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Abstract. Structure-aware halftoning algorithms aim at improving
their non-structure-aware version by preserving high-frequency
details, structures, and tones and by employing additional
information from the input image content. The recently proposed
achromatic structure-aware Iterative Method Controlling the Dot
Placement (IMCDP) halftoning algorithm uses the angle of the
dominant line in each pixel’s neighborhood as supplementary
information to align halftone structures with the dominant orientation
in each region and results in sharper halftones, gives a more
three-dimensional impression, and improves the structural similarity
and tone preservation. However, this method is developed only for
monochrome halftoning, the degree of sharpness enhancement
is constant for the entire image, and the algorithm is prohibitively
expensive for large images. In this paper, we present a faster and
more flexible approach for representing the image structure using
a Gabor-based orientation extraction technique which improves
the computational performance of the structure-aware IMCDP
by an order of magnitude while improving the visual qualities. In
addition, we extended the method to color halftoning and studied
the impact of orientation information in different color channels on
improving sharpness enhancement, preserving structural similarity,
and decreasing color reproduction error. Furthermore, we propose a
dynamic sharpness enhancement approach, which adaptively varies
the local sharpness of the halftone image based on different textures
across the image. Our contributions in the present work enable the
algorithm to adaptively work on large images with multiple regions
and different textures. c© 2022 Society for Imaging Science and
Technology.
[DOI: 10.2352/J.ImagingSci.Technol.2022.66.6.060404]

1. INTRODUCTION
Image reproduction devices such as printers are binary
tools that can only choose to place a dot at a particular
position of a substrate using only a limited number of
inks [1]. Digital halftoning is the process of converting a
continuous-tone image into a binary image for printing
purposes. Halftoning algorithms are divided into three
main categories: thresholding and table halftoning [2], error
diffusion [3–7], and iterative [8–11] methods. Thresholding
and non-modified error diffusion are simple techniques,
but they introduce different types of artefacts that worsen
the representation of the original image. However, iterative
methods such as the Direct Binary Search (DBS) [8]
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and the Iterative Method Controlling the Dot Placement
(IMCDP) [9] create higher halftone quality at the cost of
computational complexity.

Color printers use four primary colorants, typically
cyan, magenta, yellow, and black (CMYK). In addition to
the four primary colors, multi-channel or High-Fidelity
(HiFi) printing uses extra inks to improve the quality of
color printing. Color halftoning converts a continuous-tone
color image into binary images for each ink. One simple,
yet efficient, approach for color halftoning is to apply
achromatic halftoning algorithms to different color channels
independently. The final color halftoned image is then
retrieved by superposition of all the monochrome halftoned
images.

Halftoning techniques have gone through different
improvements by supplementing the halftoning algorithm
with supplemental information about the original image
content to better preserve tonal and structural resemblance
to the original continuous-tone input image [12–21]. As
these techniques are aware of details and structures of the
original image, they are referred to as structure-aware or
structure-based halftoning.

In this paper, we introduce an adaptive structure-aware
color halftoning algorithm based on the CMY colorant
channels. It is an extension of the IMCDP halftoning
algorithm,which reproduceswell-formedhalftone structures
with the possibility of changing the halftone’s shape and
structure. The achromatic structure-aware IMCDP was
recently proposed as a structure-aware halftoning algorithm
that improves the sharpness of the halftone image and
simultaneously better preserves the tone and structure
similarity compared to the original IMCDP [21]. However,
the preprocessing step of the algorithm was slow, and it has
been applied only to monochrome images. In this paper,
(1) we review the approach in the preprocessing step and
propose a faster and more flexible technique for obtaining
the local orientation in structure-aware IMCDP, (2) extend
the algorithm to color halftoning, and (3) improve its
performance by introducing an adaptive approach to adjust
the degree of sharpness enhancement in a spatial varying
manner across the image.

2. RELATEDWORK
A high-quality halftone should present faithful reproduction
of the tonal and structural content of the original image.
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As structures may be lost during halftoning, the halftone
image sometimes fails to truly represent the structures and
tones of the continuous-tone original image. Structure-aware
(structure-based) halftoning methods have been developed
with the aim of better preserving tonal and structural
details by feeding the important content of the original
image as an additional input to the halftoning process.
For instance, Eschbach and Knox used the inverse of
input image as a threshold in the halftoning process and
enhanced edge reproduction in error diffusion [13]. Chang
et al. used the main component of local frequency in
the original image as lookup table indices to modify the
error-diffusion coefficients and improved the visual quality
of halftones [15]. Liu et al. proposed an entropy-based
method that measures the intensity’s impact and adaptively
modifies the threshold’s constraints in the halftoning al-
gorithm [16]. Pang et al. defined an objective function,
measuring tone and structure similarity between the original
image and the halftone image. By optimizing the objective
metric, the algorithm generates images, which preserve
texture details and local tone faithfully [14]. Li and Mould
employed the contrast information of the original image and
generated a contrast-aware mask for diffusing the error to
neighborhood’s pixels in error diffusion halftoning [12]. Li
et al. also used the error diffusion halftoning algorithm as the
underlying method and employed the intensity of edges in
the original image to calculate the texture information. They
used the texture information as a mask to better diffuse the
error to pixels [20]. Abedini et al. used the local orientations
of the original image to align the halftone structure with
the dominant line in each neighborhood. Their proposed
structure-aware halftoning reproduces sharper halftones,
while better preserves tonal and structural similarities
compared to its non-structure-aware version [21]. Not all
the proposed structure-aware halftoning methods have been
tested on color images. Some researchers have extended
their proposed method to color halftoning by applying their
achromatic halftoning algorithm independently on different
colorant channels; however, they have not studied the effect
of separate monochromatic halftoning on final results [12,
14, 16, 20].

In this paper, we aim to improve the recently proposed
monochromatic structure-aware IMCDP [21] by introduc-
ing a faster and more stable approach for extracting the local
orientations, extend it to color halftoning by investigating the
effect of running an independent or dependent halftoning
over each colorant channel, and improve its flexibility by
proposing an adaptive sharpness enhancement across the
image.

3. METHOD
In our previous work, we used the local orientation of pixels
to develop a structure-aware halftoning method based on
IMCDP [21]. It has been shown that the structure-aware
version of the IMCDP reproduces sharper halftones and
better preserves the tone and structure similarity of the input
image. However, the method presented in Ref. [21] is only

developed for monochrome halftoning and the degree of
sharpness enhancement is constant for the entire image.

The contributions of this paper are: (1) using a faster
and more flexible approach for obtaining the orientation
in the preprocessing step, (2) extending the structure-aware
IMCDP to color halftoning, and (3) using adaptive sharpness
enhancement across the image. These contributions enable
the algorithm to work on large and diverse images that have
multiple regions with different textures. In Section 3.1, we
briefly review themonochrome structure-aware IMCDP, and
we elaborate on our proposed method for improving the
structure-aware IMCDP in Section 3.2.

3.1 Monochrome Structure-Aware IMCDP
The key idea of the monochrome structure-aware IMCDP is
to align the dot placement along edges and textures of the
image. Our goal was to improve the reproduction of high-
frequency details while preserving the tonal and structural
resemblance to the original image.We developed themethod
based on the IMCDP halftoning algorithm [9] and used
the Hough transform [22] to extract local orientation
information.

IMCDP is an iterative halftoning algorithm, which starts
with a blank image the same size as the original image (to
be the halftone image). The algorithm searches for the pixel
holding the maximum value in the continuous-tone image,
and the first dot is placed at its corresponding position
in the blank halftone image. To consider the effect of this
quantization, the low-pass filtered version of the halftone
image is subtracted from the low-pass filtered version of the
original image. This process is called feed-back process, and,
accordingly, the filter is referred to as feed-back filter. The
algorithm continues with finding the next pixel holding the
highest value after subtracting the filtered halftone image.
Because the average tone value in different gray-tone regions
in the halftone image should be the same as the original
image, the total number of black dots to be placed in
each tonal region is known in advance, so the algorithm
terminates when the predetermined number of black dots is
placed in the halftone image [9].

One important point about IMCDP is the shape of
the feed-back filter. In the original IMCDP, a symmetrical
Gaussian kernel, as defined in Eq. (1) is used in the feed-back
process. As a result, the dots are placed symmetrically in
all directions. However, using a nonsymmetrical Gaussian
kernel, as in Eq. (2), makes the distribution of dots
nonsymmetrical [23].

f (x, y) =Ke
−

(
x2+y2

2σ2

)
(1)

f (x, y) =Ke−(Ax2+2Bxy+Cy2), (2)

where, (x, y) are the spatial coordinates of pixels, K is a
normalization factor to ensure that the filter elements sum
to 1, σ is the standard deviation of the Gaussian kernel, and
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Figure 1. Grayscale image being halftoned using; (a) a symmetrical filter as in Eq. (1) in the feed-back process; (b) a nonsymmetrical filter of the form as in
Eq. (2) in the feed-back process with vertical alignment k1 = 3, k2 = 1, ϕ = 0◦; (c) a nonsymmetrical filter of the form as in Eq. (2) in the feed-back process
with horizontal alignment k1 = 1, k2 = 3, ϕ = 0◦; (d) a nonsymmetrical filter of the form as in Eq. (2) in the feed-back process with horizontal alignment
k1 = 1, k2 = 3, rotated by ϕ = 30◦. Halftone images are displayed at 150 dpi. This figure is best viewed in the electronic version of this paper.

constants A, B, and C are calculated as:

A= cos2 ϕ

2k1σ 2 + sin2 ϕ

2k2σ 2 , (3)

B= − sin 2ϕ

4k1σ 2 + sin 2ϕ

4k2σ 2 , (4)

C = sin2 ϕ

2k1σ 2 + cos2 ϕ

2k2σ 2 . (5)

Parameters k1 and k2 in the nonsymmetrical kernel are
used to adjust the shape of the halftone structure. Setting
k1 = k2 creates symmetrical halftones, while k1 > k2 makes
halftones grow faster in vertical direction, resulting in
vertical line-halftones, and conversely, k1 < k2 generates
halftones with horizontal alignments, resulting in horizontal
line-halftones. Figure 1 shows a visual example of flexibility
of IMCDP in generating different halftone structures by
using different Gaussian kernels in the feed-back process.

Different halftone structures, produced by the IMCDP,
could be combined in the same image with smooth
transition [24]. The flexibility of IMCDP in generating
line-halftone structures makes it a powerful algorithm to
adaptively change the halftone structure according to the
image content. In the monochrome structure-aware IMCDP,
we used the Hough transform to detect the dominant line
in the neighborhood of each pixel [21]. As a result, the
input image is divided into structured (union of pixels with
a dominant line or sharp edge in their neighborhood) and
structureless regions (union of pixels with no line in their
neighborhood). Then, different halftone structures have
been used based on the orientation of the dominant line. To
be more specific, at pixels lying in the structureless region,
a symmetrical Gaussian filter with the form of Eq. (1) is
used as the feedback filter, while at pixels with a line in
their neighborhood a nonsymmetrical Gaussian filter with
the form of Eq. (2) is applied.

To align halftones with the dominant line in the
neighborhood of a pixel, we made horizontal halftone
(k1 < k2) and rotated it by setting the angle (ϕ) to the angle
of the dominant line. This means that the halftone structure

is alignedwith the dominant line in the pixel’s neighborhood.
Therefore, the edge information is more emphasized, and
the halftone image preserves more details at edges. Figure 2
illustrates the workflow of developing the recently proposed
structure-aware IMCDP [21]. It was found that generating
horizontal halftone line by setting parameters k1 and k2 to
1 and 1.8, respectively, and setting the angle ϕ to the angle
of the dominant line in the structure-aware IMCDP results
in sharper halftones while better preserves the tonal and
structural similarity compared to the original IMCDP.

3.2 Color Structure-Aware IMCDP
In Ref. [21], the Hough transform was used to detect the
dominant line in the neighborhood of each pixel in the
input image, and partition the image into structured and
structureless regions. The angle of the dominant line was
then calculated, and a nonsymmetrical Gaussian kernel was
applied based on its orientation in the feedback process
in structured regions and a symmetrical Gaussian kernel
in structureless regions. This approach has two main
limitations:

• The Hough transform based preprocessing can be
prohibitively expensive as it has cubic complexity.

• Relative sharpness enhancement is static across the
entire structured regions of the image.

In this paper, we address both these limitations, and
extend the method to color halftoning.

3.2.1 A Faster preprocessing Approach to Calculate the Local
Orientation

In the preprocessing step, a fast and stable approach to
estimate the local orientations of an image is needed. We
require the method to have at most quadratic complexity
since it is the best-case complexity imposed by the nature
of IMCDP. We reviewed approaches based on local image
gradient and Gabor responses at different scales. They both
have the same time complexity; however, we observed that
the Gabor-based approach is more robust.
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Figure 2. Workflow of developing the monochrome structure-aware IMCDP.

Gabor filter captures local frequency and direction of
an image and is extensively used in texture analysis [25].
The image is convoluted with a set of filters called Gabor
filter bank. Each filter is characterized by its wavelength
(λ), orientation (θ), bandwidth (σ ), phase offset (ψ), and
aspect ratio (γ ). Intuitively, each Gabor filter is a Gaussian
kernel function modulated by a sinusoidal plane wave,
where the Gaussian component provides the weights, and
the sinusoidal component provides the directionality. One
constructs a Gabor filter bank with several parameters and
infers the local texture characteristics of the image from
its response to the filters. Refer to [26] for a detailed
explanation of the use of Gabor filter. In this work, we used
a bank of 36 Gabor filters at equally distanced orientation
in θ = [0◦, 180◦) with constant wavelength λ = 20, σ = 1,
ψ = 0, and γ = 0.5. We calculated the response of Gabor
filters at those 36 directions and the direction with the
largest magnitude of response is considered the dominant
orientation at each pixel.

3.2.2 Extending to Color Halftoning
Color printers use four different colorants, typically CMYK.
In addition to these four primary colors, some printers,
referred to as multi-channel or HiFi printers, use more
inks to reproduce more of the color spectrum. One simple,
yet efficient, approach for color halftoning is to apply
the monochrome halftoning algorithms to different color
channels independently and retrieve the final color halftone
image by the superposition of all the monochrome halftone
images.

In this work, to apply the proposed method to color
images, we convert the RGB continuous-tone image to three
colorant channels: C = 1 − R, M = 1 − G, and Y = 1 − B,
we extract the orientation information in each channel
independently and run our monochrome structure-aware
IMCDP over C, M, and Y channels, separately. To consider
four-color printers (C, M, Y, K), we assume that full
under-color removal is employed. It means that at a given
position, a black dot is placed, if and only if all three channels
are present [27]. Note that the conversion from RGB to CMY
depends on the physical process being used to lay down the
CMY ink; therefore, there are several methods to transform
an RGB image to CMY color channels. For instance, in

Ref. [28], Shaked et al. proposed a different approach to
initialize CMYK for color error diffusion halftoning.

In this paper, we illustrate our approach to extend the
monochromatic structure-aware IMCDP to color halftoning
based on C, M, Y channels; however our proposed structure-
aware color halftoning is not limited to CMYK printers.
Because the input color image is first converted to different
channels and the method is applied on each channel
separately, our approach could also be employed by printers
which use extra inks.

Extracting orientation information for three colorant
channels separately is computationally expensive. One pos-
sible approach is to derive the orientation information from
the luminance channel and use the same angle information
for three colorant channels C, M, and Y. To study if the
luminance orientation is a good approximation of color
channels’ orientation, we derived the luminance component
of each RGB input image using Eq. (6) and used its
orientation information for all three colorant channels. The
coefficients used in Eq. (6) are identical to those used
to calculate luminance in Ref. [29]. The impact of this
simplification on the algorithm is discussed in Section 5.

Luminance component= 0.289R+ 0.587G+ 0.114B. (6)

3.2.3 Adjusting Sharpness Enhancement
In the original structure-aware IMCDP, the sharpness
enhancement was static throughout the structured regions
with fixed values of k1 = 1 and k2 = 1.8. Although a
fixed sharpness enhancement produces acceptable results, it
may not produce optimal results, especially for images that
have multiple objects or areas with different textures. We
propose an approach where the relative degree of sharpness
enhancement is defined for each pixel of the image with
variable k values. Without loss of generality, we assume
k1 = 1 and calculate a variable k2 for each pixel of the
image. We use the Gabor filters described in Section 3.2.1
to analyze the texture of the image to infer the degree of
local image sharpness. Intuitively, in a sharp area of an image,
such as at an edge, we expect a high response from the
Gabor filter that is aligned with the edge and low response
in other directions. On the other hand, in an area with no
edge or other significant feature, we expect relatively similar
responses from Gabor filters of all orientations.
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We use the ratio between the maximumGabor response
to the average of the responses for each point as a
representation of local image sharpness. For a bank of n
Gabor filters, and G = [g1, g2, . . . , gn] responses to those n
filters, we define local sharpness at each pixel as:

s= max(G)

mean(G)
for G= [g1, g2, . . . , gn]. (7)

Calculated ratio of local sharpness, s, needs to be transferred
to an appropriate value for k2 in IMCDP. Since the calculated
local sharpness changes with color, brightness, and other
features for different images, we calculate the transformation
from local sharpness, s, to k2 empirically for each input
image. For each input image, we generate two reference
images, one random white noise (reference image W ) and
one sinusoidal image with wavelength similar to the Gabor
filters (reference image S), both with the same dynamic range
as the original image. The n Gabor filters are applied to the
images S andW to produce G(s) and G(W ) at each pixel and
then using Eq. (7), the local sharpness value for two reference
images is calculated as s(S) and s(W ). The random noise
should produce the local sharpness values (s) corresponding
to k2 = 1, and the sinusoidal image should produce local
sharpness values corresponding to k2 = maxk2 . The inferred
k2 for each pixel is then calculated as a linear interpolation
between these two values and capped at maxk2 using Eq. (8):

k2 = max

(
s−S(W )

S(S)−S(W )
maxk2 ,maxk2

)
, (8)

where s is the sharpness value at each pixel of the input image
(calculated by Eq. (7)), maxk2 is a hyperparameter of the
proposed algorithm, S(S) and S(W ) are the average of s(S) and
s(W ), respectively. The effect of the variable k2 on halftoning
is studied in Section 5.

4. EVALUATION APPROACH
The goal of this paper is to improve the recently proposed
monochrome structure-aware IMCDP halftoning algorithm
to use a faster and more flexible approach for obtaining
the angle in the preprocessing step, extend it to color
halftoning, and apply a dynamic sharpness enhancement
ratio across the image. We study the impact of the proposed
improvements on the performance of the structure-aware
color halftoning by assessing sharpness, structure similarity,
color consistency, and computation time.

4.1 Perceptual Aspects
To evaluate a halftoning algorithm and compare the halftone
image with the continuous-tone color version of it, it is
important to consider the human visual system (HVS)
characteristics. Human visual system creates an illusion of
a continuous-tone image when the halftone image is viewed
from a sufficiently large distance. The decrease in sensitivity
(blurring effect) that occurs in the HVS increases as a
function of cycles-per-degree of visual angle. Visual angle
is a function of resolution and viewing distance, and it is

calculated as in Eq. (9):

Visual Angle= R
180
π

tan−1
(

1
D

)cycles/degree. (9)

In Eq. (9), R defines the resolution in dpi or ppi and D is the
viewing distance in inches.

Different methods have been proposed to model the
blurring effect of the HVS and the contrast sensitivity
function (CSF) [2, 30–33]. The CSF describes the sensitivity
of the HVS to different spatial and temporal frequencies that
are present in the visual stimulus.

Because the halftone and the continuous-tone image
are viewed at different resolutions, we use two different
visual angles to properly simulate the function of the
HVS. According to Eq. (9), to simulate a continuous-tone
image, being viewed at a typical display of 100 ppi from
a distance of 11.8 inches (30 cm), the visual angle would
be 20.6 cycles/degree. However, to simulate the contrast
sensitivity function of HVS for a halftone image, printed
with a typical high-quality printer, at a resolution of 600 dpi
and being viewed from distance of 13 inches (33 cm), the
visual angle is 136.4 cycles/degree. In all the evaluations
in this paper, to account for the HVS functionality, the
halftone and the original image have been processed by
visual angles of 136.4 and 20.6 cycles/degree, respectively.
We perform the proposed color structure-aware IMCDP
halftoning algorithm inCMYcolor space, but we evaluate the
results in RGB space. The reason is that our HVS is modeled
in RGB space [14].

4.2 Evaluation Metrics
We evaluate our proposed method by studying three
important aspects in image reproduction process: improving
generating high-frequency contents, better preserving the
structures and details, and faithful color reproduction of the
original image.

4.2.1 Sharpness
To quantify the performance of the proposed algorithm in
generating details, we find the no-reference perceptual blur
metric proposed by Crete et al. practical for our study [34].
Their blur metric is estimated only on the luminance
component and based on the discrimination between
different levels of perceptible blur. Crete et al. quantified the
final blur metric value in the range of 0 to 1, corresponding
to the sharpest and blurriest perception, respectively. A
lower blur metric corresponds to better reproduction of the
high-frequency details in a halftone image; thus, the halftone
structure has less blur annoyance and is considered as more
pleasant to the human eye.

4.2.2 Structure Similarity
The halftone image should appear visually similar to the
original (input) image being viewed from an appropriate
distance. We use the structural similarity index measure
(SSIM) proposed by Wang et al. to evaluate the structural
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similarity between images [35]. Here, we compute the mean
SSIMs (MSSIM) over blocks of size L × L (L = 11) for
evaluating the structure similarity of results. The valid range
for the MSSIM is from 0 to 1, a higher value corresponds
to a higher similarity. The original quality assessment metric
MSSIM has been applied only to the luminance component
of the image. According to Wang et al., even though
their experiments showed that the use of the other color
components did not significantly change the performance
of the metric, this should not be considered generally true
for color image quality assessment. Therefore, we used the
color version ofMSSIM as Eq. (10) by running it over R, G, B
channels separately, and compared the results to the MSSIM
values using only the luminance component.

MSSIM = 1
3
(MSSIMR +MSSIMG +MSSIMB). (10)

As with Wang et al.., we did not find a significant difference
in the performance of the metric using the other color
components of images therefore, we use the luminance
component of images to compute the MSSIM reported in
Section 5.

4.2.3 Color Consistency
To measure the perceived color difference between the
halftone and continuous-tone image, we use the Spatial
CIELAB (S-CIELAB) metric proposed by Zhang et al. [33].
S-CIELAB is a spatial extension of CIELAB, based on
an opponent-channel-representation-based HVS model to
predict the perceived quality of color halftone images. S-
CIELAB computes the perceived color difference as follows.
First, the CIEXYZ representation of a color image is
transformed to the opponent color space (Luminance,
Red–Green, and Blue–Yellow). Next, the data in each color
channel is convolved by a two-dimensional spatial kernel of
the form of a series of Gaussian functions, simulating the
visual spatial sensitivity of the HVS to the corresponding
color dimension, as:

f (x, y) = k
∑
i
wiEi(x, y), (11)

where,

Ei(x, y) = ki exp
(

−x2 + y2

σi

)
. (12)

The parameters k and ki normalize the filters such that
they sum to one. The parameters wi and σi represent
the weight and standard deviation of the Gaussian kernel,
respectively. Then, the filtered version of each color channel
is transformed back toCIEXYZ representation and thereafter
to CIELAB. As a result, the representation of the image is
called S-CIELAB, which includes both the spatial filtering
and the CIELAB processing. Finally, the color difference
between the S-CIELAB representation of two images is
computed using the standard CIELAB color difference
formula:

	E∗
ab =

√
(	L∗)2 + (	a∗)2 + (	b∗)2, (13)

where 	L∗ = L∗
o − L∗

h, 	a∗ = a∗
o − a∗

h, and 	b∗ = b∗
o − b∗

h,
and L∗

o , a∗
o , and b∗

o are the original continuous-tone images
and L∗

h, a
∗
h, and b∗

h are the halftone images in CIELAB
(after going through S-CIELAB process and being converted
back to CIELAB). Computation of 	E∗

ab is a pixel-by-pixel
operation and the color difference between two images
is usually reported as the average 	E∗

ab over all pixels.
However, relying only on the average of S-CIELAB color
difference valuesmight not give us a complete insight to color
reproduction error over images; therefore, we consider the
maximum S-CIELAB color difference and S-CIELAB color
difference greater than 5 units together with the average
S-CIELAB in this work.

5. RESULTS
In this section, we study the impact of using a Gabor
filter bank instead of Hough transform in improving
the sharpness, structural similarity, color difference, and
computation time. In our previous work [21], we used
Hough transform in the preprocessing step, and found
that by setting k1 = 1 and k2 = 1.8, halftone output
achieves a desirable degree of sharpness enhancement and
simultaneously improves the preservation of tonal and
structural similarity. We used a test set including 20 images
with different texture characteristics. Some of them are
natural photographs and some are photographs of artworks
such as oil paintings and sculptures. Links to access the test
images are provided inRef. [36]. The proposed algorithmand
evaluations are implemented using Matlab.

As discussed in Section 3.2.2, to extend themonochrome
structure-aware IMCDP to color halftoning, we used two
approaches. In this section, we use the notation ‘‘3CH ’’ to
indicate that the orientation information of three channels
have been processed separately, and ‘‘1CH ’’ to indicate
that orientation information has been extracted from the
luminance component. We then evaluate the performance
of the Gabor filter using fixed (k2 = 1.8) and variable k2
(1.6 ≤ k2 ≤ 2) for one channel (1CH) and three channels
(3CH) and compare them to the results obtained from the
original IMCDP and Hough-based structure-aware IMCDP.
In all the evaluations, we use Hough 1CH (the approach in
our previous work [21]) as a baseline, and the reported blur,
MSSIM, and S-CIELABmetrics for all images are normalized
to those reference values for each image. This means that
the normalized value of blur, MSSIM, and S-CIELAB of
Hough 1CH is by definition 1 and it is illustrated as a dashed
horizontal line in all reported graphs in this section.

5.1 Sharpness
As discussed in Section 4.2.1, we used the blur metric to
study the sharpness of the results. Figure 3(a) illustrates
the normalized blur metric for different approaches. The
dashed line at 1 represents the reference method, which
is using the Hough transform 1CH in the preprocessing
step. The solid line inside each box shows the median of
results for each approach. According to Fig. 3(a), regardless
of using Hough transform or Gabor filter in preprocessing
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step, the structure-aware versions of IMCDP overall result
in lower blur metric, indicating sharper halftones, than the
original IMCDP. Moreover, all the box plots corresponding
to approaches using Gabor filter bank in preprocessing
step lie under the Hough 3CH’s box and the reference
line, showing that Gabor filter banks approach outperforms
Hough transform in extracting orientation information.
Comparing boxes for 1CH and 3CH versions of each
approach shows a similar median value (1CH have a slightly
better increase in sharpness). However, bigger box length
and whiskers for 1CH versions show that the results are
slightly more dispersed compared to 3CH versions. It means
that using the orientation information extracted from the
luminance component for all three channels is an acceptable
simplification. This could also be inferred by the shape
of the box for Hough 3CH. Hough 3CH’s box is a very
small box with median close to the reference line, which
represents the Hough 1CH results. The small box-length in
Hough 3CH indicates that the overall results in Hough 3CH
have a high agreement with that in Hough 1CH. In other
words, using the orientation information extracted from the
luminance component for all three channels is a reasonable
approximation, but not a precise alternative solution.

5.2 Structure Similarity
As discussed in Section 4.2.2, MSSIM was used to evaluate
the performance of the proposed method in preserving the
structural similarity in halftone images. Fig. 3(b) represents
the normalizedMSSIM for different approaches. The dashed
line at 1 represents the reference method, which is using the
Hough transform 1CH in the preprocessing step. According
to this figure, regardless of using Hough transform or
Gabor filter banks in preprocessing step, the structure-
aware IMCDP results in higher MSSIM, indicating that the
structure-aware versions of IMCDP reproduce details and
structures better than the original IMCDP. Moreover, all
the box plots corresponding to approaches using Gabor
filter bank in preprocessing step lie above the Hough
3CH’s box and the reference line, showing that Gabor
filter banks outperforms Hough transform in preserving
structural similarity. Comparing boxes for 1CH and 3CH
versions of each approach shows a slightly higher median
value for 1CH approaches. However, the sections of 3CH
boxes are more even compared to those of 1CH boxes.

Bigger box-length and whiskers for 1CH versions show
that the results are slightly more dispersed compared to 3CH
versions. The results for MSSIM also show that using the
orientation information extracted from the luminance com-
ponent for all three channels is a reasonable approximation,
but not a precise alternative solution. Looking at boxes for
Gabor 3CH with fixed and variable k2 (i.e., Gabor 3CH
k2 = 1.8 and Gabor 3CH 1.6 ≤ k2 ≤ 2, respectively), one
can observe that the box plot in Gabor 3CH has a higher
median value, resulting in halftone with better preservation
of structures.

We also did a further investigation regarding the outlier
datapoints in Gabor 3CH k2 = 1.8, Gabor 3CH 1.6 ≤ k2 ≤ 2,

Figure 3. (a) Sharpness evaluation for different approaches according
to normalized blur metrics. Lower blur metric indicates sharper halftones,
(b) MSSIM evaluation for different approaches according to normalized
MSSIMs. Higher MSSIM indicates more structural similarity. In both
panels, dashed line at 1 represents the reference method (Hough 1CH).

and Gabor 1CH k2 = 1.8 in Fig. 3(a). The outlier datapoints
in these box plots correspond to the same image. However,
we did not observe the same image resulting in an outlier of
MSSIM value in Fig. 3(b). This suggests that this outlier point
could be derived from the nature of the image, and not the
method.

5.3 Color Difference
As discussed in Section 4.2.3, we used S-CIELAB to evaluate
the color reproduction error in our proposed method.
Figure 4(a), (b), and (c) illustrates the results for aver-
age S-CIELAB, maximum S-CIELAB, and S-CIELAB>5,
respectively. The dashed line at 1 represents the reference
method, which is using the Hough transform 1CH in
the preprocessing step. According to Fig. 4(a), the average
color reproduction error in the original IMCDP is lower
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Figure 4. Color difference evaluation according to normalized S-CIELAB metrics, using the Hough 1CH’s S-CIELAB metric as a measure of scale.
(a) Average S-CIELAB (b) maximum S-CIELAB (c) S-CIELAB>5. The dashed line at 1 represents the reference method (Hough 1CH).

than the structure-aware versions of it, indicating better
color reproduction in halftone outputs. However, relying
only on the average of S-CIELAB values might not give
us a complete insight to color reproduction error over
images, therefore, we consider the maximum S-CIELAB
and S-CIELAB>5 together with the average S-CIELAB.
Comparing the maximum values of S-CIELAB in Fig. 4(b)
indicates that the structure-aware versions of IMCDP result
in smaller maximum values of S-CIELAB. When studying
the color reproduction error, color differences exceeding 5
units are easily perceptible by our HVS, and according to
Fig. 4(c), the original IMCDP reproduces more visible errors
than the structure- aware versions of it. In addition, results
in Fig. 4(b) and (c) show that the Gabor filter outperforms
Hough transform in reproducing halftones with faithful
colors, resulting in smaller maximum S-CIELAB and fewer
color difference>5.

5.4 Computation Time
As discussed in Section 3, one of the contributions of
this paper is using a faster and more flexible approach
for obtaining the angle in the preprocessing step. The
Hough-transform-based preprocessing can be prohibitively
expensive as it has cubic complexity however, as IMCDP
has a quadratic complexity, using a preprocessing approach
with atmost quadratic complexitymakes the structure-aware
IMCDP as fast as original IMCDP. We used a Gabor-based
approach to obtain the local orientation information in
preprocessing step.GGabor filters of size S× S are generated
only once and thereafter applied to images. As Gabor filters
are applied by convolving the images with the filters, the
complexity of calculating the response to one Gabor filter
of size S × S at one pixel is O(S2). For an image with size
N × N , applying G Gabor filters on all pixels will be of
O(N 2 × G × S2), which is quadratic in terms of the image
size or linear in terms of number of pixels.

Figure 5 shows the result for preprocessing computation
time. As can be seen in Fig. 5(a), using a Gabor-based

approach in preprocessing step considerably decreases the
computation time. Because the order of magnitude in
computation time is different for Hough-based and Gabor-
based approaches, we use Fig. 5(b) to clearly illustrate the
computation time in Gabor-based approaches. The reported
time is the average running time for three trials, and it
is based on the current implementation of the proposed
algorithm in Matlab on a MacBook Pro equipped with
2.6 GHz Intel Core i7 CPU and 16 GB 2400 MHz DDR4
memory.

Figures 6 and 7 represent visual examples of images
in our dataset. As can be seen in Fig. 6, images being
halftoned by the structure-aware IMCDP, Fig. 6(c) and (d),
are perceived to be sharper than the image halftoned by the
original IMCDP in Fig. 6(b). The structure-aware IMCDP
reproduces both the details and structures and the color
better than the original IMCDP. Structure-aware IMCDP
performs better than the original IMCDP in displaying
highly-detailed appearance and conveying feeling of 2.5D
structural features present in a 2D image.

Fig. 7 illustrates a cropped region of ‘‘Relief for the
chapel ’’ at low resolution of 100 dpi to clearly demonstrate
the individual dots and halftone structure in our proposed
method. The original IMCDP and its structure-aware ver-
sions present pleasant and homogeneous halftone structures.
Gabor 3CH with variable k2 (1.6 ≤ k2 ≤ 2) in Fig. 7(b)
and Gabor 1CH with variable k2 (1.6 ≤ k2 ≤ 2) in Fig. 7(c)
create sharper halftones compared to the original IMCDP
in Fig. 7(a). Moreover, according to the evaluation metrics
presented in Figs. 3 and 4, using the orientation information
extracted from the luminance component for all three
channels is acceptable approximation, but not a precise
alternative. Visual comparison of Gabor 3CH in Fig. 7(b)
and Gabor 1CH in Fig. 7(c) presents similar halftone
structures and agrees with objective results that using only
the luminance component to extract orientation information
could be considered as a reasonable approximation.
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Figure 5. preprocessing computation time. (a) Comparison of all approaches (b) comparison of only Gabor-based approaches.

a b c d

Figure 6. (a) Original continuous-tone image: top row ‘‘In the wind’’ [37], and bottom row ‘‘Relief for the chapel’’ [38]. (b) Halftoned image with original
IMCDP, (c) Halftoned image with proposed color structure-aware IMCDP, Gabor 3CH with fixed k1 = 1, k2 = 1.8, (d) Halftoned image with proposed
color structure-aware IMCDP, Gabor 3CH with k1 = 1 and variable k2 (1.6≤ k2 ≤ 2). In (c) and (d), the orientation information is extracted from three
different colorant channels C, M, Y, independently. Halftone images are displayed at resolution 200 dpi. The color version of this figure is best viewed in
the electronic version of this paper.

6. CONCLUSION AND FUTUREWORK
The recently proposed structure-aware IMCDP improves
the original IMCDP halftoning algorithm in terms of
the reproduction of high-frequency details, structures,
and tones by aligning the halftone structures with the

dominant orientation of pixels in a neighborhood. However,
Hough-transform-based preprocessing is computationally
costly (cubic complexity), and sharpness enhancement is
applied statically across the entire structured regions of the
image. These limitations made the structure-aware version
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Figure 7. (a) IMCDP, (b) Gabor 3CH with variable k2 (1.6≤ k2 ≤ 2). The orientation information is extracted from three different colorant channels C,
M, Y, independently. (c) Gabor 1CH with variable k2 (1.6≤ k2 ≤ 2). The orientation information is extracted from only the luminance channel. Halftone
images are displayed at resolution 100 dpi. The color version of this figure is best viewed in the electronic version of this paper.

not suitable for larger images as larger images often contain
variable sharpness and texture, and the size of the image
can make the computation challenging. In this paper, we
address both these limitations, and extend the method
to color halftoning. We use a Gabor-based approach in
preprocessing step that not only decreases the computation
time by orders of magnitude (from cubic to linear) but also
improves sharpness enhancement, structure similarity, and
color consistency. Using the magnitude of Gabor responses
to characterize texture and sharpness allows the method
to have control over the degree of sharpness enhancement
in different parts of an image. The adaptive adjustment of
sharpness enhancement gives more flexibility to the user in
improving the visual quality of image reproduction in our
proposed structure-aware halftoning algorithm. In addition,
we extend the method to color halftoning. We studied two
approaches: extracting the structure information separately
from each channel and applying them to color channels
independently and using only the luminance channel
structure information for all color channels. According to
our investigation, halftoning each color channel based on its
structure information producesmore stable improvement for
all image types; however, the objective evaluation and visual
comparison of halftone structures show that the results are
on average similar. In other words, the luminance orientation
information is an acceptable approximation for orientation
in different color channels, but it is not a precise alternative.

In this work, the performance of the structure-aware
color halftoning has been validated using digital images.
However, in printing color halftoned images, print settings
such as print resolution, type of the printer, paper quality, etc.
affect the print quality and appearance. To study the impact
of print parameters on reproduction of image structures
and details, we used a custom printer (screen printing) and
validated the performance of the presented method [39].

Moreover, the proposed efficient adaptive structure-
aware color halftoning can be extended to 3D halftoning
to improve the reproduction of 3D printed surfaces. The
original IMCDP algorithm has been extended to 3D domain
in Ref. [40] and the effect of applying variable halftone
structures based on the spatial information has shown

that different halftone structures could be used to control
the reproduction of details [24, 41]. As a next step, we
are planning to develop an adaptive structure-aware 3D
color halftoning algorithm, which has all the reproduction
qualities of IMCDP while being aware of the color and
geometry of the 3D object.
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