S. Laxon at UCL, UK.

Forcing fields are taken from NCAR/NCEP for WP 2000 and ECMWF for WP 3000.

Levitus climatology are applied for temperature and salinity. In addition the Global Temperature and Salinity Pilot
Project (GTSPP) data are used for validation purposes. This will soon be extended with Argo profile data.

An oceanographic database of the Norwegian and Greenland Seas, compiled at the Arctic and Antarctic Research
Institute, Department of Ocean/Atmosphere Interaction in St. Petersburg have been used. The data set is mainly based
on data from regular Russian cruises prior to the 1990s, and later on supplemented with data from the International
Council for Exploration of the Sea (ICES) under the framework of the INTAS 97-1277 (2000) project. In total more
than 127000 hydrographic stations are included in this database. In addition data from the ocean weather station Mike
(OWSM) provided by the Geophysical Institute, University of Bergen, is included in this study. The station located at
66N, 2E, is the only surviving weather ship from the observational network starting in the late 1940s. Now we have
more than 50 years of near-daily measurements of upper-ocean temperature and salinity, and weekly measurements
of the deeper ocean hydrography, the longest existing deep ocean record in the World.
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The impact analyses will take into account Earth Observation data such as sea surface temperature, sea surface height,
chlorophyll-a, and sea ice concentration and extent from currently operating satellites including ERS–1 and ERS–
2, TOPEX/POSEIDON, NOAA TIROS, DMSP, SeaSTAR, and from recently launched missions such as Jason–1
(December 2001) and Envisat (March 2002).

Investigation of the impact of simulated Earth Observation data shall also be performed for the three future ESA Earth
Explorer missions, i.e. Cryosat (planned for launch in 2004 with the aim to obtain sea-ice thickness measurements),
SMOS (planned for launch in 2005 with the aim to measure surface salinity) and GOCE (planned for launch in 2006
with the aim to measure the marine geoid)Drange et al.(1999); J.A.Johannessen et al.(2001); SMOS(2001); Kerr
(November 1998); GOCE group(1998); SP-1196(1)(1996); Wingham(1999).
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Chapter 2

WP 2000: Climate Research and Monitoring

This WP addresses both regional and global aspects of sea surface salinity (SSS) for both the present day climate
and for a possible climate state in the second half of the 21st century. For this, two model systems are adopted.
One is a global version of the Miami Isopycnic Coordinate Ocean Model (MICOM; (Bleck et al., 1992)), forced with
daily atmospheric re-analyses fields provided by NCAR/NCEP (Kalnay et al., 1996). A dynamic-thermodynamic
sea ice module is an integrated part of the model (Drange (1996); Harder (1996)). The second model system is
the Bergen Climate Model (BCM; (Furevik et al., 2003)), consisting of the atmospheric General Circulation Model
(GCM) ARPEGE/IFS (Déqúe et al., 1994) coupled to the above mentioned version of MICOM.

The spatial-temporal characteristics of SSS have been explicitly examined for the following regions: The Indian-
Indonesian-Pacific west of 150◦W; The Kuroshio Current; The North Pacific; The Gulf of Guinea; Equatorial At-
lantic; Guyana Current (north of the South-Americal continent); The Caribbean Sea/the Gulf of Mexico; and The
region off Newfoundland.

In addition, the coupling between SSS and the following processes have been studied: The North Atlantic Oscilla-
tion/Arctic Oscillation; and The Atlantic Thermohaline Circulation.

The objective of the analyses has been to explore and assess the effect of applying available and planned (simulated)
remotely sensed data sets to simulate the mean state and variability in state-of-the-art coupled ocean-sea ice and in
fully coupled atmosphere-sea ice-ocean GCMs.

The WP-description starts with a section summarising and synthesising the findings of the analyses. Thereafter, the
applied model tools are described, followed by descriptions of the findings.

2.1 The OGCM - MICOM Modelling System

For the forced integrations, the MICOM OGCM was configured with a local horizontal orthogonal grid system with
one pole over North America and one pole over western part of Asia (Bentsen et al., 1999). The horizontal resolution
is 60–80 km over the entire North Atlantic region between 30–60◦N. Another integration with doubled horizontal
resolution has also been conducted. The overall features from the latter integration are consistent with the 60–80 km
resolution results presented here, although local differences exist. A third integration with four times the resolution
is presently under way. These integrations, together with results from the coupled system with grid focus in both the
atmosphere and the ocean, are the subject of another paper.

The OGCM has 24 layers in the vertical, of which the uppermost mixed layer (ML) has a temporal and spatial varying
density. The specified potential densities of the sub-surface layers are chosen to ensure proper representation of the
major water masses in the North Atlantic/Nordic Sea region. The densities of the isopycnic layers (inσ0-units) are
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2.1 The OGCM - MICOM Modelling System 6

24.12, 24.70, 25.28, 25.77, 26.18, 26.52, 26.80, 27.03, 27.22, 27.38, 27.52, 27.63, 27.71, 27.77, 27.82, 27.86, 27.90,
27.94, 27.98, 28.01, 28.04, 28.07, and 28.10.

The vertically homogeneous ML utilizes theGaspar et al.(1990) bulk parameterization for the dissipation of turbu-
lent kinetic energy, and has temperature, salinity and layer thickness as the prognostic variables. In the isopycnic
layers below the ML, temperature and layer thickness are the prognostic variables, whereas salinity is diagnostically
determined by means of the simplified equation of state ofFriedrich and Levitus(1972). The bathymetry is computed
as the arithmetic mean value based on the ETOPO-5 data base (Data Announcement 88-MGG-02, Digital relief of
the Surface of the Earth, NOAA, National Geophysical Data Center, Boulder, Colorado, 1988).

The thermodynamic module incorporates freezing and melting of sea-ice and snow covered sea-ice (Drange and Simonsen,
1996), and is based on the thermodynamics ofSemtner(1976); Parkinson and Washington(1979); andFichefet and Gaspar
(1988). The dynamic part of the sea-ice module follows the viscous-plastic rheology ofHibler (1979), where sea-ice
is considered as a two-dimensional continuum. The dynamic ice module has been further modified byHarder (1996)
to include description of sea-ice roughness and the age of sea-ice, and utilizes the positive definite advection scheme
of Smolarkiewicz(1984).

The continuity, momentum and tracer equations are discretised on an Arakawa C-grid configuration (Arakawa and Lamb,
1977). The diffusive velocities (diffusivities divided by the size of the grid cell) for layer interface diffusion, momen-
tum dissipation and tracer dispersion are 0.02 m s−1, 0.025 m s−1 and 0.015 m s−1, respectively, yielding actual
diffusivities of about 103 m2 s−1. A flux corrected transport scheme (Zalesak(1979); Smolarkiewicz and Clark
(1986)) is used to advect the model layer thickness and the tracer quantities.

The diapycnal mixing coefficientKd (m2 s−1) is parameterized according to theGargett(1984) expression

Kd =
3× 10−7

N
,

whereN =
√

g
ρ

∂ρ
∂z (s−1) is the Brunt-V̈ais̈alä frequency (hereg (m s−2) is the gravity acceleration,ρ (kg m−3) is the

density andz (m) is the depth). The numerical implementation of the equation follows the scheme ofMcDougall and Dewar
(1998).

2.1.1 OGCM spin-up and forcing

For the simulations presented here, the model was initialized by the JanuaryLevitus and Boyer(1994) andLevitus et al.
(1994) climatological temperature and salinity fields, respectively, a 2 m thick sea-ice cover based on the climato-
logical sea-ice extent (Gloersen et al., 1992), and an ocean at rest. The model was then integrated for 150 years by
applying the monthly mean NCEP/NCAR atmospheric forcing fields, and thereafter forced with daily NCEP/NCAR
reanalysis fields (Kalnay et al., 1996) twice for the five year period 1974–1978. From the NCEP/NCAR reanaly-
sis, wind stress, short wave, long wave, latent and sensible heat fluxes, precipitation, runoff and sea-level pressure
fields are used. The momentum, heat and fresh water fluxes are modified when the modelled surface state differs
from the NCEP/NCAR reanalysis surface state by applying theFairall et al. (1996) bulk parameterization scheme
(Bentsen and Drange, 2000).

During the first 150 years of the integration, the ML temperature and salinity were linearly relaxed towards the
monthly-mean climatological values of respectivelyLevitus and Boyer(1994) andLevitus et al.(1994). The e-folding
relaxation time scale was set to 30 days for a 50 m thick ML, and it was reduced linearly with ML thicknesses
exceeding 50 m. No relaxation was applied in waters where sea-ice is present in March in the Arctic and in September
in the Antarctic to avoid relaxation towards temperature or salinity outliers in the poorly sampled polar waters. In
addition, the relaxation was limited to a maximum model to observation mismatch of 0.5 psu and 0.5◦C for salinity
and temperature, respectively. The latter restriction is of special importance for the Atlantic Ocean as it tends to
maintain the simulated hydrodynamic properties of the water masses associated with the Gulf Stream-Labrador Sea
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system irrespective of the actual position of these current systems. Continental run-off is included by adding fresh
water into the appropriate coastal grid cells (Furevik et al., 2003).

For the integrations presented here, annually repeated heat and fresh water relaxation fluxes with weekly temporal
resolution were added to the ML. In this way, temperature and salinity anomalies are free to evolve and propagate,
whereas the mean thermodynamic state is kept fairly unchanged. It was found that such a procedure is of special
importance for the SSS field, indicating problems with the forcing (either the prescribed NCEP/NCAR precipitation
or run-off fields, or the computed evaporation field), or inherent model deficiencies linked to for instance advection or
vertical mixing of the surface waters. The weekly heat and fresh water relaxation fluxes were diagnosed from the last
5 years of the spin-up integration. For this period, daily forcing fields for the period 1974–1978 were applied. The pe-
riod was chosen as it represents a fairly neutral state of the North Atlantic Oscillation (NAO). The first NCEP/NCAR
model integration was then initialized from the ocean end state of the 150 years spin-up integration.

2.2 The AOGCM - BCM Modelling System

2.2.1 The atmospheric component

The atmospheric model ARPEGE/IFS is a spectral model which was originally developed for weather prediction by
METEO FRANCE and ECMWF - European Centre for Medium-Range Weather Forecasts (Courtier et al., 1991),
and later extended to a climate version byDéqúe et al.(1994). Descriptions of later model improvements can be
found inDéqúe and Piedelievre(1995) andDéqúe et al.(1998). We will here only give a brief outline of the model.

The ARPEGE/IFS is a spectral model with semi-Lagrangian 2-time level integration. This scheme provides a dou-
bling of efficiency as compared with a 3-time level leapfrog scheme. Semi-Lagrangian formulation also gives the
opportunity to use a linear grid for discrete computations. As the number of grid points are smaller in the linear grid
than in the more common quadratic grid, this saves additional computational costs (Hortal, 1998). In this study we
use a spectral truncation of wave number 63, linear grid and a time step of 1800 s. The linear TL63 grid has the same
number of points as the quadratic T42 grid.

The hydrostatic Navier-Stokes equations govern the evolution of the atmospheric flow by ensuring conservation of
mass, energy and momentum. The acceleration of gravity is constant. The model atmosphere is a mixture of air,
water vapour and an optional number of dynamically passive constituents. One of these is ozone, which is simulated
using an Eulerian advection scheme. This option has been turned off in the present integration.

The energy sources and sinks in the equation system described above arise from discretisation, horizontal diffusion
and the time filter. Sources and sinks due to small scale physical processes are parameterised. The grid-boxes are
defined by the computational grid, consisting of the points at which the non-linear terms in the Navier Stokes equa-
tions are calculated (reduced Gaussian grid). This is a latitude/longitude grid, which in the TL63 case has 64 nearly
equidistant latitudes. The reduction of the Gaussian grid near the poles (Hortal and Simmons, 1991) gives approxi-
mately uniform horizontal resolution (on the target sphere). The horizontal grid distribution is shown in Figure2.1.
The vertical hybrid coordinate (Simmons and Burridge, 1981) follows the topography in the lower troposphere, but
becomes gradually parallel to pressure surfaces with increasing height. For the experiments presented here, we apply
31 model levels, ranging from the surface to 0.01 hPa. Spurious reflection at the model top is avoided through strong
horizontal diffusion in the top model layers.

The physical parameterisation is divided into several explicit schemes, which each calculates the flux of mass, energy
and/or momentum due to a specific physical process. The physical parameterisation schemes in ARPEGE have
originally been taken from the climatic version of Mét́eo-France’s EMERAUDE model, described inCoiffer et al.
(1987). Different schemes employed in the present version of ARPEGE and relevant references are listed in Table2.1.

Different from the model description inDéqúe et al.(1998), the particular version used in BCM contains a convective
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Figure 2.1: The horizontal grid distribution for the atmosphere (upper) and ocean (lower).

Parameterisation type Reference

Surface Masutani et al.(1995)
Turbulence Louis(1979); Geleyn(1988); Richard and Royer(1993)
Shallow convection Geleyn(1987)
Radiation Morcrette(1991)
Convection Bougeault(1985)
Ozone Cariolle and D́eqúe (1986)
Gravity wave drag Déqúe et al.(1994); Lott and Miller (1997); Lott (1999)
Mesospheric drag Déqúe et al.(1994)
Soil Noilhan and Planton(1989); Mahfouf et al.(1995)
Clouds and precipitation Richard and Royer(1993); Déqúe et al.(1994)

Table 2.1: Parameterisation schemes employed in ARPEGE.
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Condition Source

Orography US Navy data
Vegetation roughness length Mahfouf et al.(1995)
Land ice extent, vegetation, surface emissivityCLIMAP 1981
Albedo Geleyn and Preuss(1983)

Table 2.2: Boundary data employed in ARPEGE.

gravity-wave drag parameterisation (Bossuet et al., 1998), a new snow scheme (Douville et al., 1995), an increase of
the orographic wave drag (Lott, 1999) and modifications in deep convection and soil vegetation schemes. Data for
boundary conditions employed by the ARPEGE model are listed in Table2.2.

2.2.2 The ocean-sea ice component

The main features of the ocean and sea ice modules in BCM are identical to the description given above. Therefore,
only the major differences are described here.

To avoid grid singularities in the computational ocean domain (Bentsen et al., 1999), one pole is located over central
Siberia while the other is at the South Pole (Figure2.1). The resulting ocean grid configuration is, for comparison,
quite similar to the one presented inMadec and Imbard(1996). With the exception of the equatorial region, the ocean
grid is almost regular, with horizontal grid spacing approximately2.4◦×2.4◦. In order to better resolve the dynamics
near the equator, the horizontal spacing in the meridional direction is gradually decreased to 0.8◦ along the equator.
In the vertical, the ocean model has 24 layers, with potential densities ranging fromσθ = 23.54 to σθ = 28.10.

The ocean - sea ice module share the same grid, and the heat, salt and water fluxes among them are handled in an
internally consistent way.

2.2.3 The coupler

The OASIS (Ocean Atmosphere Sea Ice Soil) coupler has been used to couple the atmosphere and ocean mod-
els. It was developed at the National Centre for climate modelling and global change (CERFACS), Toulouse,
France (Terray and Thual(1995); Terray et al.(1995)), and is currently in use in many climate centres, among them
the ECMWF, Max Plank Institute (MPI) and CERFACS (e.g.Guilyardi and Madec(1997); Cassou et al.(1998);
Baretta et al.(1998)). In BCM, OASIS version 2.2 (Terray et al., 1998) is used.

The main tasks of OASIS are to synchronise the models, so the fastest running model can wait for the other model
until they are both integrated a prescribed time interval (1 day), and to read the exchange fields from the source model,
apply weight coefficients for the interpolations, and finally write the new fields to the target model.

2.3 Model integrations and experiments

Three types of model integrations have been performed:

• One 300 years control integration with the BCM in the setting described above

• Four 80 years integrations in which the atmospheric concentration of CO2 is increased by 1 % pr year (following
the so-called CMIP-protocol). The only difference between the four integrations is the initial condition, taken
as four arbitrary climate states from the 300 years control integration
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• Six 54 years integrations with the uncoupled OGCM, forced with daily NCEP/NCAR reanalysis fields for the
period 1948 to present. Here two types of experiments have been conducted: 1) The horizontal resolution in
the central North Atlantic Ocean has been 80 km, 40 km and 20 km. 2) For the 80 km case, four members have
been integrated in order to assess the role of different initial conditions on the solution.

The CO2-integrations are representative of theneteffect of the present day global warming, and the atmospheric CO2

concentration doubles at about 70 years. The members are identified by the names E76–E79 in the figure panels
below.

The reason for presenting the four-member CO2-ensemble is to identify features that arenot dependent on (random
occurring) natural climate variability modes like El-Niño/Southern Oscillation (ENSO) and NAO/AO in the model
system. Therefore, the differences between the four ensemble members can be considered to (at least partially) span
out the natural variability characteristics in time and space w.r.t. SSS and SST fields.

The state of the natural variability modes is positively unknown prior to a satellite-mission, with the possibility that
the ENSO-variability can be forecasted for up to 6 months. To cover the actual ocean state during a specific mission,
the presented analyses should, ideally, take into consideration cases with the actual ENSO, NAO/AO, etc. modes.
Such an analyses is - in principle - feasible with a coupled atmosphere-sea ice-ocean system. The analyses presented
here have been limited to two 20-years time periods (simulation year 1-20 and year 61-80), and by that focussing on
a possible present-day situation, and a scenario for the situation in the second half of the 21st century.

It should be mentioned that the presented results are based on one model system. The obtained variability should
therefore be evaluated against, preferably,in situ observations. Unfortunately,in situ observations of the global SSS-
field are not available. Therefore, the best evaluation of the results presented here need to be based on the relatively
few availablein situSSS observations, on modelled hindcast experiments, and on comparable diagnostics from other
OGCMs and AOGCMs.

Finally, the analyses have been extended to include the evolution and variability of SSS and SST at a doubling of
the atmospheric concentration of CO2. The latter fields yield an estimate of a possible change in the thermodynamic
properties of the World Ocean surface waters during the second half of the 21st century. This comparison is of
importance for remotely sensed SSS as it indicates the accuracy needed for present-day SSS-products to be of value
to map (likely) changes in the SSS-field during the 21st century.

2.4 Results WP 2100 Impact Assessment

2.4.1 The atmosphere-sea ice-ocean system

The analyses presented below are based on the annual and seasonal temporal-spatial variability of the global SSS-field
produced by the atmosphere-sea ice-ocean model BCM.

Four integrations of BCM are used in the analyses, and the only difference between the integrations are different
initial states of the model system. There are basically two reasons for performing an ensemble-type of integrations
with a coupled climate system. First of all, the 3-dimensional state of the global climate system for a specific time is
unknown. Secondly, a climate model is not perfect (i.e., it does not reproduce the real climate system in all aspects),
so even if the initial state of the climate system were known, the model evolution of the climate would depart from
the real climate. The ensemble approach presented here gives a measure of the mean spatial-temporal state and the
spreading about the mean state.

The four integrations, each one lasting for 80 years, are started out from four different states of a 300 years control
integration with BCM (Furevik et al., 2003). The concentration of atmospheric CO2 is increased by 1 % per year
in each of the four ensemble members. This increase corresponds roughly to the expected, net effect of greenhouse
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gasses and aerosol particles in the atmosphere in the 21st century. For comparison, at the end of the ensemble
integrations, the global surface temperature increases by about 2◦C, which is in the bulk-part of the climate change
scenarios presented by the Intergovernmental Panel of Climate Change (IPCC).

In the analyses presented below, monthly mean fields of SSS have been used for the first 20 years of the integration
(resembling the present-day climate), and for the last 20 years of the integration (resembling a possible climate state
in the middle of the second half of the 21st century).

The obtained standard deviation (std) maps indicate where remotely sensed SSS can be used to detect changes in the
annual to seasonal SSS-field. In addition, regions with low natural variability in SSS are candidates for long-term
calibration of the SSS-sensor.

The SSS is given in psu, or the so-called practical salinity unit. This is the standard measure of the salinity in the
ocean, and it essentially represents the weight in gram of dissolved minerals (or salts) per kg seawater. A typical
salinity of the surface waters is 35 psu, or 35 parts per thousand.

The four ensember members are labelled E76 to E79.

2.4.2 Annual SSS

Figure2.2 shows, in the upper row, the simulated global SSS (psu) and SST (◦C) from ensemble member E77. In
row 2–3 (4–5), the SSS (SST) sdv for each of the members are given based on year 1–20 of the integration (i.e., for
the present day climate forcing).

Annual variability exceeding 0.1 psu std in SSS is mainly found in the tropics between 30◦S and 30◦N. All of the
ensemble members show largest variability in the Central and Eastern Indian Ocean, in the Indonesian Region, and in
the Pacific west of 150◦W. The variability in the tropical Atlantic Ocean is generally much weaker than in the Indian
and Indonesian regions. One pronounced exception to this is the fairly large variability in SSS in the waters just north
of the South-American continent.

There are essentially no variability in the SSS-field poleward of 30◦S. This does not necessarily imply that the
Southern Ocean is a region of no variability. There are two reasons for this: Firstly, the Southern Ocean is a region
without boundary currents like the Gulf Stream and Kuroshio Current. This means that the heat transport - and
possibly the salt transport - is governed by eddies, and eddies are positively not present in the applied model system.
Secondly, the Southern Ocean is probably the region where both ocean GCMs and climate GCMs differ most. This,
in combination with very few SSS-observations in the Southern Ocean, makes it hard to assess the reliability of the
simulated SSS-field and variability.

Poleward of 30◦N, variability at about 0.1 psu std in SSS is found over most of the the Pacific Ocean, and in the
region off Newfoundland. This variability is linked to the southward flowing fresh water coming from the North At-
lantic sub-polar gyre, and are in accordance with observations (Yashayaevet al., available from http://www.mar.dfo-
mpo.gc.ca/science/ocean/woce/labsea/labseaposter.html).

2.4.3 Seasonal SSS

The seasonal variability is similar to the annual variability, although the variability is generally stronger. The follow-
ing regions have been explicitly considered: 1) Indian-Indonesian-Pacific west of 150◦W, 2) Kuroshio Current, 3)
North Pacific, 4) Gulf of Guinea, 5) Equatorial Atlantic, 6) Guyana Current (north of the South-Americal continent),
7) the Caribbean Sea/the Gulf of Mexico, and 8) the region off Newfoundland.

In the following, the SSS std is characterisedweak, intermediateandstrongbased on comparison with the other
seasons. Therefore, the characteristics ”Equatorial Atlantic: Strong, between 0.1-0.2 psu std” for seasonX means
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Figure 2.2: Uper row: Mean SSS and SST for year 1-20 of E77. Row 2–3: SSS sdv for E76–E79 for year 1-20. Row
4–5: SST std for E76–E79 for year 1-20.
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that seasonX is the season with strongest variability in the Equatorial Atlantic, and that the variability is 0.1-0.2 psu
std.

January–March

The variability in SSS as seen from Fig.2.3can be characterised as follows (based on the above mentioned regions):

1) Indian-Indonesian-Pacific west of 150◦W: Strong,> 0.5 psu std over large regions bounded by 70◦E-180◦E
2) Kuroshio Current: Weak, at most 0.1 psu std
3) North Pacific: Weak, about 0.1 psu std
4) Gulf of Guinea: Strong, reaching 0.5 psu std towards the African coast
5) Equatorial Atlantic: Intermediate, between 0.1-0.2 psu std
6) Guyana Current (north of the South-Americal continent): Weak, about 0.1 psu std
7) The Caribbean Sea/the Gulf of Mexico: Intermediate, about 0.3 std psu south of the Hispaniolas
8) The region off Newfoundland: Weak, slightly above 0.1 std psu

April–June

The variability for the spring season April–June are given in Fig.2.4, and can be characterized as .

1) Indian-Indonesian-Pacific west of 150◦W: Intermediate, generally< 0.5 psu std
2) Kuroshio Current: Intermediate, 0.1-0.2 psu std
3) North Pacific: Weak, at most 0.1 psu std
4) Gulf of Guinea: Weak, only significant SSS-signal just off the African coast
5) Equatorial Atlantic: Intermediate, around 0.2 psu std
6) Guyana Current (north of the South-Americal continent): Strong, exceeding 0.3 psu std
7) The Caribbean Sea/the Gulf of Mexico: Strong,> 0.5 std psu south of the Hispanolan islands
8) The region off Newfoundland: Intermediate, exceeding 0.2 std psu

July–September

The July-September SSS variability are provided in Fig.2.5, and can be grouped as follows:

1) Indian-Indonesian-Pacific west of 150◦W: Weak, generally< 0.4 psu std
2) Kuroshio Current: Strong, about 0.4 psu std
3) North Pacific: Strong, generally above 0.1 psu std over the entire region
4) Gulf of Guinea: Weak, 0.2 psu std
5) Equatorial Atlantic: Intermediate, at most 0.2 psu std
6) Guyana Current (north of the South-Americal continent): Strong, exceeding 0.3 psu std
7) The Caribbean Sea/the Gulf of Mexico: Weak, only significantly larger than 0.1 psu std just north of the South-
American continent
8) The region off Newfoundland: Strong, 0.2-0.3 std psu

October–December

The October-December variability in SSS is given in Fig.2.6, and has the following characteristics:

1) Indian-Indonesian-Pacific west of 150◦W: Strong, 0.4 psu std and more over a significant part of the region
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Figure 2.3: Uper row: Mean SSS and SST for Jan-Mar of year 1-20 of E77. Row 2–3: SSS std for E76–E79 for
Jan-Mar of year 1-20. Row 4–5: SST std for E76–E79 for Jan-Mar of year 1-20.

2) Kuroshio Current: Weak, about 0.1 psu std
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Figure 2.4: Uper row: Mean SSS and SST for Apr-Jun of year 1-20 of E77. Row 2–3: SSS std for E76–E79 for
Apr-Jun of year 1-20. Row 4–5: SST std for E76–E79 for Apr-Jun of year 1-20.

3) North Pacific: Weak, hardly exceeding 0.1 psu std
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Figure 2.5: Uper row: Mean SSS and SST for Jul-Sep of year 1-20 of E77. Row 2–3: SSS std for E76–E79 for
Jul-Sep of year 1-20. Row 4–5: SST std for E76–E79 for Jul-Sep of year 1-20.

4) Gulf of Guinea: Strong,> 0.5 psu std
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multicolumn2c—

multicolumn2c—

Figure 2.6: Uper row: Mean SSS and SST for Oct-Dec of year 1-20 of E77. Row 2–3: SSS std for E76–E79 for
Oct-Dec of year 1-20. Row 4–5: SST std for E76–E79 for Oct-Dec of year 1-20.

5) Equatorial Atlantic: Weak, about 0.1 psu std
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6) Guyana Current (north of the South-Americal continent): Weak, about 0.1 psu std
7) The Caribbean Sea/the Gulf of Mexico: Weak, 0.1-0.2 psu std
8) The region off Newfoundland: Intermediate, 0.1-0.2 std psu

2.5 WP 2200: Identification of improvement

2.5.1 The ocean-sea ice system

To examine the ocean response of the highly variable atmospheric forcing, years with high and low winter-NAO index
forcings have been grouped, and the differences in the ocean state between these years and the mean ocean state were
examined. In this exercise, deviations in the NAO index exceeding 1 std were considered as years with high or low
NAO index. Over the time period 1948-1998, 9 years were identified as high NAO years (1957, 61, 73, 75, 76, 81,
83, 84, 89, 90, 92, 93, 94, 95, 99 ), and nine years where identified as low NAO years (1958, 60, 62, 63, 64, 65, 66,
68, 69, 70, 71, 77, 79, 87, 96 ).

2.5.2 SST and SSS variability linked to the NAO

The major findings are displayed in Fig.2.7.

It follows from the figure (upper row) that there is a significant change in SST with changes in the NAO index.
For years with high NAO index, the SST in the Nordic Seas, the Baltic and the sub-tropical Atlantic is up to 1◦C
higher than on average, whereas the Irminger and Labrador Seas are up to 1◦C lower than on average. The opposite
situation is the case for years with low NAO index. The extent and strength of the obtained three-pole pattern between
the Nordic Seas, the Irminger and Labrador Seas, and the sub-tropics are in general accordance with observations
(Dickson, 1997).

The most striking features seen in the SSS field for high NAO-years are the higher than normal SSS in the North Sea
(above 0.3 psu), in the eastern part of the sub-tropical region (up to 0.1 psu), in the polar waters north of Newfoundland
(up to 0.2 psu), in the Guyana Current region and south of the Hispaniola islands (about 0.1 psu), and the lower than
normal SSS in the waters just north of the Gulf Stream (about 0.1 psu). Again, the situation is near reversed for low
NAO-years. Therefore, the difference in SSS between high and low NAO-years is about twice of the above stated
values.

There are also substantial differences in the thickness of the upper mixed layer between years with high and low NAO
indexes (see Fig.2.7, third row). The most prominent feature is the di-pole pattern between the Greenland Sea and
the Labrador-Irminger Seas. This di-pole is caused by both changes in SST and SSS, and the pattern is consistent
with observations (Dickson, 1997).

Another interesting feature is the change in the water transport as a consequence of variations in the atmospheric
forcing. In Fig.2.7, lower row, the anomalies in the vertically integrated stream function are displayed. It is seen that
the largest differences in the mass transport (exceeding 5 Sv) are found in the sub-tropical and sub-polar gyres of the
Atlantic Ocean and in the central Arctic Basin. There is also a 1-2 Sv difference in the strength of the circulation in
the Norwegian Sea with 1 Sv higher (2 Sv weaker) than normal circulation for years with high (low) winter NAO
indexes. There are no direct observations of the strength of the basin scale transport in the ocean. However, analyses
of hydrographic data indicate a pattern similar to the pattern predicted by the model (Curry et al., 1998).
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Figure 2.7: Simulated anomalies in March for winters with high (left panel) and low (right panel) of SST (◦C) at the
top row, SSS (psu) in second row, mixed layer thickness (m) in third row and stream function (Sv) at the bottom.
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Figure 2.8: The GIS-Ridge and its surrounding waters. Isobaths are drawn for every 500 m. Schematic surface
currents with key references are indicated. Abbreviations are explained in the text. Grey lines indicate model (M),
Faroe north (FN) and south (FS), and Svinøy (S) sections. From Nilsen et al.(2003).

2.6 Importance of import of SSS to the Nordic Seas

The Atlantic Thermohaline Circulation (ATHC) is a dynamically active component of the climate system, in particu-
lar on multi-annual to decadal time scales (Curry and McCartney, 2001). The heat and salt carried northward across
the Greenland-Iceland-Scotland (GIS) ridge are substantial, and both quantities are of importance for the water mass
and ice distribution of the Nordic Seas and Arctic Ocean, and possibly also the deep mixing and water mass transfor-
mations taking place in the region (Furevik et al., 2003). The gateways for the exchange of water masses between the
two ocean basins are the 290 km wide and 200-620 m deep Denmark Strait (DS) between Greenland and Iceland, the
400 km wide and 300-500 m deep Iceland-Faroe Ridge (IFR), and the 200 km wide Faroe-Shetland Channel (FSC)
with the 850 m deep Faroe-Bank Channel (FBC) at its entrance (Fig.2.8).

Time series of simulated transports over the GIS ridge have been low-pass filtered using a Butterworth filter with
cut-off period of 3 years (Fig.2.9). All sections reveal substantial variability, with typical amplitudes for the transport
anomalies of the order 1-2 Sv. The net flow through the FSC, for instance, was very low during the first 20 years
(1.8 Sv), then for the next 17 years the average was 3.3 Sv, before decreasing to near 2 Sv for the remaining part of
the simulation. The total AtI however has highest transport from the late 50’s to early 70’s.

As expected, also temperature and salinity show pronpunced multi-annual to decadal fluctuations in the inflow region.
This is exemplified in Figure2.10, showing time-series of temperature and salinity at three locations near or at the
Faroe Islands.

The following conclusions can be drawn based on the observation-model comparison: 1) The hind-cast model system
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Figure 2.9: Temporal variation of the 3-years low pass filtered simulated net (a), inflow (b), and outflow (c) volume
transports through the FSC (solid lines), IFR (dashed lines), DS (dot-dashed lines), and total inflow (dotted line).
Note that the net flux through the DS is defined positive southwards. From Nilsen et al.(2003).
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Figure 2.10: Temporal variation of the 3-years temperature and salinity anomalies south of the Greenland-Scotland
Ridge (Rockall Trough), on the ridge (Faroe-Shetland Channel) and north-east of the ridge (Svinøy section). Simu-
lated data from the regional model are shown in red and the observations are shown as filled circles. Note: Different
vertical axes are used. The blue line in panel d) is three times the amplitude of the observed variability. Figure from
Hátún et al., in prep.
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is able to qualitatively describe the inter-annual variability in temperature. 2) The fit to the observations are not so
good for salinity – in general the simulated amplitude in the salinity variability is too low. 3) The observed, 3-years
anomalies in salinity, range from 0.1–0.3 psu.

The reason for the relatively realistic simulation of temperature is believed to be linked to the tight coupleing between
SST and the (prescribed) surface air temperature. The coupling between SSS and the atmopshere is much weaker, and
takes place indirectly through evaopration−precipitation fluxes. Therefore, remotely sensed SSS have the potential
to improve the model system in the region both in hind-case and in forcast (or predictability) modes.

2.6.1 Atlantic Thermohaline Circulation

Another way to display the basin scale response to the applied variability in the atmospheric forcing fields is to look
at the Atlantic Thermohaline Circulation (ATHC).

A common diagnostics for the ATHC is the strength of the overturning, either extracted within a certain latitude-depth
interval, or at a fixed latitude. In the upper panel of Fig.2.11, the simulated annual mean ATHCs (in Sv=106 m3 s−1)
from the forced integrations in the latitude band 20◦N-50◦N are shown for the period 1948–1999. Irrespective of the
initial conditions, the ATHCs show the same trend and variability after an adjustment time of 5–10 years (this result
also holds for the conducted integration with doubled horizontal resolution). In particular, the model realizations
yield minima round year 1960 and 1980, maxima round 1975 and 1995, and a gradual increasing trend from 1960 to
1995.

Decadal scale variability is also found in the 300 years BCM simulation (lower panel of Fig.2.11). From the BCM
integration, variability modes on longer time scales are also present. Whether these modes are real or are caused by
deficiencies of the coupled system, is hard to assess. However, the focus of this study is on decadal scale variability,
so the long term variability has been filtered in most of the analyses presented here.

The locations of the convective mixing in the forced integrations and the BCM simulation are fairly similar (Fig.2.12),
and are located in the Labrador, Irminger and GIN Seas. The classical picture is that deep convective mixing takes
place in the Labrador and the GIN Seas, but not in the Irminger Sea. However, as pointed byPickart and Lavender
(2000) andPickart et al.(2002), historical and recent observations indicate that the Irminger Sea is ialso a region of
deep mixing. This is also the case for the modelling results presented here.

Volume mixing indices are constructed as the normalized mean February to April (FMA) ML volume in the areas
where the FMA ML depth exceeds 1500 m at least once during the actual integration (the shaded areas in Fig.2.12).
The maximum ML is between 100 and 200 m deeper in the BCM experiment compared to the forced integrations,
but otherwise very similar. For both types of model experiments, the mixing penetrates deepest in the Irminger and
GIN Seas (1000–1400 m on average), whereas there is mixing to 600–800 m in the Labrador Sea.

Lag correlations along vertical sections are a powerful diagnostics to examine the formation, propagation and decay of
thermodynamic and dynamic anomalies. Here we present density, temperature, salinity and velocity anomaly correla-
tions with respect to the leading PC of the ATHC from the BCM integration along two sections: One section follows
the western continental slope of the Atlantic Ocean, and the other the 48◦N parallel (Fig.2.13). The corresponding
fields from the forced integrations resemble those presented here, and are therefore not displayed.

For the section along the western continental slope (Fig.2.14), density anomalies caused by temperature, and to some
extent by salinity, form at lag of+6 to +4 years in the sub-polar gyre. These anomalies grow with time, and a
deep southward propagating signal is seen as cold, fresh and dense water. From the velocity panels, it follows that
the southward flow of dense water is compensated by a northward velocity anomaly extending over the uppermost
4000 m of the water column. It is also seen that the surface water density anomaly disappears at lags< −2 years,
and that this is caused by warm and saline surface waters, with the former overcompensating the effect on density
compared to the latter.
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Figure 2.11: Annual mean ATHC from the forced integrations for the the period 1948–1999 (top) and from the 300
years BCM control integration (bottom). The four forced members are shown as dashed lines with the ensemble
mean as solid thick line.
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Figure 2.12: The shading shows the areas in the forced simulations (left) and the BCM simulation (right) where the
mean February to April mixed-layer dept h exceeds 1500 m at least once during the simulations. In the left panel,
the different shadings indicate how many of the realizations that experience deep mixing at each location, going from
light grey (one realization) to dark grey (all four realizations).

Figure 2.13: The location of the vertical sections used in Figs. 2.14 (left panel) and 2.15 (right panel). The sections
end where the arrow is drawn. In Fig. 2.14, the velocity is directed along the section, with positive correlations
indicating anomalous southward flows. In Fig. 2.15, the velocity is normal to the section, with positive correlations
indicating anomalous northward flows.
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Density Temperature Salinity Velocity

Figure 2.14: Lag correlations between potential density (first column), temperature (second column), salinity (third
column), and velocity (forth column) along the section shown in the left panel of Fig. 2.13, and the leading PC of
the ATHC from the BCM experiment. The time series have been band-pass filtered with a third order Butterworth
filter with cut-off frequencies 1/100 and 1/5 yr−1. The light shaded area indicates the 95% significance level. Positive
(negative) correlations are given by solid (dashed) lines. Contour intervals are 0.25, 0.4 and 0.6 with increasing
thickness of the contour lines. The lags (in years, positive when ATHC is leading) are indicated in the lower left
corner of the panels. Section length (depth) is 7943km (4500m).
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In the section along 48◦N (Fig. 2.15), the deep southward propagating signal is clearly seen as a plume of cold and
fresh water. Furthermore, the velocity anomaly is baroclinic with a northward component over the uppermost 2000 m
of the water column in the western part of the basin. The northward component carries warm and saline waters,
leading to a negative density anomaly there. The reduced density of the northward surface and near surface flow
tends to inhibit convective mixing when these waters reach the sub-polar gyre. This is also shown in the density
panels of Fig.2.14at lag−2 and−4 years. In this way, the previous mixing event can generally not be maintained
over time due to the high temperature of the northward flowing surface waters. At the same time, the accompanying
supply of saline surface waters acts as a preconditioning factor for the following mixing event when the surface water
becomes sufficiently cooled.

A surface view of the zero time lag correlations between the ATHC and SSS is provieded in Fig.2.16. Three main
features can be identified from these panels: A region of positive correlation between in the sub-polar gyre and the
band between 40–50◦N (in all integrations but E77); a region of negative correlation in the Gulf of Mexico; and a
large region of negative correlation in the South Atlantic sub-tropical gyre (again in all integrations but E77).

Based on the presented correlation analyses we conclude that remotely sensed SSS have the potential to be used to
detect decadal-scale changes in the ATHC.

2.7 WP 2300: Skill Assessment

2.7.1 Possible change in SSS during the 21st century

Figure2.17.

The global mean change in surface temperature and net precipitation in BCM at a doubling of CO2 coincides with
the mean value of the 19 CMIP-models (Sorteberg, pers. com., 2002), indicating that the applied model system is
consistent with other climate models.

At a doubling of CO2, SST increases by more than 1.5◦C in the sub- tropical gyres, and by more than 0.5◦C over
most of the other regions.

The situation for SSS is different. The most pronounced change is found in the Atlantic Ocean. Here the salinity
increases by 0.1-0.5 psu, with the strongest increase in the two sub-tropical gyres, and smallest change at the high
latitudes and in the equatorial region.

Changes in the SSS are small in the Pacific Ocean, with a tendency of increased SSS off the South-American continent
of up to 0.2 psu. There is also a tendency for increased SSS in the Indian Ocean, notably in the south-western part, of
0.1-0.2 psu.

Interestingly, the variability in SSS is reduced in the Indian-Indonesian region in the second half of the century. The
variability is otherwise similar to the variability of the current climate state.

2.8 WP 2000: Summary

2.8.1 SSS variability on annual to sesonal time scales for the present day climate system

An overview of the global annual and seasonal variability in the SSS is provided in Table2.3. The table is based on
the findings in Secs.2.4.2and2.4.3.
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Density Temperature Salinity Velocity

Figure 2.15: As Fig. 2.14, but for the section along 48◦N, see Fig. 2.13. Section length (depth) is 3868km (4000m).
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Region Annual Jan-Mar Apr-Jun Jul-Sep Oct-Dec
1 < 0.4 > 0.5 < 0.5 < 0.4 > 0.4
2 0.1 0.1 01.–0.2 0.4 0.1
3 < 0.1 0.1 <0.1 0.1 < 0.1
4 < 0.3 < 0.5 < 0.1 0.2 > 0.5
5 < 0.1 0.1–0.2 0.2 < 0.2 0.1
6 < 0.2 0.1 > 0.3 0.3 0.1
7 < 0.2 0.3 > 0.5 0.1 0.1–0.2
8 < 0.2 0.1 0.2 0.2–0.3 0.1–0.2

Table 2.3: Overview of the simulated variability in SSS for the present day climate expressed in terms of 1 std (psu)
for the following regions: 1 Indian-Indonesian-Pacific west of 150 ◦W, 2 Kuroshio Current, 3 North Pacific, 4 Gulf of
Guinea, 5 Equatorial Atlantic, 6 Guyana Current (north of the South-Americal continent, 7 the Caribbean Sea/the
Gulf of Mexico, and 8 the region off Newfoundland.
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Figure 2.16: Correlation between Atlantic THC and SSS for year 1-20 of E76–E79.

2.8.2 Possible change in SSS at a doubling of CO2

At a doubling of the atmospheric concentration of CO2 (Sec.2.7.1), the most pronounced change is found in the
Atlantic Ocean. Here the salinity increases by 0.1–0.5 psu, with the strongest increase in the two sub-tropical gyres,
and smallest change at the high (northern and southern) latitudes and in the equatorial region.

Furthermore, changes in the SSS are small in the Pacific Ocean, with a tendency of increased SSS off the South-
American continent of up to 0.2 psu. There is also a tendency for increased SSS in the Indian Ocean, notably in the
south-western part, of 0.1–0.2 psu.

2.8.3 SSS-variability linked to NAO-variability

It is found in Sec.2.5.2 that during high NAO-years, the SSS field are the higher than normal SSS in the North
Sea (exceeding 0.3 psu), in the eastern part of the sub-tropical region (up to 0.1 psu), in the polar waters north of
Newfoundland (up to 0.2 psu), in the Guyana Current region and south of the Hispaniola islands (about 0.1 psu), and
the lower than normal SSS in the waters just north of the Gulf Stream (about 0.1 psu). The situation is near reversed
for low NAO-years, hence the difference in SSS between high and low NAO-years is about twice of the above stated
values.

2.8.4 SSS-variability linked to the Atlantic Thermohaline Circulation

A potential relationship between the Atlantic SSS and the Atlantic THC is discussed in Sec.2.6.1. It is concluded
that there is a region of positive correlation between the SSS and the Atlantic THC in the sub-polar gyre and the band
between 40–50◦N (in three out of four realisations). Furthermore, regions of negative correlations are found in the
Gulf of Mexico and over a large region in the South Atlantic sub-tropical gyre (again in three out of four realisations).
The correlations are large, typically up to 0.6. It is concluded that remotely sensed SSS have the potential to be used
to detect decadal-scale changes in the ATHC.
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Figure 2.17: Row 1: Simulated change in annual mean SST at doubling of CO2. Row 2–3: Simulated change in
annual mean SSS at doubling of CO2. Row 4–5: Corresponding change in the SSS std.
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Chapter 3

WP3000- Operational Oceanography

The need for high quality predictions of marine parameters has been well identified. E.g., during recent years, off-
shore oil-exploration activites have expanded off the continental shelfs to deeper waters. Drilling and production of
oil and gas at depths of 2000 meters or more are ongoing at several locations. This has introduced a need for real time
forecasts of oceanic currents which in some cases may have severe impact on the safety related to drilling, produc-
tion and critical operations. Sustainable exploitation of marine resources are becoming increasingly important, e.g.
commercial fisheries and fish farming. In future fisheries management systems, information about marine parameters
such as nutrient and plankton concentrations, and pollutants, will be increasingly important for accurate monitoring
and prediction of fishstocks. Thus, there are needs for operational monitoring and prediction of both physical and
biological marine parameters.

The optimal approach for an ocean forecasting system is usually based on integrated use of both high resolution
ocean- and ecosystem models and observations of physical, chemical and biological variables. This integration can
best be done using data assimilation techniques. The DIADEM/TOPAZ configuration of the NERSC model suite is
supplied with Earth Observations (EO) of open ocean variables, Arctic sea ice cover and the marine biology. From the
assimilation we, in turn, assess and quantify the relative impact of these EO in a pre-operational prediction system.
The main focus is associated with short-term (weeks) prediction capabilities including impact of state estimation and
control of the evolving model state. Further, the real time processing and flow of observational data must be developed
and maintained.

The data assimilation system uses the Ensemble Kalman Filter (EnKF) developed byEvensen(1994). This is a
filter method which means that the model is integrated forward in time and every time there are new measurements
available these are used to reinitialise the model before the integration continues. This reinitialisation is determined
as a weighted linear combination of the model prediction and the measurements. The weights are the inverses of the
error covariances for the model prediction and the measurements. The EnKF uses ensemble integrations to predict
model error statistics which is used to update the model solution whenever observations are available. The ensemble
consists of model states that are integrated forward in time in parallell. The EnKF is a fully multivariate assimilation
method that gives dynamically consistent model estimates both for linear and nonlinear models.

The impact analyses, which is further addressed and reported under the two main workpackages, is undertaken using
the NERSC model suite which is composed of a physical ocean model (OGCM), an ecosystem model and a sea ice
model. Three classes of input sources are interfaced to this model suite, notably atmospheric forcing fields, remote
sensing data and in-situ data. The data assimilation module, which then combines the observation data fields and the
model data, forms the central element of the suite and can be applied to all three models, either individually or in
combination.

Both global, regional and local model domains can be selected with accurate bathymetry and land boundaries, and
based on a grid generation tool the model domain will also always be defined with best model resolution in the area
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of largest interest. Moreover, the system introduces a further downscaling capability by nesting of high resolution
models for the regional areas of particular interest.

In this workpackage the focus is to assess the impact of existing and planned Earth Observations. This includes
the impact of assimilating satellite derived sea surface temperature (SST), sea level anomalies (SLA), marine geoid
information, sea surface salinity (SSS), ice concentration and thickness and ocean colour.

In the first part of the project we used the DIADEM system and worked on examining the effect of assimilating SST
and SLA into the Miami Isopycnic Coordinate Ocean Model (MICOM). Following the transition to HYCOM in the
TOPAZ project the remaining work was done using the HYCOM based TOPAZ system.

In Section3.1 we will give an overview of the MICOM and HYCOM model systems as used at NERSC. Next, in
Section3.2 some background information is given on the DIADEM and TOPAZ projects which form the basis for
the work in SIREOC. In Section3.3we provide some background on the EnKF assimilation method. Thereafter, the
assimilation of different EO are discussed in individual sections before a final synthesis is given.
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3.1 The Ocean Modelling System

During the ongoing TOPAZ project the new Hybrid Coordinate Ocean Model (HYCOM) has been adapted in the
model and data assimilation system developed in the DIADEM project. The model is an extension of the previous
MICOM model where a more general vertical coordinate is used. All interfaces between the HYCOM dynamical
module and the modules for thermodynamics, ice dynamics, atmospheric forcing fields, and the assimilation schemes
have been recoded. Since this was a major upgrade of the model system we also restructured the coding of the overall
system to make it more flexible and robust.

In this section we will present a general discussion of the HYCOM model and its setup for the TOPAZ and SIREOC
projects, and explain the major differences and advantages compared to the original MICOM model.

3.1.1 Model domain

The model domain used in the real time forecasting system is shown in Figure3.1. This is based on a grid con-
figuration where the North and South Poles are mapped to locations near the Equator in the central Pacific Ocean.
This results in a grid with fairly uniform grid resolution in the Atlantic and Arctic Oceans. As an example, the grid
spacing reduces with a factor 0.5 from the central Atlantic to the North Pole. In the standard spherical coordinate,
the same reduction is obtained at 60◦N, and then there is also a singularity at the North Pole. This new grid is very
different from the one used in the DIADEM project which had enhanced resolution in the Gulf Streem extension and
in the Nordic Seas. The access to significantly larger computers has now made it possible to aim for relatively high
resolution in all of the Atlantic, and this makes the TOPAZ model system generally applicable for the whole Atlantic
and Arctic Oceans. The final grid will maintain higher resolution in the Gulf Stream region and have overall much
higher resolution than in the DIADEM project. However, we will sacrifice some resolution in the Nordic Seas since
this area will be modelled using a nested high resolution regional model.

3.1.2 Vertical mixing processes in MICOM

The main difference between HYCOM and MICOM is related to a change of the vertical discretization. MICOM used
isopycnic layers, i.e. layers of constant density, for all but the surface mixed layer which was treated as a bulk mixed
layer with variable temperature and salinity. The mixed layer in MICOM interacts with the atmosphere through the
specification or computation of fluxes for freshwater, heat and momentum. Further, it interacts with the deeper layers
through vertical mixing processes. These are parameterized as convection, mixed layer entrainment and detrainment,
and diapycnal mixing. The convection is a process that mixes the mixed layer water with one or several of the layers
below whenever the mixed layer becomes denser than the lower layers. This can happen due to, e.g., a strong cooling
of often saline mixed layer water. Thus, convection acts to stabelize the water column and results in a deepening of
the mixed layer. In the Greenland and Labrador Seas the mixed layer may, due to convective processes, exceed 1000
meter during the winter time deep water formation. The mixed layer entrainment is a process where the mixed layer
deepens due to, e.g., increased turbulence in the mixed layer. Water from the deeper layers are then entrained into the
mixed layer where it is mixed with the water previously held by the mixed layer. Detrainment is the reverse process
where the mixed layer depth is reduced, and thus the mixed layer water must be disposed in the layers below the
mixed layer. Finally the diapycnal mixing is a process accounting for the vertical mixing which is always present in
the ocean, although below the surface mixed-layer it is several orders of magnitude less than the horizontal mixing.

3.1.3 Vertical coordinate system in HYCOM

Before we can discuss the parameterization of the vertical mixing processes in HYCOM we need to explain the
new hybrid vertical coordinate used. Note first that the vertical movement of water masses can be divided into a
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Figure 3.1: The model domain used in the TOPAZ real time experiment. The plot shows surface temperature and ice
concentration.

Lagrangian movement where a coordinate surface is moving with the water in the vertical, as in MICOM, and the
movement of water through the coordinate surface as is done in all models with a fixed vertical coordinate system,
e.g.z-level models andσ-coordinate models. HYCOM includes both representations of vertical movement of water
masses. This allows for a combination of material coordinate surfaces as in MICOM with fixed surfaces as inz-level
models andσ-coordinate models. The current algorithm exploits that all layers have an assigned reference density
as in MICOM. However, whenever a layer thickness becomes zero because this light water does not exist in the
particular vertical column, this layer is used as a vertical level coordinate within the mixed layer. Further, this level
coordinate is located in depth according to a predefined rule. The algorithm results in a stack of levels located from
the surface and downwards with a specified resolution. Thus, the model allows for arbitrary high vertical resolution
near the surface by adding a sufficient number of light (and therefore always massless) layers to the model. An
example is given in Figure3.2showing a vertical section from South to North across the Faroe–Iceland ridge. Here
it is seen how the isopycnal layers are reverting to level coordinates in the upper part of the ocean. Note in particular
how the lightest isopycnal layers are transferred intoz-levels when moving north towards cooler and denser upper
ocean water masses.

To summerize, based on the number of layers defined and their chosen reference densities, the layers will distribute
themselves in the vertical, starting with isopycnal layers from the sea floor and upwards towards the surface. The
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Figure 3.2: A vertical section from the HYCOM model across the Faroe-Iceland ridge. Note the transition from
isopycnal layers to levels when going northward, and the high resolution on top of the ridge where there are strong
gradients in the density of the water masses. The ventilation of isopycnal layers with the mixed layer is also clearly
illustrated.

layers with reference densities lighter than the existing water masses in the present water-column will be stacked
from the surface and downwards with a specified vertical resolution, and used as level coordinates.

3.1.4 Vertical mixing processes in HYCOM

Vertical mixing in HYCOM is a combination of cabbeling and restoration processes and the explicitly prescribed
mixing. Normally, the prescribed mixing exceeds other mixing processes by several orders of magnitude.

The horizontal advection of layer thicknesses, tracers and momentum is computed using the same algorithms as in
MICOM. However, the advection of layer thicknesses in the continuity equation will introduce a vertical movement
of the layer interfaces, also among the level coordinates near the surface. Further, horizontal diffusion of temperature
and salinity in an isopycnic layer may lead to a deviation from the reference density. Thus, a new routine called
“hybgen” which is short for hybrid coordinate generator is used every time step to restore the correct location of the
coordinate surfaces. Among the isopycnal layers in the deep ocean there is a restoration towards reference densities,
an effect called cabbeling, where a slight amount of water is mixed between adjacent layers to restore the reference
densities. This is normally a correction needed to correct for a small deviation in density resulting from the diffusion
of temperature and salinity in a layer. (The nonlinearity of the equation of state, implies that the mixing of two water
masses with different T–S properties but the same density, may result in a new water mass with a different density).
For the level coordinates near the surface, water is moved/mixed between layers to restore the layer interfaces to
their predefined locations in depth. Thus, vertical advection in the level coordinates is parameterized by a horizontal
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advection of tracers in a layer, and the layer thickness, followed by the restoration of the level coordinates. This
process is designed to conserve temperature, salinity and momentum when water is moved between layers.

The prescribed vertical mixing in HYCOM is vastly different from the algorithm used in MICOM. While MICOM has
separate routines/algorithms for computing convection, diapycnal mixing, and mixed layer entrainment/detrainment,
HYCOM solves for all these processes using a vertical turbulence closure scheme developed byLarge et al.(1994).
The scheme computes the vertical mixing coefficient over a vertical column in the model, and takes into account
the effect of wind stirring inducing mixed layer turbulence and additional mixing parameterization for processes,
such as, internal wave breaking, Richardson dependent vertical current shear, salt fingering and double diffusion. A
background vertical mixing coefficient ensures the presence of a low diapycnal diffusion in the deep ocean. The
scheme is using an algorithm to compute the vertical diffusivity in a water column, and thereafter a one-dimensional
diffusion equation is solved for temperature, salinity and momentum. Every time the vertical mixing has been applied
the “hybgen” routine is called to restore all layers/levels to their reference values.

3.1.5 Time stepping in HYCOM and MICOM

The time stepping algorithm can be summarized as follows:

do n=1,...
call forcing_fields ! reads/computes atmospheric forcing fields
call continuity_eq ! advects the layer thicknesses
call temp_saln_advection ! advects temperature and salinity in each layer

M call convection ! explicit convection algorithm
M call diapycnal_mixing ! explicit computation of diapycnal mixing

call momentum_eq ! solves the momentum equation
call barotropic_eq ! solves the barotropic equation
call thermodynamics ! computes all theromdynamic surface fluxes

H call vertical_mixing ! computes vertical mixing from KPP scheme
H call hybgen ! restore layer thicknesses using the hybrid grid generator

call icemodel ! dynamic ice model and ice advection
call nesting_conditions ! apply nesting boundary conditions

M call mixed_layer ! update mixed layer thickness
enddo

The routines specific for HYCOM and MICOM are marked with an H or an M in the first column. Thus, the major
change when going from MICOM to HYCOM is that theconvection , diapycnal_mixing , andmixed_layer
routines are replaced byvertical_mixing and a call tohybgen . The two models are using many of the same
subroutines and a next release of the model is planned where an option can be set to chose between MICOM and
HYCOM.

3.1.6 Nesting of regional models

Open boundary conditions and nesting in ocean circulation models are considered more as an art than real science.
The main problem is that for a model with open boundaries the number of boundary conditions is dependent on the
structure of the flow field penetrating the boundary. There are actually four cases which must be considered, i.e.,
inflow or outflow and for each of these one can have supersonic or subsonic velocities. To avoid dealing with the
problem of exactly specifying the boundary conditions in a “proper” nesting scheme, most approaches use some
kind of boundary relaxation towards the outer model solution. This results in what one normally would call the
one way nesting schemes where the boundary conditions of the regional model are relaxed towards the output from
a coarser large scale model. For the slowly varying variables, i.e., baroclinic velocities, temperature, salinity and
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layer interfaces, this is a fully appropriate way to include the boundary conditions. For the barotropic variables the
relaxation approach requires careful tuning to avoid reflection of waves at the open model boundaries. In HYCOM
the barotropic model is a hyperbolic wave equation for pressure and vertically integrated velocities. Following an
approach outlined byBrowning and Kreiss(1982, 1986), it is possible to compute the barotropic boundary conditions
exactly while taking into consideration both the waves propagating into the regional model from the external solution
and the waves propagating out through the boundary from the regional model. The scheme has been tested extensively
and has shown no problematic behavior yet. In addition, it also made it fairly simple to include the tidal forcing on
the barotropic mode.

The practical implementation of the nesting scheme is based on communication through files stored on disk. The
outer model dumps the solution interpolated to grid points in the relaxation zone of the regional model every 6 hours.
For the baroclinic mode which only changes slowly this is considered to be high resolution in time. It should also
be sufficient for the barotropic mode as long as the outer model does not contain tides. The regional model reads the
files every six hours and uses interpolation in time to specify the relaxation boundary conditions at every time step.
The communication between the grids is general and there is no restriction on the relative orientation or resolution of
the grids. An example from the nested regional model is given in Figure3.3.

3.1.7 Tidal boundary conditions

It is also possible to include tides in the regional nested models. The tides are then specified as a barotropic forcing
on the open boundaries for the regional model. This is fairly easy using the nesting boundary conditions explained in
the previous section. The data set used has just been released by the University of Texas and is based on several years
of altimeter data collected by the TOPEX satellite.

3.1.8 Coupling of the ecosystem model

The implementation of the ecosystem model takes a completely new approch with HYCOM. In MICOM the ecosys-
tem variables were solved for on a separate vertical grid which was required to properly resolve the MICOM bulk
mixed layer. This required a lot of additional code and complicated the implementation. In HYCOM, the general-
ized vertical coordinate allows for a much simpler approach to be used. Since HYCOM already has high vertical
resolution in the upper part of the ocean the ecosystem can be solved for on the same grid as is used by the physical
model. Thus, the ecosystem model has been recoded and stripped for a large part of the code which is not needed.
The approach taken has been to discretize the biology on the same grid as the physics, and then adapting the physical
model routines for all transport and mixing processes, e.g. advection, horizontal diffusion and KPP vertical mixing.
After the hybrid regridding biological tracers are moved accordingly between the model layers. This means that the
only parts left of the original biological model are the subroutines and functions needed to compute the interactions
between the various biological compartments. This is now set up as a function call done for each model grid point,
an approach which makes it simple to replace one biological model with another.

The new NERSC biochemical model system is illustrated in Figure3.4; if a new ecosystem formulation is to be
added to HYCOM, additional code must be added as indicated by the dark shaded boxes in the figure. The light
shaded boxes are model independent; note in particular that the routines for the advection, mixing and regridding are
model independent and that these need not be changed for a new ecosystem model. The figure indicates three different
ecosystem models, one three component model (EVA85) based onEvans and Parslow(1985), one 11 compartment
model (FDM02) based onDrange(1994a) and a 7 compartment model (SCH02) which is the model developed by M.
Schartau and coworkers at AWI for use in TOPAZ. Note that it is easy to switch between these models (just define a
flag in MODEL.CPP, compile and run), and it is also a relatively simple task to add new ecosystem formulations at a
later stage.

To test the above HYCOM-ecosystem setup, we implemented a simple 3-component biochemical model consisting
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Figure 3.3: An example from a regional high resolution (2 km) model for the Faroe Shetland Channel, nested into the
Atlantic system. The plot shows sea surface temperature and surface current velocities (every third vector shown).

SIREOC final report, March 2003



3.1 The Ocean Modelling System 40

Figure 3.4: The NERSC biochemical model system is programmed such that one easily can switch between different
formulations for the ecosystem, and new formulations can easily be added. The user defines which model to compile
and run through a flag in the file MODEL.CPP, which is used by the makefile. If a new model is to be implemented
in the HYCOM-ecosystem system, the number of compartments and a short character model flag is defined in the
module containing the necessary definitions. Then, all the compartments will be stored in the variable ‘bio’. All
additional specific variables and model parameters are gathered in separate modules for the particular model. The
most important property of the system, is that the routines for advection, mixing and the ecosystem regridding are
model indepentent, just defining loops over the number of tracer variables. Note also that these routines are not
dependent on the model dependent definitions in the top-right box. The only model specific routine, is the call for the
sources and the sinks. Three existing biochemical formulations are shown in the figure (EVA85, FDM02, SCH02),
but any number of formulations can be added. When a user has made a choice for a model flag in MODEL.CPP, the
correct formulation will be compiled and run.
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of nutrients, phytoplankton and zooplankton (seeEvans and Parslow(1985) for a description of the model). First,
we run the model as a pure tracer model, i.e., without the sources and sinks, to test the general routines for the
advection, mixing, and ecosystem regridding. Note again that these routines are model independent, and that they
will work for any biochemical formulation coupled to HYCOM. After the debugging/validation of these routines, we
included the sources and sinks in a short 3 month spinup experiment. The simple ecosystem behaved as expected:
when light increases during spring, phytoplankton starts to bloom while nutrients decrease, and then a zooplankton
bloom follows. Note that this model is too simple to be realistic, and its relevance is only academic when coupled to
a fully 3-dimensional ocean circulation model. However, it provides a good tool to understand “typical” ecosystem
dynamics, and it was valuable to implement a simple formulation during the debugging/validation process. The 11
compartment FDM model (Drange, 1994a) has also been implemented and made as simple as possible in the new
system, and the coupling with SCH02 is ongoing.

The MICOM-FDM coupled model system was used in the hindcast experiment described in Task 3300. The FDM
model is described in detail inDrange (1994a, 1996). It was originally based on the chemicalPeng et al.(1987)
model, the seven compartment ecosystem model byFasham et al.(1990) andFasham(1993) and the 3-dimensional
extensions as described inSarmiento et al.(1993). Some further improvements of the ecosystem model was done
by Drange(1994a, 1996), e.g., the bacteria equation was slightly reformulated to ensure a non-accumulating flow of
nitrogen and carbon through the bacterial compartment. Also, equations for the evolution of total dissolved inorganic
carbon and alkalinity were included, in addition to the seven compartments explicitly modelled inFasham et al.
(1990). Further, carbon based compartments of organic dissolved material and particulate matter were included
explicitly in the model. In this formulation, the Redfield carbon to nitrogen ratios of DOC/DON and POC/PON are
free floating and dependent on the flow of carbon and nitrogen through these compartments, as described by the model
equations.

The following eleven compartments are explicitly modelled; phytoplankton (P ), zooplankton (Z), bacteria (B), ni-
trate (Nn), ammonium (Nr), dissolved organic nitrogen - DON (Nd), dissolved organic carbon - DOC (Cd), detritus
as particulate organic nitrogen - PON (DN ), detritus as particulate organic carbon - POC (DC), dissolved inorganic
carbon - DIC (CT ) and alkalinity (AT ).

Since nitrogen is generally regarded as the limiting nutrient for phytoplankton growth, nitrogen is used as the basis
model currency. Also, this allows us to partition the total primary production into new production fuelled by nitrate,
and regenerated production fuelled by ammonium. In the photic zone, the exchanges of nitrogen and carbon can be
described by simple dynamical relations between the biochemical model compartments. A schematic illustration of
the photic zone ecosystem is shown in Figure3.5. A nutrient regeneration model is used below the photic zone.

3.1.9 Coupling of the sea ice model

The dynamical sea ice model is fairly simple to couple to the system since it only requires the atmospheric and upper
ocean inputs to compute the internal ice-stress which is used to compute the ice drift velocities. The dynamic ice
model determines how the ice moves in response to stress from the atmosphere and ocean as well as internal ice stress.
The internal ice stress is determined by the rheology model. The dynamic ice model uses the Elastic–Viscous–Plastic
(EVP) rheology ofHunke and Dukowicz(1997). The EVP model gives similar results as the Viscous–Plastic rheology
of Hibler (1979), but the EVP formulation has some numerical advantages. For instance, the EVP formulation allows
for practical use of an explicit numerical scheme.

The ice thermodynamic model determines the atmospheric and oceanic heat fluxes and calculates the ice growth rate.
There are two different ice models used at NERSC. The first type is relatively simple, using a single ice category to
describe the ice in a grid cell. The treatment of heat conduction in the ice is also relatively simple, where the heat
capacity of the ice is ignored, this is also known as the 0-layer formulation ofSemtner(1976). This thermodynamic
model is described in detail byDrange and Bleck(1996).
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Figure 3.5: A schematic representation of the photic zone biochemical system. Primary production is fuelled by
nitrate (1) and ammonium (6), and reduced by phytoplankton exudation (4) and mortality (5). Zooplankton graze
on phytoplankton (7), bacteria (12) and detritus (13) with prescribed efficiencies, and the fecal pellets represent
a sink to detritus (14). Further, zooplankton losses (excretion, mortality, messy ingestion, Redfield balance term,
grazing by higher predators, etc.) are split up as sinks to ammonium (11), dissolved organic matter (8) and an export
term representing large sinking particles (9). The bacteria take up ammonium (17) and dissolved organic matter
(18), and excrete ammonium (16). Particulate matter may sink (23) or may be broken down to dissolved matter
(22). The concentration of dissolved inorganic carbon decreases during photosynthesis (3) and during formation of
CaCO3 (24), and increases during zooplankton and bacterial excretion (10, 19). Alkalinity increases during nitrate
fuelled and decreases during ammonium fuelled primary production (2). Further, zooplankton and bacterial excretion
increase the alkalinity (15, 21), while bacterial uptake of ammonium and the formation of CaCO3 decrease AT (20,
25).
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Another ice thermodynamic model named ICESTATE (developed in the MAST–II ICESTATE project) is also imple-
mented at NERSC, and is presently being tested in longer model integrations. It gives improvement in many areas
compared to the first type. The major improvements are the ability to describe the distribution of ice thickness in a
model grid cell, and a more realistic treatment of the vertical heat conduction in the ice. The description of the ice
thickness distribution also allows a kinematic ice model, describing the ridging and rafting of ice (Thorndike et al.,
1975).
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3.2 The TOPAZ system

The DIADEM/TOPAZ monitoring and forecasting system is currently being developed with support from projects
funded by the European Commission and national research councils. The overall long term objective is:

to develop an operational ocean and ecosystem montoring and prediction system for the North
Atlantic, Nordic Seas and Arctic Ocean, using state of the art numerical model tools and data
assimilation methodologies.

The focus has so far been on the development of methodologies for assimilation of remotely sensed data into ocean
and ecosystem models. In contrast to other ongoing developments of real time assimilation systems we have chosen to
work with rather sophisticated assimilation methodologies which also predict multivariate error covariance statistics.

The implementation of the assimilation system has been completed and applied in hindcast experiments for validation
purposes and further calibrated for use with different data types. Currently, the assimilation system is operated in real
time and provides forecasts of physical ocean parameters.

In this section the DIADEM/TOPAZ monitoring and prediction system will be described in some detail.

3.2.1 Background

The DIADEM/TOPAZ system is being developed to meet the needs from future users of marine parameters. It involves
both the implementation and validation of state of the art ocean circulation models and marine ecosystem models, and
the development of novel data assimilation methodologies. The system development has been centered around two
ongoing European Commission funded projects, i.e. the DIADEM and TOPAZ projects, which are briefly explained
next. The model domain used for the DIADEM/TOPAZ prediction system is shown in Figure3.1. The grid is created
using a conformal mapping of the poles to two new locations using the algorithm outlined inBentsen et al.(1999).
Within the TOPAZ project there is also a downscaling to coastal seas by nesting of high resolution regional models
(illustrated by the frames in the figure).

DIADEM project

The EC MAST-III project DIADEM has focussed on the implementation of a data assimilation system for the North
Atlantic and the Nordic Seas. The project involves partners from six European countries working with ocean and
ecosystem modeling, data assimilation and processing of remotely sensed observations.

The major objective of the project was to implement and demonstrate novel sophisticated data assimilation meth-
ods such as the Ensemble Kalman Filter (EnKF) (Evensen, 1994), the Ensemble Kalman Smoother (EnKS) re-
cently proposed by (Evensen and van Leeuwen, 2000), and the Singular Evolutive Extended Kalman Filter (SEEK)
(Pham et al., 1998), with the Miami Isopycnic Coordinate Ocean Model (MICOM) developed byBleck et al.(1992)
and a 3-dimensional implementation of the ecosystem model byFasham et al.(1990) which has been coupled with
MICOM by Drange(1994b).

The assimilated data were remotely sensed sea level anomalies and sea surface temperatures, used in the MICOM
model, and ocean color data in the ecosystem model.

The assimilation systems have been applied in hindcast experiments for validation purposes and calibrated for use
with different data types. The use of so called advanced methods have introduced the possibility of performing a
multivariate and physically consistent analysis with statistical covariance functions which vary in space and time.
This allows us to extract a maximum amount of information from observations of surface quantities. The real time
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data flow from existing satellite observing systems and their capabilities in providing observations that can be used
with the data assimilation system in an operational mode are currently being evaluated.

The DIADEM project led to a prototype of a validated pre-operational monitoring and prediction system for the North
Atlantic and the Nordic Seas. Estimates of error statistics such as correlation scales and cross-correlation between
different variables which are crucial information in all data assimilation systems and are produced routinely. The
DIADEM project established, for the first time, an operational capability for coupled physical and ecosystem models
in the North Atlantic and the Nordic Seas, where satellite information is assimilated using advanced data assimilation
methods.

TOPAZ project

A new project TOPAZ has recently been funded by the European Commission under the fifth Framework Program.
TOPAZ extends the developments of DIADEM to a more realistic operational system. The project has a strong
focus on end-user requirements and has established a particular link with off-shore oil industry operating in deep
waters along the Atlantic Margin north of Scotland. A major objective of TOPAZ is to establish a generic operational
prediction system for ocean currents which will be applied and demonstrated for end users operating along the Atlantic
Margin.

To meet the end users needs it is necessary to introduce nested regional models to allow for downscaling to very high
resolution in the target areas where mesoscale processes must be properly resolved. In addition, the MICOM model
used in DIADEM has been replaced by the recently developed Hybrid Coordinate Ocean Model (HYCOM)HYCOM
wep page: http://panoramix.rsmas.miami.edu/hycom/.

This model integrates the properties of the isopycnal MICOM model for the deep ocean with a level model for the
surface boundary layer. Thus it is designed to work equally well for the coastal shelf areas as for the deep ocean.

The data assimilation system developed in DIADEM will be further extended to use new data types. A capability will
be developed for assimilation ofin situ data from the ARGO program as well as additional remote sensing products
such as ice concentration (SSMI), ice thickness (Cryosat), sea surface salinity (SMOS) and the improved sea level
anomaly data which can be derived with the new geoid from the GOCE mission.

With the inclusion of a nesting capability and the assimilation of bothin situ data and data from a variety of satellite
sensors, the TOPAZ project will develop a state of the art and flexible operational ocean prediction system. The model
system has been designed to be easily extendible to other geographical areas including the global domain and it allows
for nesting of an arbitrary number of regional high resolution models.

3.2.2 Participants

The DIADEM project involves seven European partners with different responsibilities in the project:

1. The Nansen Environmental and Remote Sensing Center (NERSC) is coordinating the project and is supplying
the model systems used by all partners. NERSC is responsible for model validation and an implementation of
the EnKF with MICOM and the ecosystem model.

2. The Institute for Marine and Atmospheric Research, University of Utrecht (IMAU), is implementing the EnKS
with the physical model.

3. The Universite Joseph Fourier, Laboratoire des Ecoulements Geo-physiques et Industriels, (LEGI) is develop-
ing a SEEK Filter with MICOM and the ecosystem model.

4. Calibration of the model parameters in the ecosystem model is done by the Alfred Wegener Institute (AWI).

SIREOC final report, March 2003

http://panoramix.rsmas.miami.edu/hycom/
http://panoramix.rsmas.miami.edu/hycom/


3.2 The TOPAZ system 46

5. Gridded fields of sea level anomalies and sea surface temperature data are delivered by Collecte Localisation
Satellites (CLS).

6. Gridded ocean color data from SeaWifs are processed and delivered by the Joint Research Centre (JRC).

7. The HALO Laboratory for Oceanic and Atmospheric Sciences is maintaining the project web-page, where the
forecasts from the assimilation systems are displayed during the real time operation of the system, and has also
developed a marine information system which is used for the data management in the project.

The partnership in TOPAZ is a subset of the DIADEM consortium with major activities distributed among partners as
follows:

1. NERSC is coordinating the project and maintaining the HYCOM model system. The operation of the nested
high resolution models are done at NERSC and the development of an assimilation system for ice is the respon-
sibility of NERSC.

2. LEGI is mainly responsible for the development of an assimilation system forin situobservations.

3. CLS is developing and operating a processing capability for ARGOin situ data and the remotely sensed prod-
ucts used in the project.

4. AWI will work on ecosystem model development and validation.

3.2.3 Hind-cast experiment

A hind-cast experiment has been carried out over a three months period using a low resolution version of the physical
model. In the experiment gridded fields of sea surface temperature and sea surface anomaly (produced by CLS) were
assimilated. The gridded data were available every 10 days. Three assimilation methods were used: the EnKF, the
EnKS, and the SEEK filter. All three methods provided a realistic prediction for the model error statistics which were
consistent with the innovation sequence. Further, the assimilation methods could take the multivariate statistics into
account and provided a realistic analysis where the whole model state was updated from the surface measurements.
As an example, the impact of an SST measurement is to correct the mixed layer temperature in the model but in
addition it will also introduce an update of the mixed layer thickness and the location of the thermocline. Similarly
the SLA data contain more information about the mesoscale structures, e.g., the rings in the Gulf Stream extension,
which could now be updated consistently with the thermocline depth etc.

The model with its limited horizontal resolution has a tendency to a too northward location of the Gulf Stream
separation. However, an interesting result was that the assimilation system was capable of correcting the location of
the Gulf Stream axis and separation point. This is an important result since a successful assimilation system must be
capable of correcting obvious model deficiencies. The results from hindcast experiments with the MICOM model has
been published inBrusdal et al.(2003).

A twin experiment was carried out using the assimilation system with the marine ecosystem model. It proved that
surface observations of ocean color or Clorophyll could be used to control the evolution of the marine ecosystem to
some extent. When testing the assimilation system with real data from SeaWifs a similar conclusion could be drawn.
The remotely sensed ocean color data do have an impact on the accuracy of the ecosystem predictions, however,
the accuracy of the data are currently rather poor and a greater impact is expected using data from more accurate
future sensors. The results from hindcast assimilation experiments with the ecosystem model coupled to MICOM are
published inNatvik and Evensen(2003a,b).

Further, we have developed an implementation for assimilation of remotely sensed ice data which is described in
Lisæter et al.(2003).
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3.2.4 Real time operation

A real time prediction experiment was initiated November 2000. It has been ongoing until August 2001 with funding
from the DIADEM project, and is now continued with funding from TOPAZ. The system was initially spun up
into real time, first in simulation mode, but in a step wise process the assimilation system for the physical model
was introduced with assimilation of sea level anomalies from TOPEX and ERS and Reynolds SST data. During
spring 2001, the marine ecosystem model was coupled to the system and following a spinup simulation we started an
experiment with real time assimilation of SeaWifs ocean colour data which lasted until end of June 2001.

The system has now been operated with a weekly assimilation cycle since November 2000.

A major conclusion is that the system can be operated in real time and provides resonable forecast results using
available remotely sensed observations.

3.2.5 Summary

The DIADEM/TOPAZ system provides a prototype of a pre-operational monitoring and prediction system for the
North Atlantic and the Nordic Seas. The system is based on sophisticated modeling and data assimilation tools and is
set up for real time or near real time operation, and now assesses the real time data flow as well as the impact of the
remote sensing products on the predictions.

The real time operation of the system has proved to be feasible and relies on the availability of remote sensing products
in near real time, and atmospheric forcing fields from the meteorological forecasting centers.

Finally it should be stated that the DIADEM and TOPAZ projects comply with and contribute to the plans of in-
ternational programs such as GODAE and EuroGOOS. The system developed has similarities with the other major
initiatives in GODAE and will in many respects be complementary to these. Further, the system is one of the major
initiatives contributing to the EuroGOOS task teams, in particularthe Atlantic Task Teamby developing an assimila-
tion system for predicting the ocean circulation in the Atlantic,the North West Shelf Task Teamby introducing high
resolution regional models for physics and ecosystem covering the European shelfs, and finally theArctic Task Team
by the focus on ice modeling and assimilation of ice variables in the Arctic. The project has also realized the impor-
tance of merging these different areas into one model system to allow for a proper representation of the interactions
between the different seas and oceans.
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3.3 The Ensemble Kalman Filter

To assimilate observational data into a model system, it is important to have a knowledge of the errors present in the
model and observations. In Kalman Filtering the needed statistics are the error covariance matrices of the observations
and the model state. Describing the error covariances correctly is therefore a crucial component to the performance
of sequential data assimilation schemes.

The Ensemble Kalman Filter (EnKF;Evensen, 1994) uses an ensemble of model states to estimate the model error
statistics. It was originally proposed as an alternative to the Extended Kalman Filter (EKF) for solving strongly
nonlinear problems. The EKF uses linearized equations to separately solve for the error covariance matrix, while
the EnKF members are advanced using the original model equations. An advantage of the EnKF approach is that it
retains the effect of nonlinear model behavior on the error covariance matrix. In an EnKF approach, few assumptions
are made, and complex correlation patterns will evolve according to the evolution of the ensemble members. The
simplified closure of the EKF has, on the other hand, been shown to be problematic when used in some non–linear
models (Evensen, 1992). A brief explanation of the EnKF is given below, for a more thorough description of the
EnKF seeEvensen(1994); Burgers et al.(1998).

Let ψf
i ∈ Rn×1 be then-dimensional model forecast of ensemble member numberi ∈ {1, 2, ..., N}. This forecast

evolves in time from a best estimate at timetk, using the model

ψf
i (tk+1) = g [ψa

i (tk)] + βi(tk) . (3.1)

Hereβi ∈ Rn×1 is a random component drawn from aN(0,σβ) distribution, and represents the effect of model errors
on the evolution of the ensemble members. The covarianceσβ ∈ Rn×n will have to be specified based on knowledge
about the model errors. The operatorg : Rn×1 → Rn×1 can, as already mentioned, be a nonlinear function of
the model state. The individual ensemble members in equation (3.1) form a Monte Carlo approach for solving the
Fokker–Planck equation (Jazwinski, 1970), which describe the evolution of the probability density function for a state
ψ. In order to infer the error evolution of the model state, knowledge is needed of the ”truth”. As the true model
state is unknown, some assumptions must be made regarding its properties. In the EnKF, the best estimate of the truth
is represented by the ensemble mean state. It follows that the model state error covariance used in the EnKF is that
given by the ensemble covariance. Then, at any time, an estimate of the model state error covariance matrix can be
computed from the ensemble of model states as

P f ≈ P f
e =

(
ψf

i −ψf
) (
ψf

i −ψf
)T

(3.2)

whereψ is the ensemble estimated mean state, and the overbar denotes the expected value. In other words, the
ensemble covariance matrix is taken to be representative of the error covariance matrix.

At the time observations are available an analysis is computed. The observationsd ∈ Rm×1 have an associated
uncertaintyε , and an observation error covariance matrixR = εεT , where the observation error covariance matrix
must be based on prior knowledge of the observation errors. LetH ∈ Rm×n be a linear operator that transforms
the model state to the observation space. Then the analysis update is given by the following variant of the traditional
Kalman filter equation (Jazwinski, 1970);

ψa
i = ψf

i + P f
e H

T
(
HP f

e H
T +R

)−1 (
di −Hψf

i

)
= ψf

i +Ke

(
di −Hψf

i

)
. (3.3)

Ke is called the Kalman Gain, and is given as

Ke = P f
e H

T
(
HP f

e H
T +R

)−1
. (3.4)

Equation (3.3) tells how each ensemble member is updated using the model error covariance matrix estimate (3.2),
and the error covariance matrix of the observations. Special notice should be taken of the observation vectordi
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used in equation (3.3); as indicated by its subscript it is different for each ensemble member. This is because the
observations need to be perturbed to get an analysis error covariance matrix consistent with the original Kalman
Filter. As shown byBurgers et al.(1998) the analysis withdi taken from aN(d,R) distribution gives the following
analysis covariance matrix;

P a
e = (I −KeH)P f

e , (3.5)

which is consistent with the covariance of the analysis in the traditional Kalman Filter. Without perturbation of the
original observationsd, the analysed covariance would be systematically underestimated, an effect which could lead
to so–called filter divergence. Filter divergence means that the error estimate of the model in the EnKF is too small,
and the analysis will have little impact on the model.

Recently there has been a debate on the drawbacks of using perturbed observations in the Ensemble Kalman Filter,
connected to noise introduced by the perturbations. This has led to the development of variants of the EnKF which
do not need perturbed observations, e.g.Anderson and Robinson(2001); Whitaker and Hamill(2002). For our appli-
cation we note that the effects of random perturbations should only be significant for very small ensemble sizes, and
should probably be of lesser importance for our100 member ensemble.
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3.4 WP 3100: Assimilation of SLA and SST data

Currently, we are using the Ensemble Kalman filter and the HYCOM model to investigate the impact of assimilating
SLA and SST data on the predictability of the ocean physics. The TOPAZ near real-time forecasting experiment
covers the full Atlantic ocean. It started in January 2003. Within this experiment, the importance of the SLA and SST
data has been studied.

The weekly assimilation cycle for the TOPAZ system is a two steps sequence. First, an ensemble of one hundred
realistic system states is propagated by the HYCOM model forced by the ECMWF atmospheric data (downloaded
from the ECMWF ftp site). We assume that the uncertainties in this atmospheric data are the main cause of model
errors and therefore we perturb them by random noise having adequate statistical properties both in space and time.
The second step updates the resulting forecast ensemble with remotely sensed SLA and SST data (also downloaded
from public ftp sites). The EnKF analysis scheme provides an ensemble of analysed states accounting for errors of
both the model forecast and the data by a least squares method as outlined above. The analysed ensemble returns to
the first step to be further integrated one week forward. All results of both steps for all the physical ocean variables at
all depths will be freely downloadable on the TOPAZ website:http://topaz.nersc.no .

To study to which extent the model captures the information in the data and keeps the model on a ”track” close to
the satellite data, we have plotted remote sensed observations of SST and SLA in Figure3.6, the difference between
the observed and the modeled SST in Figure3.7 (left panel), the impact of their assimilation on the model upper
layer temperature in Figure3.7 (right panel) and the evolution of both observed and modeled zonal SSH averages
during seven assimilation cycles in Figure3.8. In the left panel of Figure3.7 we find the largest discrepancies in
three regions: the Gulf Stream region where the model shifts the warm current Northwards compared to the satellite
data, the Labrador Sea where the model produces too cold water and the North-West African coastal region where
the model produces too warm water compared to the satellite data. The right panel of Figure3.7 shows the impact
of the assimilation of SST observations on the model top layer temperature. It generally fits well the features of
the left panel and fills the gaps caused by the cloud cover in agreement with the ocean physics. The discrepancies
are dramatically reduced in most parts of the domain, and especially in the North Atlantic which indicates that the
assimilation of SST brings the model results closer to the observations. We note that both panels do not fit perfectly
since the estimation accounts for measurement errors. These errors have two main sources: 1) the relative instrumental
precision and 2) representativity error since a surface image does not represent exactly an average of the upper layer
(of about ten meters depth). The SST data update the ocean temperature in the upper layers where the variability is
higher, but they also have an impact on the other physical variables according to the multivariate correlations in the
ensemble. It is important to notice that the EnKF assimilation is not affected by the inevitable presence of clouds.
The corresponding gaps are filled according to the ensemble statistics that are produced by the physical model and
therefore the interpolation is automatically in agreement with the system equations.

If we compare the CLS SST to the CLS SLA data in Figure3.6 it appears that more mesoscale structures can be
retrieved from the SLA data provided by CLS. Indeed, the SLA remote sensing images are not affected by the cloud
cover and clearly exhibit the mesoscale eddies and meanders.

The assimilation of remote sensing SLA data is more complicated than that of SST in the sense that they can not be
linked directly to ground data. The observed sea level is relative to the satellite altitude which depends on the gravity
field. Therefore, the altimetry data are provided as anomalies (SLA) with respect to a constant reference level. In
order to associate these anomalies to the SSH modeled by HYCOM, we need to know the reference sea level (or
Mean Sea Surface MSS) which also depends on the local gravity field in the water column. Therefore, the use of the
SLA data is strongly linked to the knowledge of the earth geoid, which is presently relatively inaccurate. An error in
the choice of the MSS leads to a measurement bias, which in practice cannot be distinguished from a model bias.

In addition the SSH is computed as a diagnostic variable in MICOM and HYCOM, and it is not entirely clear how
the model MSS should be computed to be consistent with the MSS used when deriving the SLA data.
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Figure 3.6: Left: Observed sea surface temperature on July 29th 2003, CLS SST data, the holes correspond to
unobserved cloudy regions. Right: Observed sea level anomalies for the same day, CLS data.

As a first alternative one could rely entirely on the model and define the reference sea level by a long term model run.
In this first alternative the observed anomalies are relative to the model MSS and it is possible to get all the mesoscale
structures contained in the SLA data well assimilated into the model. However, it would not be possible to correct for
biases contained in the model MSS, for example a wrong path of the Gulf Stream.

The other alternative, using a best possible MSS constructed from observations, will allow for correction of biases,
but one could expect some technical problems if this MSS is inconsistent with the way the MSS is computed in the
model. Anyway, this is the approach we have used in SIREOC, and it has turned out to work well.

On Figure3.8 we see the successive comparisons every second week from the 21st of January to the 4th of March
2003 of the zonal SSH averages (seven assimilation cycles have occured in that period). The red line represents the
observed SSH (a mean sea surface plus the anomalies observed from the satellite) and the purple line represents the
corresponding forecast SSH. Cycle after cycle, the forecast SSH progressively converges towards the observed values,
which means that the data assimilation system can bring the model nearer to the data in spite of the initial bias.
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Figure 3.7: Left: July 29th 2003 innovations (Observed minus forecast SST before assimilation); Right: the subse-
quent surface temperature increments (analyzed minus forecast model SST).
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Figure 3.8: Successive zonal averages of sea surface heights from the 21st of January (top left panel) to the 4th of
March 2003 (bottom panel), every second week. Red line: observed SSH (observed SLA plus mean sea surface
height); Purple line: modeled SSH.
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3.5 WP 3100: Assimilation of brightness temperature and salinity

The main objective of the ESA: Soil Moisture and Ocean Salinity (SMOS) mission is to globally observe soil moisture
and ocean salinity, two crucial variables for modelling our weather and climateBerger et al.(2002). Salinity is
fundamental in determining ocean density and hence thermohaline circulation. Furthermore, ocean salinity plays a
part in establishing the chemical equilibrium, which in turn regulates theCO2 uptake and release. Unlike sea surface
temperature (SST) and sea level anomalies (SLA), it has not yet been possible to measure salinity from space.

The SMOS instrument will be launched early 2007, and is designed to provide brightness temperature (TB) data for
3–5 years. The instrument is microwave radiometer using the frequencies in the L-band, corresponding to 1.4 GHz.
The satelite orbit, instrument design and dataprocessing prosedures is designed to provide data every third day with a
35–50 km resolution at all the various data-processing levels defined by the Committee on Earth Observing Satellites
(CEOS). The accuracy requirment of the ocean salinity observations has been set to 0.1 practical salinity units (1 psu
= 1g salt in 1kg of seawater), every 10 days at 200 km spatial resolution, based on results from GODAE (Global
Ocean Data Assimilation Experiment).

As the SMOS instrumentation will not provide SSS data directly we need the inversion from brightness temperature
(TB) data to ocean salinity. However,TB is a non-trivial function of sea surface temperature (SST) and salinity
(SSS) and parameters determining the interaction between the atmosphere and the ocean. This makes the inversion to
salinity complex and difficult. Another potential use of theTB data is the assimilation directly into dynamical ocean
circulation models used for ocean monitoring and prediction. In this way the inversion to salinity is avoided but the
dependency on the emissitivity model, and the corresponding model error, is still present through the establishment
of the modelledTB observations (forward modelling). The accuracy of the observations will now be the noise in the
TB measurements. The NERSC data assimilation system is based on an implementation of the Ensemble Kalman
Filter (EnKF) with HYCOM, which is currently used for assimilation of SST, SLA and ocean color data. In this work
package we have refined this system to adapt the futureTB measurments.

All the ocean-atmosphere fluxes are determined in the ocean model using the atmospheric forecasts from numerical
weather prediction centers together with the current model state. Thus, we can computeTB from the model. The
integrated use of all these parameters allows us to optimally introduce the information fromTB into the assimilation
system and to properly update the model state in a way which is consistent with all prior information and error
statistics. A nonlinear measurement functional forTB is used by augmenting the model variables with theTB, and
then computing covariances between theTB and the rest of the model state. It is then possible to examine and estimate
how model variables are influenced by the measuredTB as well as the strength of this influence. The objective is to
demonstrate assimilation ofTB data using simulated observations, and the work consists of the following sub-task:

1. Establish simulatedTB data fields.

2. Update the assimilation scheme to adaptTB data.

3. Run assimilation experiments to study the impact on temperature and salinity when assimilatingTB data. This
task will provide an assessment of the potential of a methodology for assimilatingTB into a preoperational
ocean monitoring and prediction system.

4. Run numerical experiments with direct assimilation of Sea Surface Salinity data.

In previous ESA projectsBarnier et al.(2002) it is found that an accuracy of 0.1 psu over a grid cell of 100 km times
200 km for a period of 7 days is sufficient for description and quantification of many central ocean processes both on
monthly and seasonal scales.

In this work package we will test what accuracy inTB observations are needed for assimilation into the ocean mod-
elling and data assimilation system used at NERSC.
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3.5.1 Establish simulatedTB data.

The TB data function

Passive microwave radiometers measure the emission of electromagnetic waves from the earth in the wavelength
domain from 1.5 cm to 30 cm. The measured wave field has contributions from emissions from the sea surface, the
atmosphere, and from reflection of incoming wavefield at the sea surface from the atmospheric and solar emission
and deep-space background radiation. The emission can be modelled by more or less complex radiation models.
The accuracy of these models depends on how accurate the sea surface roughness is descibed and modelled and on
how good the electromagnetic scattering is modelled.TB can be retrieved by forward modelling using the descibed
emission model inBarnier et al.(2002).

In the work performed in SIREOC we have used the 6-dimensionalTB data grid computed from an emissivity model
from IFREMER using a small slope approximation model combined with a spectral model for the ocean surface.
Details of these computations and description of the model can be found inBarnier et al.(2002). TheTB values were
computed for the following conditions:

1. 10 m wind speed from 0 to 20 m/s with a step of 1 m/s.

2. SST from 0 to30◦C with a step of1◦C.

3. SSS from 32 to 38 psu with a step of 1 psu.

4. incidence angleθinc from 0 to60◦ with a step of5◦.

5. azimuth angleθazi from 0◦ to 360◦ with a step of20◦.

The tabulatedTB values were organized in a large number of ascii files, and arrived at NERSC along with a multi-
linear interpolation code used to calculate the brightness temperature. Thus, providing six parameters as input (see
below), the program would open the correct files and extractTB values from the table. TheseTB values are then
interpolated to provide an estimate of theTB value corresponding to the exact values of the input parameters. The
TB data were merged into one large six-dimensional matrix which is stored in a single binary file. This file is read
once and kept in memory every time we initiated an assimilation step. The requiredTB values could then be quickly
extracted from memory and passed as input to the multi-linear interpolation function.

The brightness temperature function

TheTB as function of SST and SSS is plotted in Figure3.9for different angles of incidence (5, 20, 40 and 50 degrees)
under no wind conditions. By intercomparing the plots it is seen that the dynamic range of the TB values is around 5
K, but that the range is swithced towards higher values with increasing angle of incidence. The gradients with respect
to SSS and SST is more or less conserved at temperatures above20◦C for different angles of incidence. However, at
temperatures less than20◦C the gradients are changing significantly when considering the different incidence angles.
In all the plots it is seen that theTB value decreases with increasing SSS for all temperatures. Furthermore, it is seen
that the dependency on SSS is smallest for temperatures less than10◦C. The dependency on SST is slightly more
difficult as theTB increases with temperatures less than20◦C and decreases at temperatures greater than20◦C. The
brightness temperature changes more rapidly with SST at relatively low salinities.

The impact of variable wind speed and azimuth angle is presented for two selected incidence angles ,5◦, in Figure3.10
and,40◦, in Figure3.11. At the low wind speed (10 m/s) the change from wind along track(left) to cross wind(right)
do not change theTB values dramatically for the incidence angles considered here. At wind speed of 20 m/s the effect
of changing the azimuth is more pronounced at the smalest angle of incidence than at the largest angle. For the two

SIREOC final report, March 2003



3.5 WP 3100: Assimilation of brightness temperature and salinity 56

Figure 3.9: Brightness temperature as function of SST and SSS in vertical polarisation. All the plots include zero
wind conditions (wind speed is 0 m/s and azimuth is 0 degrees). In the upper row the incidence angle is 5 degrees
in the left plot and 20 degrees in the right. In the lower row the incidence angle is 40 degrees in the left plot and 50
degrees in the right.

incidence angles and the two different azimuth angles considered in Figure3.10and Figure3.11a significant increase
of TB values is observed for all SST and SSS when the wind speed is increased from 10 to 20 m/s.

In the emission model the sea surface roughness is connected directly to the wind speed and wind direction. This
is a very simple way of modelling the sea surface roughness which is also influence by foam, rain, natural surface
films, water salinity and more distant waves. Furthermore, calculation of scattering from rough surfaces introduces
relatively large model errors, which are unknown when we model theTB. Therefore in this study we will not study
the ”exact” impact of the wind in the assimilation process. However, from the plots above we can conclude that if
we underestimate the wind when performing the assimilation, the analysed field will have too high positive update in
salinity and temperature. This has also been verified through assimilation experiments.

Some initial conclusions can be made:

• The dynamic range forTB is around5◦ K for each set of incidence angle, polarisation and wind condition and
the definition area of theTB function with respect to SSS and SST.
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Figure 3.10: Brightness temperature as function of SST and SSS in vertical polarisation. All plots in this figure have
an incidence angle of 5 degrees. In the upper row of plots the wind is 10 m/s while it is 20 m/s in the lower row. The
left plots has azimuth equal to 0 degrees while the right plots have a 90 degree azimuth (cross-wind)

• TheTB value decreases monotonically with salinity for all temperatures, incidence angles and winds considered
here.

• In the cold water (less than10◦C) theTB function is more sensitive to salinity at small incidence angels than at
larger angles.

• The monotonicTB dependency on salinity is stronger at temperatures greater than10◦C.

• The TB dependency on temperature is non-monotonic such that a specific salinity andTB value give two
“suggestions” for the temperature.

• The effect of changing azimuth increases with wind speed.

• The effect of wind speed is stronger than the effect of changing azimuth angle.

Keep in mind that only vertical polarisation is considered in this report.
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Figure 3.11: Brightness temperature as function of SST and SSS in vertical polarisation. All plots in this figure have
an incidence angle of 40 degrees. In the upper row of plots the wind is 10 m/s while it is 20 m/s in the lower row.
The left plots has azimuth equal to 0 degrees (along track wind) while the right plots have a 90 dergree azimuth
(cross-wind).

Simulated brightness temperature data

For the assimilation experiments we needed to establish procedures to create synthetic observations with a known
percentage of noise, and the following was used:

1. First theTB values were computed on an observational grid defined with 1 by 1 degree resolution using the
TB table as discussed above. In theTB function the SST and SSS fields were obtained from a selected forcast
model restart file. The angle of incidence was set to40◦, the wind speed was set to 0 m/s, the azimuth angle
was set to0◦ and the polarisation was set to vertical, and these parameters were kept constant throughout this
study.

2. A two dimensional smooth random noise field,N(i, j), with mean zero and variance one, was generated using
standard routines. The noise field was then multiplied by the measurement error standard deviationσ which
was given as a percentage of the dynamic range inTB values. In our cases the range were found to be 5◦ K.
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Figure 3.12: The ensemble mean temperature and salinity for January 1 2002 in the DIADEM/TOPAZ experiment
plotted on the model grid. The mean Sea Surface Temperature (SST) is shown in the left column and mean Sea
Surface Salinity (SSS) to the right. The corresponding TB values using incidence angle 40 degrees are shown in the
lower plot.
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Figure 3.13: The ensemble correlation between temperature and the corresponding TB at each model grid point is
plotted to the left. To the right the covariance between salinity and TB is plotted.

Finally, the grid of perturbedTB observations to be used in the EnKF analysis was calculated as

d(i, j) = TB(i, j) + σ ∗N(i, j). (3.6)

The data, geographical location, a given error variance, and location are then stored in a binary file (”observation.uf”)
which is later read by the EnKF analysis program.

Accessing the brightness temperature data within the EnKF scheme

Once the newTB function was established it was relativly easy to update the EnKF scheme to adopt the new type
of data. The syntheticTB data is read from the ”observation.uf” file and stored in a vector. The ensemble of model
states is stored in a matrix A. From the model states we are then computing the corresponding modelledTB values
using the sameTB function as when establishing the synthetic observations, these are stored in the matrix HA. This
allows for the computation of the innovation (or difference) between theTB observations and the model prediction.

3.5.2 The modelled SST/SSS data and synthetic brightness temperature data.

Figure 3.12 shows the ensemble mean SST and SSS model data for the 1st of January 2002 as taken from the
DIADEM/TOPAZ real time system. The temperature at high latitudes north of30◦N is typically less than20◦C while
it is between20−30◦C at low latitudes. The salinity has two strong anomalies at mid-latitudes with values around 37
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psu in the centre of the anomalies. These plots will be interpreted as the model forecast, which will later be updated
in the analysis scheme.

When real data from the SMOS satellite are available, several incidence angles will be included in the processing
and this will improve the accuracy of theTB data. Another complicating factor is the wind condition which will
change along the track and with time. This will require advanced processing algorithms for theTB data. As the
major focus in this project is not the data processing algorithms we have selected only one particular incidence angle
of 40 degrees, vertical polarisation and zero wind conditions when establishing the synthticTB data to be used in
assimilation experiments.

In this case, theTB data takes values between 111 and116◦K. The functional form ofTB with respect to SSS iand SST
is displayed in the lower left plot in Figure3.9. The plot shows a monotonically decreasingTB with increasing SSS.
Whereas the dependence on SST is more complex sinceTB is increasing as a function of SST for low temperatures
up to10 − 20◦C (dependent on the SSS), where it reaches a maximum and then decreases again. Thus, there may
be two different water masses corresponding to the same value ofTB, and this could potentially be a problem in the
assimilation scheme.

The brightness temperature data corresponding to the mean temperature and mean salinity of the predicted model
state is shown in the lower left plot in Figure3.12. Notice first thatTB is not defined in many points in the Gulf
of Guinea due to very fresh water, and it is also undefined in areas along the coast of South America due to high
temperatures. In grid points with undefinedTB values there will be no assimilation of data. The particular features to
notice in theTB data are:

• low TB values are found at mid-latitudes due to high SSS values,

• low TB values are also found at very high latitudes caused by very low SST values,

• high TB values are found in regions with temperatures between10 − 20◦C and fairly normal salinities, s.a. in
the Gulf Stream extension and the North Atlantic Current,

• The maximumTB values are located in the eastern Equatorial regions which are dominated by very warm and
fresh water,

Furthermore, it is seen that theTB features in the north look like the features in the SST plot, while the salinity
features are “preserved”, south of 40 degrees in the plot of SSS. This “geographical” change inTB sensitivity is also
reflected in the correlation plots in Figure3.13, where it is observed that the correlation to temperature is relatively
high in the north while it is lower when correlating it with the salinity. Between 30-40◦ N there is a strong negative
correlation between salinity andTB, while the correlation with SST is less but still significant. The picture is more
complicated in the south because theTB can either increase with temperature (0–20◦C) or it may decrease with
temperature (20–30◦C), in addition to a stronger sensitivity to SSS. On the other hand, theTB decreases with salinity
for all temperatures, and therefore the salinity features are preserved in the south.

In addition to the mean over the 100 member we have also calculated the variance over member in each model grid
point (Figure 3.14) for SST, SSS and the correspondingTB. The model variance is essential for the impact of the
model result in the assimilation process.

In the upper left plot we see that north of 40◦ N the variance in SST is gradually reduced from0.08◦C2 to 0.004◦C2,
moving northward. Considering the variance in SSS in the righthand plot we observe that it is very low between
0.001–0.002 psu2 north of 30◦ N, except in the Gulf Stream outside the coast of North America and in the Skagerak
where the variability is between 0.04–0.2 psu2. The calculated variance inTB is very low between 30–40◦ N because
of the strong correlation to SSS at these latitudes (Figure3.13) and the low variance in SSS. The variance in TB
increases slighly towards the north because of reduced dependence on SSS and increased dependence on SST which
has a larger variance than the salinity in this region.
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Figure 3.14: The variance in the model data is plotted for temperature (left) and salinity (right) . The lower plot is
the variance in TB data, it contains masking of points where the TB value is undefined for one or more of the 100
members.
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Figure 3.15: The upper left plot shows original SST (left) and SSS (right) data from member 40 in the ensemble.
The lower left plot shows the corresponding TB values computed from the TB function. TB The lower right plot is
generated by adding 10 % noise to the TB plot to the left.
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Figure 3.16: (Case 1) The analysed SST (left) and SSS (right) are shown in the upper plots. The lower plots show
the difference (analysis minus forecast) for SST (left) and SSS (right).
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Figure 3.17: (Case 4) The analysed SST (left) and SSS (right) are shown in the upper plots. The lower plots show
the difference (analysis minus forecast) for SST (left) and SSS (right).
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Figure 3.18: (Case 5) The analysed SST (left) and SSS (right) are shown in the upper plots. The lower plots show
the difference (analysis minus forecast) for SST (left) and SSS (right).

SIREOC final report, March 2003



3.5 WP 3100: Assimilation of brightness temperature and salinity 67

Figure 3.19: Forecasted innovation(left) and analysed innovation (right) for Case 4 (upper) and Case 5(lower). The
lower plots show the difference (analysis minus forecast) for SST (left) and SSS (right).

SIREOC final report, March 2003



3.5 WP 3100: Assimilation of brightness temperature and salinity 68

Figure 3.20: (Case 6) The analysed SST (left) and SSS (right) are shown in the upper plots. The lower plots show
the difference (analysis minus forecast) for SST (left) and SSS (right).
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In the south the variance in SST is generally higher than in the north. The variance is between0.052 − −1.1◦C2

(0.2–1.0◦C in standard deviation). The strongest variance in SST is found south of 10◦ S, this variance has been set
high because no assimilation of SST data is done south of this latiude in the DIADEM/TOPAZ experiment.

In the south the variance in SSS vary much more than in the north, the variance takes values between 0.002 psu2 and
0.2 psu2. The largest variance is found in and ouside the Gulf of Guinea.

When considering the variance inTB we see by comparing the other plots in Figure3.14 that high variances are
generally found where the variance in SSS is relatively high at the same time as the variance in SST is stable and
high. One clear exception from this is south of the 10 S latitude where variance in SST is much higher than elsewhere
and the correlation is close to−1.

From the above discussion we conclude that the variance inTB is controlled by

• the correlation to SSS/SST,

• the magnitude of the variances in SSS and SST

3.5.3 Assimilation experiments

The most important part of the study is to investigate the impact of assimilatingTB and SSS data on the model SST
and SSS fields. As seen from the above, theTB function of SST and SSS is complex and the mapping from SST and
SSS in the model grid requires careful interpretation.

To generate the syntheticTB data to be assimilated, we have used the SST and SSS from the 40th ensemble member,
as shown in Figure3.15. The data were interpolated to the observation grid, and then used as input to theTB function.
The lower left plot shows the correspondingTB data. The model fields are similar to those given in Figure3.12, but
differs within the one or two standard deviations in the ensemble which define the accuracy of the model. When
intercomparing the SST and SSS in Figures3.12and3.15only small differences are visual. The SST in Figure3.15
is slightly warmer in the south, and the SSS anomalies in Figure3.15are wider than in the forecast. The lower plot
in Figure3.15shows the correspondingTB data.

The brightness temperatureTB can be written:

TB = TB (θinc, θazi, SST, SSS, u, p) , (3.7)

whereθinc is the incidence angle,θazi the azimut angle,u the wind speed andp the polarization, respectively.

Nine assimilation experiments have been carried out where the followingTB data and parameters have been used:

Case 1 Assimilates the originalTB data as given in Figure3.15, the data variance is set to0.0025◦K2, θinc = 40◦,
θazi = 0◦, u = 0m/s,p is vertical and SST and SSS are chosen for ensemble member 40, respectively.

Case 2 Assimilates theTB data based on constant SST=16◦C, the data variance is set to0.0025◦K2, θinc = 40◦,
θazi = 0◦, u = 0m/s,p is vertical and SSS is chosen for ensemble member 40, respectively.

Case 3 Assimilates theTB data based on constant SSS=34◦C, the data variance is set to0.0025◦K2, θinc = 40◦,
θazi = 0◦, u = 0m/s,p is vertical and SST is chosen for ensemble member 40, respectively.

Case 4 Assimilates theTB data which were corrupted by noise, the data variance is set to0.0025◦K2, θinc = 40◦,
θazi = 0◦, u = 0m/s,p is vertical and SST and SSS are chosen for ensemble member 40, respectively.

Case 5 Assimilates theTB data which were corrupted by noise, the data variance is set to0.25◦K2, θinc = 40◦,
θazi = 0◦, u = 0m/s,p is vertical and SST and SSS are chosen for ensemble member 40, respectively.
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Case 6 Assimilates theSSS data as given in Figure3.15, the data variance is set to0.01psu2, SSS are chosen for
ensemble member 40.

Case 7 Assimilates theSSS data as given in Figure3.15, the data variance is set to0.32psu2, SSS are chosen for
ensemble member 40.

Case 8 Assimilates the originalTB data as given in Figure3.15, the data variance is set to0.0025◦K2, θinc = 40◦,
θazi = 0◦, u = 20m/s,p is vertical and SST and SSS are chosen for ensemble member 40, respectively. In the
assimilation scheme the wind information is set to beu = 20m/sθazi = 0◦ in all model gridd points.

Case 9 Assimilates the originalTB data as given in Figure3.15, the data variance is set to0.0025◦K2, θinc = 40◦,
θazi = 0◦, u = 20m/s,p is vertical and SST and SSS are chosen for ensemble member 40, respectively. In the
assimilation scheme the wind information is set to beu = 10m/s andθazi = 0◦ in all model gridd points.

Four of the assimilation experiments are examined in detail in this report: Case 1, Case 4, Case 5 and Case 6. The
others are additional experiments used to support the interpretation of the others.

We first describe the results from the Case 1, Case 4 and Case 5 experiments which all assimilateTB data. The
TB observations are in all cases evaluated from the model SST and SSS (displayed in Figure3.15) using the40th

ensemble member. In the first experiment theTB is used without any perturbation, while in the next two experiments
we add 10 % smooth and random noise to get more significant changes in updates. Finally, in Case 6 we observe the
effect of assimilating directly the SSS data.

The observation vector included 7344 data points in “wet” model grid points. Some points were excluded from the
assimilation because theTB function is only defined for temperatures between 0 and30◦C. This reduces the number
of observations included in the EnKF analysis to 6793.

Results: Assimilation ofTB.

The variance in the data is a measure of their accuracy, and it determines the influence of the data in the analysis. In
Case 1–4 the variance is 0.0025◦K2 for all data points. To test the effect of a poorer accuarcy in theTB data we use
a variance of 0.25◦K2 in Case 5.

The analysed SST and SSS resulting from the Case 1 experiment are given in the upper plots in Figure3.16. In the
lower plots we give the differences between the analyses and forecasts for SST (left) and SSS (right). It is seen that
the SST update (lower left) is generally less than±0.6◦C, except for a circular region in the south where the update
is negative and close to2◦C. In the north the update in temperature is less than±0.2◦C, while relatively large areas in
the south of40◦ N have updates between±1.0◦C. The difference between analysed and forecasted SSS is generally
between−0.08 and 0.03 psu, except for an area along the Equator and in the Gulf Stream where the update is positive
and close to 0.2 psu.

So the general observation in Figure3.16is that the SST and the SSS fields are more strongly updated south of around
40◦N than north of this latitude.

Because the difference between the mean of the ensemble members and the40th ensemble member is relatively small
(see Figures3.12and3.15), 10 % random noise was added to the data. The resulting temperature brightness data to
be assimilated is shown in the lower right plot in Figure3.15. The noise clearly dominates theTB observations. A
very pronouncedTB anomaly of (+2 ◦K) is seen at (40◦ N, 20◦ E). In the south both negative anomalies (−2 ◦K) and
positive anomalies (+2 ◦K) in the Gulf of Guinea are observed. These perturbed observations were assimilated with
a variance of 0.0025◦ K2 for all observation points in Case-4.

The results after EnKF analysis are visualised by plotting the SST field to the left and the SSS field to the right in the
upper part of Figure3.17. The lower plots in Figure3.17show the residual between the analysed mean field and the
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predicted mean field. Significant updates are observed both in SST and SSS south of40◦ N. The SST is corrected
with up to±10.0 ◦C, while the salinity is updated with up to±1.0 psu. Also in this case it is observed that the updates
are more significant south of40◦ N than at higher latitudes. In the north the SST is updated by upto1.0◦C in SST and
the SSS by up to±0.10 psu. This corresponds to a 10 times larger update in the south than in the north. It is clearly
observed that the the features seen in the perturbedTB data (Figure3.15) are reflected in the residuals between the
analyzed model state and the forcasted model state (Figure3.17).

In the Case 5 experiment we used the sameTB observations as in Case 4 (shown in the lower left plot in Figure3.15).
The variance is increased to0.25◦K2 for all data points, thus, the data will have less impact in this case. This
corresponds to a standard deviation inTB of 0.5◦ K2 which corresponds to the previously recommended accuracy of
theTB for the final SMOS data. Results after EnKF analysis are shown in Figure3.18. The upper plots show SST
(left) and SSS (right) after analysis. The lower plots show the difference between the analysed and predicted SST
(left) and SSS (right). The SST is updated with less than 0.3◦C in absolute value. The strongest update in SST is
found in the southern part of the plot. The difference between forecasted and analyzed SSS is less than 0.08 psu. This
is a much smaller update than in the previous Case 4.

TheTB innovation plots before (left) and after (right) the analysis for Case 4 and Case 5 are plotted in Figure3.19.
The innovation are in all cases less than 1.0◦K in asolute value. The two left plots shows the innovation before the
analysis and they are identical for both cases. The two plots on the right hand side show the innovation after the
analysis. In the upper right plot the innovation is reduced by around 50 % south of 40◦ N. The strong anomalies in
the innovation (both negative and positive) is significantly weaker at low latitudes after the assimilation, while the
anomalies in the innovation persists in the north. This again illustrates that the impact of the analysis is stronger at
mid latitudes than at high latitudes. This is due to the regional differences in the ensemble predicted variance of the
modelled SST and SSS. Since the EnKF predicts an accurate model forecast at high latitude this will ensure lower
impact of the TB data, than in regions with large forecast variance. In the lower plots of Figure3.19we rarely observe
any reduction of the innovation after the analysis in Case 5. Only very small reductions are observed in the Gulf of
Guinea.

The experiments above demonstrate the importance of high accuracy in theTB observations, and the very strong
effect of the modelled variance in the model.

Direct assimilation of SSS

In the final experiment (Case 6) unperturbed SSS data from the40th emsemble member is assimilated to demonstrate
the effect of direct assimilation of the SSS data. The result is shown in Figure3.20. The variance of the SSS data
was set to 0.01 psu2. This accuarcy corresponds to the recommended accuracy and includes both the errors in the
underlying measurements and the model error introduced in the inversion to SSS data. The corresponding update in
salinty is between±0.2 psu in the south, while the update is close to 0 psu in the north. In temperature the update
is close to0.0◦C in the north (except in the Gulf stream), and south of 20◦ N the update vary between±0.2 ◦C. The
direct assimilation of salinity have the strongest impact on the SSS while it has a smaller impact on the SST.

Summary of the results from assimilation ofTB data

In this study we have presented results from 4 different experiments where simulatedTB and SSS data were assimi-
lated into an OGCM using the EnKF. The experiments were designed assuming the following instrumental settings:

1. incidence angleθinc = 40.0◦;

2. azimuth angleθazi = 0◦;

3. wind speedu = 0 m/s;
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List of results
Standard dev SSS SST

Case (K) (psu) (◦ C) Update
(psu)

Location Update (C) Location

Free-run S 0.004− 0.2 0.045 0.2− 1.0
Free-run N < 0.004 0.03− 0.04 0.2− 0.3
Case 1 S 0.05 −0.8–0.2 Along equa-

tor
±1.0 Along 30 N

Near equa-
tor
Below 10 S

Case 1 N −0.08–0.03 Gulf stream ±0.2

Case 4 S 0.05 ±1.0 TB anoma-
lies

±10.0 TB anoma-
lies

reflected in reflected in
updates updates

Case 4 N ±0.1 ±1.0

Case 5 S 0.5 ±0.01 Gulf of
Guinea

−1.0–0.8 Along 30 N

Near equa-
tor
Below 10 S

Case 5 N ±0.01 ±0.15
Case 6 S 0.1 ±0.2 Gulf of

Guinea
±0.3 Along 15 N

Around 15
N

Case 6 N ±0.0 Gulf Stream ±0.0 Gulf Stream

Table 3.1: List of results of assimilation of TB and SSS data. Updates are given as overall range of updates within
two areas defined as S: for areas south of 40◦ and N: for areas north of 40◦. Anomalies are areas with large negative
or positive updates.

4. polarisationp vertical;

5. variance in observationsσ2 = 0.0025◦K2 (Case 1 and 4),σ2 = 0.25◦K2 (Case 5) andσ2 = 0.01psu(Case 6).

Two different variants of theTB data sets were created using the modelled SST and SSS. The first data set was
generated by using the40th ensemble member (Case 1) and the second by adding random perturbations to the first
data set (used in Case 4 and Case 5). In Case 6 unperturbed SSS data from the40th ensemble member was assimilated
directly. The sequence of experiments described above allowed us to give an assessment of the impact on the model
state of assimilatingTB data sets representing different innovations (difference between observations and model data)
and different accuracy of the data. We focussed the attention on the effect on the SST and SSS variables.

The results of the assimilation experiments are summarized in Table3.1, where the accuracy of the model and obser-
vations are provided in standard deviation. Furthermore the table provides the general updates for north and south of
40◦ N latitude in each experiment and anomalies in the updates are listed.

In all cases considered in this study the strongest update in both temperature and salinity are found south of 40◦ N. In
the cases with strong impact of the data the update in the south is 5–10 times larger than in the north. By increasing
the difference between data and forecast by adding 10% (with respect to dynamic range) random noise to theTB data
the updates are generally increased by a factor 10. In the case of introducing theTB data with a poor accuracy, 10%
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of the dynamic range, in Case 5 the updates in SSS caused by the perturbedTB is reduced by a factor of 0.01 and in
SST by a factor 0.1 compared to the updates in Case 4 (with accuracy of 1% of the dynamic range).

In Case 6 we study the impact of direct assimilation of unperturbed SSS using the recommended data accuracy of
0.1 psu from the GODAE experiment. Almost no update is observed in the north, while clear updates are seen in
the south. Compared to Case 5, which had a poor accuarcy inTB but stronger innovations, the overall updates are
significantly smaller in both SSS and SST. On the other hand the size of the updates in Case 6 are similar to Case 1
for SSS while the update in SST is 3 times smaller. So, given that the SSS data can be provided with an accuracy of
0.1 psu it will impact the SSS in the EnKF analysis in the same order as when assimilatingTB data with accuracy of
0.0025◦K2. However, before taking any consequences of this result one should test the connection between accuracy
in inverted SSS and the accuracy in the measuredTB.

There is no simple and overall connection between the accuracy in the SSS data and the accuracy in theTB. In the
case of using SSS data the accuracy of the observations is a combination of the measurement errors in theTB data and
the errors introduced when invertingTB data, caused by limitations of the emission model and errors in the SST data
and atmospheric data which is nessecary input to the inversion. When considering theTB observations, the accuracy
corresponds to measurement errors which can be improved by an averaging process. So from the observational point
of view it would be better to use the direct observations ofTB.

In the assimilation process the variances/errors in the model data are also important. When performing the direct
assimilation of SSS data the matrix,HA, is established by interpolating the modelled SSS to the observation grid and
the general error introduced is the modelled variance in the SSS data represented by the spread of the 100 ensemble
members. In the case of representing the modelledTB data the error budget becomes more complicated. The total
error consits of

• the modelledTB variance, which is established through the nonlinearTB functional using the modelled variance
in SSS and SST and errors in the atmospheric fields as input,

• the shortcomings in the underlying emission model used to establishing theTB functional will introduce another
error called representation error. This error is unknown, to us.

In our study the error estimate in the modelledTB have only included the modelled variance and not the representation
error. This means that we have overestimated the accuracy of the modelledTB.

To proceed with the assimilation of theTB or SSS data it is nessecary:

• to get improved emission models (including sea surface roughness)

• establish better estimates of the emmision model error statisitics, to get

• better estimates of the measurement errors.

To summarize our results:

• The assimilation of theTB data proved efficient for controlling the model SSS and to some extent also the SST.

• The assimilation ofTB and SSS data had less impact at high latitudes than at mid latitudes. This is a combined
effect of a typically lower variability in the model predicted SST and SSS at high latitudes compared with mid
and low latitudes. In a real time monitoring system the predicted variance in the model will vary according to
how long time it is since the last update. It is also resonable that the variance will vary according to the seasonal
variations. In cases where the variance in the north increases the impact of assimilatingTB will increase in this
region.

• The results of the assimilation depends strongly on the the error statistics in observations and in the model.
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3.5.4 Perspectives and recommendations for future work

This work must be characterized as a first preliminary study where we demonstrate the capability of the system to
assimilateTB data into an ocean model. Based on this study we conclude that future satellite observedTB data are
likely to serve as an important source of information in operational ocean data assimilation systems, provided that
the data can be delivered with sufficient accuracy and resolution and a proper emission model exists. However, our
present study have several simplifications.

The syntheticTB data have been generated by considering one angle of incidence, vertical polarisation and zero wind
conditions. The realTB data will be a composition of signals for different incidence angles and will contain significant
influence of the wind speed and azimuth. The inclusion of several incidence angles will require a weigthing function
when establishing the modelledTB parameter. This, together with averaging in space and time, will increase the
accuracy of the modellingTB.

Our study have used a flat zero wind field, and this is a very strong simplification. In an operational monitoring
system we will have access to wind field data which will be important input to theTB function when establishing the
modelledTB field. As for other data types it will be important to get proper error statisitics for the wind data. Also,
we have assumed that the emission model provides aTB functional which is accurate when representing the modelled
TB in theHA. This strong simplification causes the modelledTB to have strong impact compared to the synthetic
TB in the assimilation.

Based on the results and the described limitations in our study we propose, in forthcoming studies, to

• perform elaborate sensitivity studies whereTB data are generated simulating realistic processing techniques,

• examine the impact of assimilatingTB data together with data from other sensors, e.g., SLA and SST data in a
hindcast experiment,

• establish improved emsission models to reduce errors in the inversion to SSS data and in representing modelled
TB datai,

• perform studies to improve the spesification of errors in the integrated data and modelling system,

• implement studies to improve knowledge of how the errors in observations and models propagate through the
system.
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3.6 WP 3100: GOCE MISSION and impact on operational oceanography

The shape of the geoid surface defines the local horizontal. On land it provides the reference surface for ”topography”,
and over the ocean it would correspond to sea-level as if no currents were flowing. Present knowledge of the Earth’s
gravity field and its geoid, as derived from various observing techniques and sources, is incomplete. However, within
a reasonable time, substantial new understanding will be derived by exploiting satellite based gravity observations
from the GRACE mission launched in second half of 2002 and the GOCE mission approved for launch in 2006.
GOCE is specifically designed for the determination of the stationary gravity field and its geoid to high accuracy (1
mGal and 1 cm) and spatial resolution (100 km)SP-1233(1)(1999); Johannessen et al.(2003).

The typical elevation scales of the dynamic ocean surface topography range from 0.1 m to 1 m. In comparison,
the accuracy of present geoid models is also multi-decimetric on the scale of many ocean circulation features, in
particular at wavelengths shorter than 400 to 500 km. Hence the mean ocean circulation cannot be properly estimated
from satellite altimetry at these wavelengths. The use of imprecise geoid models for the determination of the absolute
dynamic topography at shorter spatial-scales consequently result in computation of false multi-decimetric topographic
signals which, in turn, will lead to false transport calculations of several 10’s of Sv (1 Sv =106 m3/s and is typically
corresponding to a heat transport of5 × 1013 W in the North Atlantic basin). In contrast, the accurate and high-
resolution marine geoid, as derived from GOCE, will in combination with satellite altimetry enable new precise
estimates to be made of the absolute ocean topography as schematically illustrated in Figure3.21.

As suggested in Figure3.21 the altimetric signal will be directly related to the marine geoid provided by GOCE,
thus allowing the complete height measurements to be utilised. Complemented with in-situ data and numerical
ocean models, the new knowledge of the absolute ocean topography will, in turn, act as an important constraint in
assimilation and subsequent calculations of ocean circulation and its volume transport and heat fluxes.

In a recent simulation study byProvost et al.(1999) the ocean surface topography obtained using the 1/12◦ resolution
MICOM ocean model of the North Atlantic were partitioned into: a) 1000 km wavelength corresponding to the present
situation in which the spatial separation of the dynamic topography from the geoid height is performed adequately;

Figure 3.21: Absolute ocean circulation studies from combination of GOCE geoid with precision altimetry.
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Figure 3.22: Schematic illustration of the upper ocean circulation pattern into and out of the Nordic Seas. In the
insert the deep water outflow pattern from the Nordic Seas to the Atlantic Ocean is indicated.

b) 250 km wavelength corresponding to that part of the topography which can be well resolved with GOCE; and
c) 100 km being that part of the dynamic ocean topography at the shortest scales which will remain unresolved to
satisfactory precision after GOCE. The key findings suggest that many interesting features, such as mesoscale fronts
and eddies associated with the Azores Current and western boundary currents can be resolved with GOCE. The only
exception is the fairly intense decimetric signals associated with the intense and short-scale Florida Current and Gulf
Stream front.

The expected advanced knowledge of the eddy statistics of the real ocean from altimetry, together with knowledge of
the precise positions of the ocean jets from altimetry plus gravity (rather than from the assumption of frontal positions
by means of sea-surface temperature or hydrographic information at present), will enable much better determination
of the role played by the eddies in maintaining the jet components of the circulation. This was demonstrated by
Hughes and Ash(2001) using satellite derived sea surface temperature fields of the sharp frontal areas within the
ACC, most of which will have decimetric signals in the absolute ocean topography, and which it is intended to
localise precisely and measure by means of GOCE in combination with altimetry.

Based on the end-to-end simulation results obtained bySünkel et al.(2000) (and briefly reported inSP-1233(1)(1999)
it is suggested that the accuracy of the marine geoid height provided by GOCE will be about 2.5 mm at 100 km,
rather than 1 cm. This means that a 1 cm accuracy can be expected at finer spatial resolution around 70–80 km. An
important question in this context is the potential application of the GOCE geoid height data in combination with
precision altimetry for ocean circulation studies along isteep and narrow continental shelf breaks and subsequent
shelf seas as well as in semi-enclosed seas such as the Mediterranean. The currents topographically steered along the
shelf break acts as an open boundary between the coastal regions and the deep ocean and any exchanges of mass and
energy between the two regions may therefore manifest itself along the shelf break.

How much of a constraint will GOCE place on the strength of the shelf slope current, and how small a scale can
GOCE resolve in this region, given the covariance between gravity, bathymetry, and dynamic topography? The
advanced DIADEM/TOPAZ data assimilation systems are based on dynamically consistent estimates of error statistics
Evensen(1997); Evensen and van Leeuwen(2000). These methods ensure multivariate and physically consistent
analyses with statistical covariance functions varying in space and time. This allows the extraction of maximum
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Figure 3.23: Intercomprasion of modelled derived eddy kinetic (upper) and mean kinetic (lower) energy for the surface
layer (10 m) left and sub-surface layer (100m) right.

amount of information from satellite surface observations, since vertical projection of information is controlled by
the dynamically evolving error covariances in the system. A brief investigation has been initiated with model run
to produce fields of mean and eddy-kinetic energy (EKE) for the ocean and shelf region southwest of the Faereo-
Shetland Islands (Figure3.22and Figure3.23). These fields reveal how much of the time-varying altimetric signal
(sea surface height anomalies and eddy kinetic energy) is found along the continental shelf break versus the deeper
ocean basins. The remaining time-invariant mean signal derived from the ocean model is in turn reflecting the strength
and importance of the mean flow which is largely controlled and steered by the relative steep shelf break topography
with a typical cross-shelf width of 70-100 km.

The partition of the inflow of warm Atlantic Water to the Nordic Seas (Figure3.21) into the amount of water trans-
ported with the mean versus fluctuating part of the inflow (Figure3.22) clearly reveals the expected impact of topo-
graphic steering. The mean kinetic energy in the surface (10 m) and in the sub-surface (below 100 m) layers have
practically the same pattern and strength due to the barotropic signal, and equals the eddy kinetic energy in magni-
tude. The current use of altimeter for studies of the inflow of Atlantic Water to the Nordic Seas is therefore hampered
by this strong topographic steering effect.

3.6.1 Summary

The results briefly presented above demonstrate promising impact of the GOCE mission for oceanography. Still we
need to build on these and advance the impact simulation studies further in order to adequately promote the mission
in the oceanographic community as suggested in Table3.2.

As revealed in the table, impact on the understanding of the role of the positions, strengths and dynamics of the short-
spatial-scale fronts and jets in controlling the ocean circulation has been achieved for some ocean basins, notably in
the North Atlantic and Southern Ocean. With the provision of GOCE data the opportunity to carry out real analyses
of this kind for the entire global ocean, in combination with auxiliary data, will ensure greater confidence to the
construction of the next generation of ocean and climate models. It is furthermore clear that studies should focus on
regional and semi-enclosed seas as well as continental shelf break regions to explore the impact at finer spatial scales
in the limit for the GOCE observation capabilities. In so doing, it will also be very relevant to consider additional use
of local gravity data such as currently being jointly undertaken in the EU funded GOCINA and Norwegian Research
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Open ocean Regional and semi enclosed seas and Shelf
breaks and coastal regions

Mean flow Positive impact doc-
umented for North
Atlantic

Relevant scales+ strength and interaction with
bathymetry needs to be further examined (Partly
aim of GOCINA and OCTAS

Jets and ed-
dies

Positive impact docu-
mented at scales from
250 to 100 km

Interaction of mean flow with jets and eddies. Can
shorter scales 50-100 km features be explored and
how do they interact with bathymetry?

Positive impact on inter-
action of mean flow with
jets and eddies in the
Azores current region

How important is addtion of local gravity data.
(Partly aim of GOCINA and OCTAS)

Heat and
volume
fluxes

Positive impact docu-
mented for the upper
ocean (< 1000m) and
across sharp fronts

The impact of GOCE for heat and volume fluxes
needs to be further studied. Usually signals
show strong variability on seasonal and interannual
scales. Also strongly connected to fisheries in the
Nordic Seas

Data assim-
ilation

Positive impact on pre-
dictive skills

Assimilation experiments are nedded to study the
impact of the GOCE derived geoid

Need to conduct multi-
variate assimilation using
GOCE, altimetry, Argo,
SMOS, IR, etc

The importance of local gravity data must also be
examined. (Partly aim of GOCINA and OCTAS

Table 3.2: GOCE Impact Matrix for Oceanography

Council OCTAS projects (refs). Finally, in combination with in-situ data and ocean models, the new understanding
gained from present and the future suggested studies, will in turn, act as an important constraint for calculations of
oceanic mass and heat transport as well as its impact on global sea level.

The new gravity field knowledge derived from GRACE and GOCE will be very timely in the context of the devel-
opment of the integrated observing system for the ocean in which continuity of precision altimetry (Jason–1, Envisat
RA–2, and possibly Jason–2) together with the Argo profiling float program play a fundamental role.
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3.7 WP3200: Assimilation of ice parameters

3.7.1 Introduction

In the polar regions ice is an important component of the climate system, and it strongly modifies exchanges of heat,
momentum and moisture between the ocean and the atmosphere. This effect is perhaps best seen in wintertime heat
fluxes in the interior of the Arctic ice pack where the atmospheric heat fluxes over open water can be two orders of
magnitude larger than over ice.

The thermohaline circulation is affected by the presence of sea ice. This is due to the insulating effect of the ice cover,
and because of salt fluxes between ice and ocean when sea ice freezes or melts. The ocean stratification is also an
important factor in determining the impact of sea ice on the thermohaline circulation. In the Central Arctic Ocean,
the stratification is strong, due to the presence of a cold halocline layer. This layer does, to some extent, reduce
the thermohaline circulation in this region. The majority of the thermohaline circulation is therefore believed to be
connected to processes in the subpolar seas.

Among the subpolar seas where deep water formation takes place are the Siberian and Laptev shelf seas. Here, it is
believed, sea ice formation plays an important part in creating dense waters. The brine released by freezing ice creates
dense shelf water, which is believed to sink into the Arctic Ocean, entraining water masses on their way to the deep
ocean (Rudels et al., 1999). In the Labrador and Greenland Seas, sea ice often has the opposite effect as seen on the
shelves. These seas are “production sites” for deep and intermediate water masses of the North Atlantic. Here, ice is
transported from other regions, and excessive transport has the capability of producing buoyancy anomalies in these
regions, such as the “Great Salinity Anomaly” (Dickson et al., 1988; Belkin et al., 1998). The buoyancy anomalies
can reduce the deep water production, and the variability of the ice transport is therefore an important factor in the
variability in deep water production. The effect of such variability on the thermohaline circulation has previously
been demonstrated byHolland et al.(2001).

In addition to the importance of sea ice for the global climate there is also a need for shorter-term predictions of
sea ice concentrations. Offshore operations and weather forecasters would be likely to profit from ice concentration
estimates in polar regions. At present we have a reasonably good understanding of polar sea ice concentration through
data from passive microwave sensors. The data from the Special Sensor Microwave/Imager (SSM/I) carried on board
the satellites of the Defense Meteorological Satellite Program makes it possible to compute nearly daily snapshots of
the sea ice concentration.

In contrast to the sea ice concentration data, relatively little information is available on sea ice thickness. The launch
of the ESA Cryosat satellite will provide an important new dataset for climate researchers. The availability of the
Cryosat sensors will provide users with regularly sampled ice thickness estimates, and therefore much improved
estimates of long term changes of the ice cover. This is in contrast to the current situation, where the best dataset is
the ice thickness estimates from Upward Looking Sonars, carried onboard British and American submarines. Based
on such a dataset,Rothrock et al.(1999) inferred a reduction of the average ice thickness of the Arctic from 3.1m
in the 1950–1970s period, to 1.8m in the 1990s. This result is in some contrast to results from the Soviet Union
”North Pole” drifting stations. TheRothrock et al.(1999) data indicate a trend of−5cm/y, while the ”North Pole”
estimates indicate a trend of−2cm/y (Nagurnyi et al., 1994). It should be noted that the conclusions of data from the
”North Pole” stations are unclear as well, since these stations are based on measurements of elastic waves in the ice,
which can be hard to directly connect to ice thickness. Furthermore, the ice thickness trends are also investigated by
modeling results.Holloway and Sou(2002) found that at least some of the trends fromRothrock et al.(1999) could
be due to changes in the large scale distribution of thick ice, due to changes in wind patterns. They argue that the
results ofRothrock et al.(1999) are more a result of a statistical ”fluke”, than of a large ice melt in the Arctic. In short,
there is some controversy regarding the ice thickness trends in the Arctic. In this situaton the ice thickness estimates
from the Cryosat mission will be of great use.

The ability to extend available knowledge, and forecast ice variables, is possible through the use of numerical models
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describing the thermal and dynamic properties of the ice. However, in addition to producing forecasts it is essential
also to produce reasonable estimates of the uncertainty in the model forecast. Furthermore, to reduce uncertainties in
the model forecast it is essential to have an initial model state which is as close as possible to the truth. This is where
the different data assimilation techniques come into play. Furthermore, the use of models and data assimilation is not
only related to forecasting, but can also be used to produce a reanalysis.

The focus of this work is to demonstrate the assimilation of sea ice concentration and sea ice thickness in a cou-
pled sea ice ocean model using the Ensemble Kalman Filter (EnKF;Evensen, 1994). The EnKF is a sequential
and ensemble–based data assimilation technique; an ensemble of model states is run in parallel and the analysis is
computed at discrete times, using only information available at that time. Model error statistics, necessary for the
analysis, are calculated from the ensemble of model states. This makes the EnKF attractive due to its relatively easy
implementation compared to other assimilation schemes. There is, for instance, no need to compute adjoint equa-
tions or a tangent linear operator. This point is even more important for coupled models, where different time scales
can be important for the different model components. Because of its simple implementation and its capability for
describing error statistics in nonlinear models, variants of the Ensemble Kalman filter have been widely used in geo-
physical applications (Evensen, 1994; Houtekamer and Mitchell, 1998; Reichle et al., 2002; Haugen and Evensen,
2002; Natvik and Evensen, 2003a). A short presentation of the EnKF was given in Section3.3

The model system used in this study is the HYbrid Coordinate Ocean Model (HYCOM;Bleck, 2002), together with
a dynamic-thermodynamic sea–ice model. The sea ice model consists of the Elastic-Viscous-Plastic dynamic model
of Hunke and Dukowicz(1997), and a thermodynamic module fromDrange and Bleck(1996). The system is forced
by atmospheric variables from the European Centre for Medium–range Weather Forecasting (ECMWF).

The assimilation is performed with the EnKF, where the assimilated variables are sea ice concentration and sea ice
thickness. We do not assimilate ice concentration and ice thickness at the same time, but treat assimilate each variable
in seperate experiments. The assimilation scheme is multivariate, so both ocean and ice model variables are updated in
the analysis. The use of variables from both ocean and ice model components in the assimilation scheme is essential,
as the properties of the oceanic mixed layer are strongly dependent upon the presence of ice. An analysis update
in ice concentration/thickness with no accompanying modification of surface layer properties could result in a state
where newly introduced ice melts immediately.

To our knowledge, there have been no previous attempts to perform multivariate ice variable assimilation into this
type of model system with the EnKF scheme. The focus of the study is therefore largely upon the methodology
and the realism of the multivariate scheme. The outline of this study is as follows. In Section3.7.2we will briefly
describe the model system, whereas the EnKF was described previously in Section3.3. The study continues with the
experiences from the ice concentration experiment first, and then the experiences from the ice thickness assimilation.
A short summary is given in the end.

3.7.2 Model setup

The ocean model is the HYbrid Coordinate Ocean Model (HYCOM;Bleck, 2002), which is a further development
of the Miami Coordinate Ocean Model (MICOM;Bleck and Smith, 1990). The MICOM model uses density as the
vertical coordinate. The main advantage of isopycnic coordinates lies in their ability to maintain the properties of
water masses which does not communicate directly with the surface mixed layer. In the interior of the ocean, mixing
is believed to mainly occur along neutral surfaces (Montgomery, 1938), which for most situations are relatively close
to isopycnic coordinate surfaces. One of the drawbacks of the MICOM model is its relatively simple parametrization
of the oceanic mixed layer, described by a bulk mixed layer model (Gaspar et al., 1990).

The major improvement in HYCOM relative to MICOM is the introduction of so-called hybrid layers, which does
not necessarily need to keep a given target density. This approach does not allow density layers to become massless,
and allows for high vertical resolution close to the surface of the ocean. This has in turn facilitated the introduction of
more sophisticated vertical mixing schemes, such as the K-Profile Parametrization (KPP;Large et al., 1994), which
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Figure 3.24: Figure 3.24(a) Illustration of the model grid. Areas masked in the model are marked as gray, while areas
outside the grid are not included in the model. Note that only every second grid line is shown. Figure 3.24(b) Part
of the model domain with the Arctic Ocean. Also shown is a section used in the text (section A), and a point on this
section (circle), which we will refer to as point ’O’.

is used in this study.

The model grid used in this study has a resolution focus in the Nordic Seas with closed boundaries in the Bering
Strait and the South Atlantic. A part of the model grid is shown in Figure3.24(a). It was created with the conformal
mapping tools ofBentsen et al.(1999), and has grid sizes ranging from 100 to 150 km in the Arctic. The vertical
discretization uses 22 isopycnal layers, which inσ0–coordinates range from 21.8 to 28.11. Note that the lightest
layers in this discretization are primarily used to describe the surface mixed layer, as they are usually too light to
describe interior water masses of the ocean. The lightest layers become the surface layers in the hybrid coordinate
formulation.

The ice thermodynamics model used has many features in common with the “0–layer” ice thermodynamic formulation
of Semtner(1976), which ignores the specific heat of the ice. In the limit of zero heat capacity of ice the heat
conduction equation gives the vertical temperature profile in the ice as a linear function. The conductive heat flux has,
as a result of this, the same absolute value at the surface and bottom of the ice slab. The thermodynamic model also
includes a snow layer, and a linear temperature profile is prescribed through the snow as well. A detail which will be
commented later on is the thermodynamical formulation of heat exchange between water and ice. The present model
uses a simplified formulation of heat exchange using so-called “infinite diffusivity” (Holland and Jenkins, 1999). In
this formulation, any heat available for sea ice melt in the upper ocean layer is immediately used to melt ice. The
available heat is determined by the upper ocean layer temperature deviation from the freezing point of the ocean. One
consequence of this is that no ice will be present in a model grid cell when the sea surface temperature is above the
freezing point of the ocean. For full details of the ice thermodynamic model we refer toDrange and Bleck(1996).

The ice dynamics model is the Elastic–Viscous–Plastic (EVP) ice rheology ofHunke and Dukowicz(1997). The EVP
model presents an alternative to solving the traditional Viscous–Plastic model (VP;Hibler, 1979) by introducing an
elastic component to the rheology equations. The elastic waves dampen out when solving the dynamical equations,
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and the resulting solution approach the one obtained by the VP model. The benefits of the EVP rheology is that it
allows for an explicit parallel solution of the VP equations. The numerical implementation of the EVP model also
shows better response to rapid changes in forcing of the sea ice component, relative to numerical implementations of
the VP model (Hunke and Dukowicz, 1997). The ice dynamic and thermodynamic models have been solved for the
same model grid as the ocean model, shown in Figure3.24(a).

The synoptic forcing used were temperature, winds and humidity determined from dew point temperatures, fields
which all were acquired from the European Center for Medium–range Weather Forecasting (ECMWF). Clouds are
based on climatologies from the Comprehensive Ocean and Atmosphere Data set (COADS;Slutz et al., 1985), while
precipitation is based on the climatology ofLegates and Willmott(1990). River input is modeled as a negative salinity
flux, and the river sources in the Arctic include the Lena, Ob, Kotuy, Dvina, Yenisei and the Mackenzie rivers
(Dümenil et al., 1993; Aagaard and Carmack, 1989). At the surface the ocean model uses temperature and salinity
relaxation towards Levitus Climatologies (Levitus et al., 1994; Levitus and Boyer, 1994), with a common relaxation
time scale of 50 days.

The focus of this study is upon the effects of the Ensemble Kalman Filter Scheme in the coupled model context. The
model fields were initialized from a realistic model state used in the EC MAST–III project DIADEM (MAS3-CT98-
0167) and integrated for one year prior to the experiment. The generation of the full ensemble of model states used
in the EnKF will be described in the next section.

3.8 WP3200 – Ice Concentration assimilation

3.8.1 Ice concentration assimilation – Experiment Setup

The state vectorψ was chosen to include both ocean variables and ice variables as these are closely related, partic-
ularly for the ocean surface. For each of the 22 layers of the ocean model we included salinity, temperature, layer
thickness and velocity. In addition the barotropic velocity and barotropic pressure components were included along
with ice concentration and ice thickness from the ice model.

This gives a total of 115 variables for each grid cell. The analysis (3.3) can be calculated for the full model state
vectorψ. For this application the dimension for the state vectorψ is

n = dimψ = 140× 130× (22× 5 + 5) ≈ 2× 106 , (3.8)

which can result in problems if we only have100 ensemble members forming a basis for this vector space (the analysis
update is in reality a linear combination of the ensemble membersψi). A common practice in data assimilation for
high–dimensional systems is therefore to look at the problem locally, meaning that each grid cell value is updated
using observation values in a radius of influencer0 around the grid cell. In this way the100 ensemble members will
better describe the vector space (now with dimension115). Thus the local analysis should make the problem better
behaved and was chosen for this study. Note that the inclusion of variables other than ice concentration will also force
an update of these variables because they can be negatively or positively correlated with ice concentration through
the ensemble covariance matrix.

During the integration of the ensemble members there is a need to incorporate the effect model errors have on the
evolution of the ensemble members. How to best do this is a study in its own right. One approach could be to
add random fields to the ocean layer interfaces and ice thickness in the model at the analysis time. The approach
used here is to add pseudo–random fields, with a prescribed length and time scale, to the ECMWF forcing fields. This
procedure is a crude way of incorporating the effect of model errorsdβi in equation (3.1) into the ensemble, and is the
same as assuming that the dominant errors are in the forcing data. Furthermore, this approach does not disturb model
dynamics in an unphysical manner. See the appendix inEvensen(1994) for a description of the pseudo–random fields
added to the forcing, and Table3.3for a description of the random forcing component parameters.
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Table 3.3: The table shows some of the parameters used in the assimilation experiment.
Parameter Explanation value

N Number of ensemble members 100
r0 Observation radius of influence 100 km
σc Obs. error standard deviation 0.05
rc Obs. error decorrelation length scale 10 km
rβ Decorr. length for random forcing∼ 1000 km
τβ Atm. stress standard deviation 0.015 N/m2

Tβ Atm. temp. standard deviation 3.0 K

To calculate sea ice concentration, brightness temperatures from the Special Sensor Microwave/Imager (SSM/I) are
used. The brightness temperatures are supplied by the National Snow and Ice Data Center (http://nsidc.org) on a
304 × 448 grid using a polar stereographic projection. A variant of the NORSEX algorithm (Svendsen et al., 1983)
is used to calculate the ice concentration from brightness temperatures, where channels at 19.35, 22.24, 37.00 and
85.80 GHz are used. The ice concentration was calculated on the same grid as the original brightness temperature
grid from the NSIDC, and then averaged over5 × 5 grid cells to give an observation vectord of somewhat smaller
size and resolution characteristics closer to that of model grid cells in the Arctic. The observation error variance for
the elements ofd was set to0.0025 giving an error standard deviation of0.05 for the ice concentration. This error
variance was fixed throughout the year, although the real error is likely to increase in summer due to the presence
of melt ponds on the sea ice.Emery et al.(1994) give a value of∼ 5% for the winter time ice concentration error
and bias when using the TEAM and bootstrap algorithms. The error for the NORSEX algorithm is probably of the
same magnitude and larger in summer. The observation error decorrelation length scalerc was set to 10 km for the
experiments. Compared to the spacing between the observations this is relatively low, and the result will be an error
covariance matrix which is approximately diagonal.

The initial ensemble was generated from a realistic model state, to which we added random fields. For each ensemble
member, new ice concentration and ocean model layer thickness fields were generated by adding smooth pseudo–
random fields (Evensen, 1994) to the original model state. All other variables of the individual ensemble members
were identical to the original model state. The random fields added to the ocean model layers were vertically corre-
lated and had a horizontal decorrelation length of∼ 400 km. The standard deviation of the random fields were set
to 10% of the original ocean layer thickness, and the ocean layers were finally adjusted so that no barotropic waves
were generated by this procedure. In a similar manner, the random fields added to the ice concentration had the same
decorrelation length, and the standard deviation were set to 10% of the original ice concentration. The ensemble of
model states generated this way has a distribution which through equation (3.2) describes our confidence in the initial
ensemble average.

The ensemble of model states was integrated for a month before starting the experiment. The experiment covers
the period from Julian day 289 in 1998 up to January 2000. Parallel to the ensemble run a free-run model was also
integrated for comparison. This model run used the standard ECMWF forcing fields with no pseudo–random fields
added, and has an initial state equal to the initial ensemble mean. Some of the relevant parameters for the assimilation
experiment are given in Table3.3.

3.8.2 Impact of assimilation

The assimilation of ice concentration has an effect upon all the variables of the coupled model. In this section we
examine the analysis updates and the cumulative effect of assimilation. The focus is put on the ice model variables,
and the surface layer of the ocean model.
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Figure 3.25: 3.25(a) The solid line shows the evolution of the innovation RMS for the assimilation experiment, while
the dashed line shows the innovation RMS for the free-run model. 3.25(b) The solid line with square marks shows
the RMS of the innovation covariance matrix minus the observation error covariance matrix. The solid line shows the
RMS of the error covariance matrix of the model. Note that all RMS estimates are taken only over observation points
where either the model or the observations have an ice concentration larger than 0.05

3.8.2.1 Innovation vector

Given that the object of the assimilation is to introduce observations into the model state, we should see the impact
of the data assimilation in the distance between observations and model state. The success of the assimilation can
to some extent be examined from this distance. The vector difference between observations and model state in the
observation space is frequently referred to as the innovation vector. The innovation vector of memberk is given as

λk = dk −Hψk . (3.9)

The second–order moment of this becomes

Q = (d−Hψ) (d−Hψ)T , (3.10)

and a measure of the distance between observations and model is here given as

RMS(Q) =

√
1
m

trace(Q) , (3.11)

which corresponds to the square root of the mean innovation variance, where the variance is taken in the measurement
points. The evolution of the innovation RMS is shown as the solid line in Figure3.25(a). To make it easier to interpret
the results, the average innovation is taken only over observation points where at least one of the model members, or
the original observation has an ice concentration larger than 0.05.

Noticeable in Figure3.25(a)are the discontinuities which occur at the times when the analysis is performed, indicative
of how the innovation RMS is reduced when the model ice concentration is adjusted by the analysis. Also to be noted
is the strong RMS growth which occurs after the analysis is performed. In many cases the innovation growth between
two analyses exceeds the RMS reduction from the first analysis. Further into the time series however, there is a clear
cumulative effect of the assimilation. At the beginning of the experiment the innovation RMS exceeded0.30, but a
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while into the experiment it is reduced to approximately0.15, and stays close to this value for the remainder of the
experiment.

A free–run experiment was run for the same time period as the assimilation experiment. The evolution of the inno-
vation RMS for the free–run experiment is shown as the dashed line in Figure3.25(a). Comparing the assimilation
experiment with the free–run experiment, we see that the RMS–values start out the same. They quickly diverge, how-
ever, and the innovation RMS of the free-run experiment increases relatively to the assimilation experiment. Note
that both the free-run and the assimilation experiment show reduced innovation RMS in the winter of 1999, relative
to their initial values.

In winter, the large atmospheric temperature gradient across the ice edge has a strong impact upon the modeled ice
concentration fields, with and without data assimilation. This ice edge is prescribed in the ECMWF forcing fields,
partly by use of SSM/I data, and as a consequence, the atmospheric forcing alone will serve to pull the model towards
the observations. This explains some of the RMS reduction in winter, for both experiments.

Around time point 1999.2, the RMS of the free–run experiment starts to move further away from the observed values,
and as summer approaches, we start to see large differences between the experiments. The atmospheric temperature
gradient across the ice edge is smaller in summer, meaning that the ECMWF ice edge is not so effective in determining
the modeled ice edge. This in turn means that the assimilation will have a larger impact in summer, relative to the
free–run experiment. At time point 1999.6 the difference between the model and free-run reaches a maximum, as
the free run has an innovation RMS of∼ 0.4 while the assimilation experiment has a innovation RMS of∼ 0.15.
Towards the end of the time series the RMS–values of the free–run innovation are rapidly reduced, as the autumn
freeze–up starts in the Arctic. We note that both the free–run and the assimilation experiment have lower innovation
RMS–values at the start of 2000, than at the start of 1999, with the assimilation experiment being slightly closer to
the observations.

The innovations also allow us to make rough estimates of the quality of the estimated errors. Consider the model
estimate to be given as a true value plus an errorq′:

ψf = ψt + q′ . (3.12)

Likewise, let the observation be given as the sum of the true estimate and an errorε′

d = ψt + ε′ . (3.13)

If we assume that the observation and model errors are uncorrelated, we have for the second order moment of the
innovation vector

Q′ = (ε′ −Hq′) (ε′ −Hq′)T = R′ +H
(
P f

)′
HT , (3.14)

where the primes are used to distinct the theoretical value for the innovation covariance matrix from the real innovation
covariance matrix, equation (3.10). By using equation (3.14), we can now get a simple test on the quality of the model
error covariance matrix. This is done by comparingRMS (Q−R) againstRMS

(
HP fHT

)
. If the theoretical

estimate given by equation (3.14) is correct forQ as well, then we should have

RMS (Q−R) = RMS
(
HP fHT

)
(3.15)

The RMS values of the innovation minus the observation covariance matrix,RMS(Q − R), and the RMS–values
of the model error covariance matrix,RMS(HP fHT ), are shown in Figure3.25(b). Apparent in this figure is that
RMS(Q−R) is always larger thanRMS(HP fHT ). This difference is most noticeable at the start of the experiment,
whenRMS(Q−R) is about five times the size ofRMS(HP fHT ). The values ofRMS(Q−R) are quickly reduced
from the initial values of∼ 0.25, and seem to stabilize around a value of∼ 0.15. The RMS values of the model error
covariance matrix, on the other hand, remain low throughout winter, with a slight increase in the summer of 1999. At
this time, the RMS values of the innovation matrix minus the observation error matrix, are approximately three times
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Figure 3.26: The evolution of ice volume and ice extent for experiments. The gray lines are individual ensemble
members, the solid black line is the ensemble mean, while the dashed line shows the evolution of free–run experi-
ment.

the size of the RMS value of the model error covariance matrix. As the freeze–up starts in the fall of 1999, we notice
that the RMS of the model error covariance matrix is again reduced to values similar to the winter of 1999.

All in all, the model error covariance matrix appears to be underestimated compared to the theoretical estimate (3.15).
Note however, that this conclusion can only be drawn if we are confident that the observation errors are of the correct
size. We believe the observation errors are of the correct size in winter, while they may be too low in summer. The
reason for the underestimate of the model errors can in part be traced back to too low ice concentration variance in
the model, especially in winter. The low ice concentration variance results in an underestimate of the model error in
the EnKF.

3.8.2.2 Large scale Impact on the ice cover

Two convenient measures of the modeled ice cover properties are ice volume and ice extent. Ice volume is the total
volume of ice while the ice extent here denotes the area which has an ice concentration of 15% or more. Only the ice
cover of the northern hemisphere is considered. The evolution of ice extent and ice volume is shown in Figure3.26
and reveals that both the model ice volume and ice extent are changed as a result of the assimilation procedure. The
effect of individual analysis updates can be seen through the jumps that occur in ice volume and ice extent for the
different ensemble members and for the ensemble mean. Generally, the analysis updates for both ice volume and ice
extent increase their values.

The jumps in ice volume are not merely an effect of analysis changes in ice concentration. When the analysis
is performed, there is an ice thickness adjustment as well as an ice concentration adjustment brought on by the
multivariate assimilation scheme. In other words, the increased ice volume given by the analysis is not just an effect
of increasing ice concentration and keeping the ice thickness fixed.

Although the individual updates of ice concentration have a relatively small impact on the ice extent and ice volume,
there is a cumulative effect of the assimilation, which is seen by comparison with the free–run experiment. The
ice volume and extent is generally higher for the ensemble mean in the assimilation experiment than it is for the
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Figure 3.27: Contour plots of the ice thickness distribution for the entire Arctic. At each time t the Arctic ice thickness
pdf can be retrieved as the values along a vertical line. Figure 3.27(a) shows the ice thickness distribution for the
forecast, while the solid line shows the mean ice thickness. Figure 3.27(b) shows the difference between the forecast
and the free–run ice thickness distributions. The solid line shows the forecast mean thickness, while the dashed line
shows the free–run mean thickness.

free–run experiment, although this difference is small prior to the summer of 1999. The highest ice volume for both
experiments is seen in March/April, and as the effect of spring and summer melt sets in, the difference between the
free-run and the assimilation experiment starts to increase. The difference is seen clearly in summer, when the ice
extent and ice volume are at their lowest values. At this time the ensemble mean in the assimilation experiment shows
an ice volume which is∼ 2.000km3 larger than in the free–run experiment. The ensemble mean ice extent at this
time is∼ 1× 106 km2 greater in the assimilation experiment.

As time progresses and the autumn freeze–up starts in the Arctic, the ice volume differences and ice extent differences
between the two experiments start to decrease. The impact of the assimilation has therefore the greatest impact upon
the summer time ice cover for the time period considered here. The present model system generally underestimates
the ice volume and ice extent as compared to observations, so the assimilation of ice concentration improves these
estimates.

Both the ice thickness and the ice concentration are changed by the assimilation steps, and this modifies the Arctic
ice thickness distribution. In Figure3.27(a)the evolution of the Arctic ice thickness distribution for the ensemble
mean forecast is shown. The contour plots show the distribution of ice with different thickness for the entire Arctic,
and how it evolves in time. At a particular timet the probability density function for the ice thickness is given by the
values on the vertical line extending from the time axis.

The Arctic ice thickness distribution is influenced by the existence of thick, multi–year ice and of thinner seasonal ice.
The distribution of thick ice is increased/reduced by thermodynamic processes and increased by ridging of thinner
ice. In autumn and early winter the thickness distribution is bimodal with the modes determined by the multi–year
ice∼ 2 m and newly frozen seasonal ice< 0.5 m. The freezing and ridging processes change the thin ice into thicker
multi–year ice. In spring/summer, as the melt period sets in, the thinnest and seasonal ice generally melts first, so the
ice thickness distribution changes to a more uni–modal distribution.

The general features of the Arctic ice thickness distribution is similar in both the free–run and assimilation exper-
iments. The small changes that occur reveal themselves if we look at the difference between the evolution of the
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distributions. In Figure3.27(b)we see the difference between the evolution of the Arctic ice thickness distributions
where we have subtracted the free–run experiment from the assimilation experiment.

Figure3.27(b)reveals that there are small differences in the thickness distributions before the spring/summer melt
sets in. As the melt period sets in, however, the effect of the assimilation start to show. In Figure3.27(b), the mean
ice thickness in the assimilation experiment (solid line) is initially lower than the mean ice thickness in the free–run
experiment (dashed line). In the free–run experiment, the thinner ice generally melts first, while in the assimilation
experiment, a lot of this ice is retained through the assimilations. This causes the ice thickness distribution in the
assimilation experiment to have more ice in the thickness range 0.5–1.4 m, and less ice of thickness 1.5–2.0 m relative
to the free–run experiment, see Figure3.27(b)around time mark 1999.6.

Later on, at the end of the summer, the effect of freeze–up in the Arctic begins to show, with the assimilation experi-
ment having more thick ice (∼ 2 m) and less thin ice (< 0.5 m) relative to the free-run experiment. This is connected
to lower summer ice concentration in the free-run model. When the freezing sets in for the free-run model, there
will be more open water and consequently more thin ice will be created relative to the assimilation experiment. The
assimilation experiment has retained a greater fraction of the thick multi–year ice in the central Arctic during the
summer, and this shows up as increased occurrences of ice thickness around2 m.

3.8.2.3 Selected ensemble updates

When the analysis is computed, the variables in the ice and ocean models will be adjusted according to the difference
between observations and model state, and according to the error covariance statistics. In the multivariate scheme
the properties of the ocean model are updated along with the analysis update in ice concentration. Due to changes
in model behavior over the season, there are large differences in the analysis update at different days of the year. A
controlling factor in this respect is the north–south migration of the ice edge, which has a strong impact upon the
spatial distribution of the ice concentration variance. This impacts the magnitude and location of the analysis updates
over the season. To illustrate this we show in Figure3.28the analysis update of ice concentration along with updates
of upper layer salinity and temperature for the ocean model. The analysis updates are shown for two different times
of the year, a typical situation for summer and winter. All plots illustrate the update for the ensemble mean.

For the winter time ice concentration update, Figure3.28(a), we see that the biggest impact occurs close to land
boundaries or along ice edges, which are marked by the forecast0.7 ice concentration contour. At this time of year
the analysis gives a reduction of ice concentration in the Greenland and Labrador Seas. We also see an increase in
ice concentration along the coast of Newfoundland, in the Barents Sea and for a small region in the Denmark Strait.
The updates in ice concentration are of the order 0.5 and smaller, and cover a relatively small spatial area compared
to the total ice area. For the regions far from the ice edge and land boundaries, the ice concentration update is below
the plotting threshold shown in the color scale of Figure3.28(a).

The situation for a winter time update of temperature in the upper layer of the ocean model is shown in Figure3.28(b),
and the updates in surface layer temperature occur over a smaller region than the updates in ice concentration. To
some extent the area difference in the figures for ice concentration and temperature updates are due to the plotting
threshold, but as will be shown later, it is also due to the statistics of the ensemble, and model limitations. By
comparing with the ice concentration analysis update in winter, it should be noted that the sign of the temperature
update is mostly opposite to the sign of the ice concentration update. That is, when ice concentration is increased the
sea surface temperature is decreased and vice versa. The temperature updates are of order1◦ Kelvin or less.

The plot of winter time updates of salinity in the upper layer of the ocean model is shown in Figure3.28(c). Again
we note that the updates occur mainly in the ice edge regions with very small updates far away from the ice edge and
land boundaries. If we compare the salinity update with the ice concentration update however, we find that the region
with significant salinity updates is somewhat broader along the ice edge. We also see that the connection between the
sign of the ice concentration update and the salinity update is less clear than for the connection between temperature
and ice concentration update. There is a weak tendency for the sign of salinity updates to be the opposite to that of

SIREOC final report, March 2003



3.8 WP3200 – Ice Concentration assimilation 89

the ice concentration updates at this time of year. The salinity corrections are of the order0.1 psu.

The analysis update in ice concentration for a typical summer situation is shown in Figure3.28(d). Compared to the
winter time situation given in Figure3.28(a)we see that the update occurs over a larger area. Although the update is
still strongest close to the ice edge, the region with significant updates is much broader as compared to the situation in
winter. For the specific time given in Figure3.28(d)we see mostly an increase in ice concentration for the region from
the Fram Strait to Sevarnaya Zemlya, in the Baffin Bay and close to the Canadian Arctic Archipelago. Reductions in
ice concentration are seen in regions of the Beaufort and East Siberian Seas.

Comparing the summer time update in sea surface temperature, Figure3.28(e)with the situation in winter, Fig-
ure 3.28(b), we see that the temperature update covers a larger region. However, the winter to summer increase in
areas with significant updates are much larger for ice concentration than for sea surface temperature. In fact, the sea
surface temperature updates are located mainly along the ice edge, as in winter. The sign of the temperature update is
mostly opposite to the sign of the ice concentration update, which is the same behavior as in winter.

Finally we see the summer update in sea surface salinity, Figure3.28(f). We note that the regions with a significant
update in salinity are larger than the regions with significant update in ice concentration. It is also important to note
that the magnitude of the updates in summer are larger than the magnitude of updates in winter. Differences can also
be seen in the sign of the updates as compared to the situation in winter. Whereas the winter time salinity updates had
no clear connection with the sign of the ice concentration updates, we see that the summer time salinity updates have
the same sign as the ice concentration updates.

The ensemble update plots give hints of the complex statistical behavior described by the model ensemble. Behavior
which show considerable changes both in time and space. This behavior will be considered more closely in following
sections.

3.8.3 Second order statistics of the model ensemble

The representation of error statistics is an important property of the EnKF. For a multivariate assimilation scheme, as
presented here, it is of particular importance that the covariance between different variables, for instance temperature
and ice concentration, is realistic. In this section we examine how the variance and covariance fields from the en-
semble change in time and space, trying to illustrate some aspects of the ensemble behavior. An understanding of the
processes which determine the statistics is important, and can make it easier to evaluate which model improvements
should be implemented for the system at a future stage.

Concerning the evolution of the second order ensemble statistics, it is important to realize that the evolution is de-
pendent upon the prior ensemble statistics and the random forcing applied. The random forcing induces most of the
variation in the ensemble. A lot of the following discussion will therefore focus upon the effect the random forcing
has upon the ensemble.

In this section, we will use the following notation to denote the covariance, variance and correlation:

cov {F (x1), G(x2)} =
(
F (x1)− F (x1)

) (
G(x2)−G(x2)

)
var {F (x)} = cov {F (x), F (x)}

γ {F (x1), G(x2)} =
cov {F (x1), G(x2)}

var {F (x1)} var {G(x2)}
.

(3.16)

One should note that the positionsx1 andx2 can denote two different locations. The covariance and correlation can
therefore be between two different fields at two different points.
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(a) Ice concentration update, day 15
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(d) Ice concentration update, day 218
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(b) Temperature update, day 15
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(e) Temperature update day, 218
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(c) Salinity update, day 15
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(f) Salinity update, day 218

Figure 3.28: Selected analysis updates for the ensemble average. Typical situations for summer and winter in 1999
are shown. Figure 3.28(a), 3.28(b), and 3.28(c) show typical winter time updates in ice concentration sea surface
temperature and salinity, respectively. Figure 3.28(d), 3.28(e), and 3.28(f) show typical summer time updates in ice
concentration sea surface temperature and salinity, respectively. The contour lines indicate the 0.7 ice concentration
contour of the ensemble mean.
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(a) 1999 day 15
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(b) 1999 day 218

Figure 3.29: Figure 3.29(a) show the ice concentration standard deviation for the individual grid cells as calculated
from the ensemble. Also shown is the position of the 0.7 ice concentration contour (solid line). The statistics are
based on the prior ensemble, and at the time Julian day 15 in 1999 (winter conditions). Figure 3.29(b) is similar to
Figure 3.29(a) but shows the summer situation (Julian day 218 in 1999).

3.8.3.1 Ice concentration variance

The variance of ice concentration in the model is important for the analysis update since it determines the Kalman
gain matrixKe. For a local analysis, which operates on individual grid cells, there will be no analysis update of other
variables in a grid cell (temperature, salinity etc) unless we have a nonzero ice concentration variance there. The
ensemble ice concentration variance in each grid cell therefore deserves some attention.

An example of the ice concentration standard deviation for winter is shown in Figure3.29(a). Along with the variance
plot we have also indicated the0.7 ice concentration contour of the ensemble average. In Figure3.29(a)we have
masked out the lowest values of ice concentration, leaving only a limited area with significant ensemble variance.
Not surprisingly we see that the regions with highest values are the regions which are close to the ice edge, e.g. in the
Barents Sea, the Greenland Sea, and the Labrador Sea. The analysis updates of ice concentration, temperature and
salinity in winter, e.g. Figure3.28(a), illustrated that the changes in these variables happened in proximity of regions
with high ice concentration standard deviation in Figure3.29(a).

Thorndike and Colony(1982) showed that a lot of the ice motion over small time scales can be explained by the
geostrophic wind speeds, especially far from regions with thick ice. Similar observations apply for the ice dynamics
model, and a lot of the ice concentration variance along the ice edge can be explained by the random forcing com-
ponent applied to each member. As the ensemble members have different degrees of transport across the ice edge
this will lead to increased ice concentration variance by the following simple mechanism: Ice advection across the
ice edge into warmer waters will, through ice melting, cool the surface waters and make them fresher. If this effect is
stronger than the warming effect of mixing (due to a possible increase in the applied surface stress) then the net effect
will be a cooling and freshening of the surface layers. Consequently, the more ice is transported across the ice edge,
the more likely it is that the ice–free waters will be cooled to such a degree that ice can persist there. This effect links
the ice concentration variance to the random forcing because different degrees of transport across the ice edge lead to
different ice concentrations. A similar argument applies for the ice-pack-side of the ice edge. If the net heat balance
for the water interface is close to zero, then different degrees of ice divergence will lead to variations in the local ice
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concentration. Additionally an increased water fraction could lead to enhanced mixing of warm waters from below
the sea ice which could amplify local changes in ice concentration.

Another effect of the varying wind forcing for the ensemble members is the increased ice concentration variance
close to land boundaries. This can be seen in the Labrador Sea region, where offshore ice transport reduce the model
ice concentration in the western part of Davis Strait. Again, the different degrees of onshore/offshore winds in the
random forcing component of the individual ensemble members will increase the ice concentration variance in the
ensemble.

Important in the ice concentration standard deviation in Figure3.29(a)are the small values far away from the ice
edge, for example in the Central Arctic Ocean. In the present model system there is virtually no ice concentration
variance during winter in the Central Arctic Ocean. This is connected to deficiencies in the ice model, where any open
water fraction due to ice divergence is quickly closed to the maximum allowed ice concentration,cmax, by freezing
of new ice. This means that all ensemble members have an ice concentration ofcmax for large areas in the Central
Arctic Ocean, and the ice concentration variance is therefore zero. In reality there are small variations of wintertime
ice concentration in the central Arctic Ocean due to small-scale opening of leads (e.g.Kwok, 2002). These variations,
although small, are important because of the large heat fluxes which occurs over leads in winter.

The low ice concentration variance give ensemble based error estimates which are essentially zero. This means that
the EnKF ensemble statistics predict a perfect model and no analysis update is done in these regions, an effect which
explain the small analysis updates in the central Arctic Ocean during winter, e.g. Figure3.28(a). In the future we
hope to improve the wintertime behavior of the ensemble in the Arctic Ocean by improving both the ice dynamics
and ice thermodynamics models.

If we look at the situation for ice concentration variance in summer we see a somewhat different picture. Fig-
ure3.29(b)shows the ice concentration standard deviation for summer, and it is apparent that there is a much larger
region with ice concentration standard deviation above the0.01 threshold. As with ice concentration variance during
winter, the highest values are mainly found close to and seawards of the ensemble–average0.7 ice concentration
contour. In summer, the leads opening up in the Central Arctic Ocean do not freeze immediately as they do in winter.
This way the ice concentration variance is allowed to increase in response to differences in ice divergence and melting
among the members. The ice transport across the ice edge is not as important in summer as in winter. This is an effect
of winds being weaker, and of ice concentration variance imposed by ice melt becoming a more important contributor
to ice concentration variance.

Ice concentration variance and the ice edgeAs illustrated in the wintertime and summertime situations, Fig-
ure3.29(a)and3.29(b), the spatial pattern of ice concentration variance varies strongly through the season. Moreover,
the highest values of ice concentration variance are largely controlled by the location of the ice edge and by land
boundaries. To understand how the ice concentration variance pattern evolves in time it is useful to obtain a simple
measure of the distance between the ice edge/land boundaries and regions with high ice concentration variance. To
this end we will use the field

de(x) = distance from pointx to ice edge or land, (3.17)

where the ice edge is defined by the0.01 ensemble average ice concentration contour.

A measure of the positions with high ice concentration variance relative to the ice edge or land boundaries can now
be obtained, utilizing the fieldde(x). Taking the normalized ice concentration variance as weights, we calculate a
mean value ofde(x)

de(x) =
∫

de(x) var {c(x)} dx/

∫
var {c(x)} dx . (3.18)

Herede is a weighted average distance from the ice edge/land boundary where regions with high ice concentration
variance has been given the most weight. It will be indicative of how far into the ice pack areas of high ice concentra-
tion variance are located. Based on Figure3.29(b)and3.29(a)we anticipate highde(x) in summer, and lowde(x) in
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Figure 3.30: The weighted average distance from the ice edge/land boundaries to regions of high ice concentration
variance, de from equation (3.18).

winter. Note thatde(x) will vary throughout the season due to the moving ice edge. Therefore we tried to scale the
variablede(x) with a seasonally dependent parameter describing this effect. However, the analysis did give similar
results as without such a scaling, and we therefore show the case without scaling here.

The time series of ofde is shown in Figure3.30, and shows howde varies in the experiment. At the start of the
experimentde is relatively high, but when the winter season sets in,de is reduced and is close to its minimum value
at the end of 1998. As was apparent in Figure3.29(a)the regions with high ice concentration variance are close to
the ice edge/land boundary during the winter season, giving low values forde. At the onset of the melt season, the
ice concentration variance increases. The ice melt in turn affects most of the Arctic ice pack at the peak of the Arctic
summer. The increase inde indicates that the ice concentration variance is no longer confined to the close proximity
of the ice edge, although it is of largest magnitude there, as was seen from Figure3.29(b). Towards the next winter
the value ofde is again reduced, and is approximately at the same level at the start of year 2000, as at the start of year
1999.

The temporal behavior of the ice concentration variance shown here is largely determined by the background heat
fluxes of the ice model. As was mentioned on page85, the ECMWF forcing has a strong gradient across the ice edge
in winter, with very strong negative heat flux in the central ice pack. Because of this, the random forcing component
used in the EnKF is not large enough to create any significant ice concentration variance, except close to the ice edge.
As a consequence, our ensemble will have a reduced ice concentration variance in winter. In summer the ice cover
can develop more freely, which translates into increased ice concentration variance for this time of year.

Ice concentration PDFIn Kalman Filter methods, a variance minimizing estimate is used as the final analysis. It
is important to remember that the maximum likelihood estimate is not necessarily equal to the variance minimizing
estimate. If the forecast probability density function is Gaussian, however, then the analyzed estimate becomes equal
to the maximum likelihood estimate.

Figure3.31shows a box–whisker plot of the ice concentration in point ’O’ in Figure3.24(b). One can clearly see
the collapse of the ensemble ice concentration for this point in summer. In winter, as the ice edge is at some distance
from the point, one can also see that the ice concentration variance is very low.

At the times when the ice edge is closer to point ’O’, there is significant ice concentration variance close to the ice
edge. Note, however that at many times the sample distribution is skewed, e.g December 1998 and late December
1999. The skewness of the sample is most frequently encountered when the median value is close to the zero or
maximum ice concentration. At many times, one can also see that the range of values the samples take is very large
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Figure 3.31: A box–whisker plot for the sample of the ice concentration probability density distribution. The samples
are from point O for different times in the assimilation experiment. The plots show the lower, middle (median) and
upper quartile, and the lines extending from the box gives the extreme values of the data.

compared to the distance between the lower and upper quartile. The skewness, and the large range of values both
indicate that the sample is taken from a non–Gaussian distribution.

The distribution of ice concentration can of course never be Gaussian, because it is limited to values between 0
and 1. The behavior of the sample distribution of ice concentration should therefore be quantitatively similar to
variables which are constrained by upper and lower limits, be it saturation values or other physical constraints.
Examples of variables with this type of behavior are the concentration of biological material in biochemical mod-
els (Natvik and Evensen, 2003a) or soil–moisture (Reichle et al., 2002). An improvement of the Gaussianity of the
sample could be possible if suitable transformations are applied to the model state variables prior to the analysis
(Bertino et al., submitted).

3.8.3.2 Ensemble Covariance

An important aspect of the assimilation scheme is how well the surface layers of the ocean model are updated. The
temperature of the surface needs to be reduced when new ice is introduced, and the update of surface salinity should
take into account that sea ice has a lower salinity than that of the ocean surface. All these calculations for the sea
surface should be taken care of by the analysis equation (3.3). In this section we will focus upon ensemble–based ice
concentration covariances for variables taken from the same grid cell (local covariance), for instance ice concentration
and sea surface temperature from the same model grid cell. In the notation from (3.16) the covariance between e.g.
ice concentration and temperature of ocean layer 1 in positionx can be written ascov {c(x), T (x, 1)}. Due to the
nature of the covariances, which are generally located close to the moving ice edge, and whose position depends upon
the season, we will make some use of Hovmöller plots in the following.

A Hovmöller plot of the grid cell covariance between ice concentration and sea surface temperature is shown in
Figure3.32(a), while a corresponding plot of the covariance between ice concentration and sea surface salinity is
shown in Figure3.32(b). These plots are for section A in Figure3.24(b), going from the Labrador Sea into Baffin
Bay. In both of these figures we have indicated the location of the ensemble–mean0.1 and0.9 ice concentration
contours.

This particular section in the Baffin Bay was chosen because it appeared best suited to demonstrate the mechanisms
causing the covariance signals, which will be explained later.
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Figure 3.32: Figure 3.32(a) shows a time/distance (Hovmöller) plot for the grid cell covariance between ice concen-
tration and surface layer temperature along section A in Figure 3.24(b). Also shown is the ensemble–mean 0.1 and
0.9 ice concentration contour. Figure 3.32(b) is similar to Figure 3.32(a) but shows covariance between ice concen-
tration and surface salinity. For temperature the dashed line denotes the contour for which all ensemble members
have an ice concentration of 0.01 or larger.

Ice concentration – SST covarianceThe covariances between surface temperature and ice concentration in Fig-
ure 3.32(a)are mostly negative or zero throughout the season, and as for ice concentration we find the highest ab-
solute values close to the ice edge. The ice thermodynamic model used here has some limitations which restrict the
covariance between ice concentration and sea surface temperature. The most important restriction is the requirement
that the sea surface temperature is at the freezing point in order for ice to exist. This effectively groups the connection
between ice concentration and sea surface temperature into three different situations.

1. c > 0 andT = Tf for all ensemble members

2. c = 0 andT ≥ Tf for all ensemble members

3. A mixture of members with properties from1 and2

Consider first the situation where all ensemble members in a grid cell have a positive ice concentration, i.e, situation
1 above. In this case, variations in sea surface temperature is determined by the freezing point dependence upon
salinity, and the covariance with ice concentration should be small in magnitude. From Figure3.32(a)we see that this
occurs in summer; As the region with ensemble–averaged ice concentration between0.1 and0.9 broadens, there is
also a large region with a very low covariance magnitude between sea surface temperature and ice concentration. This
region is roughly bounded by the dashed line, and the ensemble0.9 ice concentration contour, where the dashed line
denotes the limit for which all ensemble members havec > 0. In other words, this region corresponds to situation1
above.

Then consider a situation where some ensemble members havec > 0 and some members havec = 0, situation
3 above. In this situation we can have ensemble–variations in both ice concentration and sea surface temperature,
because there are temperatures above the freezing point associated withc = 0. Above freezing point temperatures are
associated withc = 0 and freezing point temperatures are associated withc > 0, resulting in a negative covariance.
This negative covariance between ice concentration and sea surface temperature, is seen between the dashed line and
the0.1 ice concentration contour in Figure3.32(a).
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Figure 3.33: Sea surface temperature plotted against ice concentration for the point x0=(58.85◦W 66.05◦N) on Julian
day 162 in 1999. Shown are scatter plots for the situation prior to (circles) and after (triangles) the assimilation. Note
the nonlinear relation prior to the analysis.

Note that the analysis equation (3.3) uses the covariances between surface temperatures and ice concentrations to
update the model state. This assumes a linear relation between the variables, which is not the case for the relation
between ice concentration and sea surface temperature in our model. This is due to the restriction mentioned above,
where sea surface temperature is fixed to the freezing point when ice is present. To illustrate this, we have in Fig-
ure3.33plotted the ensemble values of sea surface temperature against ice concentration for one of the model grid
points along section A (the point marked with ’O’ in Figure3.24(b)). For the case with an ensemble mixture of ice
free and ice covered water in a grid cell the nonlinear ensemble relation between ice concentration and sea surface
temperature can lead to unwanted effects. In Figure3.33this is apparent; prior to the analysis the sea surface tem-
perature is fixed at the freezing point of sea water when ice is present, and the deviations from the freezing point
only occur when ice is absent. After the analysis however, this is not the case, and there are cases with ice present
and temperatures above the freezing point, and even cases with temperatures below the freezing point. These below
freezing temperatures are corrected after the analysis is performed. The above freezing temperatures whenc > 0
are not corrected, and will result in melting of some of the newly introduced ice in Figure3.33. As mentioned ear-
lier, the Gaussianity of the model ensemble could be improved by applying suitable transforms prior to the analysis
Bertino et al.(submitted). This would also improve the nonlinear relation between ice concentration and sea surface
temperature.

We note here that the requirement of having sea surface temperature fixed at the freezing point when ice is present is
a quite common simplification in sea ice models. It is easy to change this requirement, and introduce more realistic
thermal exchanges between the ocean and sea ice (Holland and Jenkins, 1999). Note however that more realistic
thermal exchange formulas are very sensitive to the sea surface temperature elevation above the freezing point, and
this leads to strong melting if ice is present. In the end the net result of such a model improvement might prove to
give similar results for the ice concentration – sea surface temperature relation as illustrated in Figure3.33.

The negative covariance between ice concentration and sea surface temperature is seen throughout the year, not only
in the Hovm̈oller plot for the section in the Baffin Bay. A plot of the weighted average ice concentration – sea surface
temperature correlation is shown in Figure3.34. The average is weighted with the ice concentration variance, and
shows how this average correlation has negative values throughout the experiment.

Ice concentration – SSS covarianceFor the covariance between ice concentration and sea surface salinity in Fig-
ure3.32(b), we have a somewhat different situation than for the sea surface temperature–ice concentration covariance.
With salinity we are no longer dealing with ice concentration covariance against a variable which is fixed to a lower
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Figure 3.34: Weighted average correlation between ice concentration and sea surface salinity (solid line and star
symbols), between ice concentration and sea surface temperature (solid line and squares), and between ice concen-
tration and ice thickness (dashed and circles). The average has been weighted by the ice concentration variance.

bound when ice is present. As compared to covariance between ice concentration and sea surface temperature we also
have a broader region with relatively high covariance absolute values. Note also the changes in sign for the covariance
in the Hovm̈oller plot. As the ice edge starts to retreat, we see that the covariance changes sign along the ice edge
from being mostly negative to being mostly positive (around time-axis point 99.2).

The cause for this change of sign in sea surface salinity–ice concentration covariance can be traced back to the
different mechanisms controlling the ice concentration. Consider first the situation where freezing or melting changes
the ice concentration. In this case an increased (reduced) ice concentration leads to increased (reduced) sea surface
salinity because brine is released from the freezing ice, and melting ice gives a positive freshwater flux to the ocean
surface layers. This results in a positive covariance between sea surface salinity and ice concentration. Note that brine
released from newly frozen ice induce vertical mixing which could complicate this argument. If the water below the
mixed layer is more saline and cold (typical of the Arctic Ocean ”Cold Halocline Layer”) then the positive covariance
becomes even stronger. On the other hand, if the water below the mixed layer is relatively warm this would in turn
affect the ice cover and decrease the magnitude of the negative salinity covariance.

As a second factor controlling the ice concentration, consider the case where ice is transported across a thermal
boundary separating waters at the freezing point from warmer waters. As the ice reaches the warmer waters it melts,
which leads to cooling and freshening of the surface water masses. If the heat content of the mixed layer is low
enough, prolonged periods of ice transport help to cool the surface waters to the freezing point and further transport
into the region leads to increased ice concentration. Concerning the covariance between sea surface salinity and ice
concentration, the result of this transport situation is a reduced sea surface salinity being associated with increased
ice concentration, that is, a negative covariance.

Returning to Figure3.32(b), it seems like the model ensemble is able to describe the two different mechanisms
mentioned above. The ensemble differences in ice transport is likely to be causing the mostly negative sea surface
salinity/ice concentration covariance during the advance of the ice edge in the winter of 1999, and to some extent
during the fall of 1999 and 2000. A strong support for this mechanism can also be found from covariances with the
ice velocity normal to and seawards of the ice edge. Unfortunately we were not able to recover the entire record of
ice velocity from our data files. The ice velocity data is missing for the spring and summer of 1999, leaving us with
ice velocity data for the autumn and early winter of 1998 and 1999. At these times, and for the Baffin Bay section,
the covariance between the ice velocity component normal to the ice edge and sea surface salinity (not shown) is
consistently negative. This covariance do suggest that the negative ice concentration–sea surface salinity covariance
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is a result of seawards ice transport, at least during the advance of the ice edge in fall and early winter. We believe that
the transport mechanism persists throughout the year, while the change in sign of the ice concentration/sea surface
salinity covariance in summer is due to ice–melt becoming the more dominant effect.

The positive ice concentration–sea surface salinity covariance in summer, seen in Figure3.32(b), and at the start of
the time series, indicates that the ice melt mechanism is dominating the covariance. Note however, that the sign of
the covariance during the fall of 1999 changes frequently between positive and negative values. Mesoscale events
occurring along the ice edge are important effects here. As the ice heat balance often changes from net melting to
net freezing across the ice edge, events which bring warmer air in from the south can disturb this balance and cause
melting well into the ice pack. As explained, this has the capability of changing the sign of the covariance between
ice concentration and salinity.

The seasonally dependent covariance between ice concentration and sea surface salinity is not only important in the
Baffin Bay section, were we have focused our attention. It can also be seen from the area and variance weighted
average of the correlation between ice concentration and salinity. An illustration of this is given in Figure3.34, where
the seasonally changing average correlation between ice concentration and sea surface salinity is apparent. At the
beginning of the experiment and through much of the winter, the correlation between ice concentration and salinity
is negative, with values between−0.5 and0. The low absolute values indicate that the effect of transport upon the
correlation is relatively weak, probably due to spurious warm weather events occurring close to the ice edge. As the
summer approaches, the impact of melting starts to dominate over transport along the ice margins, and the correlation
between ice concentration and sea surface salinity changes to a positive sign and increases until it peaks at the highest
values in summer. It then decreases, and towards the end of the fall freeze-up, negative correlation values are again
seen.

Ice concentration – ice thickness covarianceThe covariance between ice concentration and ice thickness along
the same section as in3.32(a)reveals a mostly positive covariance between ice concentration and ice thickness(not
shown). This is consistent with the idea that “thicker ice lasts longer”, and can explained by reduced horizontal
melting for thicker ice. One should note however, that situations arise in which there is a negative correlation, as is
evident in Figure3.34. During the fall freeze-up, a lot of thin newly frozen ice increases the ice concentration, and
consequently reduces the thickness of existing ice. Starting from initially equal conditions, this means that the faster
the ice cover freezes, the tinner the ice in the model will become. The result of this is a negative covariance between
ice concentration and ice thickness.

3.8.3.3 Spatial correlation functions

Another important factor is how the ensemble covariance and correlation varies in the horizontal. We therefore focus
the attention on so–called correlation functions. The correlation function used here is given byγ {F1(x), F2(x0)}
whereF1(x) andF2(x0) denote variables of interest. This gives the correlation between the ensemble members of
variableF2 located atx and variableF1 located atx0. In the following we keepx0 fixed to a specified value for
plotting purposes.

The ensemble correlation functions for ice concentration, temperature and salinity against the ice concentration of
the fixed pointx0=(58.85◦W, 66.05◦N) are shown in Figure3.35. The correlation functions were acquired from the
ensemble for day 162 in 1999. The fixed pointx0 is identical to point O in Figure3.24(b). It is located close to the
ice edge at this time, at a location in the Davis Strait.

In general we see that the correlation functions reveal complex patterns that are dependent upon past flow history
of the ice and ocean. If we look at the correlation function for ice concentration, Figure3.35(a), we see a positive
correlation that decay rather rapidly away from the fixed pointx0. Ice concentration is not a conserved quantity in the
ice model, and one would therefore expect that the past information from the flow is lost quickly, effects that would
lead to such a fast decay of the correlation. The ice concentration correlation function is limited by the ice edges of
the ensembles, and is close to zero seawards of the ensemble-average ice edge illustrated in Figure3.35(a).
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Figure 3.35: Correlation functions for 1999 day 162, where the fixed point is located at x0 = (58.85◦W,66.05◦N) and
is marked with a plus sign in the figures. The correlation functions are for ice concentration in the fixed point against
ice concentration 3.35(a), sea surface temperature 3.35(b) and sea surface salinity 3.35(c).

The correlation function for sea surface temperature is shown in Figure3.35(b). As suggested by the covariance plots
between ice concentration and sea surface temperature, Figure3.32(a), we see that there is a negative correlation
between ice concentration and sea surface temperature forx = x0. This negative correlation also extends at some
distance away from the fixed point, and relative to the correlation inx = x0, the ice concentration–sea surface
temperature correlations decay at a slower spatial rate than the ice concentration–ice concentration correlation. Also
notice that the region with relatively high absolute values of temperature–ice concentration correlation extends beyond
the ice edge and well into the Labrador Sea. The surface circulation around the southern tip of Greenland, Cape
Farewell, generally follows the coastline in an anticyclonic sense, and water masses are transported northwards along
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the western coast of Greenland (The West Greenland Current). These water masses help to maintain the roughly
northeastwards direction of the ice edge from Newfoundland towards the West Coast of Greenland. South of Davis
Strait a branch of the West Greenland Current crosses over from the West Coast of Greenland towards Baffin Island
and finally join up with the Labrador Current (Chapman and Beardsley, 1989).

The pointx0 used here is situated in the Davis Strait and the waters passing the pointx0 should contain a component
originating from the West Greenland Current. As water in the West Greenland Current is transported northwards, the
ensemble differences in the upstream ocean surface temperature at an earlier time (e.g. at Cape Farewell) contribute to
differences in ice concentration at the fixed point, where positive temperature anomalies lead to reduced ice concen-
tration at the fixed pointx0. This in turn leads to the negative covariance in Figure3.35(b)between ice concentration
in x0 and ocean surface temperatures in the oceanic upstream direction. These negative correlations can be traced
back into the Irminger Sea, although with decaying absolute value with upstream distance. Also note that part of the
water that circulate within the Labrador Basin show a relatively high correlation with temperature at the fixed point,
probably because it originates in the same region as the water that reaches the ice edge at (58.85◦W,66.05◦N).

In Figure3.35(b)we note that there is some correlation appearing in the Baffin Bay. At this time of the year, there
still is a high fractional ice cover polewards of the pointx0 in the Baffin Bay. Since the model restricts the sea surface
temperature to the freezing point when ice is present, this correlation must come from the freezing point dependence
upon sea surface salinity. The correlation function for sea surface salinity is shown in Figure3.35(c), and close
comparison of the ice concentration–temperature and ice concentration–salinity correlations reveals the exact same
pattern (with different sign) in the Northern Baffin Bay. This is to be expected, as the model has a linear relationship
between freezing point temperature and sea surface salinity.

For salinity we see the strongest correlation with ice concentration from the ice edge and northwards into the ice pack.
Roughly speaking this can be attributed to the effect of thicker ice leading to a more persistent ice cover close to the
ice edge. As thick ice is transported southwards it is less likely to completely melt away as with thinner ice. Thicker
ice from enhanced freezing is again connected to the presence of more saline water in the upper water column leading
to the positive correlation pattern polewards of the ice edge. As compared to the temperature correlation function, the
correlation with sea surface salinity is much weaker over open water.

Finally we note that spurious correlations occur at regions far from the point of interest, of which some arise due to
the spurious correlations in the random forcing fields. This highlights the importance of using local analysis and a
radius of influence in the analysis scheme, at least for small ensemble sizes (Mitchell et al., 2002).

3.8.4 Ice concentration assimilation – Summary

In this study we have demonstrated an implementation of the Ensemble Kalman Filter with a coupled sea ice and
ocean model. The ocean model used is HYCOM (Bleck, 2002), while the ice model uses the Elastic–Viscous–Plastic
rheology ofHunke and Dukowicz(1997). The observations used in the assimilation were sea ice concentration data,
which were calculated using remotely sensed passive microwave data. The ice concentration was assimilated every
7th day for a period longer than a year, allowing us to draw conclusions on the impact of the assimilation over
a seasonal cycle. The focus of the study has been on the corrections performed by the EnKF, and on the model
ensemble statistics. The statistics of the model ensemble determines the impact of the ice concentration, and a good
understanding of this is important in a multivariate ensemble system.

The assimilation experiment was first compared with the results of a model run without assimilation. As expected
the difference between modeled and observed ice concentration was smaller in the case with assimilation, than in the
case without. This effect was strongest in summer, as can be seen from Figure3.25(a). In winter we found that the
impact of the assimilation was weaker. This is in part due to the ECMWF forcing fields, which depends on SSM/I
derived ice concentrations. In winter the strong atmospheric temperature gradient across the ice edge prescribed in the
ECMWF forcing to some extent determines the location of the modeled ice edge. As the ECMWF forcing depends
on SSM/I data, it will act to reduce the distance between observed (SSM/I–derived) and modeled (ECMWF–forced)
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ice concentration. In summer the effect of using SSM/I data in the ECMWF forcing is not as important, because the
atmospheric temperature gradient across the ice edge is smaller, and because solar absorption by open water becomes
important.

The effect of the assimilation was also seen in the Arctic ice thickness distribution. The main effect of the assimilation
was to retain a larger fraction of thick, multi–year ice in summer. The effect of this was seen on the total volume of
ice in the Arctic, which was larger at the end of summer in the assimilation experiment than in the experiment with no
assimilation. In addition, the effects of individual analysis updates on ice concentration, sea surface temperature and
sea surface salinity were illustrated for typical summer and winter situations, Figure3.28. The winter and summer
situations reveal that the strongest analysis updates take place close to the ice edge.

The quality of the EnKF model error estimate was investigated by looking at the innovation RMS–sequence of the
experiment. It was seen that the error estimate of the model was too low when compared with a theoretical estimate.
This effect was strongest at the beginning of the experiment, while the most realistic estimate of the model errors
was seen for the summer season. A lot of the model error underestimate in winter is connected to a collapse of the
ice concentration towards a single value, an effect which was most clearly seen in the Central Arctic Ocean. The
reason for this collapse can be traced back to a too simple lead parametrization in the ice model. The effect of this is
an underestimated ice concentration variance, and too low model error estimates in the EnKF. Throughout the time
period examined in the assimilation experiment, the largest model ice concentration variance, and probably the most
realistic error estimates, were found close to the ice edge.

In the EnKF the analysis is given as a variance–minimizing analysis, but often one finds that the maximum–likelihood
estimate is a better estimate. If the sample distribution of ice concentration is Gaussian, one will find that the variance–
minimizing and maximum–likelihood estimates are equal, so this is a property we would like the sample distributions
to have. A box–whisker plot of the sample distribution of ice concentration revealed that the distribution showed signs
of skewness, and having a larger range than what is expected from a Gaussian distribution. Evidence of non–Gaussian
sample distributions were also found in the covariance between ice concentration and sea surface temperature. One
should keep in mind that variables such as ice concentration always have non–Gaussian distribution since they are
limited to the interval[0, 1]. An approach which is worthwhile considering is using suitable transforms, and then do
the analysis on a variable which is closer to being Gaussian (Bertino et al., submitted), but this approach has not been
further considered here.

The covariance between ice concentration and variables of the ocean model were also considered. The covariances de-
scribed by the ensemble statistics appear realistic, and we tried to connect them to model behavior. The temperature–
ice concentration covariance was generally positive throughout the experiment, while the salinity–ice concentration
covariance changed sign depending on physical mechanisms involved. It was suggested that the change of covariance
sign was due to different effects of ice transport and local sea ice formation/melting, where transport resulted in a
negative covariance, and local ice melt/freezing resulted in a positive covariance. In winter the transport effect can be
seen, while in summer the local melt effect is dominant. The spatial correlation functions displayed in section3.8.3.3
revealed complex patterns emerging for the correlations between sea ice concentration in a fixed point in Davis Strait
and surrounding model grid point temperature, salinity and ice concentration.

The present implementation with a coupled ice–ocean model reveals some of the strengths of the Ensemble Kalman
Filter. It is relatively easy to implement, only requiring a number of ensemble members to be run in parallel, and
there is no need for computing the adjoint equations. This makes it especially suited in the coupled model context,
where the different models can have different temporal and spatial scales. The computational demands of the EnKF
can be large, but in the current application, it is felt that the complexity of the ensemble statistics favors the EnKF in
place of simpler, less computationally expensive methods.

While this study focuses on the effect of assimilating ice concentration, it is understood that it will be beneficial to
include data sets which directly describe the ocean surface, such as sea surface temperature and sea level anomalies
(Haugen and Evensen, 2002). Although the correlation function between ice concentration and sea surface tempera-
ture extended to some distance beyond the ice edge, Figure3.35(b), the ice concentration “influence” is still limited
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when compared with the total model domain. The inclusion of sea surface temperature in the assimilation will pro-
duce a more direct control of the ocean properties, and cover a larger area than what can be achieved with assimilation
of ice concentration alone. Care must be taken, however, as the ice concentration and sea surface properties are likely
to be dependent close to the ice edge. This was clearly demonstrated for sea surface temperature in Figure3.35(b).

To our knowledge there are no published results of studies using the Ensemble Kalman Filter to assimilate ice con-
centration in coupled sea ice/ocean models. Our main conclusion is that assimilation of ice concentration is a viable
way of controlling the ice cover in a coupled ice–ocean model. In the current implementation the ice model is not able
to correct the generally underestimated ice thickness of the model, but it gives a consistent update of the properties of
the modeled ocean surface when ice is introduced or removed.

3.9 WP3200 – Ice Thickness assimilation

3.9.1 Ice Thickness Assimilation – Experiment Setup

The state vectorψ was chosen to include both ocean variables and ice variables as these are closely related, partic-
ularly for the ocean surface. For each of the 22 layers of the ocean model we included salinity, temperature, layer
thickness and velocity. In addition the barotropic velocity and barotropic pressure components were included along
with ice concentration, ice thickness and ice velocity from the ice model.

This gives a total of 116 variables for each grid cell. The analysis (3.3) can be calculated for the full model state
vectorψ. For this application the dimension for the state vectorψ is

n = dimψ = 140× 130× (22× 5 + 5) ≈ 2× 106 , (3.19)

which can result in problems if we only have100 ensemble members forming a basis for this vector space (the analysis
update is in reality a linear combination of the ensemble membersψi). A common practice in data assimilation for
high–dimensional systems is therefore to look at the problem locally, meaning that each grid cell value is updated
using observation values in a radius of influencer0 around the grid cell. In this way the100 ensemble members will
better describe the vector space (now with dimension115). Thus the local analysis should make the problem better
behaved and was chosen for this study. Note that the inclusion of variables other than ice thickness will also force
an update of these variables because they can be negatively or positively correlated with ice thickness through the
ensemble covariance matrix.

During the integration of the ensemble members there is a need to incorporate the effect model errors have on the
evolution of the ensemble members. How to best do this is a study in its own right. One approach could be to
add random fields to the ocean layer interfaces and ice thickness in the model at the analysis time. The approach
used here is to add pseudo–random fields, with a prescribed length and time scale, to the ECMWF forcing fields. This
procedure is a crude way of incorporating the effect of model errorsdβi in equation (3.1) into the ensemble, and is the
same as assuming that the dominant errors are in the forcing data. Furthermore, this approach does not disturb model
dynamics in an unphysical manner. See the appendix inEvensen(1994) for a description of the pseudo–random fields
added to the forcing, and Table3.4for a description of the random forcing component parameters.

The initial ensemble was generated from a realistic model state, to which we added random fields. For each ensemble
member, new ice concentration and ocean model layer thickness fields were generated by adding smooth pseudo–
random fields (Evensen, 1994) to the original model state. All other variables of the individual ensemble members
were identical to the original model state. The random fields added to the ocean model layers were vertically corre-
lated and had a horizontal decorrelation length of∼ 400 km. The standard deviation of the random fields were set
to 10% of the original ocean layer thickness, and the ocean layers were finally adjusted so that no barotropic waves
were generated by this procedure. In a similar manner, the random fields added to the ice concentration had the same
decorrelation length, and the standard deviation were set to 10% of the original ice concentration. The ensemble of
model states generated this way has a distribution which through equation (3.2) describes our confidence in the initial
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Table 3.4: The table shows some of the parameters used in the assimilation experiment.
Parameter Explanation value

N Number of ensemble members 100
r0 Observation radius of influence 200 km
σc Obs. error standard deviation variable
rc Obs. error decorrelation length scale 80 km
rβ Decorr. length for random forcing /P ? ∼ 1000 km
τβ Atm. stress standard deviation 0.015 N/m2

Tβ Atm. temp. standard deviation 3.0 K
P ?

β P ? standard deviation (exp. SR3 only)2000 N/m2

P ? P ? mean 27000 N/m2

ensemble average.

The ensemble of model states was integrated for two months before starting the experiment. The experiment covers
the period from January 1990 in up to January 1991. Two different ensemble integrations were performed, differing
in only one detail. The first experiment, designated ”SR2” used the setup already described, with random forcing as
specified above.

In the second experiment, designated ”SR3”, we used random fields to disturb an important parameter in the ice
dynamics model. In the ice model, the ”strength” of the ice, i.e. its resistance to ice convergence and shear, depends
on a crucial parameter,P ?. This ice strength is given as:

P = P ?chi exp(−c?(1− c)) , (3.20)

whereP ? andc? are constants,c is ice concentration andhi is ice thickness. In the original VP and EVP ice rheology
models, the parameterP ? is a constant, while we here will set it as a random field with similar spatial and temporal
characteristics as the random forcing fields above. The mean and standard deviation ofP ? is given in Table3.4.
The sole purpose of this approach was to increase the error variance of the ensemble. It should be noted that this
approach will have some side-effects on the ice dynamics. For instance, it is possible, due to gradients ofP ?, that
the ice dynamics model will give resistance to divergence. This is an effect which will not be present in the original
formulation of the EVP model, and neither should it. We note here that this heuristic approach does not seem to
produce unstability in the model, or any clearly unphysical ice thickness fields.

Parallel to the ensemble run a free-run model was also integrated for comparison. This model run used the standard
ECMWF forcing fields with no pseudo–random forcing fields orP ? fields, and has an initial state equal to the initial
ensemble mean. Some of the relevant parameters for the assimilation experiment are given in Table3.4.

3.9.2 Synthetic ice thickness data

The ice thickness data used in this assimilation study, is intended to be a realistic representation of ice thickness
products which will be available from the Cryosat mission of the European Space Agency (ESA). It is created using
sea ice model data, which gives estimates of the ice thickness, ice concentration, surface temperature and snow
thickness. The surface state is then used in a model which simulates the actual orbit of the Cryosat satellite, and the
instrument and geophysical errors introduced by the sea ice thickness retrieval.

3.9.2.1 Modeled ice thickness data

The surface state was generated from a run of a coupled sea–ice/ocean model. The model consists of the Miami
Isopycnic Coordinat Ocean Model (MICOM;Bleck and Smith, 1990) coupled to a dynamic–thermodynamic sea ice
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Figure 3.36: The figures show comparisons between ice thickness from the model used to generate synthetic ice
thickness (thin line), compared with ice thickness estimates from submarine sonars (thick line).

model. The sea ice model uses the Viscous–Plastic rheology ofHibler (1979), as implemented byHarder (1996).
The thermodynamic module is described inDrange and Bleck(1996). The main differences between the model used
to generate synthetic ice thickness data and the one used in the assimilation experiment later on is in the ocean
model (MICOM/HYCOM) and the ice dynamics rheology (VP/EVP). It should also be noted that the numerical grids
are slightly different, although they both include the Arctic and North Atlantic Oceans. The model forcing is also
different, as the model used to generate synthetic ice thickness data utilizes NCEP forcing, while the assimilation
model uses ECMWF forcing.

The model used to generate synthetic ice thickness was integrated for a 40–year period, from 1958 to 1998. Compar-
isons with ice thickness from submarine sonars have shown that the model appears to give a good description of the
actual ice thickness. Two such comparisons are shown in figure3.36. The synthetic ice thickness data used here were
generated for the year 1990.

3.9.2.2 Generation of cryosat–like observations

After having obtained the ice thickness estimates from the coupled ice/ocean model, errors were added to the thickness
estimates to simulate the errors of the cryosat sensor. As the Cryosat satellite sensor measures the freeboardf , a first
step is to convert model ice and snow thickness to freeboard height,

f =
ρw − ρi

ρw
hi +

ρs

ρw
hs , (3.21)

whereh andρ are thickness and densities of the snow and ice (subscripti or s), andρw is the density of seawater.
The synthetic freeboard estimate is then calculated by adding a random errorwf to the model freeboard estimate:

f ′ = f + wf σ2
f = σ2

Eice + σ2
Eocn (3.22)

The random errorwf has error varianceσf , which is a function of the ice elevation error varianceσ2
Eice and the

ocean elevation error varianceσ2
Eocn. The error variances of ice and ocean elevation depend on estimated formulas

given inLaxon(2001). These errors are functions of the surface state, depending on ice concentration, ice thickness,
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Figure 3.37: The original ice thickness fields from the MICOM/VP run is shown in Figure 3.37(a). The estimated error
variance of the synthetic observations, calculated from equation (3.23), is shown in Figure (3.37(b)). The final synthetic
observations, calculated by adding a random error whi

to the original observations, is shown in Figure 3.37(c). The
figures show the data generation for day 35 in 1990.

surface temperature, ice concentration and backscatter contrast between ocean and water. The ice concentration has
the strongest impact on the error variance estimates, while the ice thickness and backscatter coefficients have a smaller
impact on the error variance estimate.

The data generation also depends on the surface temperature. Experience from ERS indicate that as the surface tem-
perature reaches the melting point, the location of the surface reflection becomes ambigous. If the surface temperature
falls below−5◦C, the synthetic data gives a ”null” value. Furthermore, due to the strong dependence of ice elevation
error on the ice concentration, a ice concentration treshold has been introduced. If the model ice concentration is
below0.7, a ”null” value is generated.

As the synthetic freeboard value is generated from equation (3.22), the synthetic ice thicknessh′i can be obtained
from equation (3.21). Likewise, the ice thickness error variance of the synthetic data can be obtained by using
equations (3.21) and equation (3.22):

σ2
h′

i
=

ρ2
w

(
σ2

Eocn + σ2
Eice

)
+ ρ2

sσ
2
hs(

ρ2
w − ρ2

i

) , (3.23)

where a snow thickness error variance has been included as well. An example of the original model ice thickness
together with the synthetic ice thickness error variance and the final synthetic ice thickness is shown in figure (3.37).

3.9.3 Analysis updates

The analysis changes the ice concentration and ice thickness of the ice model, as well as fields in the ocean model.
The individual updates depend on the statistics of the observation and model errors, as well as on the distance between
observations and model. In this section we intend to show how the assimilation of ice thickness affects the properties
of the ice cover and the properties of the ocean model.
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Figure 3.38.a: The ice thickness update for January–May in 1990. The day-of-year is indicated below each figure,
where January 1st is day 0. The scales are identical for all figures. The black contour line denotes the 0.1 ice
concentration contour.
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Figure 3.38.b: The ice thickness update for August–December in 1990. The day-of-year is indicated below each
figure, where January 1st is day 0. The scales are identical for all figures. The black contour line denotes the 0.1 ice
concentration contour.
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Figure 3.39: Figure 3.39(a): RMS values of the observation, model ensemble, innovation and actual error variance
of experiment ”SR2”. The RMS-values are obtained only over regions where either the model or observation mean
is greater than 0.1 m. Figure 3.39(b): The mean innovation for the three experiments.

only shows the ice thickness updates for the period January–May and August–December in 1990.

For the period January–May of 1990, we note that the updates are strongest at the beginning of the time period,
especially at the first analysis time, day 7. The strong update is a combination of a large distance between observations
and measurements, and high model error variance at this time. As the first analysis is performed, some of the distance
between model and observations will be reduced, and the model error variance will also be reduced. Initially, there
are some differences between the model fields and the synthetic observations. Roughly speaking, we can say that the
model has too thin ice in the Central Arctic Ocean, whereas it generally has too thick ice in the surrounding seas; The
Beaufort Sea, the East Siberian Sea, the Laptev Sea and the Greenland Sea, see day7 in Figure3.38.a.

As the model ensemble evolves, it is noticeable that the magnitude of the analysis updates steadily decreases. This
is a result of decreased distance between observations and model, but mostly it is a result of reduced error variance
in the ice model ensemble. This is clearly illustrated in Figure3.39(a), where the RMS-values of the observation and
ensemble variances are shown. The RMS-values of the observation variance has been calculated by using the variance
of the observations within the radius of influencer0 used in the EnKF. If the error statistics of the Ensemble Kalman
Filter are correct for all grid points, then we should have similar values for the innovation RMS and the sum of RMS
values for the ensemble and observations. From Figure3.39(a), this is seen not to be the case, as the innovation RMS,
especially in winter, is much higher than the sum of model and observation RMS-values. Also, the ensemble variance
is seen to be somewhat lower than the observation variance in winter, giving increased faith in the model results in
the EnKF scheme. It should also be noted that the largest updates take place close to the North Pole where the data
density is highest.

The conclusions of experiment ”SR3” are also similar to the conclusions of ecperiment ”SR2”. There is an increased
ensemble spread in the ”SR3” experiment relative to experiment ”SR2”, due to the random fields used in the ice
dynamics. The increased ensemble spread is not enough, however to give any major differences in the conclusions
reached for experiment ”SR2”, and so we will focus mainly on experiment ”SR2” in the following. Note that there is
some, albeit small improvement in the experiments with assimilation, relative to the experiment without assimilation,
experiment ”SRF”, as can be seen in Figure3.39.
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The ice edges shown as the black contour line in Figure3.38.aare seen to extend well into the Greenland Sea and
Labrador Seas. Compared to SSMI-observations, these extents seem to excessive, and is probably connected to too
low vertical mixing by the KPP scheme in the ocean model. It should be noted that the model data on which the
synthetic observations are based, do not display such an excessive ice edge in the Labrador and Greenland Seas.

As summer sets in, the temperature of the ice/snow surface is too high to obtain reliabe ice freeboard measurements.
As a consequence, the ensemble spread will increase throughout summer, as there are no restriction imposed by
the assimilations. The assimilations recommence on day 217, and all the analysis updates for the period August–
December 1990 are seen in Figure3.38.b.

Beginning day 217, the first analysises are performed, and the result can be seen close to the ice edge marked by
the0.1 ice concentration contour. It is somewhat surprising that these updates occur so close to the ice edge, as the
majority of the observations is expected to be in the interior of the ice pack at this time, due to the expected lower
ice surface temperatures there. The reason is due to high ice thickness variance close to the ice edge, increasing the
model uncertainty in the analysis. This high ice thickness variance is, incidentally, connected to ice concentration
variance along the ice edge, which will be demonstrated in the next section.

At the beginning of the time period August–December, the analysis updates generally reduce the ice thickness, but
after a while the updates seem to take on a ”dipole” shape, with ice thickness decrease along the Greenland Sea,
Arctic Archipelago Coast and Beaufort Sea. Ice thickness increase can be seen in the Eurasian Basin and in regions
close to Svalbard, Franz Josefs Land and Sevarnaya Zemlya. Such a structure could also be seen in the first analysis
performed in January,

The reason for this dipolar structure is probably related to various differences between the model generating the
synthetic observations, and the model used here. Differences exist in the thermodynamic, dynamic and atmospheric
forcing applied to these model, and also in the amount of North Atlantic Water entering the Arctic Basin. We have
not performed a breakdown of the exact nature of these differences.

As the model evolves through the autumn of 1990, we again note that the updates are strongest at the beginning of
the time period, while they steadily reduce towards the end of the time period. Again, this is the result of the reduced
model–observation innovations and reduced model variance, leading to greater faith in model results in the EnKF
scheme used here. As in winter, the effect of reduced model ensemble variance dominates, which can clearly be seen
from Figure3.39(a).

3.9.3.2 Salinity and ice concentration updates

The analysis updates of surface layer salinity and ice concentration are shown together with the ice thickness update
in Figure3.40for two different times of the year, Winter (day 21) and Late Summer (day 245), for experiment SR2.

These two times are at the beginning of the Winter and Autumn assimilation periods respectively, when the ice
thickness variance is at its highest, see Figure3.39(a). Consequently, the analysis updates are at their largest at this
time for ice thickness. It turns out that such is the case for ice concentration and surface layer salinity as well. In the
following we will use the word ”significant” to denote analysis updates which are of high enough absolute value to be
colored in Figure3.40. This subjective judgement should not be confused with statistical significance in this context.

If we consider the 22nd January salinity, ice concentration and ice thickness update in som detail, we find differences
in spatial distribution, and some interesting details. First of all, for the winter situation, we see that compared to the
ice thickness update, the ice concentration update has a relatively small spatial extent, with some minor updates close
to the ice edge. As was seen in section3.8.3.1, the ice concentration variance within the ice pack is close to zero in
winter, resulting in minor updates there.

Examining the wintertime salinity update within the80◦N latitude circle, we see that it is of a different sign compared
to the ice thickness update, revealing that increased ice thickness is not necessarily corresponding to increased salinity.
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(d) Ice Thickness Update day 245
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(c) Salinity Update day 21
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(c) Salinity Update day 245

Figure 3.40: Selected model updates of Salinity, ice thickness and ice concentration from two times, day 21 and day
245 in 1990, for experiment ”SR2” . The thick line denotes the 0.1 ice concentration contour.
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A lot of this is due to ice production over open water, which tend to reduce the overall ice thickness (by increasing ice
concentration), but increases the total ice production. The amount of salt released into the surface layer is positively
correlated with the total ice production. If we consider the spatial coverage of the salinity updates, we see that it
is somewhat smaller than the region with significant ice thickness updates. This is probably connected to different
ensemble error statistics for the region with thick ridged ice close to the Northern coast of Greenland, versus the
generally thinner ice in the central parts of the Arctic Basin.

On day 245, there is a larger region with significant ice concentration updates relative to day 21. The majority of
the ice concentration updates are located close to the ice edge, and we see that some of the regions with highest
magnitude of ice thickness updates also correspond to regions with highest magnitude of ice concentration updates.
The sign of the ice thickness updates do not show such a direct correspondence, however. For instance, the strong
ice thickness update east of Zevarnaya Zemlya has the same sign as the ice concentration update there. North of
Greenland, however, we see that a region of high ice concentration increase corresponds to a region with strong ice
thickness decrease.

Complex underlying statistics on day 245 can also be inferred from the differences between ice thickness and surface
layer salinity updates in Figure3.40. The sign of the salinity updates are seen to follow the updates of ice concentration
close to the ice edge. This behaviour was also seen in Section3.8.3.2, where summertime ice concentration was seen
to be strongly linked to the summertime surface layer salinity through a positive correlation. In the updates of sea
surface salinity, we also see a region with strong salinity reduction close to the Northern Coast of Greenland, in the
same region with strong ice thickness reduction.

3.9.4 Ensemble Covariances

The second order statistics of the model ensemble are important for the analysis, and they are described by the matrix
P f , present in the analysis equation (3.3). In this section we are going to describe the characteristics of the ensemble
covariances, and how it varies in space and time. We will also compare the statistics of the EnKF scheme with that of
an Ensemble OI scheme.

3.9.4.1 Covariance fields

We here focus on the covariance between different variables in the same grid cell, e.g. between ice thickness and
the salinity in the first layer of the ocean model. We will write this type of covariance ascov {c(x), S(x, 1)}. In
Figure3.41we show the covariance field between ice thickness and ice concentration, ocean surface layer salinity
and ocean surface layer temperature at two times of the year. These two times corresponf to the two different analysis
times given in Figure3.40.

The region with high magnitudes of ice thickness–salinity covariance is seen to include both the regions along the ice
edge, as well as within the ice pack. This is in contrast to the covariance between ice thickness and ice concentration
and the covariance between ice thickness and sea surface temperature, which have their highest values along the ice
edge. There is a marked difference between the salinity–ice thickness covariance on day 21 and that of day 245,
Figure3.41(a)and3.41(d)respectively . In winter, we generally see a negative covariance between ice thickness and
sea surface salinity, whereas in summer, the covariance is mostly positive. This behaviour is connected to the different
mechanisms which create the covariance in the model.

In winter, open leads in the ice model is an important contributor to the total mass of ice created in the model. Neglect-
ing the vertical mixing induced by brine released during freezing of ice, we can say that increased ice production will
lead to increased salinity in the ocean surface layer. In winter, the heat loss over open water can be one to two orders
of magnitude larger than the heat loss over ice covered water, and this means that the more open water is created, the
more ice will be produced. When open water is created during ice divergence, there is a net transport of thick ice out
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Figure 3.41: Covariance fields of ice thickness versus surface layer salinity, surface layer temperature and ice con-
centration at day 21 ans day 245 in 1990. The thick line denotes the 0.1 ice concentration contour of the model
forecast.
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of the area, which is replaced by the thin ice created in leads. This means that the average thickness of ice in the area
will be reduced while the ice production and amount of salt released to the ocean surface layer will increase. The
amount of ice divergence is different between different ensemble members, and the result of this process will be a
negative ice thickness–surface layer salinity covariance in the ensemble. In accordance with this mechanism, regions
with net convergence should not see large magnitudes of ice thickness–surface salinity covariance. This is probably
the reason for the low magnitudes of the covariance in the region North of the Canadian Archipelago and the north
coast of Greenland.

It should be noted that the above mentioned mechanism relies on the assumption of no vertical mixing in the ocean
model. If we include the vertical mixing in the argumentation, the results will be different. For the central Arctic
Ocean, however, the presence of the Cold Halocline Layer (CHL) will not alter the main conclusion of a negative
covariance. Since the underlying waters in the CHL have higher salinity than the surface waters and are at the freezing
point, vertical mixing will still result in a negative covariance in the ensemble. For other regions in the Arctic, such
behaviour might not be the case. In Figure3.41(a), positive covariances are seen close to Davis Strait and Sevarnaya
Zemlya in the Laptev Sea. Also, the advection of ensemble anomalies by the mean current of the ensemble is an
important effect, which complicates the above mechanism. It should also be noted that the ice transport mechanism
commented in Section3.8.3.2is important in creating the negative ice thickness–surface salinity covariance found
along the ice edge. This effect was seen to dominate in winter, along the ice edge.

For the summer situation, Figure3.41(d), the contrast between heat fluxes over ocean and ice is lower than in winter.
The differences are still noticeable, though, due to the higher albedo of ice relative to water. The ice model used here
has a parametrization of horizontal ice melt. In contrast to the horizontal freezing of ice in leads during winter, the
horizontal melt of does not modify the ice thickness. Therefore the vertical melt of ice is of greater importance in
summer. When ice melts vertically, the ice thickness is reduced, and the salinity of the surface layer is reduced, leading
to a positive ice thickness–surface salinity covariance in the ensemble. The major random forcing components for the
summer situation is the atmosphere temperature and the variance of the atmospheric surface drag. The temperature
component of the random forcing leads to different vertical melt rates, while the surface drag leads to differences in
ice divergence in the ensemble. The ice divergence leads to heating of the mixed layer which in turn melts the ice
from below. Both these effects contribute to the positive ice thickness–surface salinity covariance.

The high magnitudes of ice thickness–surface temperature variance is seen to be mainly located close to the ice edge
for the entire period, Figures3.41(b)and3.41(e). The model does not allow ice to exist in a grid cell if the surface
temperature to be higher than the freezing point when ice is present, meaning that the surface temperature within
the ice edge is only dependent upon the surface salinity. The only region with high thickness–surface temperature
magnitudes within the ice pack during winter is located in the Laptev Sea, a region which also has high ice thickness–
surface salinity covariance, Figure3.41(a). The majority of the covariance is therefore located close to the ice edge,
both in summer and winter. The covariance with surface temperature is mainly negative throughout the year close to
the ice edge. This is connected to differences in sea surface temperature when ice is present or not.

Within the ice pack in winter, the ice concentration in the model tends to reach the highest permitted value,cmax, for
all ensemble members, thus giving a zero covariance within the ice pack. This can be seen in the covariance field
for ice concentration–ice thickness in Figure3.41(c), where there is zero covariance within the ice pack. In summer,
Figure3.41(f), the ice concentration is often belowcmax, and covariance between ice thickness and ice concentration
can develop. An important mechanism here is lateral freezing of ice at the beginning of fall, which tends to reduce
the ice thickness while increasing the ice concentration. Different degrees of lateral ice freezing will lead to negative
ice thickness–ice concentration variance. At day 245, this can be seen in a region north of Greenland. This is an
important effect which should be present in winter as well. Unfortunately, the tendency of the ensemble members to
all reach the maximum allowed ice concentration prevents this covariance from developing in winter.

The ice thickness–ice concentration covariance, as the sea surface covariance fields, has the highest magnitudes close
to the ice edge, Figures3.41(c)and3.41(f). If we compare the ice thickness–ice concentration covariance fields with
the ice thickness–surface temperature covariance, they have similar spatial patterns, leading us to the conclusion that
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Figure 3.42: Covariances from an EnOI covariance matrix. Panel 3.42(a) shows the covariance between ice thick-
ness and ocean upper ocean layer salinity, panel 3.42(b) shows the covariances between ice thickness and upper
ocean layer temperature and panel 3.42(c) shows covariances between ice thickness and ice concentration.

this covariance field is a result of ice being present or not in the ensemble. If ice is present the ice thickness and ice
concentrations are both positive, while they are both zero when ice is absent, leading to a positive covariance.

Comparison with EnOI statisticsIn a previous ESA project(ESA ESTEC Contract No. 13071/00/NL/DC) (Lisæter,
2001), several assimilation experiments were performed with a less resource–demanding assimilation scheme. The
EnOI has a fixed covariance matrix used in the analyses throughout the year which is very different from whate
we have seen regarding the EnKF covariances. It is interesting to see how the covariance fields of that experiment
compares with the current experiment. The EnOI covariances of ice thickness against salinity, temperature and ice
concentration are shown in Figure3.42.

The EnOI covariance matrix was estimated from model samples. These samples were collected from a model run over
one season. This is reflected in the ensemble statistics, as the seasonally changing position of the ice edge is seen as
a continous region with relatively high magnitudes of covariances in both ice concentration, salinity and temperature.
The EnOI ensemble can not capture the effects of a moving ice edge, which we have seen is an important element in
the the EnKF covariances. In addition, the changing sign of the ensemble covariances over a season is not captured,
this effect is probably of highest importance for the salinity update.

3.9.4.2 Covariance in depth

So far, we have concentrated on the analysis updates, and the covariances found at the ocean surface. The reason for
this is the generally higher response at the surface than in deeper layers of the ocean, but a short demonstration of
the covariance with depth is also called for. In Figure3.43, the covariances between ice thickness and ocean salinity
in deeper layers are demonstrated for a geodesic section from (20◦E,70◦N) in Norway, to (160◦W,70◦N) in Alaska.
Two different times of the year are shown, to illustrate the different covariances in winter and summer conditions.

In winter, represented here by day 21 in Figure3.43(a), the top layers of the ocean model have a negative covariance
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(a) cov {hi(x), S(x, z)}, day 21
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(b) cov {hi(x), S(x, z)}, day 245

Figure 3.43: Covariance between salinity and ice thickness for a section along the geodesic line from (20◦E,70◦N) in
Norway, to (160◦W,70◦N) in Alaska. The covariance fields are shown for two different days, day 21, Figure 3.43(a)
and day 245, Figure 3.43(b), in 1990.

between ice thickness and salinity. As mentioned earlier this is related to the ice production in open water leads, and
different degrees of ice divergence in the ensemble. A detail in Figure3.43(a)is the change of sign of the covariance
with depth at many locations in the Central Arctic. As brine is released during ice production, turbulence will erode
the stratification at the base of the oceanic mixed layer. In the presence of a Cold Halocline Layer, entrainment of
saline water will increase the overall salinity of the mixed layer, but the lower part of the mixed layer will actually
experience a decrease in salinity, compared to the initial stratified case. These different characteristics of the mixed
layer are probably the reason for the change from negative to positive covariances with depth, for some of the regions
along the section.

In summer, melting dominates, so the entrainment process as described above is less frequent. The sign of the
covariance is positive close to the surface, Figure3.43(a), and the sign does not change with depth in the central
Arctic, e.g. the Lomonosov Ridge. Note however that close to the ice edge, such as in the proximity of Svalbard,
there is a change in sign from positive to negative with depth.

Finally we note the region at around 400km distance into the section, close to the coast of Alaska. Here the covariance
sign is seen to change sign several times when we go downward through the water coloumn, both in winter and
summer. The exact mechanism for this is unclear, but we speculate that it is connected to processes related to inflow
of water from the Bering Strait. The region is also close to the Chuckchi Borderlands, which also point to influences
from shelf waters and waters of North Atlantic origin.

3.9.5 Ice thickness assimilation – summary

The ice thickness assimilation has been demonstrated, and shown to have an impact on both the ocean surface, and
on the ice variables. The updates are, however, relatively small due to the properties of the ensemble.

The ice thickness variance of the ensemble is rapidly reduced by the ensemble updates, and not sufficiently increased
by the random forcing applied between analysis steps. This could be seen by the large distance between the observa-
tions and the observed model state, relative to the ensemble and observation variances. This large distance indicates
that there is significant bias in the model, an effect which cannot be properly adressed by the EnKF. Another exper-
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iment, in which we varied properties of the ice dynamics showed some improvement, but not enough to overcome
the majority of the bias. In the future, focus should be put on proper description of such biases in ice assimilation
schemes. Although the impact of the assimilations are relatively small, there is a cumulative effect of them, and at
the end of the assimilation experiment, the ensemble mean is seen to be closer to observations relative to a model run
without assimilation.

In a previous work, a different assimilation scheme was used to assimilate ice thickness into a coupled ice–ocean
model. This scheme, The Ensemble Optimal Interpolation, uses a fixed ensemble to represent the error statistics. In
several experiments, it was demonstrated that the assimilation had a significant effect on the ensemble. As the error
statistics of the EnOI are fixed, it is not subject to the problems the EnKF faces. We believe that when the biases of
the EnKF is properly adressed in the EnKF scheme, we will see significant improvements in the assimilation updates.

One area where the EnKF is superior to the EnOI scheme, is in its description of the error covariances. Since the EnOI
uses fixed covariances, it is not able to properly represent seasonally changing error statistics. As was demonstrated
in the experiments performed here, the EnKF describes a seasonally changing error covariance matrix, with proper
representation of covariances due to different physical mechanisms. We saw for instance that the covariance between
surface salinity and ice thickness was very different for a situation in winter, relative to a situation at the end of
summer. It was also seen that the ice edge region was a region were the covariances showed high magnitudes, while
the interior ice pack had lower magnitudes. The proper representation of this is also an important attribuite of the
EnKF, relative to the EnOI.

We conclude that the ice thickness assimilation gives physically consistent model updates, and that these updates are
a large improvement over the updates from the much simpler EnOI scheme. The magnitude of the updates are small
due to significant model bias, and to low EnKF error variances. Future work should focus on both describing this bias
in the EnKF, and improving the model to reduce the bias. The CryoSat measurements, as described by the synthetic
ice thickness measurements used here, should be of sufficient precision to improve model results when model bias is
properly accounted for.
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Figure 3.44: The orthogonal curvilinear 140× 130 grid. Note the high resolution in the North Atlantic and that there is
no singularity in the Arctic ocean.

3.10 Task 3300: Marine Ecosystem

This task presents an application of the ensemble Kalman filter for a marine biochemical model, utilizing ocean
colour data from the SeaWiFS sensor. A hindcast experiment for April and May 1998 is summarized, i.e., including
the early part of the North Atlantic spring bloom. We start by giving a short overview of the model setup and the
data, then the results are presented and discussed, and finally a summary is given. For more details, please also refer
to Natvik and Evensen(2003a,b).

3.10.1 Model setup

The model system consists basically of three sub-models. The physics of the ocean are described by an ocean
circulation model - Miami Isopycnic Coordinate Ocean Model (MICOM), and the output fields are used to force
the FDM-type biogeochemical model byDrange (1994a) describing a simple marine ecosystem. A dynamic and
thermodynamic ice model is also included in the Arctic ocean. A general overview of the model system was given in
the introduction of WP 3000. Note that this experiment uses a model system consisting of MICOM and FDM, and the
coupling to HYCOM was done at a later stage, i.e., representing an improvement of the system used in the hindcast
experiment.

In the model setup used here, we have 17 physical and 18 biochemical vertical layers, respectively, with two biochem-
ical sublayers in the physical mixed layer. Even though a higher resolution of the biochemical layers would be desired
for pure model studies or for operational systems, we decided to keep the coupled model as simple as possible in our
assimilation “demonstration” experiments. This was partly also motivated by the amount of computer CPU-time,
memory and disk space required for ensemble integrations and analyses of the coupled model system. The coupled
model system was set up for the North Atlantic using the orthogonal curvilinear140×130 grid shown in Figure3.44.
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3.10.2 The SeaWiFS data

The NASA operated Sea-viewing Wide Field-of-view Sensor (SeaWiFS), which is located on board the Orbview-2
satellite, is the second generation ocean colour sensor which has provided the observations used in the data assim-
ilation experiments described below. The data have been processed at the Joint Research Centre (JRC); they were
received from JRC as a global level 3 product of chlorophylla binned (averaged) over ten days on a longitude/latitude
grid with a resolution of0.25◦.

It is necessary to perform an atmospheric correction of the data received at the sensor, since scattering from the
atmosphere contributes with about 90% of the total signal (Austin, 1993). Originally, one main goal of the SeaW-
iFS project was to be able to estimate surface chlorophylla within 35% accuracy in Case 1 waters (i.e., optically
dominated by phytoplankton) over the range of0.05 − 50.0 mg m−3 (Hooker et al., 1992). However, note that the
NASA atmospheric correction algorithm breaks down in Case 2 waters, leading to higher concentrations of chloro-
phyll a. There is currently no doubt that even better accuracies than 35% can be obtained in Case 1 waters. In fact,
Keiner and Brown(1999) showed that an artificial neural network algorithm (NN) was able to produce more accurate
estimates of chlorophyll in oceanic waters (within∼ 20%) than the operational SeaWiFS ocean chlorophyll 2 (OC2)
algorithm. Similar improvements were reported byGross et al.(2000), who also used an NN approach. Since the
data we received from JRC did not include any error estimates, we assumed standard deviations of 35% in the main
experiment, although other percentages were also tested. Assuming 35% errors seems reasonable, since the mea-
surements were processed using a recalibrated version of the OC2 algorithm, and a similar algorithm as NASA for
the atmospheric correction (Bulgarelli and Melin, 2000). However, the following comments should be noted: First,
since the atmospheric correction scheme breaks down in Case 2 waters, the data are probably given too much weight
in coastal zones, near rivers or in areas where human activity is important. Second, we use an empirical expression
to convert the chlorophyll data to phytoplankton biomass in terms of nitrogen (see below), which obviously leads to
larger errors in the converted observations. Thus, specifying 35% for the total errors is probably an underestimation
for the current data set. However, near future observations will probably be more accurate, e.g., by using an NN
algorithm similar toKeiner and Brown(1999). See also the sensitivity experiments. Although a better description of
the data errors would be required for an operational system, the 35% hypothesis should be of sufficient quality for our
“demonstration” data assimilation experiments.

To assimilate the chlorophyll data into our biochemical model, we have to be able to relate them to phytoplankton
biomass in nitrogen units. For this purpose, we use a simple empirical (invertible) expression, an alternative would
be to include chlorophyll as a separate explicit variable in the biochemical model.

3.10.3 Data assimilation experiments

A data assimilation experiment was performed for the months April and May in 1998, i.e. including the early part
of the North Atlantic spring bloom. This section contains the results from the experiments, starting with a short
description of the setup.

In our implementation of the ensemble Kalman filter analysis scheme, the analysis is calculated grid point by grid
point (horizontally). Further, we define an influence radius for the observations, i.e., the update in each grid point is
based on data within a certain distance. It can be expected that observations at long distance will only give a minor
contribution to the analysis in some grid point, and excluding the contribution from far away data makes the analysis
more effective. The influence radius is set to 100 km, representing the size of a typical mesoscale eddy. Within the
influence radius, the correlation between the errors of any two data is exponentially related asexp(−r/r0), wherer
is the distance between them andr0 is a characteristic decorrelation scale set to 10 km.

After the biochemical model variables have been updated using the ensemble Kalman filter analysis, possible negative
fields are simply set to zero. The species may become alive again during model integration.
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Number of Observation errors
ensemble members (std. dev.)

Main experiment 100 35%
(day 90-147)

10 35%
Sensitivity wrt. 20 35%
ensemble size 40 35%
(analysis at day 96) 60 35%

80 35%
100 1%

Sensitivity wrt. 100 10%
obs. errors 100 60%
(analysis at day 96) 100 300%

Table 3.5: Description of the data assimilation experiments.

In a main experiment, data were assimilated at six times; day 96, 106, 116, 126, 136 and 147 (see Table3.5and3.6).
Additionally, the sensitivity of the analysis with respect to the ensemble size and the observation errors was studied at
the first assimilation time (i.e., at day 96). Note that the relatively short duration of the experiment does not allow for
an investigation of long term trends of the ensemble statistics. The choice of performing a time limited experiment
was motivated by the quite extensive numerical cost of integrating the ensemble (100 members) of 3-dimensional
physical/biological states forward in time; a 10 day integration in parallel took about one day on 20 processors on
a Cray Origin 2000 machine and the storage of the ensemble required approximately 4.5 gigabytes for each set of
restart files. The effect of the assimilation on long term trends of the ensemble statistics should be investigated at a
later stage, and the work presented here should only be regarded as an initial demonstration study. A short overview
of the experiments is given in Table3.5.

Although the sensitivity tests were performed at the first filter analysis time, we start by presenting the main experi-
ment, which was performed with an ensemble size of 100 members and observation standard deviations of 35% (see
Table3.5). Evensen(1994) indicated that 100-500 ensemble members are sufficient to represent the error covariance
matrices. We chose to use 100 members in the main experiment; this should be enough in our local (grid point by
grid point) implementation of the analysis scheme and at the same time the numerical requirements do not become
too large.

Even though the experiment was carried out for the domain shown in Figure3.44, we focus on the results from the
North Atlantic domain from10◦S to 70◦N. Further north there are few ocean colour data to update the estimate
(because of the low inclination of the satellite/sensor), while the domain close to the South Atlantic boundary is less
important in our study.

Table3.6 shows some important characteristics of the experiment. The first column contains the times where the
ensemble Kalman filter analysis is carried out, while the second column shows the time binning period of the chloro-
phyll data. In the third column, the percentage of bad data (mainly due to cloud cover and sun glitter) is given for
wet points. A data point is regarded as wet only if all four surrounding model grid points have depths above 10 m.
The fourth column shows the number of grid points which are skipped (i.e., keeping the forecast value) during the
analysis. A point is skipped if it is considered as dry, i.e. whenever the depth is less than 10 m, or if there are no
observations within the influence radius to update the estimate. There are140× 130 = 18200 grid points altogether,
so the variables are influenced by the data in a majority of grid points (well above 90%). The last column shows that
some grid points are influenced by many observations. (Our results are of course a direct consequence of the choice
for the data influence radius). We will now focus on the results from the first and last assimilation time, i.e. at day 96
and 147.

The impact of the EnKF analysis on the observed variable (surface phytoplankton) at day 96 and 147 can be studied
in Figure3.45; the ocean colour data (in terms ofmmol N m−3) binned over the days 91–100 and 141–151 are
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Time of data Time binning Amount of Number of Max number of
assimilation period of the bad data skipped grid data within the

chlorophyll data points radius of influence
1998 day 96 day 91–100 35.3% 992 117
1998 day 106 day 101–110 35.9% 886 195
1998 day 116 day 111–120 36.4% 850 155
1998 day 126 day 121–130 38.3% 729 156
1998 day 136 day 131–140 39.3% 725 150
1998 day 147 day 141–151 40.2% 598 158

Table 3.6: Some characteristics of the main data assimilation experiment. Note that bad data are counted at wet
points only, i.e., where the depths of the surrounding grid points are greater than 10 m. A particular grid point
is skipped (not updated) if it is dry (depth < 10 m) or if there are no observations available within the radius of
influence.
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Figure 3.45: Results from the assimilation at day 96 (left) and day 147 (right). The observations, i.e. the ocean colour
data binned over the days 91–100 and 141–151, after the conversion to phytoplankton biomass in terms of nitrogen,
are shown in the top plots. Further, the ensemble mean of phytoplankton for the forecast and analysis ensembles
are displayed in the middle and bottom plots, respectively.

displayed in the top figures, while the forecast and analyzed ensemble mean of surface phytoplankton are shown in
the middle and bottom plots, respectively.
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Even though the model produces phytoplankton blooms in several domains at day 96, the forecast estimate is quite
different from the spatial distribution viewed by the SeaWiFS sensor. While the model seems to develop a large
bloom extending from the eastern boundary of the North Atlantic basin, the observations show high concentrations
at the western boundary. This undesired property of the model may have many causes. For example, we have only
two biochemical layers in the physical mixed layer, which may be insufficient for resolving the ecosystem properly.
Also, since the ecosystem is very sensitive to the supply of nutrients, it will also be very sensitive to the amount of
turbulent mixing.

Figure 3.45 shows that the EnKF is capable of making successful updates during an assimilation, even for large
differences between the model forecast and the observations. For example, by following the0.10 mmol N m−3

contour line starting at the west coast of Portugal, it is seen that the analyzed estimate is quite close to the observations
along this contour. Further, the positions of the phytoplankton blooms have certainly become more consistent with
the data after the analysis, e.g., the two blooms in the ensemble Kalman filter estimate at the West African coast,
the large concentrations near the western boundary of the North Atlantic basin, and the removal of the bloom that
covers a large area of the eastern part of the basin in the model forecast. Similar improvements can be observed in
the day 147 assimilation; the large bloom at mid latitudes seen in the model forecast is completely removed in the
analysis, and the spatial distribution of phytoplankton has become consistent with the data.

Data-forecast and data-analysis residuals (interpolated onto the data grid) are shown in Figure3.46(top). Although the
large negative residuals in the forecast are removed in the analysis mean estimate (i.e., consistent with the right plots
of Figure3.45), it is evident that the numerical peak values of the analysis are much lower than the corresponding
values of the observations. Note that we have assumed observation standard deviations of 35% of the actual data
values. Thus, the data errors are assumed to be large within a phytoplankton bloom (the observed maximum at
day 147 is about70 mmol N m−3), i.e. the lower peak values in the analysis are consistent with our specifications of
the error statistics. See also the sensitivity experiments below.

Figure3.46(bottom) shows the ensemble variance of phytoplankton for the forecast and for the analysis at day 147.
It is seen that the variance is significantly reduced during the analysis. A long term experiment (i.e., a year or more)
would be important to investigate whether the reduction of the variance also would result in a reduction of the long
term variance in the model.

The ensemble Kalman filter is a multivariate data assimilation methodology. Thus, all the ecosystem components
are updated during an analysis. The quality of the analyzed variables may be studied in so-called twin experi-
ments, where observations are generated by adding noise to a “reference solution”, which should be closely re-
covered by the analyzed estimates. The ensemble Kalman filter has already been investigated in twin experiments by
Breuillin et al.(2000) andEknes and Evensen(2001), who used 1-dimensional extensions of theFasham et al.(1990)
andEvans and Parslow(1985) ecosystem models, respectively. The results from these studies indicate that the in-
formation contained in a set of surface observations of phytoplankton is sufficient to provide successful updates also
for other model variables. In our setup, we use real satellite ocean colour measurements, and a “reference solution”
is of course not available. However, some desired properties of the multivariate analysis can still be investigated.
Figure3.47shows the results at day 147 for nitrate (top) and zooplankton (bottom) for the upper 300 m of the water
column along a section at50◦N. The ensemble mean forecast estimates are shown in the left plots, while the residuals
between the analysis and forecast ensemble mean estimates are shown in the right plots, respectively. As discussed
earlier (in relation to Figure3.45), the model predicted a too large surface phytoplankton bloom at mid latidudes.
However, this large bloom was removed in the analysis, i.e., to become consistent with the data. In Figure3.47(top,
right), it can be seen that there are large positive residuals at the surface from about30◦W to about10◦W between
the analysis estimate and the forecast estimate of nitrate. Thus, while the too large forecast bloom of phytoplankton
has become much smaller in the analysis, larger concentrations of surface nitrate can be seen in the analysis for the
same domain. This seems reasonable, since phytoplankton is growing on nitrate and since a negative correction of
phytoplankton therefore should lead to a positive correction of nitrate in the multivariate analysis. Further, large
negative residuals between the analysis and forecast mean estimates of zooplankton for the same domain can be seen
in Figure3.47(bottom, right). Again, this seems reasonable, since zooplankton is feeding on phytoplankton and a
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Figure 3.46: Residuals between the ocean colour observations and the ensemble mean estimate interpolated onto
the data grid (day 147) for the forecast ensemble (top, left) and the analysis ensemble (top, right); and the variance
of phytoplankton at day 147 for the forecast ensemble (bottom, left) and for the analysis ensemble (bottom, right).
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Figure 3.47: Depth profiles of the upper 300 m of the water column along a section at 50◦N (day 147). The left plots
show the forecast (ensemble) mean estimate of nitrate (top) and zooplankton (bottom), while the right plots show
the residuals between the analysis (ensemble) mean estimate and forecast (ensemble) mean estimate for the same
variables.
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Figure 3.48: Variance of surface nitrate of the forecast ensemble (left) and the analysis ensemble (right) for day 147.

negative correction of phytoplankton therefore also should lead to a negative correction of zooplankton in the mul-
tivariate analysis. Note from Figure3.47that the analysis also affects sub-surface zooplankton and nitrate, although
the analysis updates are weaker in the deep ocean (i.e., as expected, since we assimilate surface observations). To
conclude, the multivariate assimilation seems to have a positive impact (qualitatively) on the coupled biochemical
state.

Figure3.48shows the variance of surface nitrate at day 147 without assimilation (left) and with assimilation (right).
It is clearly seen that the variance of nitrate is much smaller for the analyzed ensemble. As expected, this property
was also seen for the other biochemical components.

The sensitivity experiments were carried out for the first analysis step, i.e. at day 96, basically to determine the setup
for the main experiment. As said above, standard deviations of 35% were assumed for the observations in the main
experiment. Other percentages were also used in the first analysis at day 96, as presented below.

A necessary requirement of the analysis would be the capability of almost matching the data for very small observation
errors and almost matching the model forecast for very large errors, respectively. Figure3.49(top, left) shows the
ensemble mean estimate of surface phytoplankton after an analysis using very accurate data; standard deviations
of only 1% were specified. It is seen that the analyzed estimate is very close to the data (Figure3.45; top, left),
both the positions and the intensities of the phytoplankton blooms almost perfectly match those described by the
observations. The analyzed mean estimate of surface phytoplankton in the case of very large measurement errors
(300%) is shown in Figure3.49(bottom, right). As desired and expected, the estimate is close to the model forecast
shown in Figure3.45(middle, left).

Figure 3.49 also shows the concentrations of surface phytoplankton assuming observation standard deviations of
10% and 60% in the analysis, respectively. As expected, the estimate in the former case is also quite close to the
observations, both in terms of spatial distribution and bloom intensity. The main differences from the case with 1%
data errors appear in the western North Atlantic basin, where several phytoplankton blooms are seen from the data.
Note that the use of 60% standard deviations for the observations results in an analyzed estimate very close to the
standard case with 35% errors displayed in Figure3.45(bottom, left). As expected, the peak values observed in the
data are more in agreement with the latter analysis. However, for lower concentrations the spatial distributions of
phytoplankton are very similar for the two cases.

We also looked at the other biochemical fields for the different cases described above (not shown here). As expected,
an assumption of accurate observations led to quite large updates of the other variables, while larger errors in the
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Figure 3.49: Ensemble mean of phytoplankton after an EnKF analysis with data errors of 1% (top, left), 10% (top,
right), 60% (bottom, left) and 300% (bottom, right), respectively.
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data resulted in weaker updates during the analysis. Further, more accurate observations led to lower values in the
analyzed variance fields (not shown). This is also expected, since the updates of the members due to accurate data
should bring the members closer together, i.e. the ensemble should experience a high degree of convergence.

3.10.4 Marine Ecosystem Summary

A data assimilation system has been developed for the biochemical part of a coupled physical-biochemical 3-dimensional
model of the North Atlantic. The data assimilation technique is the ensemble Kalman filter, which has been imple-
mented for the first time with a realistic coupled model, and the system utilizes real chlorophyll data from the SeaWiFS
ocean colour sensor.

The results from the experiments were presented above. A first observation was that the model system as implemented
here is not capable of producing a spatial distribution of phytoplankton consistent with the data. At day 96, the model
estimated a bloom of phytoplankton covering a large domain of the eastern part of the North Atlantic, while the
observations showed the largest concentrations near the western boundary of the basin. After the ensemble Kalman
filter analysis, the phytoplankton field became consistent with the data, as a result of assuming unknown errors in the
model. To the contrary, note that a pure parameter estimation problem relies on the model to be able to reproduce the
data (within specified error bounds) for some set of parameters.

We studied the variance of each ecosystem variable during the assimilation. As desired, our results showed significant
reductions in the variance fields for the different ecosystem components (only the phytoplankton and nitrate variance
fields were shown here). Note that the short duration of our experiment does not allow for investigating any long
term trends in the model. Normally (but not necessarily), one will experience a spread of the ensemble during model
integration. Thus, it would be interesting to see if the ensemble Kalman filter is able to reduce the long term variance
in the model. This should be investigated at a later stage.

In a twin experiment setup, where the measurements are generated from a “reference” solution, it is possible to
investigate the quality of all ecosystem components, even if only (surface) phytoplankton is observed. The ensemble
Kalman filter has already been investigated in twin experiments with simple 1-dimensional ecosystem models in
Breuillin et al. (2000) and Eknes and Evensen(2001). The results from these works indicate that it is sufficient
to observe surface phytoplankton to get reliable estimates of the other model components. In this paper, we use
real measurements, and a reference solution is of course not available. However, some qualitative properties of
the multivariate assimilation can still be investigated. A first observation was that the model predicted a too large
bloom of phytoplankton at mid latitudes at day 147. This bloom was removed in the analysis, and the distribution
of phytoplankton became consistent with the data. Further, the multivariate analysis led to a significant increase of
surface nitrate in the same domain. This seems reasonable, since phytoplankton grows on nitrate and a reduction of
phytoplankton therefore should lead to increased concentrations of nitrate in the multivariate assimilation. Further,
zooplankton concentrations decreased significantly in the same domain in the analysis. Again, this seems reasonable,
since zooplankton feed on phytoplankton and a decrease of the latter therefore also should lead to a decrease of the
former in the multivariate analysis. We also verified that the analysis affected sub-surface nitrate and zooplankton
concentrations, although the analysis updates are weaker in the deep ocean (as expected). Of course, our qualitative
investigation should be followed up by a validation of the system against independent observations. Note that in the
present setup of the system, the model errors were sampled by adding Gaussian noise to the atmospheric forcing
fields. One important improvement would be to add noise to the biochemical model equations also, to sample the true
errors of the system more correctly. Thus, validation against independent observations will be done at a later stage,
when we have improved the sampling of the model noise.

We investigated the sensitivity with respect to the number of members in the ensemble (not shown here). Since
the ensemble members are updated grid point by grid point (horizontally) in the analysis, it is important to have
enough members to resolve the covariances locally within the radius of influence with respect to each point. From
the sensitivity experiments, we conclude that at least 60-80 members are required to have reasonably well resolved
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covariances. However, an ensemble of about 150 members would be desired for any operational application. The
required number of ensemble members is related to the degrees of freedom of the system. Thus, the same size order
can be expected for similar coupled physical-biochemical model systems.

The sensitivity with respect to the errors specified for the observations was also studied. It was seen that very accurate
data led to an analyzed estimate of phytoplankton very close to the observations, while large errors in the data
resulted in a corresponding estimate close to the model forecast, as desired. Since we defined the observation standard
deviations as a certain percentage of the actual data value (35% in the standard case), the analyzed estimate showed
much lower peak values of phytoplankton than those seen in the data. Thus, the response of the analysis is consistent
with the specification of observation errors. A very positive result of the investigation was that even with 60%
standard deviations, the analyzed estimate provides an important improvement of the poor model prediction. For the
other model components, accurate data led to strong updates during the assimilation (and small variance fields), while
large errors in the data resulted in weak updates (and larger variance fields), as expected.

One improvement of the model system used in the current experiments include a replacement of the MICOM model
with HYCOM (HYbrid Coordinate Ocean Model) - see the introduction of WP 3000. The HYCOM model uses
ordinaryz-coordinates in the mixed layer (the desired number of layers and vertical grid spacing can be specified),
and isopycnal layers below. This is an improvement for the ecosystem, since no biochemical sublayer splitting is
needed in the physical mixed layer. Another important improvement of the system will be to seek a better way of
relating the chlorophylla data to the model. Currently, the data are simply converted to phytoplankton biomass using
an empirical algorithm, and the converted data are assimilated as “phytoplankton measurements”.
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3.11 WP3000 Summary

This workpackage has examined the impact of several satellite observation types in a state of the art ocean and ecosys-
tem modelling and data assimilation system. The ocean model is the MICOM/HYCOM as described in Section3.1,
the assimilation sheme is the EnKF as described in Section3.3, and the overall system used is named TOPAZ and is
briefly described in Section3.2.

The major conclusions from this workpackage are summarized in the following sections.

3.11.1 Assimilation of SST data

The assimilation of satellite observed SST data provides an important source of information which helps correct for
errors and/or biases in the atmospheric heat fluxes used in the model. The major impact is in the upper mixed layer
of the model. The data used in the current experiments consisted of very coarse data (Reynolds SST of one degree
resolution). Thus, only the large scales could be impacted. We do expect that the new high resolution SST data
being developed in different projects (i.e. GHRSST) will provide information which is useful to control mesoscale
circulation in and coastal regimes as well.

3.11.2 Assimilation of SLA data

The assimilation of SLA data is complicated since the data are relative to a reference sea surface height, itself de-
pending on the geoid which is not known accurately at scales below 500 km. Therefore we may expect a bias in the
assimilation of SLA data depending on the choice of a reference sea surface height. In SIREOC, this reference sea
surface height was constructed from observations and it has turned out to work well.

The conclusion from these experiments is that the SLA data contain excellent information about the mesoscale vari-
ability in the ocean. The assimilation of SLA data allows us to introduce and track eddies and rings very well. They
also have an impact on the thermocline depth which is partly determining the upper ocean mesoscale variability. In
addition there is a weak impact on the mixed layer temperature which also impacts the sea level height.

3.11.3 Assimilation of SSS data

The assimilation of SSS or brightness temperatureTB data has similar value as the SST assimilation and has been
examined using simulated data. It introduces a correction to the errors from erroneous freshwater fluxes in the model.
The large scale data as expected from SMOS will be very valuable since they together with SST data will ensure
that the upper ocean water-mass characteristics will be correctly represented in the model. This will most likely
completely remove any need for additional surface flux relaxation which is used in many ocean models today.

Note that we have proven the capability of assimilate theTB data directly, without first deriving SSS values. This is
possible by using a modelled relation betweenTB and other variables where some are modelled variables, e.g. SST
and SSS, and other are input parameters to the model, e.g. atmospheric wind speed. Thus, it is possible to compute the
model predictedTB and relate this to the observedTB, and subsequently to compute the difference. The computation
of the cross correlations, used in the EnKF analysis, is based on an ensemble of model states.

3.11.4 Assimilation of ice concentration data

The assimilation of ice concentration data is essential to ensure a correct ice extent in the model. The marginal ice
zone is an area which is extremely sensitive to errors in water masses and surface fluxes and it is difficult to have a
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good modeling of the real ice extent without the introduction of additional information from observations.

In this study we developed the assimilation capabilities for ice concentration data using the EnKF. The assimilation
becomes multivariate in the sense that both the ice and ocean variables are updated consistently with each other. As
an example, if the data introduces ice in an ice free region, then the mixed layer temperature is also set low enough
to allow for the presence of ice. Likewise the introduction/removal of ice also implies introduction/removal of salt in
the mixed layer.

In the interior of the ice pack there is little impact of the assimilation of ice concentration data. The first reason
is that the ice concentration, at least during winter, is close to one with verly little variability. Secondly, the leads
parameterization used in the model is not very good and the model under estimates the ice concentration within the
icepack.

There is little impact on the total ice volume from the ice concentration data, and the overall ice thickness should be
controlled directly with ice thickness data.

3.11.5 Assimilation of ice thickness data

The assimilation of ice thickness data has been examined using simulated data with properties similar to what we can
expect from the Cryosat mission. The use of the EnKF again provided a consistent multivariate update of both the ice
and ocean variables. The ice thickness data had a positive impact on the modelling of the total ice volume but was
somewhat hampered by a too strong bias in the ice model, and associated under estimate of prediction variance. This
problem should be addressed by improving the ice model and also the error model use for the ice model.

The use of the Cryosat type data will in combination with the ice concentration data ensure the simulation and
prediction of realistic ice cover and allow for operational forecasting of ice parameters.

3.11.6 Assimilation of ocean colour data

Ocean colour data from SeaWiFS were assimilated into the coupled MICOM and ecosystem model and the properties
of the assimilation system was examined in detail.

From the study with MICOM we found that the SeaWiFS data had a significat impact on the evolution of the marine
ecosystem on the large scales. Thus, with the ecosystem model used and the correlations which exists between
different ecosystem variables it is possible to control the evolution of the marine ecosystem on the large scale. This
is a promising result related to the ongoing development of large scale and even global ocean and ecosystem data
assimilation systems to be used for real time ocean monitoring and prediction.

Even though we recently completed the coupling of the ecosystem model with HYCOM we could not redo these
experiments using HYCOM in time for the SIREOC report. HYCOM provides a better framework for coupling to an
ecosystem model and we would therefore expect the assimilation results using HYCOM to be better than what could
be obtained using MICOM. On the other hand, the actual assimilation precedure and the behaviour of the assimilation
scheme is identical when used with MICOM and HYCOM and the general conclusions drawn using MICOM should
be valid for HYCOM as well.

Further studies will involve more complex ecosystem models and a downscaling towards the coastal zones. For such
applications it is not clear that ocean colour is sufficient to properly control the marine biology.
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3.11.7 Overall conclusion

The data sets which have been evaluated in SIREOC for assimilation in operational oceanography applications, are
all complementary. Thus, they provide information about different model variables or processes, and they are all
important for the optimal modelling of different processes in different regions.

It should be noted that only satellite observed surface information has been used in this project. Thus, we have
only been able to control the upper part of the ocean and its circulation. In operational systems, additional in situ
data will be essential for ensuring a correct representation of the more slowly evolving deep water masses. The
ARGO program supplies in situ vertical profiles of temperature and salinity from the global ocean. We have also
developed the capability of assimilating these profiles and further impact studies on the simultaneous assimilation of
all parameters will be continued in future studies.

3.11.8 Recommendations

Particular issues of concern involve the following:

1. Start using high resolution SST (GHRSST) data for assimilation and examine the impact in coastal regions.

2. Start using absolute dynamic topography and improved geoid information following the GOCE missions to
improve the accuracy and impact of SLA assimilation.

3. Reformulate HYCOM to use SSH as a prognostic rather than a diagnostic variable. This will provide a more re-
alistic representation of SSH in the model which is directly comparable with the observed dynamic topography
(using an accurate GEOID).

4. Improve the modelled temperature brightness function and further examine the impact of errors in winds, etc.,
in the computation of temperature brightness and hence SSS for a better use of the data in the assimilation
system.

5. Improve the ice model formulation used to remove identified biases for a better use of the ice data in the
assimilation system.

6. Continue the proper estimation and modelling of dynamic model errors and error statistcs in the different kinds
of assimilated observations.
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Chapter 4

Summary and Recommendation

The main focus of this study has been to assess and quantify the relative impact of different Earth Observation data
types for operational ocean prediction and seasonal to interannual environmental monitoring systems as experienced
in the Nansen Center model suite (including the DIADEM/TOPAZ system and the Bergen Climate Model). The impact
is examined in light of availability of satellite observations of physical oceanographic variables, sea ice variables
and marine ecosystem variables for the North Atlantic and Nordic Seas. In so doing model simulations have been
conducted with specific focus on assessing the impact of applying existing and planned (simulated) remotely sensed
data sets to simulate the mean state and variability in a coupled ocean-sea ice-ecosystem model.

The Hybrid Coordinate Ocean Model (HYCOM) developed by Bleck and coworkers at the University in Miami
(Bleck, 2002) has now been included in the data assimilation system. The model is an extension of the previous
MICOM model where a generalized vertical coordinate is used. The vertical coordinate is isopycnal in the deep
ocean below the thermocline but reverts to z-levels in the mixed layer near the surface. This allows for high vertical
resolution in the upper part of the ocean which in turn ensure a better representation of the mixed layer dynamics and
the biological processes which are typically active in the upper layers near the surface. In addition, the generalized
vertical coordinate allows for the use of a sophisticated vertical mixing scheme based on the k-profile parameterization
by Large et al (1994).

The HYCOM model has been operated in real time assimilation mode for three months (in the TOPAZ project).
Preliminary analyses of the results lead us to conclude that the assimilation of SLA and SST data work as well
with HYCOM as it did with MICOM. In particular the better representation of the upper layers are clearly revealed in
comparison to profiles from the GTSPP data base. It also appears that assimilation of SLA provides a better advection
of signal vertically into the upper ocean. This is not the case for SST.

The effect of assimilating ice variables into a coupled ice–ocean model system was investigated. Two different ice
variables, ice concentration and ice thickness were assimilated in two different hindcast experiments. The results
showed that assimilation of ice concentration provided a good mechanism for controlling the location of the ice
edge in all seasons, while the impact in the central ice pack was virtually nonexistent in winter. The assimilation
of ice thickness was hampered by significant model–induced bias in the EnKF scheme. The assimilation updates
in the ice thickness assimilation were nonetheless seen to be realistic. The multivariate assimilation scheme used
in the experiments demonstrate that the assimilation of ice concentration and ice thickness has a significant impact
upon the properties of the ocean surface layers. To apply ice assimilation to the ice model unly, would clearly not
give a realistic update of the coupled model, and should be avoided. Future development of the model system and
assimilation scheme needs to adress the existence of bias in the model system, particularly when it comes to ice
thickness assimilation.

The EnKF was also set up with a coupled MICOM-Ecosystem formulation and examined in detail in a hindcast
experiment. In addition we assimilated SeaWiFS data in real time for three months in May-July 2001 using an
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ensemble optimal interpolation (EnOI) scheme. The conclusion from this work was that the ocean colour data, and
in particular the spatial distribution, were useful for controlling the evolution of the model chlorophyll and also had a
multivariate impact on other biological variables.

The ecosystem model has also been coupled with the HYCOM code, and is currently being validated within TOPAZ.
Additional assimilation experiments will thereafter be carried out with the new coupled system. Since the resolution
in the thermodynamic mixed layer is improved in HYCOM, the coupling of the OGCM model and the ecosystem
model is expected to improve the simulation of the biological processes. Further validation and impact analyses from
the use of SeaWiFS ocean color data is also planned.

In the climate change monitoring and research the analysis have been focused on the role SSS play in the Subpolar
region, especially on the deep water formation rate, and the subsequent link to the maximum strength of the Atlantic
Thermohaline Circulation (THC) via meridional overtuning.

Four model integrations for the period 1948-2000 are analyzed, differing by widely different initial conditions and in
horizontal model resolution. The obtained results are similar despite the differences between the model integrations:

• During the period 1948-2000, the THC shows a marked variability on decadal time scales, and also a significant
(increasing) trend over the last three decades. Both the trend and the variability correlate, in general, to the NAO
index.

• Very high correlations (0.7) are found between the Labrador and Irminger Seas deep convection rate and the
maximum THC. It is also clear that the Labrador and Irminger Sea SSS play a pivotal role in the intensity
of deep convection in this region, and thereby also on the actual strength of the THC. For instance, the salt
anomalies in the early 70’s and the early to mid 80’s are followed by a rapid decline in the strength of the THC.

It is also found that the density of the convective water masses are of importance for the THC; whereas dense surface
waters force the THC in a very direct way, less dense convective waters, although mixing to similar depths, do not
necessarily set up a sufficient sub-surface pressure gradient to force the THC.

It is clear from the model simulations that better knowledge of the SSS would lead to much better description and
characterization of the THC and its variability and relation as well as influence on the deep convection rate of the
waters in the Greenland and Labrador Seas.

The major outcome of the SIREOC study project set in the context of satellite observations is summarized in Table4.1
according to the two distinct workpackages on Climate change (WP 2000) and Operational oceanography (WP 3000).

The results summarized in Table4.1 suggest that that the SMOS satellite will most likely detect the transition from
one NAO state to the other (typically 3–5 years) as the difference in SSS between high and low NAO-years range
between 0.6 (max) to 0.2 (min) psu. Similarly it is concluded that remotely sensed SSS from SMOS have the poten-
tial to be used to detect transitions associated with decadal-scale changes in the Atlantic Thermohaline Circulation
(Furevik et al., 2002)

The satellite data sets which have been evaluated in this WP 3000 on assimilation in operational oceanography appli-
cations, are all complementary; i.e. they provide valuable information about different model variables or processes,
and they are all important for the optimal modelling of different processes in different regions.

It should be noted that only satellite observed surface information has been used in this project. Thus, we have only
been able to control the upper part of the ocean and its circulation. In operational systems, additional in situ data
will be essential for ensuring a correct representation of the more slowly evolving deep water masses. The ARGO
program supplies in situ vertical profiles of temperature and, to some extent, salinity, from the global ocean. We have
also developed the capability of assimilating these profiles and further impact studies on the simultaneous assimilation
of all parameters will be continued in future studies.
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WP 2000-Climate
Change

Main Outcome

Sensitivity to CO2. At a doubling of the atmospheric concentration of CO2 the most pronounced
change is found in the Atlantic Ocean. Here the salinity increases by 0.1-0.5 psu,
with the strongest increase in the two sub-tropical gyres, and smallest change at
the high (northern and southern) latitudes and in the equatorial region.

Sensitivity to NAO-
variability.

It is found that during high NAO-years, the SSS field are saltier than normal SSS
in the North Sea (exceeding 0.3 psu), in the eastern part of the sub-tropical region
(up to 0.1 psu), in the polar waters north of Newfoundland (up to 0.2 psu), in the
Guyana Current region and south of the Hispaniola islands (about 0.1 psu), and
the lower than normal SSS in the waters just north of the Gulf Stream (about 0.1
psu).

Sensitivity to the At-
lantic thermohaline cir-
culation.

It is concluded that there is a region of positive correlation between the SSS and
the Atlantic THC in the sub-polar gyre and the band between 40-50 degrees North.
Furthermore, regions of negative correlations are found in the Gulf of Mexico and
over a large region in the South Atlantic sub-tropical gyre.

WP 3000-Operational
Oceanography

Main Outcome

Assimilation of SST
data

The assimilation of satellite observed SST data provides an important source of
information which helps correct for errors and/or biases in the atmospheric heat
fluxes used in the model. The major impact is in the upper mixed layer of the
model

Assimilation of SLA
data

The assimilation of SLA data contain excellent information about the mesoscale
variability in the ocean. The assimilation of SLA data allows us to introduce and
track eddies and rings very well. They also have an impact on the thermocline
depth which is partly determining the upper ocean mesoscale variability. In addi-
tion there is a weak impact on the mixed layer temperature which also impacts the
sea level height.

Assimilation of SSS
data

The assimilation of SSS or brightness temperature TB data introduces a correction
to the errors on freshwater fluxes in the model and ensure that the upper ocean
water-mass characteristics will be correctly represented in the model.

Assimilation of ice
concentration data

The assimilation of ice concentration data is essential to ensure a correct ice extent
in the model. The marginal ice zone is an area which is extremely sensitive to er-
rors in water masses and surface fluxes and it is difficult to have a good modeling
of the real ice extent without the introduction of additional information from ob-
servations. In the interior of the ice pack there is little impact of the assimilation
of ice concentration data.

Assimilation of ice
thickness data

The assimilation of ice thickness data has a positive impact on the modelling of
the total ice volume but was somewhat hampered by a too strong bias in the ice
model, and associated under estimate of prediction variance.

Assimilation of ocean
colour data

Assimilation of ocean colour data from SeaWiFS into the coupled MICOM and
ecosystem model has a significat impact on the evolution of the marine ecosystem
on the large scales. Thus, with the ecosystem model used and the correlations
which exists between different ecosystem variables it is possible to control the
evolution of the marine ecosystem on the large scale.

Table 4.1: Summary ofWP 200 and WP 3000 on the impact, improvement and skill assessment from availability of
EO data in operational oceanography
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System Targeted Area Key Input Output: Hindcast-Nowcast-
Forecast

TOPAZ North Atlantic and
Nordic Seas

Atmospheric forcing data. Remote
sensing SLA, SST and ocean color.
From spring 2002 also satellite sea
ice, and Argo profiling floats.

Ocean currents, temper-
ature, salinity, nutrients,
chlorophyll-a, mixed layer
depth

MERCATOR North Atlantic,
Azores,
Mediterranean

Atmospheric forcing data. SLA,
SST and ocean color., and Argo
profiling floats.

Ocean currents, temperature,
salinity, mixed layer depth

FOAM Global,
North Atlantic,
Mediterranean Sea

Atmospheric forcing data. Remote
sensing SLA, SST and sea ice, and
Argo profiling floats, VOS XBTs.

Ocean currents, temperature,
salinity, mixed layer depth

MFS Mediterranean Remote sensing SLA and SST,
VOS XBTs, Buoy and Argo pro-
filer data

Ocean circulation forecasts
at basin scale and selected
coastal areas.

MI–POM,
NORWECOM,
POSEIDON,
BOOS,
POL3DB,
ERSEM

North Atlantic,
North European shelf
seas,
Baltic,
Greek Seas,
Adriatic Sea.

Atmospheric forcing data, tides,
buoy data information, river run-
off, satellite SST, SSI and wind,
boundary conditions from SYS 1 to
SYS 4.

Sea level, storm surges, T; S;
currents, sea ice, drift (oil,
objects), transports of pollu-
tion, dispersion

National
Monitoring
Programs (NMP)

North Sea,
Skagerrak,
Mediterranean,
Aegean Sea,
Baltic

Atmospheric forcing data, River
run-off, boundary conditions from
SYS 1 to SYS 4. Ferry-box data

Ocean currents, temperature,
salinity, mixed layer depth,
eutrophication, transport,
distribution of fish larvae, or-
ganic pollutions and nuclear
waste.

WAM North Atlantic and ad-
jacent seas

Meteorological forcing, wave buoy
information, satellite SAR, scat-
terometer and altimeter data

Wind wave, swell, signifi-
cant waveheight, wave spec-
tra, wave-period

Table 4.2: Overview of existing modelling and assimilation systems.

There is currently several projects undertaken in the context of development and implementation of operational
oceanography system for global monitoring of environment and security (GMES). An underlying demand in this
context is the security of long term continuity of EO data beyond Envisat and Jason. Those projects that to some
extent capitalize on SIREOC are briefly reported below.

MERSEA Strand–1 (CEC GMES project; initial phase 2003–2004).The marine community has developed and
operates both near real time distribution of satellite and in-situ observations and forecasting models, with innovative
data assimilation tools as indicated in Table4.2.

The modelling and data assimilation system can be subdivided into two main categories: a) global ocean systems
producing assimilated analysis of the ocean state and forecasts; b) regional/coastal high resolution systems produc-
ing user-oriented products, increasing the quality of the global models at the regional/shelf level and extending to
ecosystem modelling. The ecosystem modelling, available as first generation pre-operational systems, will be com-
plementary to these existing operational oceanography systems.

A global assessment of these systems has not been carried out yet and it is timely to do so in view of the need for
assessment of environmental stress upon the marine ecosystem. MERSEA Strand 1 will establish interfaces between
the different ocean operational systems so that inter-comparison can be made, quality of products demonstrated and
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further integration of satellite and in-situ observations can be evaluated. This will, in turn, ensure that expected
regional characteristics (i.e. advantages/disadvantages) can be reported in the context of problems and lessons learnt
for European monitoring for environment and security. Based on this we will subsequently address the procedure for:

• harmonising data gathering, utilisation and analyses,

• product generation and quality control,

• information dissemination, and

• standardised and consistent reporting.

The primary deliverables of MERSEA Strand 1, which can also be considered as the European contribution to GO-
DAE, will be used to assess the current status of European capacity in European monitoring for environment and
security. Based on this a set of key recommendations for targeted research and development will be specified and
eventually considered for integration in the EU FP 6 programme, notably with the aim to have GMES in operation by
2008.

ROSES (ESA GMES project, initial phase 2003-2004). ROSES (standing for Real-Time Ocean Services for Envi-
ronment and Security) is a multi-service chain dedicated to operational oceanography, that will be demonstrated for
two initial services, notably a) Oil spill and b) Algae Bloom monitoring. These services will deliver information in
real-time at ocean variability scale, i.e. hours to few days, resulting from Earth Observations, in-situ measurements,
data assimilation and numerical ocean models.

ROSES addresses risks, either physical and biological, from local to much larger scale, where forecasting is almost
not existing wrt biological events. Such events are regulated by international agreements, conventions or local bye-
laws, the scale of the control being generally in line with the nature of the event. ROSES will provide management
tools to manage this regulatory framework.

MERSEA Integrated Project (4 year project approved under FP6 Aeronautics and Space GMES call) will run from
2004 to 2007. MERSEA aims to develop a European system for operational monitoring and forecasting on global and
regional scales of the ocean physics, biogeochemistry and ecosystems. The prediction time scales of interest extend
from days to months. This integrated system will be the Ocean component of the future GMES system.

At the core of the system is the collection, validation and assimilation of remote sensed and in situ data into ocean
circulation models that allow for the self consistent merging of the data types, interpolation in time and space for uni-
form coverage, nowcasting (i.e. data synthesis in real-time), forecasting, and hindcasting, and delivery of information
products.

The project will develop Marine Applications addressing the needs of both intermediate and end-users, whether
institutional or from the private sector, with the objective to:

1. Improve the safety and efficiency of maritime transport and naval operations;

2. Enable the sustainable exploitation and management of ocean resources (offshore oil and gas industry, fish-
eries);

3. More efficiently mitigate the effects of environmental hazards and pollution crisis (oil spills, harmful algal
blooms);

4. Improve contribution to ocean climate variability studies and seasonal climate prediction and its effects on
coastal populations;

5. Improve national security and reduce public health risks;
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6. Advance marine research with the aim to better understand the global climate, the ocean and its ecosystems.

The project will lead to a single high-resolution global ocean forecasting system shared by European partners to-
gether with a coordinated network of regional systems for European waters which will provide the platform required
for coastal forecasting systems. During the project the main pre-operational systems will be transitioned towards op-
erational status ready for full GMES implementation by 2008.In so doing the possible structure and implementation
of a European Centre for Operational Marine Forecasting (ECOMF) will also be addressed.
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variability simulated by the arpege–opa model,Clim. Dyn., 11, 487–505, 1995.

Terray, L., S. Valcke, and A. Piacentini, OASIS 2.2 Ocean Atmosphere Sea Ice Soil. User’s Guide and Reference
Manual,Tech. rep., CERFACS, 1998.

Thorndike, A. S., and R. Colony, Sea ice motion in response to geostrophic winds,J. Geophys. Res., 87, 5845–5852,
1982.

Thorndike, A. S., D. A. Rothrock, G. A. Maykut, and R. Colony, The thickness distribution of sea ice,J. Geophys.
Res., 80, 4501–4513, 1975.

Whitaker, J. S., and T. M. Hamill, Ensemble data assimilation without perturbed observations,Mon. Wea. Rev., 130,
1913–1924, 2002.

Wingham, D., CryoSat Mission Requirements Document (MRD), ESA document., 1999, ESA-ESTEC, Noordwijk,
Netherlands.

Zalesak, S., Fully multidimensional flux-corrected transport algorithms for fluids,J. Comp. Physics, 31, 335–362,
1979.

SIREOC final report, March 2003


	1 Introduction
	1.1 Motivation
	1.2 Objective and workplan
	1.3 Key input data sources

	2 WP 2000: Climate Research and Monitoring
	2.1 The OGCM - MICOM Modelling System
	2.1.1 OGCM spin-up and forcing

	2.2 The AOGCM - BCM Modelling System
	2.2.1 The atmospheric component
	2.2.2 The ocean-sea ice component
	2.2.3 The coupler

	2.3 Model integrations and experiments
	2.4 Results WP 2100 Impact Assessment
	2.4.1 The atmosphere-sea ice-ocean system
	2.4.2 Annual SSS
	2.4.3 Seasonal SSS

	2.5 WP 2200: Identification of improvement
	2.5.1 The ocean-sea ice system
	2.5.2 SST and SSS variability linked to the NAO

	2.6 Importance of import of SSS to the Nordic Seas
	2.6.1 Atlantic Thermohaline Circulation

	2.7 WP 2300: Skill Assessment
	2.7.1 Possible change in SSS during the 21st century

	2.8 WP 2000: Summary
	2.8.1 SSS variability on annual to sesonal time scales for the present day climate system
	2.8.2 Possible change in SSS at a doubling of CO2
	2.8.3 SSS-variability linked to NAO-variability
	2.8.4 SSS-variability linked to the Atlantic Thermohaline Circulation


	3 WP3000- Operational Oceanography
	3.1 The Ocean Modelling System
	3.1.1 Model domain
	3.1.2 Vertical mixing processes in MICOM
	3.1.3 Vertical coordinate system in HYCOM
	3.1.4 Vertical mixing processes in HYCOM
	3.1.5 Time stepping in HYCOM and MICOM
	3.1.6 Nesting of regional models
	3.1.7 Tidal boundary conditions
	3.1.8 Coupling of the ecosystem model
	3.1.9 Coupling of the sea ice model

	3.2 The =0T O 0.00exP 0.50exA 0.15exZ system
	3.2.1 Background
	3.2.2 Participants
	3.2.3 Hind-cast experiment
	3.2.4 Real time operation
	3.2.5 Summary

	3.3 The Ensemble Kalman Filter 
	3.4 WP 3100: Assimilation of SLA and SST data
	3.5 WP 3100: Assimilation of brightness temperature and salinity
	3.5.1 Establish simulated TB data.
	3.5.2 The modelled SST/SSS data and synthetic brightness temperature data.
	3.5.3 Assimilation experiments
	3.5.4 Perspectives and recommendations for future work

	3.6 WP 3100: GOCE MISSION and impact on operational oceanography
	3.6.1 Summary

	3.7 WP3200: Assimilation of ice parameters
	3.7.1 Introduction
	3.7.2 Model setup

	3.8 WP3200 -- Ice Concentration assimilation
	3.8.1 Ice concentration assimilation -- Experiment Setup
	3.8.2 Impact of assimilation
	3.8.3 Second order statistics of the model ensemble
	3.8.4 Ice concentration assimilation -- Summary

	3.9 WP3200 -- Ice Thickness assimilation
	3.9.1 Ice Thickness Assimilation -- Experiment Setup
	3.9.2 Synthetic ice thickness data
	3.9.3 Analysis updates
	3.9.4 Ensemble Covariances
	3.9.5 Ice thickness assimilation -- summary

	3.10 Task 3300: Marine Ecosystem
	3.10.1 Model setup
	3.10.2 The SeaWiFS data
	3.10.3 Data assimilation experiments
	3.10.4 Marine Ecosystem Summary

	3.11 WP3000 Summary
	3.11.1 Assimilation of SST data
	3.11.2 Assimilation of SLA data
	3.11.3 Assimilation of SSS data
	3.11.4 Assimilation of ice concentration data
	3.11.5 Assimilation of ice thickness data
	3.11.6 Assimilation of ocean colour data
	3.11.7 Overall conclusion
	3.11.8 Recommendations


	4 Summary and Recommendation
	References


