# RERR **IAAA of Mathematics**

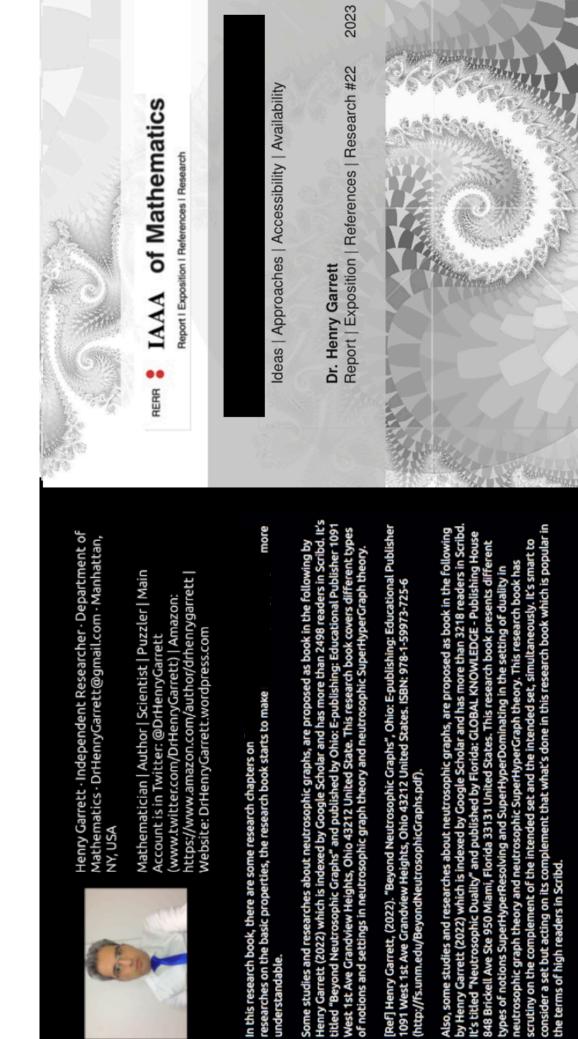
Report | Exposition | References | Research

# Extreme SuperHyperConnectivities

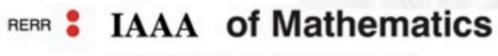
Ideas | Approaches | Accessibility | Availability

Dr. Henry Garrett Report | Exposition | References | Research #22 2023





[Ref] Henry Garrett, (2022). "Neutrosophic Duality", Florida: GLOBAL KNOW- LEDGE - Publishing House 848 Brickell Ave Ste 950 Miami, Florida 33131 United States. ISBN: 978-1-59973-743-0 (http://fs.unm.edu/NeutrosophicDuality.pdf).



Report | Exposition | References | Research

# Neutrosophic SuperHyperConnectivities

Ideas | Approaches | Accessibility | Availability

Dr. Henry Garrett Report | Exposition | References | Research #22 2023



# Contents

| Co             | ntents                                                                                                                                        | iii          |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| List           | t of Figures                                                                                                                                  | $\mathbf{v}$ |
| $\mathbf{Lis}$ | t of Tables                                                                                                                                   | viii         |
| 1              | Abstract                                                                                                                                      | 1            |
| Bib            | liography                                                                                                                                     | 15           |
| <b>2</b>       | Acknowledgements                                                                                                                              | 21           |
| 3              | Extreme SuperHyperConnectivities                                                                                                              | 23           |
| 4              | New Ideas On Super Disruptions In Cancer's Extreme Recognition As Neutrosophic SuperHyperGraph By Hyper Plans Called SuperHyperConnectivities | 25           |
| <b>5</b>       | Background                                                                                                                                    | 33           |
| 6              | Motivation and Contributions                                                                                                                  | 37           |
| 7              | Preliminaries                                                                                                                                 | 41           |
| 8              | Extreme SuperHyperConnectivities                                                                                                              | 51           |
| 9              | Results on Extreme SuperHyperClasses                                                                                                          | 175          |
| 10             | General Extreme Results                                                                                                                       | 273          |
| 11             | Extreme Applications in Cancer's Extreme Recognition                                                                                          | 317          |
| 12             | Case 1: The Initial Extreme Steps Toward Extreme SuperHyperBipartite<br>as Extreme SuperHyperModel                                            | 319          |
|                |                                                                                                                                               | iii          |

Henry Garrett $\,\cdot\,$ Independent Researcher $\,\cdot\,$ Department of Mathematics $\,\cdot\,$ Dr<br/>HenryGarrett@gmail.com $\,\cdot\,$ Manhattan, NY, USA

| 13        | Case 2: The Increasing Extreme Steps Toward Extreme SuperHyperMulti-<br>partite as Extreme SuperHyperModel | 321 |
|-----------|------------------------------------------------------------------------------------------------------------|-----|
| <b>14</b> | Open Problems                                                                                              | 323 |
| 15        | Conclusion and Closing Remarks                                                                             | 325 |
| Bib       | liography                                                                                                  | 327 |
| 16        | "SuperHyperGraph-Based Books":   Featured Tweets                                                           | 331 |
| 17        | CV                                                                                                         | 359 |

Henry Garrett $\,\cdot\,$ Independent Researcher $\,\cdot\,$ Department of Mathematics $\,\cdot\,$ Dr<br/>HenryGarrett@gmail.com $\,\cdot\,$ Manhattan, NY, USA

# List of Figures

| 8.1   | The Neutrosophic SuperHyperGraphs Associated to the Extreme Notions of Extreme                    |       |
|-------|---------------------------------------------------------------------------------------------------|-------|
|       | SuperHyperConnectivities in the Extreme Example (8.0.1)                                           | 52    |
| 8.2   | The Neutrosophic SuperHyperGraphs Associated to the Extreme Notions of Extreme                    |       |
|       | SuperHyperConnectivities in the Extreme Example (8.0.1)                                           | 53    |
| 8.3   | The Neutrosophic SuperHyperGraphs Associated to the Extreme Notions of Extreme                    |       |
|       | SuperHyperConnectivities in the Extreme Example (8.0.1)                                           | 54    |
| 8.4   | The SuperHyperGraphs Associated to the Notions of SuperHyperConnectivities in the                 |       |
|       | Example $(8.0.1)$                                                                                 | 139   |
| 8.5   | The SuperHyperGraphs Associated to the Notions of SuperHyperConnectivities in the                 |       |
|       | Example $(8.0.1)$                                                                                 | 139   |
| 8.6   | The SuperHyperGraphs Associated to the Notions of SuperHyperConnectivities in the                 |       |
|       | Example $(8.0.1)$                                                                                 | 140   |
| 8.7   | The SuperHyperGraphs Associated to the Notions of SuperHyperConnectivities in the                 |       |
|       | Example (8.0.1)                                                                                   | 140   |
| 8.8   | The SuperHyperGraphs Associated to the Notions of SuperHyperConnectivities in the                 |       |
| 0.0   | Example $(8.0.1)$                                                                                 | 141   |
| 8.9   | The SuperHyperGraphs Associated to the Notions of SuperHyperConnectivities in the                 | 1 4 1 |
| 0.10  | Example $(8.0.1)$                                                                                 | 141   |
| 8.10  | The SuperHyperGraphs Associated to the Notions of SuperHyperConnectivities in the                 | 140   |
| 0 1 1 | Example (8.0.1)                                                                                   | 142   |
| 8.11  | The SuperHyperGraphs Associated to the Notions of SuperHyperConnectivities in the Example (8.0.1) | 142   |
| 0 19  | Example (8.0.1)                                                                                   | 142   |
| 0.12  | Example (8.0.1)                                                                                   | 143   |
| 8 1 2 | The SuperHyperGraphs Associated to the Notions of SuperHyperConnectivities in the                 | 140   |
| 0.10  | Example (8.0.1)                                                                                   | 143   |
| 8 14  | The SuperHyperGraphs Associated to the Notions of SuperHyperConnectivities in the                 | 140   |
| 0.14  | Example (8.0.1)                                                                                   | 144   |
| 8 15  | The SuperHyperGraphs Associated to the Notions of SuperHyperConnectivities in the                 | 111   |
| 0.10  | Example (8.0.1)                                                                                   | 145   |
| 8.16  | The SuperHyperGraphs Associated to the Notions of SuperHyperConnectivities in the                 | ± ±0  |
| 5.10  | Example $(8.0.1)$                                                                                 | 145   |
|       |                                                                                                   |       |

# Henry Garrett $\,\cdot\,$ Independent Researcher $\,\cdot\,$ Department of Mathematics $\,\cdot\,$ Dr<br/>HenryGarrett@gmail.com $\,\cdot\,$ Manhattan, NY, USA

| 8.17  |                                                                    | to the Notions of SuperHyperConnectivities in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8.18  |                                                                    | to the Notions of SuperHyperConnectivities in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|       | Example $(8.0.1)$                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 8.19  | 1 01 1                                                             | to the Notions of SuperHyperConnectivities in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 8 20  |                                                                    | to the Notions of SuperHyperConnectivities in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.20  |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 9.1   |                                                                    | iated to the Notions of Extreme SuperHyperCon-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.0   | - ( )                                                              | 191                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 9.2   | - • -                                                              | ies Associated to the Extreme Notions of Extreme treme Example (9.0.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 9.3   |                                                                    | ated to the Extreme Notions of Extreme SuperHy-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|       | - • -                                                              | xample $(9.0.7)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 9.4   |                                                                    | creme Associated to the Extreme Notions of Extreme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.5   |                                                                    | cample (9.0.9)     239       A service of the Network of External Supervises                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 9.5   | - •                                                                | e Associated to the Notions of Extreme SuperHy-<br>0.0.11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 9.6   |                                                                    | eme Associated to the Extreme Notions of Extreme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       | - • -                                                              | treme Example $(9.0.13)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 12.1  | an Extreme SuperHyperBipartite A                                   | ssociated to the Notions of Extreme SuperHyper-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|       |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 19.1  |                                                                    | A Community                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 13.1  | - •                                                                | e Associated to the Notions of Extreme SuperHy-<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|       | "SuperHyperGraph-Based Books":                                     | $  Featured Tweets \dots \dots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       | "SuperHyperGraph-Based Books":                                     | Featured Tweets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|       | "SuperHyperGraph-Based Books":                                     | $  Featured Tweets #69 \dots 334   Featured Tweets #69 \dots 334   Featured Tweets #69 \dots 334   Featured Tweets #69   Feature 1   Feat$                                                                                                                                                                                                                                                                                                                                         |
|       | "SuperHyperGraph-Based Books":<br>"SuperHyperGraph-Based Books":   | Featured Tweets $#69 \dots 335$   Featured Tweets $#69 \dots 336$ 336                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       | "SuperHyperGraph-Based Books":                                     | $  Featured Tweets #68 \dots 337$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|       | "SuperHyperGraph-Based Books":                                     | $  Featured Tweets #68 \dots 338$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|       | "SuperHyperGraph-Based Books":                                     | Featured Tweets $\#68 \dots 339$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       | "SuperHyperGraph-Based Books":                                     | Featured Tweets $\#68 \dots 340$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       | "SuperHyperGraph-Based Books":                                     | Featured Tweets $\#67 \dots \dots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|       | "SuperHyperGraph-Based Books":                                     | $  Featured Tweets #67 \dots 341 \\   Fe$ |
|       | 2"SuperHyperGraph-Based Books":                                    | $  Featured Tweets \#67 \dots 342$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|       | 3"SuperHyperGraph-Based Books":<br>4"SuperHyperGraph-Based Books": | Featured Tweets $#67 \dots 343$   Featured Tweets $#66 \dots 343$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|       | 5"SuperHyperGraph-Based Books":                                    | $  Featured Tweets #66 \dots 343$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|       | 5"SuperHyperGraph-Based Books":                                    | $  Featured Tweets #66 \dots 345$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|       | "SuperHyperGraph-Based Books":                                     | Featured Tweets $\#66 \dots 346$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       | 8"SuperHyperGraph-Based Books":                                    | Featured Tweets $\#66 \dots 346$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 16.19 | "SuperHyperGraph-Based Books":                                     | Featured Tweets $#65 \dots 347$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

Henry Garrett $\,\cdot\,$ Independent Researcher $\,\cdot\,$ Department of Mathematics $\,\cdot\,$ Dr<br/>HenryGarrett@gmail.com $\,\cdot\,$ Manhattan, NY, USA

| 16.20%Comer Hower Course have a day a local day have been a day and the second day of the second day o | 240 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 348 |
| 16.21"SuperHyperGraph-Based Books":   Featured Tweets $#65 \dots \dots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 349 |
| 16.22"SuperHyperGraph-Based Books":   Featured Tweets $#65 \dots \dots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 350 |
| 16.23"SuperHyperGraph-Based Books":   Featured Tweets $#65 \dots \dots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 351 |
| 16.24"SuperHyperGraph-Based Books":   Featured Tweets $#65 \dots \dots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 352 |
| 16.25 "SuperHyperGraph-Based Books":   Featured Tweets $#64 \dots \dots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 353 |
| 16.26 "SuperHyperGraph-Based Books":   Featured Tweets $#63 \dots \dots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 354 |
| 16.27"SuperHyperGraph-Based Books":   Featured Tweets $#62 \dots \dots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 355 |
| 16.28"SuperHyperGraph-Based Books":   Featured Tweets $#61 \dots \dots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 356 |
| 16.29"SuperHyperGraph-Based Books":   Featured Tweets $#60 \dots \dots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 357 |

# **List of Tables**

| 7.1  | The Values of Vertices, SuperVertices, Edges, HyperEdges, and SuperHyperEdges        |     |
|------|--------------------------------------------------------------------------------------|-----|
|      | Belong to The Neutrosophic SuperHyperGraph Mentioned in the Definition $(7.0.22)$ .  | 49  |
| 7.2  | The Values of Vertices, SuperVertices, Edges, HyperEdges, and SuperHyperEdges        |     |
|      | Belong to The Neutrosophic SuperHyperGraph, Mentioned in the Definition $(7.0.21)$ . | 49  |
| 7.3  | The Values of Vertices, SuperVertices, Edges, HyperEdges, and SuperHyperEdges        |     |
|      | Belong to The Neutrosophic SuperHyperGraph Mentioned in the Definition $(7.0.22)$ .  | 50  |
| 12.1 | The Values of Vertices, SuperVertices, Edges, HyperEdges, and SuperHyperEdges        |     |
|      | Belong to The Extreme SuperHyperBipartite                                            | 320 |
| 13.1 | The Values of Vertices, SuperVertices, Edges, HyperEdges, and SuperHyperEdges        |     |
|      | Belong to The Extreme SuperHyperMultipartite                                         | 322 |
| 15.1 | A Brief Overview about Advantages and Limitations of this Research                   | 326 |
|      |                                                                                      |     |

#### CHAPTER 1

### Abstract

In this research book, there are some research chapters on "Extreme SuperHyperConnectivities" and "Neutrosophic SuperHyperConnectivities" about some researches on SuperHyperConnectivities by two (Extreme/Neutrosophic) notions, namely, Extreme SuperHyperConnectivities and Neutrosophic SuperHyperConnectivities. With researches on the basic properties, the research book starts to make Extreme SuperHyperConnectivities theory and Neutrosophic SuperHyperConnectivities theory more (Extremely/Neutrosophic)) understandable.

In the some chapters, in some researches, new setting is introduced for new SuperHyperNotions, namely, a SuperHyperConnectivities and Neutrosophic SuperHyperConnectivities. Two different types of SuperHyperDefinitions are debut for them but the research goes further and the SuperHyperNotion, SuperHyperUniform, and SuperHyperClass based on that are well-defined and well-reviewed. The literature review is implemented in the whole of this research. For shining the elegancy and the significancy of this research, the comparison between this SuperHyperNotion with other SuperHyperNotions and fundamental SuperHyperNumbers are featured. The definitions are followed by the examples and the instances thus the clarifications are driven with different tools. The applications are figured out to make sense about the theoretical aspect of this ongoing research. The "Cancer's Recognition" are the under research to figure out the challenges make sense about ongoing and upcoming research. The special case is up. The cells are viewed in the deemed ways. There are different types of them. Some of them are individuals and some of them are well-modeled by the group of cells. These types are all officially called "SuperHyperVertex" but the relations amid them all officially called "SuperHyperEdge". The frameworks "SuperHyperGraph" and "Neutrosophic SuperHyperGraph" are chosen and elected to research about "Cancer's Recognition". Thus these complex and dense SuperHyperModels open up some avenues to research on theoretical segments and "Cancer's Recognition". Some avenues are posed to pursue this research. It's also officially collected in the form of some questions and some problems. Assume a SuperHyperGraph. Then an Extreme SuperHyperConnectivities  $\mathcal{C}(NSHG)$  for a Neutrosophic SuperHyperGraph NSHG: (V, E) is the maximum cardinality of a SuperHyperSet S of high cardinality SuperHyperEdges such that there's no SuperHyperVertex not to in a SuperHyperEdge and there's no SuperHyperEdge to have a SuperHyperVertex in a SuperHyperEdge; a Neutrosophic SuperHyperConnectivities  $\mathcal{C}(NSHG)$ for a Neutrosophic SuperHyperGraph NSHG: (V, E) is the maximum Neutrosophic cardinality of a Neutrosophic SuperHyperSet S of high Neutrosophic cardinality Neutrosophic SuperHyperEdges such that there's no Neutrosophic SuperHyperVertex not to in a Neutrosophic SuperHyperEdge and there's no Neutrosophic SuperHyperEdge to have a Neutrosophic SuperHyperVertex in a Neutro-

sophic SuperHyperEdge; an Extreme SuperHyperConnectivities SuperHyperPolynomial  $\mathcal{C}(NSHG)$ for a Neutrosophic SuperHyperGraph NSHG : (V, E) is the Extreme SuperHyperPolynomial contains the coefficients defined as the number of the maximum cardinality of a SuperHyperSet S of high cardinality SuperHyperEdges such that there's no SuperHyperVertex not to in a SuperHyperEdge and there's no SuperHyperEdge to have a SuperHyperVertex in a SuperHyperEdge and the power is corresponded to its coefficient; a Neutrosophic SuperHyperConnectivities SuperHyper-Polynomial  $\mathcal{C}(NSHG)$  for a Neutrosophic SuperHyperGraph NSHG: (V, E) is the Neutrosophic SuperHyperPolynomial contains the Neutrosophic coefficients defined as the Neutrosophic number of the maximum Neutrosophic cardinality of a Neutrosophic SuperHyperSet S of high Neutrosophic cardinality Neutrosophic SuperHyperEdges such that there's no Neutrosophic SuperHyperVertex not to in a Neutrosophic SuperHyperEdge and there's no Neutrosophic SuperHyperEdge to have a Neutrosophic SuperHyperVertex in a Neutrosophic SuperHyperEdge and the Neutrosophic power is Neutrosophicly corresponded to its Neutrosophic coefficient; an Extreme R-SuperHyperConnectivities  $\mathcal{C}(NSHG)$  for a Neutrosophic SuperHyperGraph NSHG: (V, E) is the maximum cardinality of a SuperHyperSet S of high cardinality SuperHyperVertices such that there's no SuperHyperVertex not to in a SuperHyperEdge and there's no SuperHyperEdge to have a SuperHyperVertex in a SuperHyperEdge; a Neutrosophic R-SuperHyperConnectivities  $\mathcal{C}(NSHG)$  for a Neutrosophic SuperHyperGraph NSHG: (V, E) is the maximum Neutrosophic cardinality of a Neutrosophic SuperHyperSet S of high Neutrosophic cardinality Neutrosophic SuperHyperVertices such that there's no Neutrosophic SuperHyperVertex not to in a Neutrosophic SuperHyperEdge and there's no Neutrosophic SuperHyperEdge to have a Neutrosophic SuperHyperVertex in a Neutrosophic SuperHyperEdge; an Extreme R-SuperHyperConnectivities SuperHyperPolynomial  $\mathcal{C}(NSHG)$  for a Neutrosophic SuperHyperGraph NSHG: (V, E) is the Extreme SuperHyperPolynomial contains the coefficients defined as the number of the maximum cardinality of a SuperHyperSet S of high cardinality SuperHyperVertices such that there's no SuperHyperVertex not to in a SuperHyperEdge and there's no SuperHyperEdge to have a SuperHyperVertex in a SuperHyperEdge and the power is corresponded to its coefficient; a Neutrosophic R-SuperHyperConnectivities SuperHyperPolynomial  $\mathcal{C}(NSHG)$  for a Neutrosophic SuperHyperGraph NSHG: (V, E) is the Neutrosophic SuperHyperPolynomial contains the Neutrosophic coefficients defined as the Neutrosophic number of the maximum Neutrosophic cardinality of a Neutrosophic SuperHyperSet S of high Neutrosophic cardinality Neutrosophic SuperHyperVertices such that there's no Neutrosophic SuperHyperVertex not to in a Neutrosophic SuperHyperEdge and there's no Neutrosophic SuperHyperEdge to have a Neutrosophic SuperHyperVertex in a Neutrosophic SuperHyperEdge and the Neutrosophic power is Neutrosophicly corresponded to its Neutrosophic coefficient. Assume a SuperHyperGraph. Then  $\delta$ -SuperHyperConnectivities is a maximal of SuperHyperVertices with a maximum cardinality such that either of the following expressions hold for the (Neutrosophic) cardinalities of SuperHyperNeighbors of  $s \in S$ : there are  $|S \cap N(s)| > |S \cap (V \setminus N(s))| + \delta$ ; and  $|S \cap N(s)| < |S \cap (V \setminus N(s))| + \delta$ . The first Expression, holds if S is an  $\delta$ -SuperHyperOffensive. And the second Expression, holds if S is an  $\delta$ -SuperHyperDefensive; a Neutrosophic  $\delta$ -SuperHyperConnectivities is a maximal Neutrosophic of SuperHyperVertices with maximum Neutrosophic cardinality such that either of the following expressions hold for the Neutrosophic cardinalities of SuperHyper-Neighbors of  $s \in S$  there are:  $|S \cap N(s)|_{Neutrosophic} > |S \cap (V \setminus N(s))|_{Neutrosophic} + \delta$ ; and  $|S \cap N(s)|_{Neutrosophic} < |S \cap (V \setminus N(s))|_{Neutrosophic} + \delta$ . The first Expression, holds if S is a Neutrosophic  $\delta$ -SuperHyperOffensive. And the second Expression, holds if S is a Neutrosophic  $\delta$ -SuperHyperDefensive It's useful to define a "Neutrosophic" version of a SuperHyperConnectivities . Since there's more ways to get type-results to make a SuperHyperConnectivities more understand-

Henry Garrett  $\,\cdot\,$  Independent Researcher  $\,\cdot\,$  Department of Mathematics  $\,\cdot\,$  DrHenryGarrett@gmail.com  $\,\cdot\,$  Manhattan, NY, USA

able. For the sake of having Neutrosophic SuperHyperConnectivities, there's a need to "redefine" the notion of a "SuperHyperConnectivities". The SuperHyperVertices and the SuperHyperEdges are assigned by the labels from the letters of the alphabets. In this procedure, there's the usage of the position of labels to assign to the values. Assume a SuperHyperConnectivities. It's redefined a Neutrosophic SuperHyperConnectivities if the mentioned Table holds, concerning, "The Values of Vertices, SuperVertices, Edges, HyperEdges, and SuperHyperEdges Belong to The Neutrosophic SuperHyperGraph" with the key points, "The Values of The Vertices & The Number of Position in Alphabet", "The Values of The SuperVertices&The maximum Values of Its Vertices", "The Values of The Edges&The maximum Values of Its Vertices", "The Values of The HyperEdges&The maximum Values of Its Vertices", "The Values of The SuperHyperEdges&The maximum Values of Its Endpoints". To get structural examples and instances, I'm going to introduce the next SuperHyperClass of SuperHyperGraph based on a SuperHyperConnectivities. It's the main. It'll be disciplinary to have the foundation of previous definition in the kind of SuperHyperClass. If there's a need to have all SuperHyperConnectivities until the SuperHyperConnectivities, then it's officially called a "SuperHyperConnectivities" but otherwise, it isn't a SuperHyperConnectivities. There are some instances about the clarifications for the main definition titled a "SuperHyperConnectivities ". These two examples get more scrutiny and discernment since there are characterized in the disciplinary ways of the SuperHyperClass based on a SuperHyperConnectivities. For the sake of having a Neutrosophic SuperHyperConnectivities, there's a need to "redefine" the notion of a "Neutrosophic SuperHyperConnectivities" and a "Neutrosophic SuperHyperConnectivities". The SuperHyperVertices and the SuperHyperEdges are assigned by the labels from the letters of the alphabets. In this procedure, there's the usage of the position of labels to assign to the values. Assume a Neutrosophic SuperHyperGraph. It's redefined "Neutrosophic SuperHyperGraph" if the intended Table holds. And a SuperHyperConnectivities are redefined to a "Neutrosophic SuperHyperConnectivities" if the intended Table holds. It's useful to define "Neutrosophic" version of SuperHyperClasses. Since there's more ways to get Neutrosophic type-results to make a Neutrosophic SuperHyperConnectivities more understandable. Assume a Neutrosophic SuperHyperGraph. There are some Neutrosophic SuperHyperClasses if the intended Table holds. Thus SuperHyper-Path, SuperHyperConnectivities, SuperHyperStar, SuperHyperBipartite, SuperHyperMultiPartite, and SuperHyperWheel, are "Neutrosophic SuperHyperPath", "Neutrosophic SuperHyperConnectivities", "Neutrosophic SuperHyperStar", "Neutrosophic SuperHyperBipartite", "Neutrosophic SuperHyperMultiPartite", and "Neutrosophic SuperHyperWheel" if the intended Table holds. A SuperHyperGraph has a "Neutrosophic SuperHyperConnectivities" where it's the strongest [the maximum Neutrosophic value from all the SuperHyperConnectivities amid the maximum value amid all SuperHyperVertices from a SuperHyperConnectivities.] SuperHyperConnectivities . A graph is a SuperHyperUniform if it's a SuperHyperGraph and the number of elements of SuperHyperEdges are the same. Assume a Neutrosophic SuperHyperGraph. There are some SuperHyperClasses as follows. It's SuperHyperPath if it's only one SuperVertex as intersection amid two given SuperHyperEdges with two exceptions; it's SuperHyperConnectivities if it's only one SuperVertex as intersection amid two given SuperHyperEdges; it's SuperHyperStar it's only one SuperVertex as intersection amid all SuperHyperEdges; it's SuperHyperBipartite it's only one SuperVertex as intersection amid two given SuperHyperEdges and these SuperVertices, forming two separate sets, has no SuperHyperEdge in common; it's SuperHyperMultiPartite it's only one SuperVertex as intersection amid two given SuperHyperEdges and these SuperVertices, forming multi separate sets, has no SuperHyperEdge in common; it's a SuperHyperWheel if it's only one SuperVertex as intersection amid two given SuperHyperEdges and one SuperVertex has one SuperHyperEdge with

any common SuperVertex. The SuperHyperModel proposes the specific designs and the specific architectures. The SuperHyperModel is officially called "SuperHyperGraph" and "Neutrosophic SuperHyperGraph". In this SuperHyperModel, The "specific" cells and "specific group" of cells are SuperHyperModeled as "SuperHyperVertices" and the common and intended properties between "specific" cells and "specific group" of cells are SuperHyperModeled as "SuperHyperEdges". Sometimes, it's useful to have some degrees of determinacy, indeterminacy, and neutrality to have more precise SuperHyperModel which in this case the SuperHyperModel is called "Neutrosophic". In the future research, the foundation will be based on the "Cancer's Recognition" and the results and the definitions will be introduced in redeemed ways. The recognition of the cancer in the long-term function. The specific region has been assigned by the model [it's called SuperHyperGraph] and the long cycle of the move from the cancer is identified by this research. Sometimes the move of the cancer hasn't be easily identified since there are some determinacy, indeterminacy and neutrality about the moves and the effects of the cancer on that region; this event leads us to choose another model [it's said to be Neutrosophic SuperHyperGraph] to have convenient perception on what's happened and what's done. There are some specific models, which are well-known and they've got the names, and some SuperHyperGeneral SuperHyperModels. The moves and the traces of the cancer on the complex tracks and between complicated groups of cells could be fantasized by a Neutrosophic SuperHyperPath(-/SuperHyperConnectivities, SuperHyperStar, SuperHyperBipartite, SuperHyperMultipartite, SuperHyperWheel). The aim is to find either the longest SuperHyperConnectivities or the strongest SuperHyperConnectivities in those Neutrosophic SuperHyperModels. For the longest SuperHyperConnectivities, called SuperHyperConnectivities, and the strongest SuperHyperConnectivities, called Neutrosophic SuperHyperConnectivities, some general results are introduced. Beyond that in SuperHyperStar, all possible SuperHyperPaths have only two SuperHyperEdges but it's not enough since it's essential to have at least three SuperHyperEdges to form any style of a SuperHyperConnectivities. There isn't any formation of any SuperHyperConnectivities but literarily, it's the deformation of any SuperHyperConnectivities. It, literarily, deforms and it doesn't form. A basic familiarity with SuperHyperGraph theory and Neutrosophic SuperHyperGraph theory are proposed.

Keywords: SuperHyperGraph, (Neutrosophic) SuperHyperConnectivities, Cancer's Recognition

#### AMS Subject Classification: 05C17, 05C22, 05E45

In the some chapters, in some researches, new setting is introduced for new SuperHyperNotion, namely, Neutrosophic SuperHyperConnectivities . Two different types of SuperHyperDefinitions are debut for them but the research goes further and the SuperHyperNotion, SuperHyperUniform, and SuperHyperClass based on that are well-defined and well-reviewed. The literature review is implemented in the whole of this research. For shining the elegancy and the significancy of this research, the comparison between this SuperHyperNotion with other SuperHyperNotions and fundamental SuperHyperNumbers are featured. The definitions are followed by the examples and the instances thus the clarifications are driven with different tools. The applications are figured out to make sense about the theoretical aspect of this ongoing research. The "Cancer's Neutrosophic Recognition" are the under research to figure out the challenges make sense about ongoing and upcoming research. The special case is up. The cells are viewed in the deemed ways. There are different types of them. Some of them are individuals and some of them are well-modeled by the group of cells. These types are all officially called "SuperHyperVertex" but the relations amid them all officially called "SuperHyperEdge". The frameworks "SuperHyperGraph" and

Henry Garrett · Independent Researcher · Department of Mathematics · DrHenryGarrett@gmail.com · Manhattan, NY, USA

"Neutrosophic SuperHyperGraph" are chosen and elected to research about "Cancer's Neutrosophic Recognition". Thus these complex and dense SuperHyperModels open up some avenues to research on theoretical segments and "Cancer's Neutrosophic Recognition". Some avenues are posed to pursue this research. It's also officially collected in the form of some questions and some problems. Assume a Neutrosophic SuperHyperGraph. Then a "SuperHyperConnectivities"  $\mathcal{C}(NSHG)$  for a Neutrosophic SuperHyperGraph NSHG: (V, E) is the maximum Neutrosophic cardinality of a Neutrosophic SuperHyperSet S of high cardinality Neutrosophic SuperHyperEdges such that there's no Neutrosophic SuperHyperVertex not to in a Neutrosophic SuperHyperEdge and there's no Neutrosophic SuperHyperEdge to have a Neutrosophic SuperHyperVertex in a Neutrosophic SuperHyperEdge. Assume a SuperHyperGraph. Then an " $\delta$ -SuperHyperConnectivities" is a maximal SuperHyperConnectivities of SuperHyperVertices with maximum cardinality such that either of the following expressions hold for the (Neutrosophic) cardinalities of SuperHyperNeighbors of  $s \in S$ :  $|S \cap N(s)| > |S \cap (V \setminus N(s))| + \delta$ ,  $|S \cap N(s)| < |S \cap (V \setminus N(s))| + \delta$ . The first Expression, holds if S is an " $\delta$ -SuperHyperOffensive". And the second Expression, holds if S is an " $\delta$ -SuperHyperDefensive"; a"Neutrosophic  $\delta$ -SuperHyperConnectivities" is a maximal Neutrosophic SuperHyperConnectivities of SuperHyperVertices with <u>maximum</u> Neutrosophic cardinality such that either of the following expressions hold for the Neutrosophic cardinalities of SuperHyperNeighbors of  $s \in S: |S \cap N(s)|_{Neutrosophic} > |S \cap (V \setminus N(s))|_{Neutrosophic} + \delta, |S \cap N(s)|_{Neutrosophic} < |S \cap (V \setminus N(s))|_{Neutrosophic} > |S \cap (V \setminus N(s))|_{Neutrosophic} + \delta, |S \cap N(s)|_{Neutrosophic} > |S \cap (V \setminus N(s))|_{Neutrosophic} + \delta, |S \cap N(s)|_{Neutrosophic} > |S \cap (V \setminus N(s))|_{Neutrosophic} + \delta, |S \cap N(s)|_{Neutrosophic} > |S \cap (V \setminus N(s))|_{Neutrosophic} + \delta, |S \cap N(s)|_{Neutrosophic} > |S \cap (V \setminus N(s))|_{Neutrosophic} + \delta, |S \cap N(s)|_{Neutrosophic} > |S \cap (V \setminus N(s))|_{Neutrosophic} + \delta, |S \cap N(s)|_{Neutrosophic} > |S \cap (V \setminus N(s))|_{Neutrosophic} + \delta, |S \cap N(s)|_{Neutrosophic} > |S \cap (V \setminus N(s))|_{Neutrosophic} + \delta, |S \cap N(s)|_{Neutrosophic} > |S \cap (V \setminus N(s))|_{Neutrosophic} + \delta, |S \cap N(s)|_{Neutrosophic} > |S \cap (V \setminus N(s))|_{Neutrosophic} + \delta, |S \cap N(s)|_{Neutrosophic} > |S \cap (V \setminus N(s))|_{Neutrosophic} + \delta, |S \cap N(s)|_{Neutrosophic} + \delta, |S \cap N(s)|_{Ne$  $N(s)|_{Neutrosophic} + \delta$ . The first Expression, holds if S is a "Neutrosophic  $\delta$ -SuperHyperOffensive". And the second Expression, holds if S is a "Neutrosophic  $\delta$ -SuperHyperDefensive". It's useful to define "Neutrosophic" version of SuperHyperConnectivities. Since there's more ways to get typeresults to make SuperHyperConnectivities more understandable. For the sake of having Neutrosophic SuperHyperConnectivities, there's a need to "redefine" the notion of "SuperHyperConnectivities". The SuperHyperVertices and the SuperHyperEdges are assigned by the labels from the letters of the alphabets. In this procedure, there's the usage of the position of labels to assign to the values. Assume a SuperHyperConnectivities. It's redefined Neutrosophic SuperHyperConnectivities if the mentioned Table holds, concerning, "The Values of Vertices, SuperVertices, Edges, HyperEdges, and SuperHyperEdges Belong to The Neutrosophic SuperHyperGraph" with the key points, "The Values of The Vertices & The Number of Position in Alphabet", "The Values of The SuperVertices&The maximum Values of Its Vertices", "The Values of The Edges&The maximum Values of Its Vertices", "The Values of The HyperEdges&The maximum Values of Its Vertices", "The Values of The SuperHyperEdges&The maximum Values of Its Endpoints". To get structural examples and instances, I'm going to introduce the next SuperHyperClass of SuperHyperGraph based on SuperHyperConnectivities. It's the main. It'll be disciplinary to have the foundation of previous definition in the kind of SuperHyperClass. If there's a need to have all SuperHyperConnectivities until the SuperHyperConnectivities, then it's officially called "SuperHyperConnectivities" but otherwise, it isn't SuperHyperConnectivities. There are some instances about the clarifications for the main definition titled "SuperHyperConnectivities". These two examples get more scrutiny and discernment since there are characterized in the disciplinary ways of the SuperHyperClass based on SuperHyperConnectivities. For the sake of having Neutrosophic SuperHyperConnectivities, there's a need to "redefine" the notion of "Neutrosophic SuperHyperConnectivities" and "Neutrosophic SuperHyperConnectivities". The SuperHyperVertices and the SuperHyperEdges are assigned by the labels from the letters of the alphabets. In this procedure, there's the usage of the position of labels to assign to the values. Assume a Neutrosophic SuperHyperGraph. It's redefined "Neutrosophic SuperHyperGraph" if the intended Table holds. And SuperHyperConnectivities are redefined "Neutrosophic SuperHyperConnectivities" if the intended Table holds. It's useful to define "Neutro-

sophic" version of SuperHyperClasses. Since there's more ways to get Neutrosophic type-results to make Neutrosophic SuperHyperConnectivities more understandable. Assume a Neutrosophic SuperHyperGraph. There are some Neutrosophic SuperHyperClasses if the intended Table holds. Thus SuperHyperPath, SuperHyperConnectivities, SuperHyperStar, SuperHyperBipartite, Super-HyperMultiPartite, and SuperHyperWheel, are "Neutrosophic SuperHyperPath", "Neutrosophic SuperHyperConnectivities", "Neutrosophic SuperHyperStar", "Neutrosophic SuperHyperBipartite", "Neutrosophic SuperHyperMultiPartite", and "Neutrosophic SuperHyperWheel" if the intended Table holds. A SuperHyperGraph has "Neutrosophic SuperHyperConnectivities" where it's the strongest the maximum Neutrosophic value from all SuperHyperConnectivities amid the maximum value amid all SuperHyperVertices from a SuperHyperConnectivities .] SuperHyperConnectivities . A graph is SuperHyperUniform if it's SuperHyperGraph and the number of elements of SuperHyperEdges are the same. Assume a Neutrosophic SuperHyperGraph. There are some SuperHyperClasses as follows. It's SuperHyperPath if it's only one SuperVertex as intersection amid two given SuperHyperEdges with two exceptions; it's SuperHyperConnectivities if it's only one SuperVertex as intersection amid two given SuperHyperEdges; it's SuperHyperStar it's only one SuperVertex as intersection amid all SuperHyperEdges; it's SuperHyperBipartite it's only one SuperVertex as intersection amid two given SuperHyperEdges and these SuperVertices, forming two separate sets, has no SuperHyperEdge in common; it's SuperHyperMultiPartite it's only one SuperVertex as intersection amid two given SuperHyperEdges and these SuperVertices, forming multi separate sets, has no SuperHyperEdge in common; it's SuperHyperWheel if it's only one SuperVertex as intersection amid two given SuperHyperEdges and one SuperVertex has one SuperHyperEdge with any common SuperVertex. The SuperHyperModel proposes the specific designs and the specific architectures. The SuperHyperModel is officially called "SuperHyperGraph" and "Neutrosophic SuperHyperGraph". In this SuperHyperModel, The "specific" cells and "specific group" of cells are SuperHyperModeled as "SuperHyperVertices" and the common and intended properties between "specific" cells and "specific group" of cells are SuperHyperModeled as "SuperHyperEdges". Sometimes, it's useful to have some degrees of determinacy, indeterminacy, and neutrality to have more precise SuperHyperModel which in this case the SuperHyperModel is called "Neutrosophic". In the future research, the foundation will be based on the "Cancer's Neutrosophic Recognition" and the results and the definitions will be introduced in redeemed ways. The Neutrosophic recognition of the cancer in the long-term function. The specific region has been assigned by the model [it's called SuperHyperGraph] and the long cycle of the move from the cancer is identified by this research. Sometimes the move of the cancer hasn't be easily identified since there are some determinacy, indeterminacy and neutrality about the moves and the effects of the cancer on that region; this event leads us to choose another model [it's said to be Neutrosophic SuperHyperGraph] to have convenient perception on what's happened and what's done. There are some specific models, which are well-known and they've got the names, and some SuperHyperGeneral SuperHyperModels. The moves and the traces of the cancer on the complex tracks and between complicated groups of cells could be fantasized by a Neutrosophic SuperHyperPath(-/SuperHyperConnectivities, SuperHyperStar, SuperHyperBipartite, SuperHyperMultipartite, SuperHyperWheel). The aim is to find either the longest SuperHyperConnectivities or the strongest SuperHyperConnectivities in those Neutrosophic SuperHyperModels. For the longest SuperHyperConnectivities, called SuperHyperConnectivities, and the strongest SuperHyperConnectivities, called Neutrosophic SuperHyperConnectivities, some general results are introduced. Beyond that in SuperHyperStar, all possible SuperHyperPaths have only two SuperHyperEdges but it's not enough since it's essential to have at least three SuperHyperEdges to form any style of a SuperHyperConnectivities. There isn't any formation of

Henry Garrett · Independent Researcher · Department of Mathematics · DrHenryGarrett@gmail.com · Manhattan, NY, USA

any SuperHyperConnectivities but literarily, it's the deformation of any SuperHyperConnectivities. It, literarily, deforms and it doesn't form. A basic familiarity with SuperHyperGraph theory and Neutrosophic SuperHyperGraph theory are proposed.

Keywords: Neutrosophic SuperHyperGraph, Neutrosophic SuperHyperConnectivities, Cancer's

Neutrosophic Recognition AMS Subject Classification: 05C17, 05C22, 05E45

The following references are cited by chapters.

[Ref137] Henry Garrett, "New Ideas On Super Disruptions In Cancer's Extreme Recognition As Neutrosophic SuperHyperGraph By Hyper Plans Called SuperHyperConnectivities", ResearchGate 2023, (doi: 10.13140/RG.2.2.29441.94562).

[Ref136] Henry Garrett, "Cancer's Neutrosophic Recognition As Neutrosophic SuperHyperGraph By SuperHyperConnectivities As Hyper Diagnosis On Super Mechanism", ResearchGate 2023, (doi: 10.13140/RG.2.2.17252.24968).

The links to the contributions of this research book are listed below. Article #137

New Ideas On Super Disruptions In Cancer's Extreme Recognition As Neutrosophic Super-HyperGraph By Hyper Plans Called SuperHyperConnectivities

@WordPress: -

@ResearchGate: https://www.researchgate.net/publication/368275564

@Scribd: https://www.scribd.com/document/623818360

@academia: https://www.academia.edu/96303538

@ZENODO\_ORG: https://zenodo.org/record/7606366 Article #136

Cancer's Neutrosophic Recognition As Neutrosophic SuperHyperGraph By SuperHyperConnectivities As Hyper Diagnosis On Super Mechanism

@WordPress: -

@ResearchGate: https://www.researchgate.net/publication/368145050

@Scribd: https://www.scribd.com/document/623487116

@academia: https://www.academia.edu/96199009

@ZENODO\_ORG: https://zenodo.org/record/7601136

Henry Garrett · Independent Researcher · Department of Mathematics · DrHenryGarrett@gmail.com · Manhattan, NY, USA

Henry Garrett  $\,\cdot\,$  Independent Researcher  $\,\cdot\,$  Department of Mathematics  $\,\cdot\,$  DrHenryGarrett@gmail.com  $\,\cdot\,$  Manhattan, NY, USA



Some studies and researches about neutrosophic graphs, are proposed as book in the following by Henry Garrett (2022) which is indexed by Google Scholar and has more than 2479 readers in Scribd. It's titled "Beyond Neutrosophic Graphs" and published by Ohio: E-publishing: Educational Publisher 1091 West 1st Ave Grandview Heights, Ohio 43212 United State. This research book covers different types of notions and settings in neutrosophic graph theory and neutrosophic SuperHyperGraph theory.

[**Ref**] Henry Garrett, (2022). "*Beyond Neutrosophic Graphs*", Ohio: E-publishing: Educational Publisher 1091 West 1st Ave Grandview Heights, Ohio 43212 United States. ISBN: 978-1-59973-725-6 (http://fs.unm.edu/BeyondNeutrosophicGraphs.pdf).

Also, some studies and researches about neutrosophic graphs, are proposed as book in the following by Henry Garrett (2022) which is indexed by Google Scholar and has more than 3192 readers in Scribd. It's titled "Neutrosophic Duality" and published by Florida: GLOBAL KNOWLEDGE - Publishing House 848 Brickell Ave Ste 950 Miami, Florida 33131 United States. This research book presents different types of notions SuperHyperResolving and SuperHyperDominating in the setting of duality in neutrosophic graph theory and neutrosophic SuperHyperGraph theory. This research book has scrutiny on the complement of the intended set and the intended set, simultaneously. It's smart to consider a set but acting on its complement that what's done in this research book which is popular in the terms of high readers in Scribd. [Ref] Henry Garrett, (2022). "Neutrosophic Duality", Florida: GLOBAL KNOWLEDGE - Publishing House 848 Brickell Ave Ste 950 Miami, Florida 33131 United States. ISBN: 978-1-59973-743-0 (http://fs.unm.edu/NeutrosophicDuality.pdf).

Henry Garrett  $\,\cdot\,$  Independent Researcher  $\,\cdot\,$  Department of Mathematics  $\,\cdot\,$  DrHenryGarrett@gmail.com  $\,\cdot\,$  Manhattan, NY, USA

| Dr. Henry Garrett           @Dr.HenryGarrett · Follow                                                                                                                                                                        |     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Henry Garrett, (2022). "Beyond Neutrosophic Graphs",<br>Ohio: E-publishing: Educational Publisher 1091 West 1st<br>Ave Grand-view Heights, Ohio 43212 United States. ISBN:<br>978-1-59973-725-6 (fs.unm.edu/BeyondNeutroso). |     |
| -Indexed By G.S.<br>-2479 readers in @Scribd                                                                                                                                                                                 |     |
| scribd.com/document/56151                                                                                                                                                                                                    |     |
| Search Q                                                                                                                                                                                                                     |     |
| is Scribd? Ebooks ~ Audiobooks ~ M obooks ~ Magazines ~ Podcasts ~ Sheet                                                                                                                                                     |     |
| hods & Materials > Mathematics<br>vity for your docum<br>utrosophic Graphs                                                                                                                                                   |     |
| n Feb 27, 2022<br>d Neutrosophic Graphs", Ohio: E-publishing: Educa<br>43212 United States. ISBN: 978-1-59973-735-6 (http                                                                                                    |     |
| 6:22 PM · Dec 31, 2022 from Manhattan, NY ()                                                                                                                                                                                 |     |
| 🛡 🔍 Reply 🖉 Copy link                                                                                                                                                                                                        |     |
| Read more on Twitter                                                                                                                                                                                                         |     |
|                                                                                                                                                                                                                              |     |
| S SCRIBD Search Q                                                                                                                                                                                                            |     |
| What is Scribd? Ebooks v Audiobooks v Magazines v Podcast                                                                                                                                                                    | s s |
| Documents $\rightarrow$ Teaching Methods & Materials $\rightarrow$ Mathematics                                                                                                                                               |     |
| © 0 ratings • 3K views • 116 pages<br>Neutrosophic Duality                                                                                                                                                                   |     |

Uploaded by Henry Garrett on Jun 21, 2022

[Ref1] Henry Garrett, "Dual-Dominating Numbers in Neutrosophic Setting and Crisp Setting Obtained From Classes of Neutrosophic Graphs", ResearchGate 2022 (doi: 10.13140/RG.2.2.19925.91361).... Full description

| Henry Garrett $\cdot$ Independent Researcher $\cdot$ Department of Mathematics |  |
|--------------------------------------------------------------------------------|--|
| $DrHenryGarrett@gmail.com \cdot Manhattan, NY, USA$                            |  |

|                                                                                                                                                                                                                                                                        | diobooks v Magazines v Podcasts v Sheet Music v Documents v Snapshots                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| Activ                                                                                                                                                                                                                                                                  | vity for your documents                                                                  |
| Title                                                                                                                                                                                                                                                                  | Total Views                                                                              |
| Neutrosophic Duality                                                                                                                                                                                                                                                   | 3192                                                                                     |
| Beyond Neutrosophic Graphs                                                                                                                                                                                                                                             | 2479                                                                                     |
|                                                                                                                                                                                                                                                                        |                                                                                          |
|                                                                                                                                                                                                                                                                        |                                                                                          |
|                                                                                                                                                                                                                                                                        |                                                                                          |
|                                                                                                                                                                                                                                                                        |                                                                                          |
| Dr. Henry Garrett                                                                                                                                                                                                                                                      | ι 🈏                                                                                      |
| @DrHenryGarrett                                                                                                                                                                                                                                                        | · Follow                                                                                 |
| Lange Corrett (2022                                                                                                                                                                                                                                                    | ) "Neutreeenhie Duelitu" Elevider                                                        |
|                                                                                                                                                                                                                                                                        | 2). "Neutrosophic Duality", Florida:                                                     |
| GLOBAL KNOWLED                                                                                                                                                                                                                                                         | GE - Publishing House 848 Brickell Ave                                                   |
|                                                                                                                                                                                                                                                                        | da 33131 United States. ISBN:                                                            |
|                                                                                                                                                                                                                                                                        | 0 (fs.unm.edu/NeutrosophicDu).                                                           |
| 9/0-1-099/3-/43-0                                                                                                                                                                                                                                                      | o (is.unin.edu/NeutrosophicDu).                                                          |
|                                                                                                                                                                                                                                                                        |                                                                                          |
|                                                                                                                                                                                                                                                                        |                                                                                          |
| -Indexed: Google Sc                                                                                                                                                                                                                                                    | holar.                                                                                   |
|                                                                                                                                                                                                                                                                        |                                                                                          |
|                                                                                                                                                                                                                                                                        |                                                                                          |
| -3192 readers in @S                                                                                                                                                                                                                                                    | cribd                                                                                    |
| -3192 readers in @S                                                                                                                                                                                                                                                    | cribd                                                                                    |
| -3192 readers in @S<br>scribd.com/documer                                                                                                                                                                                                                              | cribd                                                                                    |
| -3192 readers in @S                                                                                                                                                                                                                                                    | cribd                                                                                    |
| -3192 readers in @S<br>scribd.com/documer                                                                                                                                                                                                                              | acribd<br>nt/57920<br>Q                                                                  |
|                                                                                                                                                                                                                                                                        | cribd                                                                                    |
| -3192 readers in @S<br>scribd.com/documer<br>Search<br>tis Scribd? Ebooks ~ Au                                                                                                                                                                                         | adiobooks × obooks × Magazines × Podcasts × Shee                                         |
| -3192 readers in @S<br>scribd.com/documer<br>Search<br>tis Scribd? Ebooks ~ Au                                                                                                                                                                                         | adiobooks × obooks × Magazines × Podcasts × Shee                                         |
| -3192 readers in @S<br>scribd.com/documer<br>Search<br>t is Scribd? Ebooks ~ Au<br>ethods & Materials > Mathematic                                                                                                                                                     | nt/57920<br>diobooks × obooks × Magazines × Podcasts × Shee                              |
| -3192 readers in @S<br>scribd.com/documer<br>Search<br>t is Scribd? Ebooks ~ Au<br>ethods & Materials > Mathematic                                                                                                                                                     | adiobooks × obooks × Magazines × Podcasts × Shee                                         |
| -3192 readers in @S<br>scribd.com/documer<br>Search<br>t is Scribd? Ebooks ~ Au<br>ethods & Materials > Mathematic                                                                                                                                                     | adiobooks × obooks × Magazines × Podcasts × Shee                                         |
| -3192 readers in @S<br>scribd.com/documer<br>Search<br>t is Scribd? Ebooks ~ Au<br>ethods & Materials > Mathematic                                                                                                                                                     | adiobooks × obooks × Magazines × Podcasts × Shee                                         |
| -3192 readers in @S<br>scribd.com/documen<br>Search<br>t is Scribd? Ebooks ~ Au<br>ethods & Materials > Mathematic<br>spages<br>hic Duality                                                                                                                            | adiobooks × obooks × Magazines × Podcasts × Shee                                         |
| -3192 readers in @S<br>scribd.com/documen<br>Search<br>t is Scribd? Ebooks ~ Au<br>ethods & Materials > Mathematic<br>spages<br>hic Duality                                                                                                                            | adiobooks × obooks × Magazines × Podcasts × Shee                                         |
| -3192 readers in @S<br>scribd.com/documen<br>Search<br>t is Scribd? Ebooks ~ Au<br>ethods & Materials > Mathematic<br>spages<br>hic Duality<br>on Jun 21, 2022                                                                                                         | ant/57920<br>adiobooks v obooks v Magazines v Podcasts v Shee<br>cs<br>hic Setting and ( |
| -3192 readers in @S<br>scribd.com/documer                                                                                                                                                                                                                              | tic Setting and (<br>hic Setting and (<br>3140/RG.2.2.199:                               |
| -3192 readers in @S<br>scribd.com/documen<br>Search<br>t is Scribd? Ebooks ~ Au<br>ethods & Materials > Mathematic<br>spages<br>hic Duality<br>on Jun 21, 2022<br>Dominating Numbers in Neutrosoph<br>phs", ResearchGate 2022 (doi: 10.13<br>6:22 PM · Dec 31, 2022 fm | tic Setting and (<br>hic Setting and (<br>3140/RG.2.2.199:                               |

Henry Garrett  $\,\cdot\,$  Independent Researcher  $\,\cdot\,$  Department of Mathematics  $\,\cdot\,$  DrHenryGarrett@gmail.com  $\,\cdot\,$  Manhattan, NY, USA

#### Background

There are some researches covering the topic of this research. In what follows, there are some discussion and literature reviews about them.

First article is titled "properties of SuperHyperGraph and neutrosophic SuperHyperGraph" in **Ref.** [**HG1**] by Henry Garrett (2022). It's first step toward the research on neutrosophic Super-HyperGraphs. This research article is published on the journal "Neutrosophic Sets and Systems" in issue 49 and the pages 531-561. In this research article, different types of notions like dominating, resolving, coloring, Eulerian(Hamiltonian) neutrosophic path, n-Eulerian(Hamiltonian) neutrosophic path, zero forcing number, zero forcing neutrosophic-number, independent number, independent neutrosophic-number, clique number, clique neutrosophic-number, matching number, girth, neutrosophic girth, 1-zero-forcing number, 1-zero-forcing number, global-offensive alliance, t-offensive alliance, t-defensive alliance, t-powerful alliance, and global-powerful alliance are defined in SuperHyperGraph and neutrosophic SuperHyperGraph. Some Classes of SuperHyperGraph and Neutrosophic SuperHyperGraph are cases of research. Some results are applied in family of SuperHyperGraph and neutrosophic SuperHyperGraph. Thus this research article has concentrated on the vast notions and introducing the majority of notions.

The seminal paper and groundbreaking article is titled "neutrosophic co-degree and neutrosophic degree alongside chromatic numbers in the setting of some classes related to neutrosophic hypergraphs" in **Ref.** [HG2] by Henry Garrett (2022). In this research article, a novel approach is implemented on SuperHyperGraph and neutrosophic SuperHyperGraph based on general forms without using neutrosophic classes of neutrosophic SuperHyperGraph. It's published in prestigious and fancy journal is entitled "Journal of Current Trends in Computer Science Research (JCTCSR)" with abbreviation "J Curr Trends Comp Sci Res" in volume 1 and issue 1 with pages 06-14. The research article studies deeply with choosing neutrosophic hypergraphs instead of neutrosophic SuperHyperGraph. It's the breakthrough toward independent results based on initial background. The seminal paper and groundbreaking article is titled "Super Hyper Dominating and Super Hyper Resolving on Neutrosophic Super Hyper Graphs and Their Directions in Game Theory and Neutrosophic Super Hyper Classes" in Ref. [HG3] by Henry Garrett (2022). In this research article, a novel approach is implemented on SuperHyperGraph and neutrosophic SuperHyperGraph based on fundamental SuperHyperNumber and using neutrosophic SuperHyperClasses of neutrosophic SuperHyperGraph. It's published in prestigious and fancy journal is entitled "Journal of Mathematical Techniques and Computational Mathematics(JMTCM)" with abbreviation "J Math Techniques Comput Math" in volume 1 and issue 3 with pages 242-263. The research article studies deeply with choosing directly neutrosophic SuperHyperGraph and SuperHyperGraph. It's the breakthrough toward independent results based on initial background and fundamental SuperHyperNumbers. In some articles are titled "0039 | Closing Numbers and Super-Closing Numbers as (Dual)Resolving and (Dual)Coloring alongside (Dual)Dominating in (Neutrosophic)n-SuperHyperGraph" in Ref. [HG4] by Henry Garrett (2022), "0049 | (Failed)1-Zero-Forcing Number in Neutrosophic Graphs" in Ref. [HG5] by Henry Garrett (2022), "Extreme SuperHyperClique as the Firm Scheme of Confrontation under Cancer's Recognition as the Model in The Setting of (Neutrosophic) Supe-

rHyperGraphs" in **Ref.** [**HG6**] by Henry Garrett (2022), "Uncertainty On The Act And Effect Of Cancer Alongside The Foggy Positions Of Cells Toward Neutrosophic Failed SuperHyperClique inside Neutrosophic SuperHyperGraphs Titled Cancer's Recognition" in **Ref.** [**HG7**] by Henry Garrett (2022), "Neutrosophic Version Of Separates Groups Of Cells In Cancer's Recognition On

Neutrosophic SuperHyperGraphs" in **Ref.** [HG8] by Henry Garrett (2022), "The Shift Paradigm To Classify Separately The Cells and Affected Cells Toward The Totality Under Cancer's Recognition By New Multiple Definitions On the Sets Polynomials Alongside Numbers In The (Neutrosophic) SuperHyperMatching Theory Based on SuperHyperGraph and Neutrosophic SuperHyperGraph" in **Ref.** [HG9] by Henry Garrett (2022), "Breaking the Continuity and Uniformity of Cancer In The Worst Case of Full Connections With Extreme Failed SuperHyperClique In Cancer's Recognition Applied in (Neutrosophic) SuperHyperGraphs" in Ref. [HG10] by Henry Garrett (2022), "Neutrosophic Failed SuperHyperStable as the Survivors on the Cancer's Neutrosophic Recognition Based on Uncertainty to All Modes in Neutrosophic SuperHyperGraphs" in Ref. [HG11] by Henry Garrett (2022), "Extremism of the Attacked Body Under the Cancer's Circumstances Where Cancer's Recognition Titled (Neutrosophic) SuperHyperGraphs" in **Ref.** [HG12] by Henry Garrett (2022), "(Neutrosophic) 1-Failed SuperHyperForcing in Cancer's Recognitions And (Neutrosophic) SuperHyperGraphs" in **Ref.** [HG13] by Henry Garrett (2022), "Neutrosophic Messy-Style SuperHyperGraphs To Form Neutrosophic SuperHyperStable To Act on Cancer's Neutrosophic Recognitions In Special ViewPoints" in Ref. [HG14] by Henry Garrett (2022), "Neutrosophic 1-Failed SuperHyperForcing in the SuperHyperFunction To Use Neutrosophic SuperHyperGraphs on Cancer's Neutrosophic Recognition And Beyond" in Ref. [HG15] by Henry Garrett (2022), "(Neutrosophic) SuperHyperStable on Cancer's Recognition by Well- SuperHyperModelled (Neutrosophic) SuperHyperGraphs " in **Ref.** [HG16] by Henry Garrett (2022), "Neutrosophic Messy-Style SuperHyperGraphs To Form Neutrosophic SuperHyperStable To Act on Cancer's Neutrosophic Recognitions In Special ViewPoints" in Ref. [HG12] by Henry Garrett (2022), "Basic Notions on (Neutrosophic) SuperHyperForcing And (Neutrosophic) SuperHyperModeling in Cancer's Recognitions And (Neutrosophic) SuperHyperGraphs" in Ref. [HG17] by Henry Garrett (2022), "Neutrosophic Messy-Style SuperHyperGraphs To Form Neutrosophic SuperHyperStable To Act on Cancer's Neutrosophic Recognitions In Special ViewPoints" in Ref. [HG18] by Henry Garrett (2022), "(Neutrosophic) SuperHyperModeling of Cancer's Recognitions Featuring (Neutrosophic) SuperHyperDefensive SuperHyperAlliances" in Ref. [HG19] by Henry Garrett (2022), "(Neutrosophic) SuperHyperAlliances With SuperHyperDefensive and SuperHyperOffensive Type-SuperHyperSet On (Neutrosophic) SuperHyperGraph With (Neutrosophic) SuperHyperModeling of Cancer's Recognitions And Related (Neutrosophic) SuperHyperClasses" in Ref. [HG20] by Henry Garrett (2022), "SuperHyperCycle on SuperHyperGraph and Neutrosophic SuperHyperGraph With SuperHyperModeling of Cancer's Recognitions" in **Ref.** [HG21] by Henry Garrett (2022), "Some SuperHyperDegrees and Co-SuperHyperDegrees on Neutrosophic SuperHyperGraphs and Super-HyperGraphs Alongside Applications in Cancer's Treatments" in **Ref.** [HG22] by Henry Garrett (2022), "SuperHyperDominating and SuperHyperResolving on Neutrosophic SuperHyperGraphs And Their Directions in Game Theory and Neutrosophic SuperHyperClasses" in Ref. [HG23] by Henry Garrett (2022), "SuperHyperMatching By (R-)Definitions And Polynomials To Monitor Cancer's Recognition In Neutrosophic SuperHyperGraphs" in Ref. [HG24] by Henry Garrett (2023), "The Focus on The Partitions Obtained By Parallel Moves In The Cancer's Extreme Recognition With Different Types of Extreme SuperHyperMatching Set and Polynomial on (Neutrosophic) SuperHyperGraphs" in **Ref.** [HG25] by Henry Garrett (2023), "Extreme Failed SuperHyperClique Decides the Failures on the Cancer's Recognition in the Perfect Connections of Cancer's Attacks By SuperHyperModels Named (Neutrosophic) SuperHyperGraphs" in Ref. [HG26] by Henry Garrett (2023), "Indeterminacy On The All Possible Connections of Cells In Front of Cancer's Attacks In The Terms of Neutrosophic Failed SuperHyperClique on Cancer's Recognition called Neutrosophic SuperHyperGraphs" in Ref. [HG27] by Henry Garrett (2023), "Perfect Directions

Henry Garrett · Independent Researcher · Department of Mathematics · DrHenryGarrett@gmail.com · Manhattan, NY, USA

Toward Idealism in Cancer's Neutrosophic Recognition Forwarding Neutrosophic SuperHyperClique on Neutrosophic SuperHyperGraphs" in **Ref.** [HG28] by Henry Garrett (2023), "Demonstrating Complete Connections in Every Embedded Regions and Sub-Regions in the Terms of Cancer's Recognition and (Neutrosophic) SuperHyperGraphs With (Neutrosophic) SuperHyperClique" in **Ref.** [HG29] by Henry Garrett (2023), "Different Neutrosophic Types of Neutrosophic Regions titled neutrosophic Failed SuperHyperStable in Cancer's Neutrosophic Recognition modeled in the Form of Neutrosophic SuperHyperGraphs" in Ref. [HG30] by Henry Garrett (2023), "Using the Tool As (Neutrosophic) Failed SuperHyperStable To SuperHyperModel Cancer's Recognition Titled (Neutrosophic) SuperHyperGraphs" in **Ref.** [HG31] by Henry Garrett (2023), "Neutrosophic Messy-Style SuperHyperGraphs To Form Neutrosophic SuperHyperStable To Act on Cancer's Neutrosophic Recognitions In Special ViewPoints" in **Ref.** [HG32] by Henry Garrett (2023), "(Neutrosophic) SuperHyperStable on Cancer's Recognition by Well-SuperHyperModelled (Neutrosophic) SuperHyperGraphs" in **Ref.** [HG33] by Henry Garrett (2023), "Neutrosophic 1-Failed SuperHyperForcing in the SuperHyperFunction To Use Neutrosophic SuperHyperGraphs on Cancer's Neutrosophic Recognition And Beyond" in Ref. [HG34] by Henry Garrett (2022), "(Neutrosophic) 1-Failed SuperHyperForcing in Cancer's Recognitions And (Neutrosophic) SuperHyperGraphs" in Ref. [HG35] by Henry Garrett (2022), "Basic Notions on (Neutrosophic) SuperHyperForcing And (Neutrosophic) SuperHyperModeling in Cancer's Recognitions And (Neutrosophic) SuperHyperGraphs" in Ref. [HG36] by Henry Garrett (2022), "Basic Neutrosophic Notions Concerning SuperHyperDominating and Neutrosophic SuperHyperResolving in SuperHyperGraph" in Ref. [HG37] by Henry Garrett (2022), "Initial Material of Neutrosophic Preliminaries to Study Some Neutrosophic Notions Based on Neutrosophic SuperHyperEdge (NSHE) in Neutrosophic SuperHyperGraph (NSHG)" in **Ref.** [HG38] by Henry Garrett (2022), there are some endeavors to formalize the basic SuperHyperNotions about neutrosophic SuperHyperGraph and SuperHyperGraph.

Some studies and researches about neutrosophic graphs, are proposed as book in **Ref.** [HG39] by Henry Garrett (2022) which is indexed by Google Scholar and has more than 2732 readers in Scribd. It's titled "Beyond Neutrosophic Graphs" and published by Ohio: E-publishing: Educational Publisher 1091 West 1st Ave Grandview Heights, Ohio 43212 United State. This research book covers different types of notions and settings in neutrosophic graph theory and neutrosophic SuperHyperGraph theory.

Also, some studies and researches about neutrosophic graphs, are proposed as book in **Ref.** [**HG40**] by Henry Garrett (2022) which is indexed by Google Scholar and has more than 3504 readers in Scribd. It's titled "Neutrosophic Duality" and published by Florida: GLOBAL KNOWLEDGE - Publishing House 848 Brickell Ave Ste 950 Miami, Florida 33131 United States. This research book presents different types of notions SuperHyperResolving and SuperHyperDominating in the setting of duality in neutrosophic graph theory and neutrosophic SuperHyperGraph theory. This research book has scrutiny on the complement of the intended set and the intended set, simultaneously. It's smart to consider a set but acting on its complement that what's done in this research book which is popular in the terms of high readers in Scribd.



Henry Garrett $\,\cdot\,$ Independent Researcher $\,\cdot\,$ Department of Mathematics $\,\cdot\,$ Dr<br/>HenryGarrett@gmail.com $\,\cdot\,$ Manhattan, NY, USA

## **Bibliography**

- Henry Garrett, "Properties of SuperHyperGraph and Neutrosophic SuperHyper-Graph", Neutrosophic Sets and Systems 49 (2022) 531-561 (doi: 10.5281/zenodo.6456413). (http://fs.unm.edu/NSS/NeutrosophicSuperHyperGraph34.pdf). (https://digitalrepository.unm.edu/nss\_journal/vol49/iss1/34).
- [2] Henry Garrett, "Neutrosophic Co-degree and Neutrosophic Degree alongside Chromatic Numbers in the Setting of Some Classes Related to Neutrosophic Hypergraphs", J Curr Trends Comp Sci Res 1(1) (2022) 06-14.
- Henry Garrett, "Super Hyper Dominating and Super Hyper Resolving on Neutrosophic Super Hyper Graphs and Their Directions in Game Theory and Neutrosophic Super Hyper Classes", J Math Techniques Comput Math 1(3) (2022) 242-263.
- Garrett, Henry. "0039 / Closing Numbers and Super-Closing Numbers as (Dual)Resolving and (Dual)Coloring alongside (Dual)Dominating in (Neutrosophic)n-SuperHyperGraph." CERN European Organization for Nuclear Research - Zenodo, Nov. 2022. CERN European Organization for Nuclear Research, https://doi.org/10.5281/zenodo.6319942. https://oa.mg/work/10.5281/zenodo.6319942
- [5] Garrett, Henry. "0049 / (Failed)1-Zero-Forcing Number in Neutrosophic Graphs." CERN European Organization for Nuclear Research - Zenodo, Feb. 2022. CERN European Organization for Nuclear Research, https://doi.org/10.13140/rg.2.2.35241.26724. https://oa.mg/work/10.13140/rg.2.2.35241.26724
- [6] Henry Garrett, "Extreme SuperHyperClique as the Firm Scheme of Confrontation under Cancer's Recognition as the Model in The Setting of (Neutrosophic) SuperHyperGraphs", Preprints 2023, 2023010308 (doi: 10.20944/preprints202301.0308.v1).
- [7] Henry Garrett, "Uncertainty On The Act And Effect Of Cancer Alongside The Foggy Positions Of Cells Toward Neutrosophic Failed SuperHyperClique inside Neutrosophic Super-HyperGraphs Titled Cancer's Recognition", Preprints 2023, 2023010282 (doi: 10.20944/preprints202301.0282.v1).
- [8] Henry Garrett, "Neutrosophic Version Of Separates Groups Of Cells In Cancer's Recognition On Neutrosophic SuperHyperGraphs", Preprints 2023, 2023010267 (doi: 10.20944/preprints202301.0267.v1).

- [9] Henry Garrett, "The Shift Paradigm To Classify Separately The Cells and Affected Cells Toward The Totality Under Cancer's Recognition By New Multiple Definitions On the Sets Polynomials Alongside Numbers In The (Neutrosophic) SuperHyperMatching Theory Based on SuperHyperGraph and Neutrosophic SuperHyperGraph", Preprints 2023, 2023010265 (doi: 10.20944/preprints202301.0265.v1).
- [10] Henry Garrett, "Breaking the Continuity and Uniformity of Cancer In The Worst Case of Full Connections With Extreme Failed SuperHyperClique In Cancer's Recognition Applied in (Neutrosophic) SuperHyperGraphs", Preprints 2023, 2023010262, (doi: 10.20944/preprints202301.0262.v1).
- [11] Henry Garrett, "Neutrosophic Failed SuperHyperStable as the Survivors on the Cancer's Neutrosophic Recognition Based on Uncertainty to All Modes in Neutrosophic SuperHyperGraphs", Preprints 2023, 2023010240 (doi: 10.20944/preprints202301.0240.v1).
- [12] Henry Garrett, "Extremism of the Attacked Body Under the Cancer's Circumstances Where Cancer's Recognition Titled (Neutrosophic) SuperHyperGraphs", Preprints 2023, 2023010224, (doi: 10.20944/preprints202301.0224.v1).
- [13] Henry Garrett, "(Neutrosophic) 1-Failed SuperHyperForcing in Cancer's Recognitions And (Neutrosophic) SuperHyperGraphs", Preprints 2023, 2023010105 (doi: 10.20944/preprints202301.0105.v1).
- [14] Henry Garrett, "Neutrosophic Messy-Style SuperHyperGraphs To Form Neutrosophic Super-HyperStable To Act on Cancer's Neutrosophic Recognitions In Special ViewPoints", Preprints 2023, 2023010088 (doi: 10.20944/preprints202301.0088.v1).
- [15] Henry Garrett, "Neutrosophic 1-Failed SuperHyperForcing in the SuperHyperFunction To Use Neutrosophic SuperHyperGraphs on Cancer's Neutrosophic Recognition And Beyond", Preprints 2023, 2023010044
- [16] Henry Garrett, "(Neutrosophic) SuperHyperStable on Cancer's Recognition by Well- SuperHyperModelled (Neutrosophic) SuperHyperGraphs", Preprints 2023, 2023010043 (doi: 10.20944/preprints202301.0043.v1).
- [17] Henry Garrett, "Basic Notions on (Neutrosophic) SuperHyperForcing And (Neutrosophic) SuperHyperModeling in Cancer's Recognitions And (Neutrosophic) SuperHyperGraphs", Preprints 2023, 2023010105 (doi: 10.20944/preprints202301.0105.v1).
- [18] Henry Garrett, "Neutrosophic Messy-Style SuperHyperGraphs To Form Neutrosophic Super-HyperStable To Act on Cancer's Neutrosophic Recognitions In Special ViewPoints", Preprints 2023, 2023010088 (doi: 10.20944/preprints202301.0088.v1).
- [19] Henry Garrett, "(Neutrosophic) SuperHyperModeling of Cancer's Recognitions Featuring (Neutrosophic) SuperHyperDefensive SuperHyperAlliances", Preprints 2022, 2022120549 (doi: 10.20944/preprints202212.0549.v1).
- [20] Henry Garrett, "(Neutrosophic) SuperHyperAlliances With SuperHyperDefensive and Super-HyperOffensive Type-SuperHyperSet On (Neutrosophic) SuperHyperGraph With (Neutrosophic) SuperHyperModeling of Cancer's Recognitions And Related (Neutrosophic) SuperHyperClasses", Preprints 2022, 2022120540 (doi: 10.20944/preprints202212.0540.v1).

Henry Garrett $\,\cdot\,$ Independent Researcher $\,\cdot\,$ Department of Mathematics $\,\cdot\,$ Dr<br/>HenryGarrett@gmail.com $\,\cdot\,$ Manhattan, NY, USA

- [21] Henry Garrett, "SuperHyperCycle on SuperHyperGraph and Neutrosophic SuperHyperGraph With SuperHyperModeling of Cancer's Recognitions", Preprints 2022, 2022120500 (doi: 10.20944/preprints202212.0500.v1).
- [22] Henry Garrett, "Some SuperHyperDegrees and Co-SuperHyperDegrees on Neutrosophic SuperHyperGraphs and SuperHyperGraphs Alongside Applications in Cancer's Treatments", Preprints 2022, 2022120324 (doi: 10.20944/preprints202212.0324.v1).
- [23] Henry Garrett, "SuperHyperDominating and SuperHyperResolving on Neutrosophic Super-HyperGraphs And Their Directions in Game Theory and Neutrosophic SuperHyperClasses", Preprints 2022, 2022110576 (doi: 10.20944/preprints202211.0576.v1).
- [24] Henry Garrett, "SuperHyperMatching By (R-)Definitions And Polynomials To Monitor Cancer's Recognition In Neutrosophic SuperHyperGraphs", ResearchGate 2023, (doi: 10.13140/RG.2.2.35061.65767).
- [25] Henry Garrett, "The Focus on The Partitions Obtained By Parallel Moves In The Cancer's Extreme Recognition With Different Types of Extreme SuperHyperMatching Set and Polynomial on (Neutrosophic) SuperHyperGraphs", ResearchGate 2023, (doi: 10.13140/RG.2.2.18494.15680).
- [26] Henry Garrett, "Extreme Failed SuperHyperClique Decides the Failures on the Cancer's Recognition in the Perfect Connections of Cancer's Attacks By SuperHyperModels Named (Neutrosophic) SuperHyperGraphs", ResearchGate 2023, (doi: 10.13140/RG.2.2.32530.73922).
- [27] Henry Garrett, "Indeterminacy On The All Possible Connections of Cells In Front of Cancer's Attacks In The Terms of Neutrosophic Failed SuperHyperClique on Cancer's Recognition called Neutrosophic SuperHyperGraphs", ResearchGate 2023, (doi: 10.13140/RG.2.2.15897.70243).
- [28] Henry Garrett, "Perfect Directions Toward Idealism in Cancer's Neutrosophic Recognition Forwarding Neutrosophic SuperHyperClique on Neutrosophic SuperHyperGraphs", ResearchGate 2023, (doi: 10.13140/RG.2.2.30092.80004).
- [29] Henry Garrett, "Demonstrating Complete Connections in Every Embedded Regions and Sub-Regions in the Terms of Cancer's Recognition and (Neutrosophic) SuperHyperGraphs With (Neutrosophic) SuperHyperClique", ResearchGate 2023, (doi: 10.13140/RG.2.2.23172.19849).
- [30] Henry Garrett, "Different Neutrosophic Types of Neutrosophic Regions titled neutrosophic Failed SuperHyperStable in Cancer's Neutrosophic Recognition modeled in the Form of Neutrosophic SuperHyperGraphs", ResearchGate 2023, (doi: 10.13140/RG.2.2.17385.36968).
- [31] Henry Garrett, "Using the Tool As (Neutrosophic) Failed SuperHyperStable To SuperHyper-Model Cancer's Recognition Titled (Neutrosophic) SuperHyperGraphs", ResearchGate 2023, (doi: 10.13140/RG.2.2.28945.92007).
- [32] Henry Garrett, "Neutrosophic Messy-Style SuperHyperGraphs To Form Neutrosophic SuperHyperStable To Act on Cancer's Neutrosophic Recognitions In Special ViewPoints", ResearchGate 2023, (doi: 10.13140/RG.2.2.11447.80803).
- [33] Henry Garrett, "(Neutrosophic) SuperHyperStable on Cancer's Recognition by Well-SuperHyperModelled (Neutrosophic) SuperHyperGraphs", ResearchGate 2023, (doi: 10.13140/RG.2.2.35774.77123).

- [34] Henry Garrett, "Neutrosophic 1-Failed SuperHyperForcing in the SuperHyperFunction To Use Neutrosophic SuperHyperGraphs on Cancer's Neutrosophic Recognition And Beyond", ResearchGate 2022, (doi: 10.13140/RG.2.2.36141.77287).
- [35] Henry Garrett, "(Neutrosophic) 1-Failed SuperHyperForcing in Cancer's Recognitions And (Neutrosophic) SuperHyperGraphs", ResearchGate 2022, (doi: 10.13140/RG.2.2.29430.88642).
- [36] Henry Garrett, "Basic Notions on (Neutrosophic) SuperHyperForcing And (Neutrosophic) SuperHyperModeling in Cancer's Recognitions And (Neutrosophic) SuperHyperGraphs", ResearchGate 2022, (doi: 10.13140/RG.2.2.11369.16487).
- [37] Henry Garrett, "Basic Neutrosophic Notions Concerning SuperHyperDominating and Neutrosophic SuperHyperResolving in SuperHyperGraph", ResearchGate 2022 (doi: 10.13140/RG.2.2.29173.86244).
- [38] Henry Garrett, "Initial Material of Neutrosophic Preliminaries to Study Some Neutrosophic Notions Based on Neutrosophic SuperHyperEdge (NSHE) in Neutrosophic SuperHyperGraph (NSHG)", ResearchGate 2022 (doi: 10.13140/RG.2.2.25385.88160).
- [39] Henry Garrett, (2022). "Beyond Neutrosophic Graphs", Ohio: E-publishing: Educational Publisher 1091 West 1st Ave Grandview Heights, Ohio 43212 United States. ISBN: 979-1-59973-725-6 (http://fs.unm.edu/BeyondNeutrosophicGraphs.pdf).
- [40] Henry Garrett, (2022). "Neutrosophic Duality", Florida: GLOBAL KNOWLEDGE Publishing House 848 Brickell Ave Ste 950 Miami, Florida 33131 United States. ISBN: 978-1-59973-743-0 (http://fs.unm.edu/NeutrosophicDuality.pdf).

Henry Garrett $\,\cdot\,$ Independent Researcher $\,\cdot\,$ Department of Mathematics $\,\cdot\,$ Dr<br/>HenryGarrett@gmail.com $\,\cdot\,$ Manhattan, NY, USA

\_

#Latest\_Updates

#The\_Links

| Book #97

Title: SuperHyperConnectivities

| Available at @WordPress @Preprints\_org @ResearchGate @Scribd @academia @ZENODO\_ORG @Twitter @LinkedIn @Amazon @googlebooks @GooglePlay

| Publisher | -

| ISBN | -

| Print length | -

 $\#Latest\_Updates$ 

#The\_Links

@ResearchGate: -

@academia: -

@ZENODO\_ORG: -

@googlebooks: -

@GooglePlay: -

@WordPress: -

SuperHyperConnectivities (Published Version)

The Link:

-

Posted by Dr. Henry Garrett

January -, 2023

Posted in 0097 | SuperHyperConnectivities

Tags:

Applications, Applied Mathematics, Applied Research, Cancer, Cancer's Recognitions, Combinatorics, Edge, Edges, Graph Theory, Graphs, Latest Research, Literature Reviews, Modeling, Neutrosophic Graph, Neutrosophic Graph Theory, Neutrosophic Science, Neutrosophic SuperHyper-Classes, Neutrosophic SuperHyperGraph, Neutrosophic SuperHyperGraph Theory, neutrosophic SuperHyperGraphs, Neutrosophic SuperHyperConnectivities, Open Problems, Open Questions, Problems, Pure Math, Pure Mathematics, Questions, Real-World Applications, Recent Research, Recognitions, Research, Research Article, Research Articles, Research Book, Research Chapter, Research Chapters, Review, SuperHyperClasses, SuperHyperEdges, SuperHyperGraph, SuperHyperGraph Theory, SuperHyperGraphs, SuperHyperConnectivities, SuperHyperModeling, SuperHyperVertices, Theoretical Research, Vertex, Vertices

Henry Garrett $\,\cdot\,$ Independent Researcher $\,\cdot\,$ Department of Mathematics $\,\cdot\,$ Dr<br/>HenryGarrett@gmail.com $\,\cdot\,$ Manhattan, NY, USA

#### CHAPTER 2

## **Acknowledgements**

The author is going to express his gratitude and his appreciation about the brains and their hands which are showing the importance of words in the framework of every wisdom, knowledge, arts, and emotions which are streaming in the lines from the words, notions, ideas and approaches to have the material and the contents which are only the way to flourish the minds, to grow the notions, to advance the ways and to make the stable ways to be amid events and storms of minds for surviving from them and making the outstanding experiences about the tools and the ideas to be on the star lines of words and shining like stars, forever.

### CHAPTER 3

## **Extreme SuperHyperConnectivities**

The following sections are cited as follows, which is my 135th manuscript and I use prefix 135 as number before any labelling for items.

[Ref137] Henry Garrett, "New Ideas On Super Disruptions In Cancer's Extreme Recognition As Neutrosophic SuperHyperGraph By Hyper Plans Called SuperHyperConnectivities", ResearchGate 2023, (doi: 10.13140/RG.2.2.29441.94562).

The links to the contributions of this research book are listed below. Article #137

New Ideas On Super Disruptions In Cancer's Extreme Recognition As Neutrosophic Super-HyperGraph By Hyper Plans Called SuperHyperConnectivities

@WordPress: -

@ResearchGate: https://www.researchgate.net/publication/368275564

@Scribd: https://www.scribd.com/document/623818360

@academia: https://www.academia.edu/96303538

@ZENODO\_ORG: https://zenodo.org/record/7606366
Henry Garrett, "New Ideas On Super Disruptions In Cancer's Extreme Recognition As Neutrosophic
SuperHyperGraph By Hyper Plans Called SuperHyperConnectivities", ResearchGate 2023, (doi: 10.13140/RG.2.2.29441.94562).
"#137th Article"
January 2023
DOI: 10.13140/RG.2.2.29441.94562
License: CC BY-NC-ND 4.0
Print length: 273 pages
Project: Neutrosophic SuperHyperGraphs and SuperHyperGraphs
Available at @WordPress @ResearchGate @Scribd @academia @ZENODO\_ORG@Amazon@googlebooks@GooglePlay

### CHAPTER 4

New Ideas On Super Disruptions In Cancer's Extreme Recognition As Neutrosophic SuperHyperGraph By Hyper Plans Called SuperHyperConnectivities

# ABSTRACT

In this research, [Extreme Strength of the Extreme SuperHyperPaths] Assume a Neutrosophic SuperHyperGraph (NSHG) S is an ordered pair S = (V, E). an Extreme SuperHyperPath (NSHP) from Extreme SuperHyperVertex (NSHV)  $V_1$  to Extreme SuperHyperVertex (NSHV)  $V_s$  is sequence of Extreme SuperHyperVertices (NSHV) and Extreme SuperHyperEdges (NSHE)  $V_1, E_1, V_2, E_2, V_3, \dots, V_{s-1}, E_{s-1}, V_s$ , have Extreme t-strength  $(\min\{T(V_i)\}, m, n)_{i=1}^s$ ; Extreme i-strength  $(m, \min\{I(V_i)\}, n)_{i=1}^s$ ; Extreme f-strength  $(m, n, \min\{F(V_i)\})_{i=1}^s$ ; Extreme strength  $(\min\{T(V_i)\}, \min\{I(V_i)\}, \min\{F(V_i)\})_{i=1}^s$ . [Different Extreme Types of Extreme SuperHyperEdges (NSHE)] Assume a Neutrosophic SuperHyperGraph (NSHG) S is an ordered pair S = (V, E). Consider an Extreme SuperHyperEdge (NSHE)  $E = \{V_1, V_2, \ldots, V_s\}$ . Then E is called Extreme t-connective if  $T(E) \geq$  maximum number of Extreme t-strength of SuperHyperPath (NSHP) from Extreme SuperHyperVertex (NSHV)  $V_i$  to Extreme SuperHyperVertex (NSHV)  $V_j$  where  $1 \le i, j \le s$ ; Extreme i-connective if  $I(E) \geq$  maximum number of Extreme i-strength of SuperHyperPath (NSHP) from Extreme SuperHyperVertex (NSHV)  $V_i$  to Extreme SuperHyperVertex (NSHV)  $V_j$  where  $1 \le i, j \le s$ ; Extreme f-connective if F(E) > maximum number of Extreme f-strength of Super-HyperPath (NSHP) from Extreme SuperHyperVertex (NSHV)  $V_i$  to Extreme SuperHyperVertex (NSHV)  $V_j$  where  $1 \le i, j \le s$ ; Extreme connective if  $(T(E), I(E), F(E)) \ge$  maximum number of Extreme strength of SuperHyperPath (NSHP) from Extreme SuperHyperVertex (NSHV)  $V_i$  to Extreme SuperHyperVertex (NSHV)  $V_i$  where  $1 \le i, j \le s$ . ((Extreme) SuperHyperConnectivities). Assume a Neutrosophic SuperHyperGraph (NSHG) S is an ordered pair S = (V, E). Consider an Extreme SuperHyperEdge (NSHE)  $E = \{V_1, V_2, \ldots, V_s\}$ . Then E is called an Extreme SuperHyper-Connectivities if it's either of Extreme t-connective, Extreme i-connective, Extreme f-connective, and Extreme connective and  $\mathcal{C}(NSHG)$  for an Neutrosophic SuperHyperGraph NSHG: (V, E) is the maximum Extreme cardinality of an Extreme SuperHyperSet S of high Extreme cardinality of the Extreme SuperHyperEdges in the consecutive Extreme sequence of Extreme SuperHyperEdges and Extreme SuperHyperVertices such that they form the Extreme SuperHyperConnectivities; an Extreme SuperHyperConnectivities if it's either of Extreme t-connective, Extreme i-connective, Extreme f-connective, and Extreme connective and  $\mathcal{C}(NSHG)$  for a Neutrosophic SuperHyper-Graph NSHG: (V, E) is the maximum Extreme cardinality of the Extreme SuperHyperEdges of an Extreme SuperHyperSet S of high Extreme cardinality consecutive Extreme SuperHyperEdges and Extreme SuperHyperVertices such that they form the Extreme SuperHyperConnectivities; an Extreme SuperHyperConnectivities SuperHyperPolynomial if it's either of Extreme t-connective, Extreme i-connective, Extreme f-connective, and Extreme connective and  $\mathcal{C}(NSHG)$  for an Neutrosophic SuperHyperGraph NSHG: (V, E) is the Extreme SuperHyperPolynomial contains the

Henry Garrett · Independent Researcher · Department of Mathematics · DrHenryGarrett@gmail.com · Manhattan, NY, USA

Extreme coefficients defined as the Extreme number of the maximum Extreme cardinality of the Extreme SuperHyperEdges of an Extreme SuperHyperSet S of high Extreme cardinality consecutive Extreme SuperHyperEdges and Extreme SuperHyperVertices such that they form the Extreme SuperHyperConnectivities; and the Extreme power is corresponded to its Extreme coefficient; an Extreme SuperHyperConnectivities SuperHyperPolynomial if it's either of Extreme t-connective, Extreme i-connective, Extreme f-connective, and Extreme connective and  $\mathcal{C}(NSHG)$  for a Neutrosophic SuperHyperGraph NSHG: (V, E) is the Extreme SuperHyperPolynomial contains the Extreme coefficients defined as the Extreme number of the maximum Extreme cardinality of the Extreme SuperHyperEdges of an Extreme SuperHyperSet S of high Extreme cardinality consecutive Extreme SuperHyperEdges and Extreme SuperHyperVertices such that they form the Extreme SuperHyperConnectivities; and the Extreme power is corresponded to its Extreme coefficient; an Extreme R-SuperHyperConnectivities if it's either of Extreme t-connective, Extreme i-connective, Extreme f-connective, and Extreme connective and  $\mathcal{C}(NSHG)$  for an Neutrosophic SuperHyper-Graph NSHG: (V, E) is the maximum Extreme cardinality of an Extreme SuperHyperSet S of high Extreme cardinality of the Extreme SuperHyperVertices in the consecutive Extreme sequence of Extreme SuperHyperEdges and Extreme SuperHyperVertices such that they form the Extreme SuperHyperConnectivities; an Extreme R-SuperHyperConnectivities if it's either of Extreme tconnective, Extreme i-connective, Extreme f-connective, and Extreme connective and  $\mathcal{C}(NSHG)$ for a Neutrosophic SuperHyperGraph NSHG: (V, E) is the maximum Extreme cardinality of the Extreme SuperHyperVertices of an Extreme SuperHyperSet S of high Extreme cardinality consecutive Extreme SuperHyperEdges and Extreme SuperHyperVertices such that they form the Extreme SuperHyperConnectivities; an Extreme R-SuperHyperConnectivities SuperHyperPolynomial if it's either of Extreme t-connective, Extreme i-connective, Extreme f-connective, and Extreme connective and  $\mathcal{C}(NSHG)$  for an Neutrosophic SuperHyperGraph NSHG: (V, E) is the Extreme SuperHyperPolynomial contains the Extreme coefficients defined as the Extreme number of the maximum Extreme cardinality of the Extreme SuperHyperVertices of an Extreme SuperHyperSet S of high Extreme cardinality consecutive Extreme SuperHyperEdges and Extreme SuperHyperVertices such that they form the Extreme SuperHyperConnectivities; and the Extreme power is corresponded to its Extreme coefficient; an Extreme SuperHyperConnectivities SuperHyperPolynomial if it's either of Extreme t-connective, Extreme i-connective, Extreme f-connective, and Extreme connective and  $\mathcal{C}(NSHG)$  for a Neutrosophic SuperHyperGraph NSHG: (V, E) is the Extreme SuperHyperPolynomial contains the Extreme coefficients defined as the Extreme number of the maximum Extreme cardinality of the Extreme SuperHyperVertices of an Extreme SuperHyperSet S of high Extreme cardinality consecutive Extreme SuperHyperEdges and Extreme SuperHyperVertices such that they form the Extreme SuperHyperConnectivities; and the Extreme power is corresponded to its Extreme coefficient. In this research, new setting is introduced for new SuperHyperNotions, namely, a SuperHyperConnectivities and Extreme SuperHyperConnectivities. Two different types of SuperHyperDefinitions are debut for them but the research goes further and the SuperHyperNotion, SuperHyperUniform, and SuperHyperClass based on that are well-defined and well-reviewed. The literature review is implemented in the whole of this research. For shining the elegancy and the significancy of this research, the comparison between this SuperHyperNotion with other SuperHyperNotions and fundamental SuperHyperNumbers are featured. The definitions are followed by the examples and the instances thus the clarifications are driven with different tools. The applications are figured out to make sense about the theoretical aspect of this ongoing research. The "Cancer's Recognition" are the under research to figure out the challenges make sense about ongoing and upcoming research. The special case is up. The cells are viewed in the deemed ways. There are

different types of them. Some of them are individuals and some of them are well-modeled by the group of cells. These types are all officially called "SuperHyperVertex" but the relations amid them all officially called "SuperHyperEdge". The frameworks "SuperHyperGraph" and "Neutrosophic SuperHyperGraph" are chosen and elected to research about "Cancer's Recognition". Thus these complex and dense SuperHyperModels open up some avenues to research on theoretical segments and "Cancer's Recognition". Some avenues are posed to pursue this research. It's also officially collected in the form of some questions and some problems. Assume a SuperHyperGraph. Then an Extreme SuperHyperConnectivities  $\mathcal{C}(NSHG)$  for a Neutrosophic SuperHyperGraph NSHG: (V, E) is the maximum cardinality of a SuperHyperSet S of high cardinality SuperHyperEdges such that there's no SuperHyperVertex not to in a SuperHyperEdge and there's no SuperHyperEdge to have a SuperHyperVertex in a SuperHyperEdge; an Extreme SuperHyperConnectivities  $\mathcal{C}(NSHG)$  for a Neutrosophic SuperHyperGraph NSHG: (V, E) is the maximum Extreme cardinality of an Extreme SuperHyperSet S of high Extreme cardinality Extreme SuperHyperEdges such that there's no Extreme SuperHyperVertex not to in an Extreme SuperHyperEdge and there's no Extreme Super-HyperEdge to have an Extreme SuperHyperVertex in an Extreme SuperHyperEdge; an Extreme SuperHyperConnectivities SuperHyperPolynomial  $\mathcal{C}(NSHG)$  for a Neutrosophic SuperHyperGraph NSHG: (V, E) is the Extreme SuperHyperPolynomial contains the coefficients defined as the number of the maximum cardinality of a SuperHyperSet S of high cardinality SuperHyperEdges such that there's no SuperHyperVertex not to in a SuperHyperEdge and there's no SuperHyperEdge to have a SuperHyperVertex in a SuperHyperEdge and the power is corresponded to its coefficient; an Extreme SuperHyperConnectivities SuperHyperPolynomial  $\mathcal{C}(NSHG)$  for a Neutrosophic SuperHyperGraph NSHG: (V, E) is the Extreme SuperHyperPolynomial contains the Extreme coefficients defined as the Extreme number of the maximum Extreme cardinality of an Extreme SuperHyperSet S of high Extreme cardinality Extreme SuperHyperEdges such that there's no Extreme SuperHyperVertex not to in an Extreme SuperHyperEdge and there's no Extreme SuperHyperEdge to have an Extreme SuperHyperVertex in an Extreme SuperHyperEdge and the Extreme power is Extremely corresponded to its Extreme coefficient; an Extreme R-SuperHyperConnectivities  $\mathcal{C}(NSHG)$  for a Neutrosophic SuperHyperGraph NSHG: (V, E) is the maximum cardinality of a SuperHyperSet S of high cardinality SuperHyperVertices such that there's no SuperHyperVertex not to in a SuperHyperEdge and there's no SuperHyperEdge to have a SuperHyperVertex in a SuperHyperEdge; an Extreme R-SuperHyperConnectivities  $\mathcal{C}(NSHG)$  for a Neutrosophic SuperHyperGraph NSHG: (V, E) is the maximum Extreme cardinality of an Extreme SuperHyperSet S of high Extreme cardinality Extreme SuperHyperVertices such that there's no Extreme SuperHyperVertex not to in an Extreme SuperHyperEdge and there's no Extreme SuperHyperEdge to have an Extreme SuperHyperVertex in an Extreme SuperHyperEdge; an Extreme R-SuperHyperConnectivities SuperHyperPolynomial  $\mathcal{C}(NSHG)$  for a Neutrosophic SuperHyperGraph NSHG: (V, E) is the Extreme SuperHyperPolynomial contains the coefficients defined as the number of the maximum cardinality of a SuperHyperSet S of high cardinality SuperHyperVertices such that there's no SuperHyperVertex not to in a SuperHyperEdge and there's no SuperHyperEdge to have a SuperHyperVertex in a Super-HyperEdge and the power is corresponded to its coefficient; an Extreme R-SuperHyperConnectivities SuperHyperPolynomial  $\mathcal{C}(NSHG)$  for a Neutrosophic SuperHyperGraph NSHG : (V, E) is the Extreme SuperHyperPolynomial contains the Extreme coefficients defined as the Extreme number of the maximum Extreme cardinality of an Extreme SuperHyperSet S of high Extreme cardinality Extreme SuperHyperVertices such that there's no Extreme SuperHyperVertex not to in an Extreme SuperHyperEdge and there's no Extreme SuperHyperEdge to have an Extreme Super-HyperVertex in an Extreme SuperHyperEdge and the Extreme power is Extremely corresponded

Henry Garrett · Independent Researcher · Department of Mathematics · DrHenryGarrett@gmail.com · Manhattan, NY, USA

to its Extreme coefficient. Assume a SuperHyperGraph. Then  $\delta$ -SuperHyperConnectivities is a maximal of SuperHyperVertices with a maximum cardinality such that either of the following expressions hold for the (Extreme) cardinalities of SuperHyperNeighbors of  $s \in S$ : there are  $|S \cap N(s)| > |S \cap (V \setminus N(s))| + \delta$ ; and  $|S \cap N(s)| < |S \cap (V \setminus N(s))| + \delta$ . The first Expression, holds if S is an  $\delta$ -SuperHyperOffensive. And the second Expression, holds if S is an  $\delta$ -SuperHyperDefensive; an Extreme  $\delta$ -SuperHyperConnectivities is a maximal Extreme of SuperHyperVertices with maximum Extreme cardinality such that either of the following expressions hold for the Extreme cardistribution of SuperHyperNeighbors of  $s \in S$  there are:  $|S \cap N(s)|_{Extreme} > |S \cap (V \setminus N(s))|_{Extreme} + \delta$ ; and  $|S \cap N(s)|_{Extreme} < |S \cap (V \setminus N(s))|_{Extreme} + \delta$ . The first Expression, holds if S is an Extreme  $\delta$ -SuperHyperOffensive. And the second Expression, holds if S is an Extreme  $\delta$ -SuperHyperDefensive It's useful to define a "Extreme" version of a SuperHyperConnectivities . Since there's more ways to get type-results to make a SuperHyperConnectivities more understandable. For the sake of having Extreme SuperHyperConnectivities, there's a need to "redefine" the notion of a "SuperHyperConnectivities". The SuperHyperVertices and the SuperHyperEdges are assigned by the labels from the letters of the alphabets. In this procedure, there's the usage of the position of labels to assign to the values. Assume a SuperHyperConnectivities. It's redefined an Extreme SuperHyperConnectivities if the mentioned Table holds, concerning, "The Values of Vertices, SuperVertices, Edges, HyperEdges, and SuperHyperEdges Belong to The Neutrosophic SuperHyperGraph" with the key points, "The Values of The Vertices & The Number of Position in Alphabet", "The Values of The SuperVertices&The maximum Values of Its Vertices", "The Values of The Edges&The maximum Values of Its Vertices", "The Values of The HyperEdges&The maximum Values of Its Vertices", "The Values of The SuperHyperEdges&The maximum Values of Its Endpoints". To get structural examples and instances, I'm going to introduce the next SuperHyperClass of SuperHyperGraph based on a SuperHyperConnectivities. It's the main. It'll be disciplinary to have the foundation of previous definition in the kind of SuperHyperClass. If there's a need to have all SuperHyperConnectivities until the SuperHyperConnectivities, then it's officially called a "SuperHyperConnectivities" but otherwise, it isn't a SuperHyperConnectivities . There are some instances about the clarifications for the main definition titled a "SuperHyperConnectivities ". These two examples get more scrutiny and discernment since there are characterized in the disciplinary ways of the SuperHyperClass based on a SuperHyperConnectivities. For the sake of having an Extreme SuperHyperConnectivities, there's a need to "redefine" the notion of a "Extreme SuperHyperConnectivities" and a "Extreme SuperHyperConnectivities". The SuperHyperVertices and the SuperHyperEdges are assigned by the labels from the letters of the alphabets. In this procedure, there's the usage of the position of labels to assign to the values. Assume a Neutrosophic SuperHyperGraph. It's redefined "Neutrosophic SuperHyperGraph" if the intended Table holds. And a SuperHyperConnectivities are redefined to a "Extreme SuperHyperConnectivities" if the intended Table holds. It's useful to define "Extreme" version of SuperHyperClasses. Since there's more ways to get Extreme type-results to make an Extreme SuperHyperConnectivities more understandable. Assume a Neutrosophic SuperHyperGraph. There are some Extreme SuperHyperClasses if the intended Table holds. Thus SuperHyperPath, SuperHyperConnectivities, SuperHyperStar, Super-HyperBipartite, SuperHyperMultiPartite, and SuperHyperWheel, are "Extreme SuperHyperPath", "Extreme SuperHyperConnectivities", "Extreme SuperHyperStar", "Extreme SuperHyperBipartite", "Extreme SuperHyperMultiPartite", and "Extreme SuperHyperWheel" if the intended Table holds. A SuperHyperGraph has a "Extreme SuperHyperConnectivities" where it's the strongest [the maximum Extreme value from all the SuperHyperConnectivities amid the maximum value amid all SuperHyperVertices from a SuperHyperConnectivities .] SuperHyperConnectivities . A graph is a

SuperHyperUniform if it's a SuperHyperGraph and the number of elements of SuperHyperEdges are the same. Assume a Neutrosophic SuperHyperGraph. There are some SuperHyperClasses as follows. It's SuperHyperPath if it's only one SuperVertex as intersection amid two given SuperHyperEdges with two exceptions; it's SuperHyperConnectivities if it's only one SuperVertex as intersection amid two given SuperHyperEdges; it's SuperHyperStar it's only one SuperVertex as intersection amid all SuperHyperEdges; it's SuperHyperBipartite it's only one SuperVertex as intersection amid two given SuperHyperEdges and these SuperVertices, forming two separate sets, has no SuperHyperEdge in common; it's SuperHyperMultiPartite it's only one SuperVertex as intersection amid two given SuperHyperEdges and these SuperVertices, forming multi separate sets, has no SuperHyperEdge in common; it's a SuperHyperWheel if it's only one SuperVertex as intersection amid two given SuperHyperEdges and one SuperVertex has one SuperHyperEdge with any common SuperVertex. The SuperHyperModel proposes the specific designs and the specific architectures. The SuperHyperModel is officially called "SuperHyperGraph" and "Neutrosophic SuperHyperGraph". In this SuperHyperModel, The "specific" cells and "specific group" of cells are SuperHyperModeled as "SuperHyperVertices" and the common and intended properties between "specific" cells and "specific group" of cells are SuperHyperModeled as "SuperHyperEdges". Sometimes, it's useful to have some degrees of determinacy, indeterminacy, and neutrality to have more precise SuperHyperModel which in this case the SuperHyperModel is called "Extreme". In the future research, the foundation will be based on the "Cancer's Recognition" and the results and the definitions will be introduced in redeemed ways. The recognition of the cancer in the long-term function. The specific region has been assigned by the model [it's called SuperHyperGraph] and the long cycle of the move from the cancer is identified by this research. Sometimes the move of the cancer hasn't be easily identified since there are some determinacy, indeterminacy and neutrality about the moves and the effects of the cancer on that region; this event leads us to choose another model [it's said to be Neutrosophic SuperHyperGraph] to have convenient perception on what's happened and what's done. There are some specific models, which are well-known and they've got the names, and some SuperHyperGeneral SuperHyperModels. The moves and the traces of the cancer on the complex tracks and between complicated groups of cells could be fantasized by an Extreme SuperHyperPath(-/SuperHyperConnectivities, SuperHyperStar, SuperHyperBipartite, SuperHyperMultipartite, SuperHyperWheel). The aim is to find either the longest SuperHyperConnectivities or the strongest SuperHyperConnectivities in those Extreme SuperHyperModels. For the longest SuperHyperConnectivities, called SuperHyperConnectivities, and the strongest SuperHyperConnectivities, called Extreme SuperHyperConnectivities, some general results are introduced. Beyond that in SuperHyperStar, all possible SuperHyperPaths have only two SuperHyperEdges but it's not enough since it's essential to have at least three SuperHyperEdges to form any style of a SuperHyperConnectivities. There isn't any formation of any SuperHyperConnectivities but literarily, it's the deformation of any SuperHyperConnectivities. It, literarily, deforms and it doesn't form. A basic familiarity with Extreme SuperHyperConnectivities theory, SuperHyperGraphs theory, and Neutrosophic SuperHyperGraphs theory are proposed.

Keywords: Neutrosophic SuperHyperGraph, (Extreme) SuperHyperConnectivities, Cancer's

Extreme Recognition AMS Subject Classification: 05C17, 05C22, 05E45

### CHAPTER 5

## Background

There are some researches covering the topic of this research. In what follows, there are some discussion and literature reviews about them.

First article is titled "properties of SuperHyperGraph and neutrosophic SuperHyperGraph" in **Ref.** [**HG1**] by Henry Garrett (2022). It's first step toward the research on neutrosophic Super-HyperGraphs. This research article is published on the journal "Neutrosophic Sets and Systems" in issue 49 and the pages 531-561. In this research article, different types of notions like dominating, resolving, coloring, Eulerian(Hamiltonian) neutrosophic path, n-Eulerian(Hamiltonian) neutrosophic path, zero forcing number, zero forcing neutrosophic-number, independent neutrosophic-number, clique number, clique neutrosophic-number, matching number, matching neutrosophic-number, girth, neutrosophic girth, 1-zero-forcing number, 1-zero-forcing number, global-offensive alliance, t-offensive alliance, t-defensive alliance, t-powerful alliance, and global-powerful alliance are defined in SuperHyperGraph and neutrosophic SuperHyperGraph. Some Classes of SuperHyperGraph and Neutrosophic SuperHyperGraph. Thus this research are applied in family of SuperHyperGraph and neutrosophic SuperHyperGraph. Thus this research article has concentrated on the vast notions and introducing the majority of notions.

The seminal paper and groundbreaking article is titled "neutrosophic co-degree and neutrosophic degree alongside chromatic numbers in the setting of some classes related to neutrosophic hypergraphs" in Ref. [HG2] by Henry Garrett (2022). In this research article, a novel approach is implemented on SuperHyperGraph and neutrosophic SuperHyperGraph based on general forms without using neutrosophic classes of neutrosophic SuperHyperGraph. It's published in prestigious and fancy journal is entitled "Journal of Current Trends in Computer Science Research (JCTCSR)" with abbreviation "J Curr Trends Comp Sci Res" in volume 1 and issue 1 with pages 06-14. The research article studies deeply with choosing neutrosophic hypergraphs instead of neutrosophic SuperHyperGraph. It's the breakthrough toward independent results based on initial background. The seminal paper and groundbreaking article is titled "Super Hyper Dominating and Super Hyper Resolving on Neutrosophic Super Hyper Graphs and Their Directions in Game Theory and Neutrosophic Super Hyper Classes" in Ref. [HG3] by Henry Garrett (2022). In this research article, a novel approach is implemented on SuperHyperGraph and neutrosophic SuperHyperGraph based on fundamental SuperHyperNumber and using neutrosophic SuperHyperClasses of neutrosophic SuperHyperGraph. It's published in prestigious and fancy journal is entitled "Journal of Mathematical Techniques and Computational Mathematics(JMTCM)" with abbreviation "J Math Techniques Comput Math" in volume 1 and issue 3 with pages 242-263. The research article studies deeply with

Henry Garrett · Independent Researcher · Department of Mathematics · DrHenryGarrett@gmail.com · Manhattan, NY, USA

choosing directly neutrosophic SuperHyperGraph and SuperHyperGraph. It's the breakthrough toward independent results based on initial background and fundamental SuperHyperNumbers. In some articles are titled "0039 | Closing Numbers and Super-Closing Numbers as (Dual)Resolving and (Dual)Coloring alongside (Dual)Dominating in (Neutrosophic)n-SuperHyperGraph" in Ref. [HG4] by Henry Garrett (2022), "0049 | (Failed)1-Zero-Forcing Number in Neutrosophic Graphs" in Ref. [HG5] by Henry Garrett (2022), "Extreme SuperHyperClique as the Firm Scheme of Confrontation under Cancer's Recognition as the Model in The Setting of (Neutrosophic) SuperHyperGraphs" in **Ref.** [**HG6**] by Henry Garrett (2022), "Uncertainty On The Act And Effect Of Cancer Alongside The Foggy Positions Of Cells Toward Neutrosophic Failed SuperHyperClique inside Neutrosophic SuperHyperGraphs Titled Cancer's Recognition" in Ref. [HG7] by Henry Garrett (2022), "Neutrosophic Version Of Separates Groups Of Cells In Cancer's Recognition On Neutrosophic SuperHyperGraphs" in **Ref.** [HG8] by Henry Garrett (2022), "The Shift Paradigm To Classify Separately The Cells and Affected Cells Toward The Totality Under Cancer's Recognition By New Multiple Definitions On the Sets Polynomials Alongside Numbers In The (Neutrosophic) SuperHyperMatching Theory Based on SuperHyperGraph and Neutrosophic SuperHyperGraph" in Ref. [HG9] by Henry Garrett (2022), "Breaking the Continuity and Uniformity of Cancer In The Worst Case of Full Connections With Extreme Failed SuperHyperClique In Cancer's Recognition Applied in (Neutrosophic) SuperHyperGraphs" in Ref. [HG10] by Henry Garrett (2022), "Neutrosophic Failed SuperHyperStable as the Survivors on the Cancer's Neutrosophic Recognition Based on Uncertainty to All Modes in Neutrosophic SuperHyperGraphs" in Ref. [HG11] by Henry Garrett (2022), "Extremism of the Attacked Body Under the Cancer's Circumstances Where Cancer's Recognition Titled (Neutrosophic) SuperHyperGraphs" in Ref. [HG12] by Henry Garrett (2022), "(Neutrosophic) 1-Failed SuperHyperForcing in Cancer's Recognitions And (Neutrosophic) SuperHyperGraphs" in **Ref.** [HG13] by Henry Garrett (2022), "Neutrosophic Messy-Style SuperHyperGraphs To Form Neutrosophic SuperHyperStable To Act on Cancer's Neutrosophic Recognitions In Special ViewPoints" in **Ref.** [HG14] by Henry Garrett (2022), "Neutrosophic 1-Failed SuperHyperForcing in the SuperHyperFunction To Use Neutrosophic SuperHyperGraphs on Cancer's Neutrosophic Recognition And Beyond" in **Ref.** [HG15] by Henry Garrett (2022). "(Neutrosophic) SuperHyperStable on Cancer's Recognition by Well- SuperHyperModelled (Neutrosophic) SuperHyperGraphs " in **Ref.** [HG16] by Henry Garrett (2022), "Neutrosophic Messy-Style SuperHyperGraphs To Form Neutrosophic SuperHyperStable To Act on Cancer's Neutrosophic Recognitions In Special ViewPoints" in Ref. [HG12] by Henry Garrett (2022), "Basic Notions on (Neutrosophic) SuperHyperForcing And (Neutrosophic) SuperHyperModeling in Cancer's Recognitions And (Neutrosophic) SuperHyperGraphs" in **Ref.** [HG17] by Henry Garrett (2022), "Neutrosophic Messy-Style SuperHyperGraphs To Form Neutrosophic SuperHyperStable To Act on Cancer's Neutrosophic Recognitions In Special ViewPoints" in Ref. [HG18] by Henry Garrett (2022), "(Neutrosophic) SuperHyperModeling of Cancer's Recognitions Featuring (Neutrosophic) SuperHyperDefensive SuperHyperAlliances" in Ref. [HG19] by Henry Garrett (2022), "(Neutrosophic) SuperHyperAlliances With SuperHyperDefensive and SuperHyperOffensive Type-SuperHyperSet On (Neutrosophic) SuperHyperGraph With (Neutrosophic) SuperHyperModeling of Cancer's Recognitions And Related (Neutrosophic) SuperHyperClasses" in Ref. [HG20] by Henry Garrett (2022), "SuperHyperGirth on SuperHyperGraph and Neutrosophic SuperHyperGraph With SuperHyperModeling of Cancer's Recognitions" in Ref. [HG21] by Henry Garrett (2022), "Some SuperHyperDegrees and Co-SuperHyperDegrees on Neutrosophic SuperHyperGraphs and Super-HyperGraphs Alongside Applications in Cancer's Treatments" in **Ref.** [HG22] by Henry Garrett (2022), "SuperHyperDominating and SuperHyperResolving on Neutrosophic SuperHyperGraphs

And Their Directions in Game Theory and Neutrosophic SuperHyperClasses" in Ref. [HG23] by Henry Garrett (2022), "SuperHyperMatching By (R-)Definitions And Polynomials To Monitor Cancer's Recognition In Neutrosophic SuperHyperGraphs" in Ref. [HG24] by Henry Garrett (2023), "The Focus on The Partitions Obtained By Parallel Moves In The Cancer's Extreme Recognition With Different Types of Extreme SuperHyperMatching Set and Polynomial on (Neutrosophic) SuperHyperGraphs" in **Ref.** [HG25] by Henry Garrett (2023), "Extreme Failed SuperHyperClique Decides the Failures on the Cancer's Recognition in the Perfect Connections of Cancer's Attacks By SuperHyperModels Named (Neutrosophic) SuperHyperGraphs" in Ref. [HG26] by Henry Garrett (2023), "Indeterminacy On The All Possible Connections of Cells In Front of Cancer's Attacks In The Terms of Neutrosophic Failed SuperHyperClique on Cancer's Recognition called Neutrosophic SuperHyperGraphs" in **Ref.** [HG27] by Henry Garrett (2023), "Perfect Directions Toward Idealism in Cancer's Neutrosophic Recognition Forwarding Neutrosophic SuperHyperClique on Neutrosophic SuperHyperGraphs" in **Ref.** [HG28] by Henry Garrett (2023), "Demonstrating Complete Connections in Every Embedded Regions and Sub-Regions in the Terms of Cancer's Recognition and (Neutrosophic) SuperHyperGraphs With (Neutrosophic) SuperHyperClique" in Ref. [HG29] by Henry Garrett (2023), "Different Neutrosophic Types of Neutrosophic Regions titled neutrosophic Failed SuperHyperStable in Cancer's Neutrosophic Recognition modeled in the Form of Neutrosophic SuperHyperGraphs" in Ref. [HG30] by Henry Garrett (2023), "Using the Tool As (Neutrosophic) Failed SuperHyperStable To SuperHyperModel Cancer's Recognition Titled (Neutrosophic) SuperHyperGraphs" in Ref. [HG31] by Henry Garrett (2023), "Neutrosophic Messy-Style SuperHyperGraphs To Form Neutrosophic SuperHyperStable To Act on Cancer's Neutrosophic Recognitions In Special ViewPoints" in Ref. [HG32] by Henry Garrett (2023), "(Neutrosophic) SuperHyperStable on Cancer's Recognition by Well-SuperHyperModelled (Neutrosophic) SuperHyperGraphs" in **Ref.** [HG33] by Henry Garrett (2023), "Neutrosophic 1-Failed SuperHyperForcing in the SuperHyperFunction To Use Neutrosophic SuperHyperGraphs on Cancer's Neutrosophic Recognition And Beyond" in Ref. [HG34] by Henry Garrett (2022), "(Neutrosophic) 1-Failed SuperHyperForcing in Cancer's Recognitions And (Neutrosophic) SuperHyperGraphs" in Ref. [HG35] by Henry Garrett (2022), "Basic Notions on (Neutrosophic) SuperHyperForcing And (Neutrosophic) SuperHyperModeling in Cancer's Recognitions And (Neutrosophic) SuperHyperGraphs" in Ref. [HG36] by Henry Garrett (2022), "Basic Neutrosophic Notions Concerning SuperHyperDominating and Neutrosophic SuperHyperResolving in SuperHyperGraph" in Ref. [HG37] by Henry Garrett (2022), "Initial Material of Neutrosophic Preliminaries to Study Some Neutrosophic Notions Based on Neutrosophic SuperHyperEdge (NSHE) in Neutrosophic SuperHyperGraph (NSHG)" in Ref. [HG38] by Henry Garrett (2022), there are some endeavors to formalize the basic SuperHyperNotions about neutrosophic SuperHyperGraph and SuperHyperGraph.

Some studies and researches about neutrosophic graphs, are proposed as book in **Ref.** [HG39] by Henry Garrett (2022) which is indexed by Google Scholar and has more than 2732 readers in Scribd. It's titled "Beyond Neutrosophic Graphs" and published by Ohio: E-publishing: Educational Publisher 1091 West 1st Ave Grandview Heights, Ohio 43212 United State. This research book covers different types of notions and settings in neutrosophic graph theory and neutrosophic SuperHyperGraph theory.

Also, some studies and researches about neutrosophic graphs, are proposed as book in **Ref.** [HG40] by Henry Garrett (2022) which is indexed by Google Scholar and has more than 3504 readers in Scribd. It's titled "Neutrosophic Duality" and published by Florida: GLOBAL KNOWLEDGE - Publishing House 848 Brickell Ave Ste 950 Miami, Florida 33131 United States. This research book presents different types of notions SuperHyperResolving and SuperHyperDominating in the setting

Henry Garrett · Independent Researcher · Department of Mathematics · DrHenryGarrett@gmail.com · Manhattan, NY, USA

of duality in neutrosophic graph theory and neutrosophic SuperHyperGraph theory. This research book has scrutiny on the complement of the intended set and the intended set, simultaneously. It's smart to consider a set but acting on its complement that what's done in this research book which is popular in the terms of high readers in Scribd.

See the seminal researches [HG1; HG2; HG3]. The formalization of the notions on the framework of Extreme SuperHyperConnectivities theory, Neutrosophic SuperHyperConnectivities theory, and (Neutrosophic) SuperHyperGraphs theory at [HG4; HG5; HG6; HG7; HG8; HG9; HG10; HG11; HG12; HG13; HG14; HG15; HG16; HG17; HG18; HG19; HG20; HG21; HG22; HG23; HG24; HG25; HG26; HG27; HG28; HG29; HG30; HG31; HG32; HG33; HG34; HG35; HG36; HG37; HG38]. Two popular research books in Scribd in the terms of high readers, 2638 and 3363 respectively, on neutrosophic science is on [HG39; HG40].

### CHAPTER 6

# **Motivation and Contributions**

In this research, there are some ideas in the featured frameworks of motivations. I try to bring the motivations in the narrative ways. Some cells have been faced with some attacks from the situation which is caused by the cancer's attacks. In this case, there are some embedded analysis on the ongoing situations which in that, the cells could be labelled as some groups and some groups or individuals have excessive labels which all are raised from the behaviors to overcome the cancer's attacks. In the embedded situations, the individuals of cells and the groups of cells could be considered as "new groups". Thus it motivates us to find the proper SuperHyperModels for getting more proper analysis on this messy story. I've found the SuperHyperModels which are officially called "SuperHyperGraphs" and "Neutrosophic SuperHyperGraphs". In this SuperHyperModel, the cells and the groups of cells are defined as "SuperHyperVertices" and the relations between the individuals of cells and the groups of cells are defined as "SuperHyperEdges". Thus it's another motivation for us to do research on this SuperHyperModel based on the "Cancer's Recognition". Sometimes, the situations get worst. The situation is passed from the certainty and precise style. Thus it's the beyond them. There are three descriptions, namely, the degrees of determinacy, indeterminacy and neutrality, for any object based on vague forms, namely, incomplete data, imprecise data, and uncertain analysis. The latter model could be considered on the previous SuperHyperModel. It's SuperHyperModel. It's SuperHyperGraph but it's officially called "Neutrosophic SuperHyperGraphs". The cancer is the disease but the model is going to figure out what's going on this phenomenon. The special case of this disease is considered and as the consequences of the model, some parameters are used. The cells are under attack of this disease but the moves of the cancer in the special region are the matter of mind. The recognition of the cancer could help to find some treatments for this disease. The SuperHyperGraph and Neutrosophic SuperHyperGraph are the SuperHyperModels on the "Cancer's Recognition" and both bases are the background of this research. Sometimes the cancer has been happened on the region, full of cells, groups of cells and embedded styles. In this segment, the SuperHyperModel proposes some SuperHyperNotions based on the connectivities of the moves of the cancer in the forms of alliances' styles with the formation of the design and the architecture are formally called "SuperHyperConnectivities" in the themes of jargons and buzzwords. The prefix "SuperHyper" refers to the theme of the embedded styles to figure out the background for the SuperHyperNotions. The recognition of the cancer in the long-term function. The specific region has been assigned by the model [it's called SuperHyperGraph] and the long cycle of the move from the cancer is identified by this research. Sometimes the move of the cancer hasn't be easily identified since there are some determinacy, indeterminacy and neutrality about the moves and the effects of the cancer on that region; this event leads us to choose another model it's said to be Neutrosophic

Henry Garrett $\,\cdot\,$ Independent Researcher $\,\cdot\,$ Department of Mathematics $\,\cdot\,$ Dr<br/>HenryGarrett@gmail.com $\,\cdot\,$ Manhattan, NY, USA

SuperHyperGraph] to have convenient perception on what's happened and what's done. There are some specific models, which are well-known and they've got the names, and some general models. The moves and the traces of the cancer on the complex tracks and between complicated groups of cells could be fantasized by an Extreme Extreme SuperHyperPath (-/SuperHyperConnectivities, SuperHyperStar, SuperHyperBipartite, SuperHyperMultipartite, SuperHyperWheel). The aim is to find either the optimal SuperHyperConnectivities or the Extreme SuperHyperConnectivities in those Extreme SuperHyperModels. Some general results are introduced. Beyond that in SuperHyperStar, all possible Extreme SuperHyperPath s have only two SuperHyperEdges but it's not enough since it's essential to have at least three SuperHyperEdges to form any style of a SuperHyperConnectivities. There isn't any formation of any SuperHyperConnectivities but literarily, it's the deformation of any SuperHyperConnectivities. It, literarily, deforms and it doesn't form.

**Question 6.0.1.** How to define the SuperHyperNotions and to do research on them to find the " amount of SuperHyperConnectivities" of either individual of cells or the groups of cells based on the fixed cell or the fixed group of cells, extensively, the "amount of SuperHyperConnectivities" based on the fixed groups of cells or the fixed groups of group of cells?

**Question 6.0.2.** What are the best descriptions for the "Cancer's Recognition" in terms of these messy and dense SuperHyperModels where embedded notions are illustrated?

It's motivation to find notions to use in this dense model is titled "SuperHyperGraphs". Thus it motivates us to define different types of "SuperHyperConnectivities" and "Extreme SuperHyperConnectivities" on "SuperHyperGraph" and "Neutrosophic SuperHyperGraph". Then the research has taken more motivations to define SuperHyperClasses and to find some connections amid this SuperHyperNotion with other SuperHyperNotions. It motivates us to get some instances and examples to make clarifications about the framework of this research. The general results and some results about some connections are some avenues to make key point of this research, "Cancer's Recognition", more understandable and more clear.

The framework of this research is as follows. In the beginning, I introduce basic definitions to clarify about preliminaries. In the subsection "Preliminaries", initial definitions about SuperHyperGraphs and Neutrosophic SuperHyperGraph are deeply-introduced and in-depth-discussed. The elementary concepts are clarified and illustrated completely and sometimes review literature are applied to make sense about what's going to figure out about the upcoming sections. The main definitions and their clarifications alongside some results about new notions, SuperHyperConnectivities and Extreme SuperHyperConnectivities, are figured out in sections "SuperHyperConnectivities" and "Extreme SuperHyperConnectivities". In the sense of tackling on getting results and in order to make sense about continuing the research, the ideas of SuperHyperUniform and Extreme SuperHyperUniform are introduced and as their consequences, corresponded SuperHyperClasses are figured out to debut what's done in this section, titled "Results on SuperHyperClasses" and "Results on Extreme SuperHyperClasses". As going back to origin of the notions, there are some smart steps toward the common notions to extend the new notions in new frameworks, SuperHyperGraph and Neutrosophic SuperHyperGraph, in the sections "Results on SuperHyperClasses" and "Results on Extreme SuperHyperClasses". The starter research about the general SuperHyperRelations and as concluding and closing section of theoretical research are contained in the section "General Results". Some general SuperHyperRelations are fundamental and they are well-known as fundamental SuperHyperNotions as elicited and discussed in the sections, "General Results", " SuperHyperConnectivities", "Extreme SuperHyperConnectivities", "Results on SuperHyperClasses" and "Results on Extreme SuperHyperClasses". There are curious questions about what's done

about the SuperHyperNotions to make sense about excellency of this research and going to figure out the word "best" as the description and adjective for this research as presented in section, "SuperHyperConnectivities". The keyword of this research debut in the section "Applications in Cancer's Recognition" with two cases and subsections "Case 1: The Initial Steps Toward SuperHyperBipartite as SuperHyperModel" and "Case 2: The Increasing Steps Toward SuperHyperMultipartite as SuperHyperModel". In the section, "Open Problems", there are some scrutiny and discernment on what's done and what's happened in this research in the terms of "questions" and "problems" to make sense to figure out this research in featured style. The advantages and the limitations of this research alongside about what's done in this research to make sense and to get sense about what's figured out are included in the section, "Conclusion and Closing Remarks".

### CHAPTER 7

## **Preliminaries**

In this section, the basic material in this research, is referred to [Single Valued Neutrosophic Set](**Ref.**[**HG38**],Definition 2.2,p.2), [Neutrosophic Set](**Ref.**[**HG38**],Definition 2.1,p.1), [Neutrosophic SuperHyperGraph (NSHG)](**Ref.**[**HG38**],Definition 2.5,p.2), [Characterization of the Neutrosophic SuperHyperGraph (NSHG)](**Ref.**[**HG38**],Definition 2.7,p.3), [tnorm](**Ref.**[**HG38**], Definition 2.7, p.3), and [Characterization of the Neutrosophic SuperHyperGraph (NSHG)](**Ref.**[**HG38**],Definition 2.7,p.3), [Neutrosophic Strength of the Neutrosophic SuperHyperPaths] (**Ref.**[**HG38**],Definition 5.3,p.7), and [Different Neutrosophic Types of Neutrosophic SuperHyperEdges (NSHE)] (**Ref.**[**HG38**],Definition 5.4,p.7). Also, the new ideas and their clarifications are addressed to **Ref.**[**HG38**].

In this subsection, the basic material which is used in this research, is presented. Also, the new ideas and their clarifications are elicited.

Definition 7.0.1 (Neutrosophic Set). (Ref.[HG38], Definition 2.1, p.1).

Let X be a space of points (objects) with generic elements in X denoted by x; then the **Neutrosophic** set A (NS A) is an object having the form

$$A = \{ < x : T_A(x), I_A(x), F_A(x) >, x \in X \}$$

where the functions  $T, I, F : X \to ]^{-0}, 1^{+}[$  define respectively the a **truth-membership function**, an **indeterminacy-membership function**, and a **falsity-membership function** of the element  $x \in X$  to the set A with the condition

$$-0 \le T_A(x) + I_A(x) + F_A(x) \le 3^+.$$

The functions  $T_A(x)$ ,  $I_A(x)$  and  $F_A(x)$  are real standard or nonstandard subsets of  $]^{-0}$ ,  $1^+[$ .

**Definition 7.0.2** (Single Valued Neutrosophic Set). (Ref.[HG38],Definition 2.2,p.2). Let X be a space of points (objects) with generic elements in X denoted by x. A single valued Neutrosophic set A (SVNS A) is characterized by truth-membership function  $T_A(x)$ , an indeterminacy-membership function  $I_A(x)$ , and a falsity-membership function  $F_A(x)$ . For each point x in X,  $T_A(x)$ ,  $I_A(x)$ ,  $F_A(x) \in [0, 1]$ . A SVNS A can be written as

$$A = \{ < x : T_A(x), I_A(x), F_A(x) > , x \in X \}.$$

**Definition 7.0.3.** The degree of truth-membership, indeterminacy-membership and falsitymembership of the subset  $X \subset A$  of the single valued Neutrosophic set  $A = \{ < x :$   $T_A(x), I_A(x), F_A(x) >, x \in X \}:$ 

 $T_A(X) = \min[T_A(v_i), T_A(v_j)]_{v_i, v_j \in X},$   $I_A(X) = \min[I_A(v_i), I_A(v_j)]_{v_i, v_j \in X},$ and  $F_A(X) = \min[F_A(v_i), F_A(v_j)]_{v_i, v_j \in X}.$ 

**Definition 7.0.4.** The support of  $X \subset A$  of the single valued Neutrosophic set  $A = \{ < x : T_A(x), I_A(x), F_A(x) >, x \in X \}$ :

$$supp(X) = \{x \in X : T_A(x), I_A(x), F_A(x) > 0\}.$$

**Definition 7.0.5** (Neutrosophic SuperHyperGraph (NSHG)). (**Ref.**[HG38], Definition 2.5, p.2). Assume V' is a given set. a **Neutrosophic SuperHyperGraph** (NSHG) S is an ordered pair S = (V, E), where

(i)  $V = \{V_1, V_2, \dots, V_n\}$  a finite set of finite single valued Neutrosophic subsets of V';

(*ii*) 
$$V = \{(V_i, T_{V'}(V_i), I_{V'}(V_i), F_{V'}(V_i)) : T_{V'}(V_i), I_{V'}(V_i), F_{V'}(V_i) \ge 0\}, (i = 1, 2, ..., n);$$

- (*iii*)  $E = \{E_1, E_2, \dots, E_{n'}\}$  a finite set of finite single valued Neutrosophic subsets of V;
- $(iv) E = \{(E_{i'}, T'_V(E_{i'}), I'_V(E_{i'}), F'_V(E_{i'})): T'_V(E_{i'}), I'_V(E_{i'}), F'_V(E_{i'}) \ge 0\}, (i' = 1, 2, \dots, n');$
- (v)  $V_i \neq \emptyset$ ,  $(i = 1, 2, \dots, n);$
- (vi)  $E_{i'} \neq \emptyset, \ (i' = 1, 2, \dots, n');$
- (*vii*)  $\sum_{i} supp(V_i) = V, \ (i = 1, 2, ..., n);$
- (viii)  $\sum_{i'} supp(E_{i'}) = V, \ (i' = 1, 2, \dots, n');$
- (ix) and the following conditions hold:

$$T'_{V}(E_{i'}) \leq \min[T_{V'}(V_{i}), T_{V'}(V_{j})]_{V_{i}, V_{j} \in E_{i'}},$$
  

$$I'_{V}(E_{i'}) \leq \min[I_{V'}(V_{i}), I_{V'}(V_{j})]_{V_{i}, V_{j} \in E_{i'}},$$
  
and  $F'_{V}(E_{i'}) \leq \min[F_{V'}(V_{i}), F_{V'}(V_{j})]_{V_{i}, V_{j} \in E_{i'}}$ 

where i' = 1, 2, ..., n'.

Here the Neutrosophic SuperHyperEdges (NSHE)  $E_{j'}$  and the Neutrosophic SuperHyperVertices (NSHV)  $V_j$  are single valued Neutrosophic sets.  $T_{V'}(V_i)$ ,  $I_{V'}(V_i)$ , and  $F_{V'}(V_i)$  denote the degree of truth-membership, the degree of indeterminacy-membership and the degree of falsity-membership the Neutrosophic SuperHyperVertex (NSHV)  $V_i$  to the Neutrosophic SuperHyperVertex (NSHV) V.  $T'_V(E_{i'})$ ,  $T'_V(E_{i'})$ , and  $T'_V(E_{i'})$  denote the degree of truth-membership, the degree of indeterminacymembership and the degree of falsity-membership of the Neutrosophic SuperHyperEdge (NSHE)  $E_{i'}$ to the Neutrosophic SuperHyperEdge (NSHE) E. Thus, the ii'th element of the **incidence matrix** of Neutrosophic SuperHyperGraph (NSHG) are of the form  $(V_i, T'_V(E_{i'}), I'_V(E_{i'}), F'_V(E_{i'}))$ , the sets V and E are crisp sets.

**Definition 7.0.6** (Characterization of the Neutrosophic SuperHyperGraph (NSHG)). (**Ref.**[**HG38**], Definition 2.7, p.3).

Assume a Neutrosophic SuperHyperGraph (NSHG) S is an ordered pair S = (V, E). The Neutrosophic SuperHyperEdges (NSHE)  $E_{i'}$  and the Neutrosophic SuperHyperVertices (NSHV)  $V_i$  of Neutrosophic SuperHyperGraph (NSHG) S = (V, E) could be characterized as follow-up items.

- (i) If  $|V_i| = 1$ , then  $V_i$  is called **vertex**;
- (*ii*) if  $|V_i| \ge 1$ , then  $V_i$  is called **SuperVertex**;
- (*iii*) if for all  $V_i$ s are incident in  $E_{i'}$ ,  $|V_i| = 1$ , and  $|E_{i'}| = 2$ , then  $E_{i'}$  is called **edge**;
- (iv) if for all  $V_i$ s are incident in  $E_{i'}$ ,  $|V_i| = 1$ , and  $|E_{i'}| \ge 2$ , then  $E_{i'}$  is called **HyperEdge**;
- (v) if there's a  $V_i$  is incident in  $E_{i'}$  such that  $|V_i| \ge 1$ , and  $|E_{i'}| = 2$ , then  $E_{i'}$  is called **SuperEdge**;
- (vi) if there's a  $V_i$  is incident in  $E_{i'}$  such that  $|V_i| \ge 1$ , and  $|E_{i'}| \ge 2$ , then  $E_{i'}$  is called **SuperHyperEdge**.

If we choose different types of binary operations, then we could get hugely diverse types of general forms of Neutrosophic SuperHyperGraph (NSHG).

**Definition 7.0.7** (t-norm). (**Ref.**[**HG38**], Definition 2.7, p.3).

A binary operation  $\otimes : [0,1] \times [0,1] \to [0,1]$  is a *t*-norm if it satisfies the following for  $x, y, z, w \in [0,1]$ :

- (i)  $1 \otimes x = x;$
- (*ii*)  $x \otimes y = y \otimes x$ ;
- (*iii*)  $x \otimes (y \otimes z) = (x \otimes y) \otimes z;$
- (iv) If  $w \leq x$  and  $y \leq z$  then  $w \otimes y \leq x \otimes z$ .

**Definition 7.0.8.** The degree of truth-membership, indeterminacy-membership and falsitymembership of the subset  $X \subset A$  of the single valued Neutrosophic set  $A = \{ < x : T_A(x), I_A(x), F_A(x) > , x \in X \}$  (with respect to t-norm  $T_{norm}$ ):

$$T_A(X) = T_{norm}[T_A(v_i), T_A(v_j)]_{v_i, v_j \in X},$$
$$I_A(X) = T_{norm}[I_A(v_i), I_A(v_j)]_{v_i, v_j \in X},$$
and 
$$F_A(X) = T_{norm}[F_A(v_i), F_A(v_j)]_{v_i, v_j \in X}.$$

**Definition 7.0.9.** The support of  $X \subset A$  of the single valued Neutrosophic set  $A = \{ < x : T_A(x), I_A(x), F_A(x) >, x \in X \}$ :

$$supp(X) = \{x \in X : T_A(x), I_A(x), F_A(x) > 0\}.$$

**Definition 7.0.10.** (General Forms of Neutrosophic SuperHyperGraph (NSHG)). Assume V' is a given set. a **Neutrosophic SuperHyperGraph** (NSHG) S is an ordered pair S = (V, E), where

(i)  $V = \{V_1, V_2, \dots, V_n\}$  a finite set of finite single valued Neutrosophic subsets of V';

Henry Garrett · Independent Researcher · Department of Mathematics · DrHenryGarrett@gmail.com · Manhattan, NY, USA

- (*ii*)  $V = \{(V_i, T_{V'}(V_i), I_{V'}(V_i), F_{V'}(V_i)): T_{V'}(V_i), I_{V'}(V_i), F_{V'}(V_i) \ge 0\}, (i = 1, 2, ..., n);$
- (*iii*)  $E = \{E_1, E_2, \dots, E_{n'}\}$  a finite set of finite single valued Neutrosophic subsets of V;
- $(iv) E = \{ (E_{i'}, T'_V(E_{i'}), I'_V(E_{i'}), F'_V(E_{i'})) : T'_V(E_{i'}), I'_V(E_{i'}), F'_V(E_{i'}) \ge 0 \}, (i' = 1, 2, \dots, n');$
- (v)  $V_i \neq \emptyset$ ,  $(i = 1, 2, \dots, n);$
- (vi)  $E_{i'} \neq \emptyset, \ (i' = 1, 2, \dots, n');$
- (vii)  $\sum_{i} supp(V_i) = V, \ (i = 1, 2, ..., n);$
- (viii)  $\sum_{i'} supp(E_{i'}) = V, \ (i' = 1, 2, \dots, n').$

Here the Neutrosophic SuperHyperEdges (NSHE)  $E_{j'}$  and the Neutrosophic SuperHyperVertices (NSHV)  $V_j$  are single valued Neutrosophic sets.  $T_{V'}(V_i)$ ,  $I_{V'}(V_i)$ , and  $F_{V'}(V_i)$  denote the degree of truth-membership, the degree of indeterminacy-membership and the degree of falsity-membership the Neutrosophic SuperHyperVertex (NSHV)  $V_i$  to the Neutrosophic SuperHyperVertex (NSHV) V.  $T'_V(E_{i'})$ ,  $T'_V(E_{i'})$ , and  $T'_V(E_{i'})$  denote the degree of truth-membership, the degree of indeterminacymembership and the degree of falsity-membership of the Neutrosophic SuperHyperEdge (NSHE)  $E_{i'}$ to the Neutrosophic SuperHyperEdge (NSHE) E. Thus, the *ii*'th element of the **incidence matrix** of Neutrosophic SuperHyperGraph (NSHG) are of the form  $(V_i, T'_V(E_{i'}), I'_V(E_{i'}), F'_V(E_{i'}))$ , the sets V and E are crisp sets.

**Definition 7.0.11** (Characterization of the Neutrosophic SuperHyperGraph (NSHG)). (Ref.[HG38], Definition 2.7, p.3).

Assume a Neutrosophic SuperHyperGraph (NSHG) S is an ordered pair S = (V, E). The Neutrosophic SuperHyperEdges (NSHE)  $E_{i'}$  and the Neutrosophic SuperHyperVertices (NSHV)  $V_i$  of Neutrosophic SuperHyperGraph (NSHG) S = (V, E) could be characterized as follow-up items.

- (i) If  $|V_i| = 1$ , then  $V_i$  is called **vertex**;
- (*ii*) if  $|V_i| \ge 1$ , then  $V_i$  is called **SuperVertex**;
- (*iii*) if for all  $V_i$ s are incident in  $E_{i'}$ ,  $|V_i| = 1$ , and  $|E_{i'}| = 2$ , then  $E_{i'}$  is called **edge**;
- (*iv*) if for all  $V_i$ s are incident in  $E_{i'}$ ,  $|V_i| = 1$ , and  $|E_{i'}| \ge 2$ , then  $E_{i'}$  is called **HyperEdge**;
- (v) if there's a  $V_i$  is incident in  $E_{i'}$  such that  $|V_i| \ge 1$ , and  $|E_{i'}| = 2$ , then  $E_{i'}$  is called **SuperEdge**;
- (vi) if there's a  $V_i$  is incident in  $E_{i'}$  such that  $|V_i| \ge 1$ , and  $|E_{i'}| \ge 2$ , then  $E_{i'}$  is called **SuperHyperEdge**.

This SuperHyperModel is too messy and too dense. Thus there's a need to have some restrictions and conditions on SuperHyperGraph. The special case of this SuperHyperGraph makes the patterns and regularities.

**Definition 7.0.12.** A graph is **SuperHyperUniform** if it's SuperHyperGraph and the number of elements of SuperHyperEdges are the same.

To get more visions on SuperHyperUniform, the some SuperHyperClasses are introduced. It makes to have SuperHyperUniform more understandable.

**Definition 7.0.13.** Assume a Neutrosophic SuperHyperGraph. There are some SuperHyperClasses as follows.

- (i). It's **Neutrosophic SuperHyperPath** if it's only one SuperVertex as intersection amid two given SuperHyperEdges with two exceptions;
- (ii). it's SuperHyperCycle if it's only one SuperVertex as intersection amid two given SuperHyperEdges;
- (iii). it's **SuperHyperStar** it's only one SuperVertex as intersection amid all SuperHyperEdges;
- (iv). it's SuperHyperBipartite it's only one SuperVertex as intersection amid two given SuperHyperEdges and these SuperVertices, forming two separate sets, has no SuperHyperEdge in common;
- (v). it's **SuperHyperMultiPartite** it's only one SuperVertex as intersection amid two given SuperHyperEdges and these SuperVertices, forming multi separate sets, has no SuperHyperEdge in common;
- (vi). it's SuperHyperWheel if it's only one SuperVertex as intersection amid two given SuperHyperEdges and one SuperVertex has one SuperHyperEdge with any common SuperVertex.

**Definition 7.0.14.** Let an ordered pair S = (V, E) be a Neutrosophic SuperHyperGraph (NSHG) S. Then a sequence of Neutrosophic SuperHyperVertices (NSHV) and Neutrosophic SuperHyperEdges (NSHE)

$$V_1, E_1, V_2, E_2, V_3, \ldots, V_{s-1}, E_{s-1}, V_s$$

is called a **Neutrosophic Neutrosophic SuperHyperPath** (NSHP) from Neutrosophic SuperHyperVertex (NSHV)  $V_1$  to Neutrosophic SuperHyperVertex (NSHV)  $V_s$  if either of following conditions hold:

- (*i*)  $V_i, V_{i+1} \in E_{i'};$
- (*ii*) there's a vertex  $v_i \in V_i$  such that  $v_i, V_{i+1} \in E_{i'}$ ;
- (*iii*) there's a SuperVertex  $V'_i \in V_i$  such that  $V'_i, V_{i+1} \in E_{i'}$ ;
- (iv) there's a vertex  $v_{i+1} \in V_{i+1}$  such that  $V_i, v_{i+1} \in E_{i'}$ ;
- (v) there's a SuperVertex  $V'_{i+1} \in V_{i+1}$  such that  $V_i, V'_{i+1} \in E_{i'}$ ;
- (vi) there are a vertex  $v_i \in V_i$  and a vertex  $v_{i+1} \in V_{i+1}$  such that  $v_i, v_{i+1} \in E_{i'}$ ;
- (vii) there are a vertex  $v_i \in V_i$  and a SuperVertex  $V'_{i+1} \in V_{i+1}$  such that  $v_i, V'_{i+1} \in E_{i'}$ ;
- (viii) there are a SuperVertex  $V'_i \in V_i$  and a vertex  $v_{i+1} \in V_{i+1}$  such that  $V'_i, v_{i+1} \in E_{i'}$ ;
- (ix) there are a SuperVertex  $V'_i \in V_i$  and a SuperVertex  $V'_{i+1} \in V_{i+1}$  such that  $V'_i, V'_{i+1} \in E_{i'}$ .

**Definition 7.0.15.** (Characterization of the Neutrosophic Neutrosophic SuperHyperPaths). Assume a Neutrosophic SuperHyperGraph (NSHG) S is an ordered pair S = (V, E). a Neutrosophic Neutrosophic SuperHyperPath (NSHP) from Neutrosophic SuperHyperVertex (NSHV)  $V_1$  to Neutrosophic SuperHyperVertex (NSHV)  $V_s$  is sequence of Neutrosophic SuperHyperVertices (NSHV) and Neutrosophic SuperHyperEdges (NSHE)

$$V_1, E_1, V_2, E_2, V_3, \ldots, V_{s-1}, E_{s-1}, V_s,$$

could be characterized as follow-up items.

- (i) If for all  $V_i, E_{j'}, |V_i| = 1, |E_{j'}| = 2$ , then NSHP is called **path**;
- (*ii*) if for all  $E_{j'}$ ,  $|E_{j'}| = 2$ , and there's  $V_i$ ,  $|V_i| \ge 1$ , then NSHP is called **SuperPath**;
- (*iii*) if for all  $V_i, E_{j'}, |V_i| = 1, |E_{j'}| \ge 2$ , then NSHP is called **HyperPath**;
- (*iv*) if there are  $V_i, E_{j'}, |V_i| \ge 1, |E_{j'}| \ge 2$ , then NSHP is called **Neutrosophic SuperHyperPath**.

**Definition 7.0.16** (Neutrosophic Strength of the Neutrosophic SuperHyperPaths). (**Ref.**[**HG38**], Definition 5.3, p.7).

Assume a Neutrosophic SuperHyperGraph (NSHG) S is an ordered pair S = (V, E). A Neutrosophic SuperHyperPath (NSHP) from Neutrosophic SuperHyperVertex (NSHV)  $V_1$  to Neutrosophic SuperHyperVertex (NSHV)  $V_s$  is sequence of Neutrosophic SuperHyperVertices (NSHV) and Neutrosophic SuperHyperEdges (NSHE)

$$V_1, E_1, V_2, E_2, V_3, \ldots, V_{s-1}, E_{s-1}, V_s,$$

have

- (i) Neutrosophic t-strength  $(\min\{T(V_i)\}, m, n)_{i=1}^s;$
- (*ii*) Neutrosophic i-strength  $(m, \min\{I(V_i)\}, n)_{i=1}^s$ ;
- (*iii*) Neutrosophic f-strength  $(m, n, \min\{F(V_i)\})_{i=1}^s$ ;
- (*iv*) Neutrosophic strength  $(\min\{T(V_i)\}, \min\{I(V_i)\}, \min\{F(V_i)\})_{i=1}^s$ .

**Definition 7.0.17** (Different Neutrosophic Types of Neutrosophic SuperHyperEdges (NSHE)). (**Ref.**[**HG38**], Definition 5.4, p.7).

Assume a Neutrosophic SuperHyperGraph (NSHG) S is an ordered pair S = (V, E). Consider a Neutrosophic SuperHyperEdge (NSHE)  $E = \{V_1, V_2, \ldots, V_s\}$ . Then E is called

- (*ix*) Neutrosophic t-connective if  $T(E) \ge$  maximum number of Neutrosophic t-strength of SuperHyperPath (NSHP) from Neutrosophic SuperHyperVertex (NSHV)  $V_i$  to Neutrosophic SuperHyperVertex (NSHV)  $V_j$  where  $1 \le i, j \le s$ ;
- (x) Neutrosophic i-connective if  $I(E) \ge$  maximum number of Neutrosophic i-strength of SuperHyperPath (NSHP) from Neutrosophic SuperHyperVertex (NSHV)  $V_i$  to Neutrosophic SuperHyperVertex (NSHV)  $V_j$  where  $1 \le i, j \le s$ ;

- (xi) Neutrosophic f-connective if  $F(E) \ge$  maximum number of Neutrosophic f-strength of SuperHyperPath (NSHP) from Neutrosophic SuperHyperVertex (NSHV)  $V_i$  to Neutrosophic SuperHyperVertex (NSHV)  $V_j$  where  $1 \le i, j \le s$ ;
- (xii) Neutrosophic connective if  $(T(E), I(E), F(E)) \ge$  maximum number of Neutrosophic strength of SuperHyperPath (NSHP) from Neutrosophic SuperHyperVertex (NSHV)  $V_i$  to Neutrosophic SuperHyperVertex (NSHV)  $V_j$  where  $1 \le i, j \le s$ .

**Definition 7.0.18.** ((Neutrosophic) SuperHyperConnectivities).

Assume a Neutrosophic SuperHyperGraph (NSHG) S is an ordered pair S = (V, E). Consider a Neutrosophic SuperHyperEdge (NSHE)  $E = \{V_1, V_2, \dots, V_s\}$ . Then E is called

- (i) an Extreme SuperHyperConnectivities if it's either of Neutrosophic t-connective, Neutrosophic i-connective, Neutrosophic f-connective, and Neutrosophic connective and C(NSHG) for an Extreme SuperHyperGraph NSHG : (V, E) is the maximum Extreme cardinality of an Extreme SuperHyperSet S of high Extreme cardinality of the Extreme SuperHyperEdges in the consecutive Extreme sequence of Extreme SuperHyperEdges and Extreme SuperHyperVertices such that they form the Extreme SuperHyperConnectivities;
- (*ii*) a **Neutrosophic SuperHyperConnectivities** if it's either of Neutrosophic t-connective, Neutrosophic i-connective, Neutrosophic f-connective, and Neutrosophic connective and C(NSHG) for a Neutrosophic SuperHyperGraph NSHG : (V, E) is the maximum Neutrosophic cardinality of the Neutrosophic SuperHyperEdges of a Neutrosophic SuperHyperSet S of high Neutrosophic cardinality consecutive Neutrosophic SuperHyperEdges and Neutrosophic SuperHyperVertices such that they form the Neutrosophic SuperHyperConnectivities;
- (*iii*) an **Extreme SuperHyperConnectivities SuperHyperPolynomial** if it's either of Neutrosophic t-connective, Neutrosophic i-connective, Neutrosophic f-connective, and Neutrosophic connective and C(NSHG) for an Extreme SuperHyperGraph NSHG : (V, E) is the Extreme SuperHyperPolynomial contains the Extreme coefficients defined as the Extreme number of the maximum Extreme cardinality of the Extreme SuperHyperEdges of an Extreme SuperHyperSet S of high Extreme cardinality consecutive Extreme SuperHyperEdges and Extreme SuperHyperVertices such that they form the Extreme SuperHyperConnectivities; and the Extreme power is corresponded to its Extreme coefficient;
- (iv) a Neutrosophic SuperHyperConnectivities SuperHyperPolynomial if it's either of Neutrosophic t-connective, Neutrosophic i-connective, Neutrosophic f-connective, and Neutrosophic connective and C(NSHG) for a Neutrosophic SuperHyperGraph NSHG : (V, E)is the Neutrosophic SuperHyperPolynomial contains the Neutrosophic coefficients defined as the Neutrosophic number of the maximum Neutrosophic cardinality of the Neutrosophic SuperHyperEdges of a Neutrosophic SuperHyperSet S of high Neutrosophic cardinality consecutive Neutrosophic SuperHyperEdges and Neutrosophic SuperHyperVertices such that they form the Neutrosophic SuperHyperConnectivities; and the Neutrosophic power is corresponded to its Neutrosophic coefficient;
- (v) an **Extreme R-SuperHyperConnectivities** if it's either of Neutrosophic t-connective, Neutrosophic i-connective, Neutrosophic f-connective, and Neutrosophic connective and C(NSHG) for an Extreme SuperHyperGraph NSHG: (V, E) is the maximum Extreme cardinality of an Extreme SuperHyperSet S of high Extreme cardinality of the Extreme

SuperHyperVertices in the consecutive Extreme sequence of Extreme SuperHyperEdges and Extreme SuperHyperVertices such that they form the Extreme SuperHyperConnectivities;

- (vi) a **Neutrosophic R-SuperHyperConnectivities** if it's either of Neutrosophic t-connective, Neutrosophic i-connective, Neutrosophic f-connective, and Neutrosophic connective and C(NSHG) for a Neutrosophic SuperHyperGraph NSHG : (V, E) is the maximum Neutrosophic cardinality of the Neutrosophic SuperHyperVertices of a Neutrosophic SuperHyperSet S of high Neutrosophic cardinality consecutive Neutrosophic SuperHyperEdges and Neutrosophic SuperHyperVertices such that they form the Neutrosophic SuperHyperConnectivities;
- (vii) an Extreme R-SuperHyperConnectivities SuperHyperPolynomial if it's either of Neutrosophic t-connective, Neutrosophic i-connective, Neutrosophic f-connective, and Neutrosophic connective and C(NSHG) for an Extreme SuperHyperGraph NSHG : (V, E) is the Extreme SuperHyperPolynomial contains the Extreme coefficients defined as the Extreme number of the maximum Extreme cardinality of the Extreme SuperHyperVertices of an Extreme SuperHyperSet S of high Extreme cardinality consecutive Extreme SuperHyperEdges and Extreme SuperHyperVertices such that they form the Extreme SuperHyperConnectivities; and the Extreme power is corresponded to its Extreme coefficient;
- (viii) a Neutrosophic SuperHyperConnectivities SuperHyperPolynomial if it's either of Neutrosophic t-connective, Neutrosophic i-connective, Neutrosophic f-connective, and Neutrosophic connective and C(NSHG) for a Neutrosophic SuperHyperGraph NSHG : (V, E)is the Neutrosophic SuperHyperPolynomial contains the Neutrosophic coefficients defined as the Neutrosophic number of the maximum Neutrosophic cardinality of the Neutrosophic SuperHyperVertices of a Neutrosophic SuperHyperSet S of high Neutrosophic cardinality consecutive Neutrosophic SuperHyperEdges and Neutrosophic SuperHyperVertices such that they form the Neutrosophic SuperHyperConnectivities; and the Neutrosophic power is corresponded to its Neutrosophic coefficient.

**Definition 7.0.19.** ((Extreme/Neutrosophic) $\delta$ -SuperHyperConnectivities). Assume a SuperHyperGraph. Then

(i) an  $\delta$ -SuperHyperConnectivities is a Neutrosophic kind of Neutrosophic SuperHyperConnectivities such that either of the following expressions hold for the Neutrosophic cardinalities of SuperHyperNeighbors of  $s \in S$ :

$$|S \cap N(s)| > |S \cap (V \setminus N(s))| + \delta;$$
  
$$|S \cap N(s)| < |S \cap (V \setminus N(s))| + \delta.$$

The Expression (7.1), holds if S is an  $\delta$ -SuperHyperOffensive. And the Expression (7.1), holds if S is an  $\delta$ -SuperHyperDefensive;

(*ii*) a **Neutrosophic**  $\delta$ -**SuperHyperConnectivities** is a Neutrosophic kind of Neutrosophic SuperHyperConnectivities such that either of the following Neutrosophic expressions hold for the Neutrosophic cardinalities of SuperHyperNeighbors of  $s \in S$ :

> $|S \cap N(s)|_{Neutrosophic} > |S \cap (V \setminus N(s))|_{Neutrosophic} + \delta;$  $|S \cap N(s)|_{Neutrosophic} < |S \cap (V \setminus N(s))|_{Neutrosophic} + \delta.$

Henry Garrett  $\,\cdot\,$  Independent Researcher  $\,\cdot\,$  Department of Mathematics  $\,\cdot\,$  DrHenryGarrett@gmail.com  $\,\cdot\,$  Manhattan, NY, USA

Table 7.1: The Values of Vertices, SuperVertices, Edges, HyperEdges, and SuperHyperEdges Belong to The Neutrosophic SuperHyperGraph Mentioned in the Definition (7.0.22)

| The Values of The Vertices        | The Number of Position in Alphabet  |
|-----------------------------------|-------------------------------------|
| The Values of The SuperVertices   | The maximum Values of Its Vertices  |
| The Values of The Edges           | The maximum Values of Its Vertices  |
| The Values of The HyperEdges      | The maximum Values of Its Vertices  |
| The Values of The SuperHyperEdges | The maximum Values of Its Endpoints |

Table 7.2: The Values of Vertices, SuperVertices, Edges, HyperEdges, and SuperHyperEdges Belong to The Neutrosophic SuperHyperGraph, Mentioned in the Definition (7.0.21)

| The Values of The Vertices        | The Number of Position in Alphabet  |
|-----------------------------------|-------------------------------------|
| The Values of The SuperVertices   | The maximum Values of Its Vertices  |
| The Values of The Edges           | The maximum Values of Its Vertices  |
| The Values of The HyperEdges      | The maximum Values of Its Vertices  |
| The Values of The SuperHyperEdges | The maximum Values of Its Endpoints |

The Expression (7.1), holds if S is a **Neutrosophic**  $\delta$ -SuperHyperOffensive. And the Expression (7.1), holds if S is a **Neutrosophic**  $\delta$ -SuperHyperDefensive.

For the sake of having a Neutrosophic SuperHyperConnectivities, there's a need to "**redefine**" the notion of "Neutrosophic SuperHyperGraph". The SuperHyperVertices and the SuperHyperEdges are assigned by the labels from the letters of the alphabets. In this procedure, there's the usage of the position of labels to assign to the values.

**Definition 7.0.20.** Assume a Neutrosophic SuperHyperGraph. It's redefined **Neutrosophic SuperHyperGraph** if the Table (7.1) holds.

It's useful to define a "Neutrosophic" version of SuperHyperClasses. Since there's more ways to get Neutrosophic type-results to make a Neutrosophic more understandable.

**Definition 7.0.21.** Assume a Neutrosophic SuperHyperGraph. There are some Neutrosophic SuperHyperClasses if the Table (7.2) holds. Thus Neutrosophic SuperHyperPath , SuperHyperConnectivities, SuperHyperStar, SuperHyperBipartite, SuperHyperMultiPartite, and SuperHyperWheel, are Neutrosophic SuperHyperPath , Neutrosophic SuperHyperConnectivities, Neutrosophic SuperHyperStar, Neutrosophic SuperHyperBipartite, Neutrosophic SuperBipartite, Neut

It's useful to define a "Neutrosophic" version of a Neutrosophic SuperHyperConnectivities. Since there's more ways to get type-results to make a Neutrosophic SuperHyperConnectivities more Neutrosophicly understandable.

For the sake of having a Neutrosophic SuperHyperConnectivities, there's a need to "**redefine**" the Neutrosophic notion of "Neutrosophic SuperHyperConnectivities". The SuperHyperVertices and the SuperHyperEdges are assigned by the labels from the letters of the alphabets. In this procedure, there's the usage of the position of labels to assign to the values.

Henry Garrett $\,\cdot\,$ Independent Researcher $\,\cdot\,$ Department of Mathematics $\,\cdot\,$ Dr<br/>HenryGarrett@gmail.com $\,\cdot\,$ Manhattan, NY, USA

Table 7.3: The Values of Vertices, SuperVertices, Edges, HyperEdges, and SuperHyperEdges Belong to The Neutrosophic SuperHyperGraph Mentioned in the Definition (7.0.22)

| The Values of The Vertices        | The Number of Position in Alphabet  |
|-----------------------------------|-------------------------------------|
| The Values of The SuperVertices   | The maximum Values of Its Vertices  |
| The Values of The Edges           | The maximum Values of Its Vertices  |
| The Values of The HyperEdges      | The maximum Values of Its Vertices  |
| The Values of The SuperHyperEdges | The maximum Values of Its Endpoints |

**Definition 7.0.22.** Assume a SuperHyperConnectivities. It's redefined a **Neutrosophic SuperHyperConnectivities** if the Table (7.3) holds.

Henry Garrett $\,\cdot\,$ Independent Researcher $\,\cdot\,$ Department of Mathematics $\,\cdot\,$ Dr<br/>HenryGarrett@gmail.com $\,\cdot\,$ Manhattan, NY, USA

### CHAPTER 8

# **Extreme SuperHyperConnectivities**

The Extreme SuperHyperNotion, namely, Extreme SuperHyperConnectivities, is up. Thus the non-obvious Extreme SuperHyperConnectivities, S is up. The Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities, is: S is an Extreme SuperHyperSet, is: S does includes only more than two Extreme SuperHyperVertices in a connected Neutrosophic SuperHyperGraph ESHG: (V, E). It's interesting to mention that the Extreme type-SuperHyperSet called the

#### "Extreme SuperHyperConnectivities"

amid those obvious non-obvious simple non-simple Extreme type-SuperHyperSets called the

#### SuperHyperConnectivities,

is only and only S in a connected Neutrosophic SuperHyperGraph ESHG: (V, E) with a illustrated SuperHyperModeling. But all only obvious[non-obvious] simple[non-simple] Extreme type-SuperHyperSets of the obvious[non-obvious] simple[non-simple] Extreme SuperHyperConnectivities amid those type-SuperHyperSets, are S. A connected Neutrosophic SuperHyperGraph ESHG: (V, E) as a linearly-over-packed SuperHyperModel is featured on the Figures.

**Example 8.0.1.** Assume the SuperHyperGraphs in the Figures (8.1), (8.2), (8.3), (8.4), (8.5), (8.6), (8.7), (8.8), (8.9), (8.10), (8.11), (8.12), (8.13), (8.14), (8.15), (8.16), (8.17), (8.18), (8.19), and (8.20).

• On the Figure (8.1), the Extreme SuperHyperNotion, namely, Extreme SuperHyperConnectivities, is up.  $E_1$  and  $E_3$  are some empty Extreme SuperHyperEdges but  $E_2$  is a loop Extreme SuperHyperEdge and  $E_4$  is an Extreme SuperHyperEdge. Thus in the terms of Extreme SuperHyperNeighbor, there's only one Extreme SuperHyperEdge, namely,  $E_4$ . The Extreme SuperHyperVertex,  $V_3$  is Extreme isolated means that there's no Extreme SuperHyperEdge has it as an Extreme endpoint. Thus the Extreme SuperHyperVertex,  $V_3$ , is excluded in every given Extreme SuperHyperConnectivities.

$$\begin{split} \mathcal{C}(NSHG) &= \{E_4\} \text{ is an Extreme SuperHyperConnectivities.} \\ \mathcal{C}(NSHG) &= z \text{ is an Extreme SuperHyperConnectivities SuperHyperPolynomial.} \\ \mathcal{C}(NSHG) &= \{V_i\}_{i\neq 3} \text{ is an Extreme R-SuperHyperConnectivities.} \\ \mathcal{C}(NSHG) &= 3z \text{ is an Extreme R-SuperHyperConnectivities SuperHyperPolynomial.} \end{split}$$

Henry Garrett  $\,\cdot\,$  Independent Researcher  $\,\cdot\,$  Department of Mathematics  $\,\cdot\,$  DrHenryGarrett@gmail.com  $\,\cdot\,$  Manhattan, NY, USA

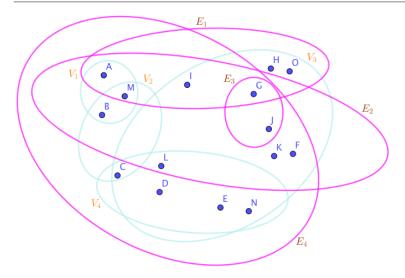


Figure 8.1: The Neutrosophic SuperHyperGraphs Associated to the Extreme Notions of Extreme SuperHyperConnectivities in the Extreme Example (8.0.1)

- On the Figure (8.2), the Extreme SuperHyperNotion, namely, Extreme SuperHyperConnectivities, is up.  $E_1, E_2$  and  $E_3$  are some empty Extreme SuperHyperEdges but  $E_4$  is an Extreme SuperHyperEdge. Thus in the terms of Extreme SuperHyperNeighbor, there's only one Extreme SuperHyperEdge, namely,  $E_4$ . The Extreme SuperHyperVertex,  $V_3$  is Extreme isolated means that there's no Extreme SuperHyperEdge has it as an Extreme endpoint. Thus the Extreme SuperHyperVertex,  $V_3$ , is excluded in every given Extreme SuperHyperConnectivities.
  - $\mathcal{C}(NSHG) = \{E_4\}$  is an Extreme SuperHyperConnectivities.
  - $\mathcal{C}(NSHG) = z$  is an Extreme SuperHyperConnectivities SuperHyperPolynomial.
  - $\mathcal{C}(NSHG) = \{V_i\}_{i \neq 3}$  is an Extreme R-SuperHyperConnectivities.
  - $\mathcal{C}(NSHG) = 3z$  is an Extreme R-SuperHyperConnectivities SuperHyperPolynomial.
- On the Figure (8.3), the Extreme SuperHyperNotion, namely, Extreme SuperHyperConnectivities, is up.  $E_1$  and  $E_3$  are some empty Extreme SuperHyperEdges but  $E_2$  is a loop Extreme SuperHyperEdge and  $E_4$  is an Extreme SuperHyperEdge. Thus in the terms of Extreme SuperHyperNeighbor, there's only one Extreme SuperHyperEdge, namely,  $E_4$ . The Extreme SuperHyperVertex,  $V_3$  is Extreme isolated means that there's no Extreme SuperHyperEdge has it as an Extreme endpoint. Thus the Extreme SuperHyperVertex,  $V_3$ , is excluded in every given Extreme SuperHyperConnectivities.  $\{V_4, E_4, V_1, E_2, V_1\}$  is the optimal Extreme SuperHyperConnectivities since the  $E_2$  is a loop Extreme SuperHyperEdge, then it could be used twice in the consecutive sequence but the usages of the Extreme SuperHyperEdges are once in every consecutive sequence with the exceptions on the loop Extreme SuperHyperEdges. It's with interesting to mention that there's no restrictions and no conditions by the times of the usages of Extreme SuperHyperVertices since the restrictions and the

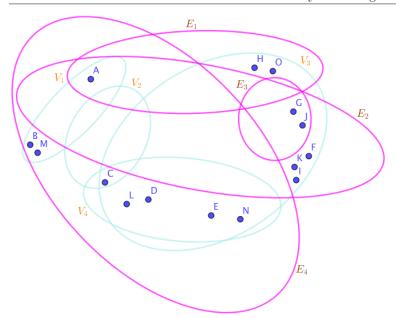


Figure 8.2: The Neutrosophic SuperHyperGraphs Associated to the Extreme Notions of Extreme SuperHyperConnectivities in the Extreme Example (8.0.1)

conditions by the times of the usages of Extreme SuperHyperEdges imply the times of the usages of Extreme SuperHyperVertices is once in any given consecutive sequence with the exceptions on the loop Extreme SuperHyperEdges that only imply the times of the usages of Extreme SuperHyperVertices is twice in any given consecutive sequence. To sum them up, in every consecutive sequence, the times of the usages of Extreme SuperHyperVertices is once if they've not been corresponded to the loop Extreme SuperHyperEdges, the times of the usages of Extreme SuperHyperVertices is twice if they've been corresponded to the loop Extreme SuperHyperEdges, and the times of the usages of Extreme SuperHyperEdges is once if either they've been corresponded to the loop Extreme SuperHyperEdges or not.

 $\begin{aligned} \mathcal{C}(NSHG) &= \{E_4, E_2\} \text{ is an Extreme SuperHyperConnectivities.} \\ \mathcal{C}_{\text{Extreme SuperHyperConnectivities SuperHyperPolynomial}(NSHG) &= 2z^2. \\ \mathcal{C}(NSHG) &= \{V_i, V_1, V_i\}_{i \neq 3} \text{ is an Extreme R-SuperHyperConnectivities.} \\ \mathcal{C}_{\text{Extreme R-SuperHyperConnectivities SuperHyperPolynomial}(NSHG) &= 3z^3. \end{aligned}$ 

• On the Figure (8.4), the SuperHyperNotion, namely, a SuperHyperConnectivities, is up. There's no empty SuperHyperEdge but  $E_3$  are a loop SuperHyperEdge on  $\{F\}$ , and there are some SuperHyperEdges, namely,  $E_1$  on  $\{H, V_1, V_3\}$ , alongside  $E_2$  on  $\{O, H, V_4, V_3\}$  and

Henry Garrett  $\,\cdot\,$  Independent Researcher  $\,\cdot\,$  Department of Mathematics  $\,\cdot\,$  DrHenryGarrett@gmail.com  $\,\cdot\,$  Manhattan, NY, USA

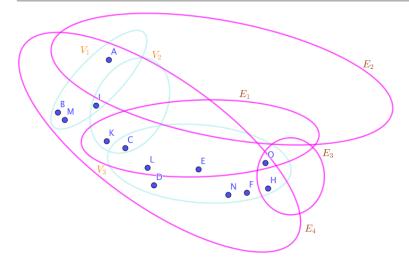


Figure 8.3: The Neutrosophic SuperHyperGraphs Associated to the Extreme Notions of Extreme SuperHyperConnectivities in the Extreme Example (8.0.1)

 $E_4, E_5$  on  $\{N, V_1, V_2, V_3, F\}$ .

 $\mathcal{C}(NSHG) = \{V_3, E_1, V_4, E_2, H, E_1, V_3\}$  is an Extreme SuperHyperConnectivities.

 $\mathcal{C}(NSHG) = 4z^3$  is an Extreme SuperHyperConnectivities SuperHyperPolynomial.

 $\mathcal{C}(NSHG) = \{V_3, V_4, H, V_3\}$  is an Extreme R-SuperHyperConnectivities.

 $\mathcal{C}(NSHG) = 4z^4$  is an Extreme R-SuperHyperConnectivities SuperHyperPolynomial.

The following Extreme SuperHyperSet of Extreme SuperHyperEdges[SuperHyperVertices] is the Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities. The Extreme SuperHyperSet of Extreme SuperHyperEdges[SuperHyperVertices],

 $\mathcal{C}(NSHG) = \{V_3, E_1, V_4, E_2, H, E_1, V_3\}$  is an Extreme SuperHyperConnectivities.

 $\mathcal{C}(NSHG) = 4z^3$  is an Extreme SuperHyperConnectivities SuperHyperPolynomial.

 $\mathcal{C}(NSHG) = \{V_3, V_4, H, V_3\}$  is an Extreme R-SuperHyperConnectivities.

 $\mathcal{C}(NSHG) = 4z^4$  is an Extreme R-SuperHyperConnectivities SuperHyperPolynomial.

Is the Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities. The Extreme SuperHyperSet of the Extreme SuperHyperEdges[SuperHyperVertices],

 $\mathcal{C}(NSHG) = \{V_3, E_1, V_4, E_2, H, E_1, V_3\}$  is an Extreme SuperHyperConnectivities.

 $\mathcal{C}(NSHG) = 4z^3$  is an Extreme SuperHyperConnectivities SuperHyperPolynomial.

 $\mathcal{C}(NSHG) = \{V_3, V_4, H, V_3\}$  is an Extreme R-SuperHyperConnectivities.

 $\mathcal{C}(NSHG) = 4z^4$  is an Extreme R-SuperHyperConnectivities SuperHyperPolynomial.

Is a **Extreme SuperHyperConnectivities** C(ESHG) for an Neutrosophic SuperHyper-Graph ESHG : (V, E) is an Extreme type-SuperHyperSet with the maximum Extreme cardinality

Henry Garrett  $\,\cdot\,$  Independent Researcher  $\,\cdot\,$  Department of Mathematics  $\,\cdot\,$  DrHenryGarrett@gmail.com  $\,\cdot\,$  Manhattan, NY, USA

of an Extreme SuperHyperSet S of Extreme SuperHyperEdges[SuperHyperVertices] such that there's only one Extreme consecutive sequence of the Extreme SuperHyperVertices and the Extreme SuperHyperEdges form only one Extreme SuperHyperConnectivities but it has either all Extreme SuperHyperEdges or all Extreme SuperHyperVertices and in this case, it has all Extreme SuperHyperEdges. There's no Extreme SuperHyperConnectivities such that it has all Extreme SuperHyperVertices. There are <u>less than</u> only <u>four</u> Extreme SuperHyperVertices <u>inside</u> the intended Extreme SuperHyperSet. Thus the non-obvious Extreme SuperHyperConnectivities isn't up. The obvious simple Extreme type-SuperHyperSet called the Extreme SuperHyperVertices. But the Extreme SuperHyperSet of the Extreme SuperHyperVertices, But the Extreme SuperHyperSet of the Extreme SuperHyperVertices],

 $\mathcal{C}(NSHG) = \{V_3, E_1, V_4, E_2, H, E_1, V_3\}$  is an Extreme SuperHyperConnectivities.

 $\mathcal{C}(NSHG) = 4z^3$  is an Extreme SuperHyperConnectivities SuperHyperPolynomial.

 $\mathcal{C}(NSHG) = \{V_3, V_4, H, V_3\}$  is an Extreme R-SuperHyperConnectivities.

 $\mathcal{C}(NSHG) = 4z^4$  is an Extreme R-SuperHyperConnectivities SuperHyperPolynomial.

Doesn't have less than four SuperHyperVertices <u>inside</u> the intended Extreme SuperHyperSet. Thus the non-obvious simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities <u>isn't</u> up. To sum them up, the Extreme SuperHyperSet of the Extreme SuperHyperEdges[SuperHyperVertices],

 $C(NSHG) = \{V_3, E_1, V_4, E_2, H, E_1, V_3\}$  is an Extreme SuperHyperConnectivities.  $C(NSHG) = 4z^3$  is an Extreme SuperHyperConnectivities SuperHyperPolynomial.  $C(NSHG) = \{V_3, V_4, H, V_3\}$  is an Extreme R-SuperHyperConnectivities.  $C(NSHG) = 4z^4$  is an Extreme R-SuperHyperConnectivities SuperHyperPolynomial.

 $\underline{Isn't}$  the non-obvious simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities. Since the Extreme SuperHyperSet of the Extreme SuperHyperEdges[SuperHyperVertices],

 $\mathcal{C}(NSHG) = \{V_3, E_1, V_4, E_2, H, E_1, V_3\}$  is an Extreme SuperHyperConnectivities.

 $\mathcal{C}(NSHG) = 4z^3$  is an Extreme SuperHyperConnectivities SuperHyperPolynomial.

 $\mathcal{C}(NSHG) = \{V_3, V_4, H, V_3\}$  is an Extreme R-SuperHyperConnectivities.

 $\mathcal{C}(NSHG) = 4z^4$  is an Extreme R-SuperHyperConnectivities SuperHyperPolynomial.

Is an Extreme SuperHyperConnectivities C(ESHG) for a Neutrosophic SuperHyper-Graph ESHG : (V, E) is the Extreme SuperHyperSet S of Extreme SuperHyperVertices[SuperHyperEdges] such that there's only one Extreme consecutive Extreme sequence of Extreme SuperHyperVertices and Extreme SuperHyperEdges form only one Extreme SuperHyperConnectivities, but it has either all Extreme SuperHyperEdges or all Extreme SuperHyperVertices and in this case, it has all Extreme SuperHyperEdges. There's no Extreme SuperHyperConnectivities such that it has all Extreme SuperHyperEdges. There's no Extreme SuperHyperConnectivities such that it has all Extreme SuperHyper-Vertices, given by that Extreme type-SuperHyperSet; and it's called the Extreme SuperHyperConnectivities and it's a Extreme SuperHyperConnectivities. Since it has

the maximum Extreme cardinality of an Extreme SuperHyperSet S of Extreme Super-HyperEdges[SuperHyperVertices] such that there's only one Extreme consecutive Extreme sequence of Extreme SuperHyperVertices and Extreme SuperHyperEdges form only one Extreme SuperHyperConnectivities but it has either all Extreme SuperHyperEdges or all Extreme SuperHyperVertices and in this case, it has all Extreme SuperHyperEdges. There are only less than four Extreme SuperHyperVertices inside the intended Extreme SuperHyperSet,

 $\mathcal{C}(NSHG) = \{V_3, E_1, V_4, E_2, H, E_1, V_3\}$  is an Extreme SuperHyperConnectivities.  $\mathcal{C}(NSHG) = 4z^3$  is an Extreme SuperHyperConnectivities SuperHyperPolynomial.  $\mathcal{C}(NSHG) = \{V_3, V_4, H, V_3\}$  is an Extreme R-SuperHyperConnectivities.  $\mathcal{C}(NSHG) = 4z^4$  is an Extreme R-SuperHyperConnectivities SuperHyperPolynomial.

Thus the obvious Extreme SuperHyperConnectivities,

$$\begin{split} \mathcal{C}(NSHG) &= \{V_3, E_1, V_4, E_2, H, E_1, V_3\} \text{ is an Extreme SuperHyperConnectivities.} \\ \mathcal{C}(NSHG) &= 4z^3 \text{ is an Extreme SuperHyperConnectivities SuperHyperPolynomial.} \\ \mathcal{C}(NSHG) &= \{V_3, V_4, H, V_3\} \text{ is an Extreme R-SuperHyperConnectivities.} \\ \mathcal{C}(NSHG) &= 4z^4 \text{ is an Extreme R-SuperHyperConnectivities SuperHyperPolynomial.} \end{split}$$

Is up. The obvious simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities, is:

$$\begin{split} \mathcal{C}(NSHG) &= \{V_3, E_1, V_4, E_2, H, E_1, V_3\} \text{ is an Extreme SuperHyperConnectivities.} \\ \mathcal{C}(NSHG) &= 4z^3 \text{ is an Extreme SuperHyperConnectivities SuperHyperPolynomial.} \\ \mathcal{C}(NSHG) &= \{V_3, V_4, H, V_3\} \text{ is an Extreme R-SuperHyperConnectivities.} \\ \mathcal{C}(NSHG) &= 4z^4 \text{ is an Extreme R-SuperHyperConnectivities SuperHyperPolynomial.} \end{split}$$

Is the Extreme SuperHyperSet, is:

$$\begin{split} \mathcal{C}(NSHG) &= \{V_3, E_1, V_4, E_2, H, E_1, V_3\} \text{ is an Extreme SuperHyperConnectivities.} \\ \mathcal{C}(NSHG) &= 4z^3 \text{ is an Extreme SuperHyperConnectivities SuperHyperPolynomial.} \\ \mathcal{C}(NSHG) &= \{V_3, V_4, H, V_3\} \text{ is an Extreme R-SuperHyperConnectivities.} \\ \mathcal{C}(NSHG) &= 4z^4 \text{ is an Extreme R-SuperHyperConnectivities SuperHyperPolynomial.} \end{split}$$

Does includes only less than four SuperHyperVertices in a connected Extreme SuperHyper-Graph ESHG : (V, E). It's interesting to mention that the only Extreme type-SuperHyperSet called the

### "Extreme SuperHyperConnectivities"

amid those obvious non-obvious simple non-simple Extreme type-SuperHyperSets called the

#### Extreme SuperHyperConnectivities,

Henry Garrett $\,\cdot\,$ Independent Researcher $\,\cdot\,$ Department of Mathematics $\,\cdot\,$ Dr<br/>HenryGarrett@gmail.com $\,\cdot\,$ Manhattan, NY, USA

is only and only

 $\mathcal{C}(NSHG) = \{V_3, E_1, V_4, E_2, H, E_1, V_3\}$  is an Extreme SuperHyperConnectivities.  $\mathcal{C}(NSHG) = 4z^3$  is an Extreme SuperHyperConnectivities SuperHyperPolynomial.  $\mathcal{C}(NSHG) = \{V_3, V_4, H, V_3\}$  is an Extreme R-SuperHyperConnectivities.  $\mathcal{C}(NSHG) = 4z^4$  is an Extreme R-SuperHyperConnectivities SuperHyperPolynomial.

• On the Figure (8.5), the SuperHyperNotion, namely, SuperHyperConnectivities, is up. There's neither empty SuperHyperEdge nor loop SuperHyperEdge. The following Extreme SuperHyperSet of Extreme SuperHyperVertices is the simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities.

 $\begin{aligned} \mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperConnectivities}} &= \{V_5, E_1, V_4, E_4, V_5\}.\\ \mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperConnectivities SuperHyperPolynomial}} &= 2z^2.\\ \mathcal{C}(NSHG)_{\text{Extreme Quasi-R-SuperHyperConnectivities}} &= \{V_5, V_4, V_5\}.\\ \mathcal{C}(NSHG)_{\text{Extreme Quasi-R-SuperHyperConnectivities SuperHyperPolynomial}} &= 2z^3. \end{aligned}$ 

The following Extreme SuperHyperSet of Extreme SuperHyperEdges[SuperHyperVertices] is the Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities. The Extreme SuperHyperSet of Extreme SuperHyperEdges[SuperHyperVertices],

 $\begin{aligned} \mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperConnectivities}} &= \{V_5, E_1, V_4, E_4, V_5\}.\\ \mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperConnectivities SuperHyperPolynomial}} &= 2z^2.\\ \mathcal{C}(NSHG)_{\text{Extreme Quasi-R-SuperHyperConnectivities}} &= \{V_5, V_4, V_5\}.\\ \mathcal{C}(NSHG)_{\text{Extreme Quasi-R-SuperHyperConnectivities SuperHyperPolynomial}} &= 2z^3. \end{aligned}$ 

Is the Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities. The Extreme SuperHyperSet of the Extreme SuperHyperEdges[SuperHyperVertices],

 $\begin{aligned} \mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperConnectivities}} &= \{V_5, E_1, V_4, E_4, V_5\}.\\ \mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperConnectivities SuperHyperPolynomial}} &= 2z^2.\\ \mathcal{C}(NSHG)_{\text{Extreme Quasi-R-SuperHyperConnectivities}} &= \{V_5, V_4, V_5\}.\\ \mathcal{C}(NSHG)_{\text{Extreme Quasi-R-SuperHyperConnectivities SuperHyperPolynomial}} &= 2z^3. \end{aligned}$ 

Is a Extreme SuperHyperConnectivities C(ESHG) for an Neutrosophic SuperHyper-Graph ESHG: (V, E) is an Extreme type-SuperHyperSet with the maximum Extreme cardinality of an Extreme SuperHyperSet S of Extreme SuperHyperEdges[SuperHyperVertices] such that there's only one Extreme consecutive sequence of the Extreme SuperHyperVertices and the Extreme SuperHyperEdges form only one Extreme SuperHyperConnectivities but it has either all Extreme SuperHyperEdges or all Extreme SuperHyperVertices and in this case, it has all Extreme SuperHyperEdges. There's no Extreme SuperHyperConnectivities such that it has all Extreme SuperHyperVertices. There are less than only four Extreme SuperHyperVertices inside the intended Extreme SuperHyperSet. Thus the non-obvious Extreme SuperHyperConnectivities isn't up. The obvious simple Extreme type-SuperHyperSet called the Extreme SuperHyperConnectivities is an Extreme SuperHyperSet includes only

less than <u>four</u> Extreme SuperHyperVertices. But the Extreme SuperHyperSet of the Extreme SuperHyperEdges[SuperHyperVertices],

 $\mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperConnectivities}} = \{V_5, E_1, V_4, E_4, V_5\}.$  $\mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperConnectivities}} = u_{2z}^2.$  $\mathcal{C}(NSHG)_{\text{Extreme Quasi-R-SuperHyperConnectivities}} = \{V_5, V_4, V_5\}.$  $\mathcal{C}(NSHG)_{\text{Extreme Quasi-R-SuperHyperConnectivities}} = u_{2z}^3.$ 

Doesn't have less than four SuperHyperVertices **inside** the intended Extreme SuperHyperSet. Thus the non-obvious simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities **isn't** up. To sum them up, the Extreme SuperHyperSet of the Extreme SuperHyperEdges[SuperHyperVertices],

 $\mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperConnectivities}} = \{V_5, E_1, V_4, E_4, V_5\}. \\ \mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperConnectivities}} = SuperHyperPolynomial} = 2z^2. \\ \mathcal{C}(NSHG)_{\text{Extreme Quasi-R-SuperHyperConnectivities}} = \{V_5, V_4, V_5\}. \\ \mathcal{C}(NSHG)_{\text{Extreme Quasi-R-SuperHyperConnectivities}} = 2z^3. \\ \mathcal{C}(NSHG)_{\text{Extreme Quasi-R-SuperHyperConnectivities}} = 2z^3. \\ \mathcal{C}(NSHG)_{\text{Extreme Quasi-R-SuperHyperConnectivities}} = SuperHyperPolynomial} = 2z^3. \\ \mathcal{C}(NSHG)_{\text{Extr$ 

**Isn't** the non-obvious simple Extreme type-SuperHyperSet of the Extreme Super-HyperConnectivities. Since the Extreme SuperHyperSet of the Extreme SuperHyperEdges[SuperHyperVertices],

 $\begin{aligned} \mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperConnectivities}} &= \{V_5, E_1, V_4, E_4, V_5\}.\\ \mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperConnectivities SuperHyperPolynomial}} &= 2z^2.\\ \mathcal{C}(NSHG)_{\text{Extreme Quasi-R-SuperHyperConnectivities}} &= \{V_5, V_4, V_5\}.\\ \mathcal{C}(NSHG)_{\text{Extreme Quasi-R-SuperHyperConnectivities SuperHyperPolynomial}} &= 2z^3. \end{aligned}$ 

Is an Extreme SuperHyperConnectivities C(ESHG) for a Neutrosophic SuperHyper-Graph ESHG : (V, E) is the Extreme SuperHyperSet S of Extreme SuperHyperVertices[SuperHyperEdges] such that there's only one Extreme consecutive Extreme sequence of Extreme SuperHyperVertices and Extreme SuperHyperEdges form only one Extreme SuperHyperConnectivities, but it has either all Extreme SuperHyperEdges or all Extreme SuperHyperVertices and in this case, it has all Extreme SuperHyperEdges. There's no Extreme SuperHyperConnectivities such that it has all Extreme SuperHyper-Vertices, given by that Extreme type-SuperHyperSet; and it's called the Extreme SuperHyperConnectivities <u>and</u> it's a <u>Extreme SuperHyperConnectivities</u>. Since it <u>has</u> the maximum Extreme cardinality of an Extreme SuperHyperSet S of Extreme Super-HyperEdges[SuperHyperVertices] such that there's only one Extreme consecutive Extreme sequence of Extreme SuperHyperVertices and Extreme SuperHyperEdges form only one Extreme SuperHyperConnectivities but it has either all Extreme SuperHyperEdges form only one Extreme SuperHyperVertices and in this case, it has all Extreme SuperHyperEdges. There are only less than four Extreme SuperHyperVertices <u>inside</u> the intended Extreme SuperHyperSet,

> $C(NSHG)_{\text{Extreme Quasi-SuperHyperConnectivities}} = \{V_5, E_1, V_4, E_4, V_5\}.$  $C(NSHG)_{\text{Extreme Quasi-SuperHyperConnectivities SuperHyperPolynomial}} = 2z^2.$

Henry Garrett  $\,\cdot\,$  Independent Researcher  $\,\cdot\,$  Department of Mathematics  $\,\cdot\,$  DrHenryGarrett@gmail.com  $\,\cdot\,$  Manhattan, NY, USA

 $\mathcal{C}(NSHG)_{\text{Extreme Quasi-R-SuperHyperConnectivities}} = \{V_5, V_4, V_5\}.$ 

 $\mathcal{C}(NSHG)_{\text{Extreme Quasi-R-SuperHyperConnectivities SuperHyperPolynomial}} = 2z^3.$ 

Thus the obvious Extreme SuperHyperConnectivities,

 $\mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperConnectivities}} = \{V_5, E_1, V_4, E_4, V_5\}.$   $\mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperConnectivities SuperHyperPolynomial}} = 2z^2.$   $\mathcal{C}(NSHG)_{\text{Extreme Quasi-R-SuperHyperConnectivities}} = \{V_5, V_4, V_5\}.$   $\mathcal{C}(NSHG)_{\text{Extreme Quasi-R-SuperHyperConnectivities SuperHyperPolynomial}} = 2z^3.$ 

Is up. The obvious simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities, is:

 $\mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperConnectivities}} = \{V_5, E_1, V_4, E_4, V_5\}. \\ \mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperConnectivities SuperHyperPolynomial}} = 2z^2. \\ \mathcal{C}(NSHG)_{\text{Extreme Quasi-R-SuperHyperConnectivities}} = \{V_5, V_4, V_5\}. \\ \mathcal{C}(NSHG)_{\text{Extreme Quasi-R-SuperHyperConnectivities SuperHyperPolynomial}} = 2z^3.$ 

Is the Extreme SuperHyperSet, is:

 $\mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperConnectivities}} = \{V_5, E_1, V_4, E_4, V_5\}. \\ \mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperConnectivities SuperHyperPolynomial}} = 2z^2. \\ \mathcal{C}(NSHG)_{\text{Extreme Quasi-R-SuperHyperConnectivities}} = \{V_5, V_4, V_5\}. \\ \mathcal{C}(NSHG)_{\text{Extreme Quasi-R-SuperHyperConnectivities SuperHyperPolynomial}} = 2z^3.$ 

Does includes only less than four SuperHyperVertices in a connected Extreme SuperHyperGraph ESHG : (V, E). It's interesting to mention that the only Extreme type-SuperHyperSet called the

#### "Extreme SuperHyperConnectivities"

amid those obvious[non-obvious] simple[non-simple] Extreme type-SuperHyperSets called the

#### Extreme SuperHyperConnectivities,

is only and only

 $\mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperConnectivities}} = \{V_5, E_1, V_4, E_4, V_5\}.$  $\mathcal{C}(NSHG)_{\text{Extreme Quasi-SuperHyperConnectivities SuperHyperPolynomial}} = 2z^2.$  $\mathcal{C}(NSHG)_{\text{Extreme Quasi-R-SuperHyperConnectivities}} = \{V_5, V_4, V_5\}.$  $\mathcal{C}(NSHG)_{\text{Extreme Quasi-R-SuperHyperConnectivities SuperHyperPolynomial}} = 2z^3.$ 

Henry Garrett · Independent Researcher · Department of Mathematics · DrHenryGarrett@gmail.com · Manhattan, NY, USA

• On the Figure (8.6), the SuperHyperNotion, namely, SuperHyperConnectivities, is up. There's neither empty SuperHyperEdge nor loop SuperHyperEdge.

```
\mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivities} = \{V_i, E_i, V_{i+1}\}_{i=1}^{21} \cup \{V_{22}, E_{32}, V_i, E_{i+11}, E_{11}, V_1\}_{j=21-j}^9.
\mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivitiesSuperHyperPolynomial} = 11z^{22}.
\mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivities} = \{V_i, V_{i+1}\}_{i=1}^{21} \cup \{V_{22}, V_i, V_1\}_{j=21-j}^9.
\mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivitiesSuperHyperPolynomial} = 11z^{23}.
```

The following Extreme SuperHyperSet of Extreme SuperHyperEdges[SuperHyperVertices] is the Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities. The Extreme SuperHyperSet of Extreme SuperHyperEdges[SuperHyperVertices],

 $\mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivities} = \{V_i, E_i, V_{i+1}\}_{i=1}^{21} \cup \{V_{22}, E_{32}, V_i, E_{i+11}, E_{11}, V_1\}_{j=21-j}^9.$   $\mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivitiesSuperHyperPolynomial} = 11z^{22}.$   $\mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivities} = \{V_i, V_{i+1}\}_{i=1}^{21} \cup \{V_{22}, V_i, V_1\}_{j=21-j}^9.$   $\mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivitiesSuperHyperPolynomial} = 11z^{23}.$ 

Is the Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities. The Extreme SuperHyperSet of the Extreme SuperHyperEdges[SuperHyperVertices],

$$C(NSHG)_{ExtremeSuperHyperConnectivities} = \{V_i, E_i, V_{i+1}\}_{i=1}^{21}$$

$$\cup \{V_{22}, E_{32}, V_i, E_{i+11}, E_{11}, V_1\}_{j=21-j}^9.$$

$$C(NSHG)_{ExtremeSuperHyperConnectivitiesSuperHyperPolynomial} = 11z^{22}.$$

$$C(NSHG)_{ExtremeR-SuperHyperConnectivities} =$$

$$\{V_i, V_{i+1}\}_{i=1}^{21}$$

$$\cup \{V_{22}, V_i, V_1\}_{j=21-j}^9.$$

$$C(NSHG)_{ExtremeR-SuperHyperConnectivitiesSuperHyperPolynomial} = 11z^{23}.$$

Is a Extreme SuperHyperConnectivities C(ESHG) for an Neutrosophic SuperHyper-Graph ESHG : (V, E) is an Extreme type-SuperHyperSet with the maximum Extreme cardinality of an Extreme SuperHyperSet S of Extreme SuperHyperEdges[SuperHyperVertices] such that there's only one Extreme consecutive sequence of the Extreme SuperHyperVertices and the Extreme SuperHyperEdges form only one Extreme SuperHyperConnectivities but it has either all Extreme SuperHyperEdges or all Extreme SuperHyperVertices and in this case, it has all Extreme SuperHyperEdges. There's no Extreme SuperHyperConnectivities such that it has all Extreme SuperHyperVertices. There are more than only four Extreme SuperHyperVertices inside the intended Extreme SuperHyperSet. Thus the non-obvious

Extreme SuperHyperConnectivities is up. The obvious simple Extreme type-SuperHyperSet called the Extreme SuperHyperConnectivities is an Extreme SuperHyperSet <u>includes</u> only less than <u>four</u> Extreme SuperHyperVertices. But the Extreme SuperHyperSet of the Extreme SuperHyperEdges[SuperHyperVertices],

 $\begin{aligned} \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivities} &= \{V_i, E_i, V_{i+1}\}_{i=1}^{21} \\ \cup \{V_{22}, E_{32}, V_i, E_{i+11}, E_{11}, V_1\}_{j=21-j}^9. \\ \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivitiesSuperHyperPolynomial} &= 11z^{22}. \\ \mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivities} &= \\ \{V_i, V_{i+1}\}_{i=1}^{21} \\ \cup \{V_{22}, V_i, V_1\}_{j=21-j}^9. \\ \mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivitiesSuperHyperPolynomial} &= 11z^{23}. \end{aligned}$ 

Doesn't have less than four SuperHyperVertices <u>inside</u> the intended Extreme SuperHyperSet. Thus the non-obvious simple Extreme type-SuperHyperSet of the Extreme SuperHyper-Connectivities <u>isn't</u> up. To sum them up, the Extreme SuperHyperSet of the Extreme SuperHyperEdges[SuperHyperVertices],

 $\mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivities} = \{V_i, E_i, V_{i+1}\}_{i=1}^{21} \cup \{V_{22}, E_{32}, V_i, E_{i+11}, E_{11}, V_1\}_{j=21-j}^9.$   $\mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivitiesSuperHyperPolynomial} = 11z^{22}.$   $\mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivities} = \{V_i, V_{i+1}\}_{i=1}^{21} \cup \{V_{22}, V_i, V_1\}_{j=21-j}^9.$   $\mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivitiesSuperHyperPolynomial} = 11z^{23}.$ 

 $\underline{Is}$  the non-obvious simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities. Since the Extreme SuperHyperSet of the Extreme SuperHyperEdges[SuperHyperVertices],

 $\begin{aligned} \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivities} &= \{V_i, E_i, V_{i+1}\}_{i=1}^{21} \\ \cup \{V_{22}, E_{32}, V_i, E_{i+11}, E_{11}, V_1\}_{j=21-j}^9. \\ \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivitiesSuperHyperPolynomial} &= 11z^{22}. \\ \mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivities} &= \\ \{V_i, V_{i+1}\}_{i=1}^{21} \\ \cup \{V_{22}, V_i, V_1\}_{j=21-j}^9. \\ \mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivitiesSuperHyperPolynomial} &= 11z^{23}. \end{aligned}$ 

Is an Extreme SuperHyperConnectivities C(ESHG) for a Neutrosophic SuperHyper-Graph ESHG : (V, E) is the Extreme SuperHyperSet S of Extreme SuperHyperVertices[SuperHyperEdges] such that there's only one Extreme consecutive Extreme sequence of Extreme SuperHyperVertices and Extreme SuperHyperEdges form only one Extreme SuperHyperConnectivities, but it has either all Extreme SuperHyperEdges or all Extreme SuperHyperVertices and in this case, it has all Extreme SuperHyperEdges.

Henry Garrett · Independent Researcher · Department of Mathematics · DrHenryGarrett@gmail.com · Manhattan, NY, USA

There's no Extreme SuperHyperConnectivities such that it has all Extreme SuperHyper-Vertices, given by that Extreme type-SuperHyperSet; and it's called the Extreme SuperHyperConnectivities <u>and</u> it's a <u>Extreme SuperHyperConnectivities</u>. Since it <u>has</u> <u>the maximum Extreme cardinality</u> of an Extreme SuperHyperSet S of Extreme Super-HyperEdges[SuperHyperVertices] such that there's only one Extreme consecutive Extreme sequence of Extreme SuperHyperVertices and Extreme SuperHyperEdges form only one Extreme SuperHyperConnectivities but it has either all Extreme SuperHyperEdges or all Extreme SuperHyperVertices and in this case, it has all Extreme SuperHyperEdges. There aren't only less than four Extreme SuperHyperVertices <u>inside</u> the intended Extreme SuperHyperSet,

 $\mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivities} = \{V_i, E_i, V_{i+1}\}_{i=1}^{21} \cup \{V_{22}, E_{32}, V_i, E_{i+11}, E_{11}, V_1\}_{j=21-j}^9.$   $\mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivitiesSuperHyperPolynomial} = 11z^{22}.$   $\mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivities} = \{V_i, V_{i+1}\}_{i=1}^{21} \cup \{V_{22}, V_i, V_1\}_{j=21-j}^9.$   $\mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivitiesSuperHyperPolynomial} = 11z^{23}.$ 

Thus the non-obvious Extreme SuperHyperConnectivities,

 $\mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivities} = \{V_i, E_i, V_{i+1}\}_{i=1}^{21}$   $\cup \{V_{22}, E_{32}, V_i, E_{i+11}, E_{11}, V_1\}_{j=21-j}^9.$   $\mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivitiesSuperHyperPolynomial} = 11z^{22}.$   $\mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivities} =$   $\{V_i, V_{i+1}\}_{i=1}^{21}$   $\cup \{V_{22}, V_i, V_1\}_{j=21-j}^9.$   $\mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivitiesSuperHyperPolynomial} = 11z^{23}.$ 

Is up. The non-obvious simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities, is:

 $\begin{aligned} \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivities} &= \{V_i, E_i, V_{i+1}\}_{i=1}^{21} \\ \cup \{V_{22}, E_{32}, V_i, E_{i+11}, E_{11}, V_1\}_{j=21-j}^9. \\ \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivitiesSuperHyperPolynomial} &= 11z^{22}. \\ \mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivities} &= \\ \{V_i, V_{i+1}\}_{i=1}^{21} \\ \cup \{V_{22}, V_i, V_1\}_{j=21-j}^9. \\ \mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivitiesSuperHyperPolynomial} &= 11z^{23}. \end{aligned}$ 

Is the Extreme SuperHyperSet, is:

 $\mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivities} = \{V_i, E_i, V_{i+1}\}_{i=1}^{21} \cup \{V_{22}, E_{32}, V_i, E_{i+11}, E_{11}, V_1\}_{i=21-j}^9.$ 

 $\mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivitiesSuperHyperPolynomial} = 11z^{22}.$   $\mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivities} = \{V_i, V_{i+1}\}_{i=1}^{21}$   $\cup \{V_{22}, V_i, V_1\}_{j=21-j}^{9}.$   $\mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivitiesSuperHyperPolynomial} = 11z^{23}.$ 

Doesn't include only less than four SuperHyperVertices in a connected Extreme SuperHyperGraph ESHG: (V, E). It's interesting to mention that the only Extreme type-SuperHyperSet called the

# "Extreme SuperHyperConnectivities"

amid those obvious [non-obvious] simple [non-simple] Extreme type-SuperHyperSets called the

### Extreme SuperHyperConnectivities,

is only and only

 $\begin{aligned} \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivities} &= \{V_i, E_i, V_{i+1}\}_{i=1}^{21} \cup \{V_{22}, E_{32}, V_i, E_{i+11}, E_{11}, V_1\}_{j=21-j}^9.\\ \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivitiesSuperHyperPolynomial} &= 11z^{22}.\\ \mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivities} &= \{V_i, V_{i+1}\}_{i=1}^{21} \\ &\cup \{V_{22}, V_i, V_1\}_{j=21-j}^9.\\ \mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivitiesSuperHyperPolynomial} &= 11z^{23}. \end{aligned}$ 

• On the Figure (8.7), the SuperHyperNotion, namely, SuperHyperConnectivities, is up. The following Extreme SuperHyperSet of Extreme SuperHyperEdges[SuperHyperVertices] is the simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities. The Extreme SuperHyperSet of Extreme SuperHyperEdges[SuperHyperVertices],

 $\begin{aligned} \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivities} &= \\ \{V_8, E_{17}, V_{14}, E_{12}, V_{12}, E_{15}, V_3, E_3, V_4, E_{16}, V_7, E_7, V_8\} \\ \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivitiesSuperHyperPolynomial} &= 6z^6. \\ \mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivities} &= \\ \{V_8, V_{14}, V_{12}, V_3, V_4, V_7, V_8\} \\ \mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivitiesSuperHyperPolynomial} &= 6z^7. \end{aligned}$ 

The following Extreme SuperHyperSet of Extreme SuperHyperEdges[SuperHyperVertices] is the Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities. The Extreme

Henry Garrett · Independent Researcher · Department of Mathematics · DrHenryGarrett@gmail.com · Manhattan, NY, USA

SuperHyperSet of Extreme SuperHyperEdges[SuperHyperVertices],

 $\begin{aligned} \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivities} &= \\ \{V_8, E_{17}, V_{14}, E_{12}, V_{12}, E_{15}, V_3, E_3, V_4, E_{16}, V_7, E_7, V_8\} \\ \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivitiesSuperHyperPolynomial} &= 6z^6. \\ \mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivities} &= \\ \{V_8, V_{14}, V_{12}, V_3, V_4, V_7, V_8\} \end{aligned}$ 

 $\mathcal{C}(NSHG)_{Extreme R-SuperHyperConnectivitiesSuperHyperPolynomial} = 6z^7.$ 

Is the Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities. The Extreme SuperHyperSet of the Extreme SuperHyperEdges[SuperHyperVertices],

 $\mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivities} = \{V_8, E_{17}, V_{14}, E_{12}, V_{12}, E_{15}, V_3, E_3, V_4, E_{16}, V_7, E_7, V_8\}$   $\mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivitiesSuperHyperPolynomial} = 6z^6.$   $\mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivities} = \{V_8, V_{14}, V_{12}, V_3, V_4, V_7, V_8\}$   $\mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivitiesSuperHyperPolynomial} = 6z^7.$ 

Is a Extreme SuperHyperConnectivities C(ESHG) for an Neutrosophic SuperHyper-Graph ESHG: (V, E) is an Extreme type-SuperHyperSet with the maximum Extreme cardinality of an Extreme SuperHyperSet S of Extreme SuperHyperEdges[SuperHyperVertices] such that there's only one Extreme consecutive sequence of the Extreme SuperHyperVertices and the Extreme SuperHyperEdges form only one Extreme SuperHyperConnectivities but it has either all Extreme SuperHyperEdges or all Extreme SuperHyperVertices and in this case, it has all Extreme SuperHyperEdges. There's no Extreme SuperHyperConnectivities such that it has all Extreme SuperHyperVertices. There are more than only four Extreme SuperHyperVertices inside the intended Extreme SuperHyperSet. Thus the non-obvious Extreme SuperHyperConnectivities is up. The obvious simple Extreme type-SuperHyperSet called the Extreme SuperHyperVertices. But the Extreme SuperHyperSet of the Extreme SuperHyperEdges[SuperHyperVertices],

 $\begin{aligned} \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivities} &= \\ \{V_8, E_{17}, V_{14}, E_{12}, V_{12}, E_{15}, V_3, E_3, V_4, E_{16}, V_7, E_7, V_8\} \\ \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivitiesSuperHyperPolynomial} &= 6z^6. \\ \mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivities} &= \\ \{V_8, V_{14}, V_{12}, V_3, V_4, V_7, V_8\} \end{aligned}$ 

 $\mathcal{C}(NSHG)_{Extreme R-SuperHyperConnectivitiesSuperHyperPolynomial} = 6z^7.$ 

Doesn't have less than four SuperHyperVertices <u>inside</u> the intended Extreme SuperHyperSet. Thus the non-obvious simple Extreme type-SuperHyperSet of the Extreme SuperHyper-Connectivities <u>isn't</u> up. To sum them up, the Extreme SuperHyperSet of the Extreme

SuperHyperEdges [SuperHyperVertices],

 $\begin{aligned} \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivities} &= \\ \{V_8, E_{17}, V_{14}, E_{12}, V_{12}, E_{15}, V_3, E_3, V_4, E_{16}, V_7, E_7, V_8\} \\ \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivitiesSuperHyperPolynomial} &= 6z^6. \\ \mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivities} &= \\ \{V_8, V_{14}, V_{12}, V_3, V_4, V_7, V_8\} \end{aligned}$ 

 $\mathcal{C}(NSHG)_{Extreme R-SuperHyperConnectivitiesSuperHyperPolynomial} = 6z^7.$ 

 $\underline{\mathbf{Is}} \text{ the non-obvious simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities. Since the Extreme SuperHyperSet of the Extreme SuperHyperEdges[SuperHyperVertices], \\$ 

 $\begin{aligned} \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivities} &= \\ \{V_8, E_{17}, V_{14}, E_{12}, V_{12}, E_{15}, V_3, E_3, V_4, E_{16}, V_7, E_7, V_8\} \\ \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivitiesSuperHyperPolynomial} &= 6z^6. \\ \mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivities} &= \\ \{V_8, V_{14}, V_{12}, V_3, V_4, V_7, V_8\} \end{aligned}$ 

 $\mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivitiesSuperHyperPolynomial} = 6z^7.$ 

Is an Extreme SuperHyperConnectivities C(ESHG) for a Neutrosophic SuperHyper-Graph ESHG : (V, E) is the Extreme SuperHyperSet S of Extreme SuperHyperVertices[SuperHyperEdges] such that there's only one Extreme consecutive Extreme sequence of Extreme SuperHyperVertices and Extreme SuperHyperEdges form only one Extreme SuperHyperConnectivities, but it has either all Extreme SuperHyperEdges or all Extreme SuperHyperVertices and in this case, it has all Extreme SuperHyperEdges. There's no Extreme SuperHyperConnectivities such that it has all Extreme SuperHyper-Vertices, given by that Extreme type-SuperHyperSet; and it's called the Extreme SuperHyperConnectivities <u>and</u> it's a <u>Extreme SuperHyperConnectivities</u>. Since it <u>has</u> the maximum Extreme cardinality of an Extreme SuperHyperSet S of Extreme Super-HyperEdges[SuperHyperVertices] such that there's only one Extreme consecutive Extreme sequence of Extreme SuperHyperVertices and Extreme SuperHyperEdges form only one Extreme SuperHyperConnectivities but it has either all Extreme SuperHyperEdges form only one Extreme SuperHyperVertices and Extreme SuperHyperEdges form only one Extreme SuperHyperVertices and in this case, it has all Extreme SuperHyperEdges. There aren't only less than four Extreme SuperHyperVertices <u>inside</u> the intended Extreme SuperHyperSet,

$$\begin{split} \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivities} &= \\ \{V_8, E_{17}, V_{14}, E_{12}, V_{12}, E_{15}, V_3, E_3, V_4, E_{16}, V_7, E_7, V_8\} \\ \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivitiesSuperHyperPolynomial} &= 6z^6. \\ \mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivities} &= \\ \{V_8, V_{14}, V_{12}, V_3, V_4, V_7, V_8\} \end{split}$$

 $\mathcal{C}(NSHG)_{Extreme R-SuperHyperConnectivitiesSuperHyperPolynomial} = 6z^7.$ 

Thus the non-obvious Extreme SuperHyperConnectivities,

 $\begin{aligned} \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivities} &= \\ \{V_8, E_{17}, V_{14}, E_{12}, V_{12}, E_{15}, V_3, E_3, V_4, E_{16}, V_7, E_7, V_8\} \\ \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivitiesSuperHyperPolynomial} &= 6z^6. \\ \mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivities} &= \\ \{V_8, V_{14}, V_{12}, V_3, V_4, V_7, V_8\} \end{aligned}$ 

 $\mathcal{C}(NSHG)_{Extreme R-SuperHyperConnectivitiesSuperHyperPolynomial} = 6z^7.$ 

Is up. The non-obvious simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities, is:

 $\begin{aligned} \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivities} &= \\ \{V_8, E_{17}, V_{14}, E_{12}, V_{12}, E_{15}, V_3, E_3, V_4, E_{16}, V_7, E_7, V_8\} \\ \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivitiesSuperHyperPolynomial} &= 6z^6. \\ \mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivities} &= \\ \{V_8, V_{14}, V_{12}, V_3, V_4, V_7, V_8\} \end{aligned}$ 

 $\mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivitiesSuperHyperPolynomial} = 6z^7.$ 

Is the Extreme SuperHyperSet, is:

 $\begin{aligned} \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivities} &= \\ \{V_8, E_{17}, V_{14}, E_{12}, V_{12}, E_{15}, V_3, E_3, V_4, E_{16}, V_7, E_7, V_8\} \\ \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivitiesSuperHyperPolynomial} &= 6z^6. \\ \mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivities} &= \\ \{V_8, V_{14}, V_{12}, V_3, V_4, V_7, V_8\} \end{aligned}$ 

 $\mathcal{C}(NSHG)_{Extreme R-SuperHyperConnectivitiesSuperHyperPolynomial} = 6z^7.$ 

Doesn't include only less than four SuperHyperVertices in a connected Extreme SuperHyper-Graph ESHG : (V, E). It's interesting to mention that the only Extreme type-SuperHyperSet called the

# "Extreme SuperHyperConnectivities"

amid those obvious[non-obvious] simple[non-simple] Extreme type-SuperHyperSets called the

### Extreme SuperHyperConnectivities,

is only and only

 $\mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivities} =$ 

 $\{V_8, E_{17}, V_{14}, E_{12}, V_{12}, E_{15}, V_3, E_3, V_4, E_{16}, V_7, E_7, V_8 \}$   $\mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivitiesSuperHyperPolynomial} = 6z^6.$   $\mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivities} =$   $\{V_8, V_{14}, V_{12}, V_3, V_4, V_7, V_8 \}$ 

 $\mathcal{C}(NSHG)_{Extreme R-SuperHyperConnectivitiesSuperHyperPolynomial} = 6z^7.$ 

• On the Figure (8.8), the SuperHyperNotion, namely, SuperHyperConnectivities, is up. There's neither empty SuperHyperEdge nor loop SuperHyperEdge. The following Extreme SuperHyperSet of Extreme SuperHyperEdges[SuperHyperVertices] is the simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities. The following Extreme SuperHyperSet of Extreme SuperHyperEdges[SuperHyperVertices] is the Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities. The Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities. The Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities. The Extreme SuperHyperSet of Extreme SuperHyperVertices],

> $\mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivities} = \{\}$  $\mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivitiesSuperHyperPolynomial} = 0.$  $\mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivities} = \{\}$

 $\mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivitiesSuperHyperPolynomial} = 0.$ 

The following Extreme SuperHyperSet of Extreme SuperHyperEdges[SuperHyperVertices] is the Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities. The Extreme SuperHyperSet of Extreme SuperHyperEdges[SuperHyperVertices],

> $\mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivities} = \{\}$  $\mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivitiesSuperHyperPolynomial} = 0.$  $\mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivities} = \{\}$

 $\mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivitiesSuperHyperPolynomial} = 0.$ 

Is the Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities. The Extreme SuperHyperSet of the Extreme SuperHyperEdges[SuperHyperVertices],

 $\mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivities} = \{\}$  $\mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivitiesSuperHyperPolynomial} = 0.$  $\mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivities} = \{\}$ 

 $\mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivitiesSuperHyperPolynomial} = 0.$ 

Is a **Extreme SuperHyperConnectivities** C(ESHG) for an Neutrosophic SuperHyper-Graph ESHG : (V, E) is an Extreme type-SuperHyperSet with **the maximum Extreme cardinality** of an Extreme SuperHyperSet S of Extreme SuperHyperEdges[SuperHyperVertices] such

Henry Garrett · Independent Researcher · Department of Mathematics · DrHenryGarrett@gmail.com · Manhattan, NY, USA

that there's only one Extreme consecutive sequence of the Extreme SuperHyperVertices and the Extreme SuperHyperEdges form only one Extreme SuperHyperConnectivities but it has either all Extreme SuperHyperEdges or all Extreme SuperHyperVertices and in this case, it has all Extreme SuperHyperEdges. There's no Extreme SuperHyperConnectivities such that it has all Extreme SuperHyperVertices. There are <u>less than</u> only <u>four</u> Extreme SuperHyperVertices <u>inside</u> the intended Extreme SuperHyperSet. Thus the non-obvious Extreme SuperHyperConnectivities is up. The obvious simple Extreme type-SuperHyperSet called the Extreme SuperHyperConnectivities is an Extreme SuperHyperSet <u>includes</u> only less than <u>four</u> Extreme SuperHyperVertices. But the Extreme SuperHyperSet of the Extreme SuperHyperEdges[SuperHyperVertices],

 $C(NSHG)_{ExtremeSuperHyperConnectivities} = \{\}$   $C(NSHG)_{ExtremeSuperHyperConnectivitiesSuperHyperPolynomial} = 0.$   $C(NSHG)_{ExtremeR-SuperHyperConnectivities} = \{\}$ 

 $\mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivitiesSuperHyperPolynomial} = 0.$ 

Does has less than four SuperHyperVertices <u>inside</u> the intended Extreme SuperHyperSet. Thus the non-obvious simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities <u>is</u> up. To sum them up, the Extreme SuperHyperSet of the Extreme SuperHyperEdges[SuperHyperVertices],

 $C(NSHG)_{ExtremeSuperHyperConnectivities} = \{\}$   $C(NSHG)_{ExtremeSuperHyperConnectivitiesSuperHyperPolynomial} = 0.$   $C(NSHG)_{ExtremeR-SuperHyperConnectivities} = \{\}$ 

 $\mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivitiesSuperHyperPolynomial} = 0.$ 

**Isn't** the non-obvious simple Extreme type-SuperHyperSet of the Extreme Super-HyperConnectivities. Since the Extreme SuperHyperSet of the Extreme SuperHyperEdges[SuperHyperVertices],

 $C(NSHG)_{ExtremeSuperHyperConnectivities} = \{\}$   $C(NSHG)_{ExtremeSuperHyperConnectivitiesSuperHyperPolynomial} = 0.$   $C(NSHG)_{ExtremeR-SuperHyperConnectivities} = \{\}$ 

 $\mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivitiesSuperHyperPolynomial} = 0.$ 

Is an Extreme SuperHyperConnectivities C(ESHG) for a Neutrosophic SuperHyper-Graph ESHG: (V, E) is the Extreme SuperHyperSet S of Extreme SuperHyperVertices[SuperHyperEdges] such that there's only one Extreme consecutive Extreme sequence of Extreme SuperHyperVertices and Extreme SuperHyperEdges form only one Extreme SuperHyperConnectivities, but it has either all Extreme SuperHyperEdges or all Extreme SuperHyperVertices and in this case, it has all Extreme SuperHyperEdges.

Henry Garrett · Independent Researcher · Department of Mathematics · DrHenryGarrett@gmail.com · Manhattan, NY, USA

There's no Extreme SuperHyperConnectivities such that it has all Extreme SuperHyper-Vertices, given by that Extreme type-SuperHyperSet; and it's called the Extreme SuperHyperConnectivities <u>and</u> it's a <u>Extreme SuperHyperConnectivities</u>. Since it <u>has</u> <u>the maximum Extreme cardinality</u> of an Extreme SuperHyperSet *S* of Extreme Super-HyperEdges[SuperHyperVertices] such that there's only one Extreme consecutive Extreme sequence of Extreme SuperHyperVertices and Extreme SuperHyperEdges form only one Extreme SuperHyperConnectivities but it has either all Extreme SuperHyperEdges or all Extreme SuperHyperVertices and in this case, it has all Extreme SuperHyperEdges. There are only less than four Extreme SuperHyperVertices <u>inside</u> the intended Extreme SuperHyperSet,

 $\mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivities} = \{\} \\ \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivitiesSuperHyperPolynomial} = 0. \\ \mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivities} = \{\}$ 

 $\mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivitiesSuperHyperPolynomial} = 0.$ 

Thus the obvious Extreme SuperHyperConnectivities,

 $C(NSHG)_{ExtremeSuperHyperConnectivities} = \{\}$   $C(NSHG)_{ExtremeSuperHyperConnectivitiesSuperHyperPolynomial} = 0.$   $C(NSHG)_{ExtremeR-SuperHyperConnectivities} = \{\}$ 

 $\mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivitiesSuperHyperPolynomial} = 0.$ 

Is up. The obvious simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities, is:

 $\mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivities} = \{\}$  $\mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivitiesSuperHyperPolynomial} = 0.$  $\mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivities} = \{\}$ 

 $\mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivitiesSuperHyperPolynomial} = 0.$ 

Is the Extreme SuperHyperSet, is:

 $\mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivities} = \{\} \\ \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivitiesSuperHyperPolynomial} = 0. \\ \mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivities} = \{\}$ 

```
\mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivitiesSuperHyperPolynomial} = 0.
```

Does includes only less than four SuperHyperVertices in a connected Extreme SuperHyper-Graph ESHG : (V, E). It's interesting to mention that the only Extreme type-SuperHyperSet called the

# "Extreme SuperHyperConnectivities"

amid those obvious non-obvious simple non-simple Extreme type-SuperHyperSets called the

#### Extreme SuperHyperConnectivities,

is only and only

 $\mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivities} = \{\}$  $\mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivitiesSuperHyperPolynomial} = 0.$  $\mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivities} = \{\}$ 

 $\mathcal{C}(NSHG)_{Extreme R-SuperHyperConnectivitiesSuperHyperPolynomial} = 0.$ 

In a connected Neutrosophic SuperHyperGraph ESHG : (V, E) of dense SuperHyperModel as the Figure (8.8).

• On the Figure (8.9), the SuperHyperNotion, namely, SuperHyperConnectivities, is up. There's neither empty SuperHyperEdge nor loop SuperHyperEdge. The following Extreme SuperHyperSet of Extreme SuperHyperConnectivities. There's no coverage on either all SuperHyperVertices or all SuperHyperEdges. Thus the quasi-discussion on the intended notion is up. Disclaimer: The terms are in this item are referred to the prefix "quasi" since the notion isn't seen and applied totally but somehow the coincidence is achieved in the terms of neither of all SuperHyperVertices, Extreme Quasi-SuperHyperConnectivities SuperHyperPolynomial, Extreme R-Quasi-SuperHyperConnectivities, and Extreme R-Quasi-SuperHyperConnectivities SuperHyperConnectivities for the analogous terms have the prefix "quasi" and even more all the context are about the quasi-style of the studied notion and the used notion is quasi-notion even they're addressed without the term "quasi". Furthermore, for the convenient usage and the harmony of the context with the used title and other applied segments , the term "quasi" isn't used more than the following groups of expressions.

 $\begin{aligned} \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivities} &= \\ \{V_i, E_i, V_6, E_{17}, V_{16}, d_1, V_1\}_{i=2}^5 \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} &= 11z^8. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivities} &= \{V_1, V_i, V_{16}, V_1\}_{i=2}^6. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} &= 11z^8. \end{aligned}$ 

The following Extreme SuperHyperSet of Extreme SuperHyperEdges[SuperHyperVertices] is the Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities. The Extreme SuperHyperSet of Extreme SuperHyperEdges[SuperHyperVertices],

 $\mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivities} = \{V_i, E_i, V_6, E_{17}, V_{16}, d_1, V_1\}_{i=2}^5$ 

 $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} = 11z^{8}.$  $\mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivities} = \{V_{1}, V_{i}, V_{16}, V_{1}\}_{i=2}^{6}.$  $\mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} = 11z^{8}.$ 

The following Extreme SuperHyperSet of Extreme SuperHyperEdges[SuperHyperVertices] is the Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities. The Extreme SuperHyperSet of Extreme SuperHyperEdges[SuperHyperVertices],

$$\begin{split} \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivities} &= \\ \{V_i, E_i, V_6, E_{17}, V_{16}, d_1, V_1\}_{i=2}^5 \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} &= 11z^8. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivities} &= \{V_1, V_i, V_{16}, V_1\}_{i=2}^6. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} &= 11z^8. \end{split}$$

Is the Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities. The Extreme SuperHyperSet of the Extreme SuperHyperEdges[SuperHyperVertices],

 $\begin{aligned} \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivities} &= \\ \{V_i, E_i, V_6, E_{17}, V_{16}, d_1, V_1\}_{i=2}^5 \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} &= 11z^8. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivities} &= \{V_1, V_i, V_{16}, V_1\}_{i=2}^6. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} &= 11z^8. \end{aligned}$ 

Is a **Extreme SuperHyperConnectivities** C(ESHG) for an Neutrosophic SuperHyper-Graph ESHG : (V, E) is an Extreme type-SuperHyperSet with **the maximum Extreme cardinality** of an Extreme SuperHyperSet S of Extreme SuperHyperEdges[SuperHyperVertices] such that there's only one Extreme consecutive sequence of the Extreme SuperHyperVertices and the Extreme SuperHyperEdges form only one Extreme SuperHyperConnectivities but it has either all Extreme SuperHyperEdges or all Extreme SuperHyperVertices and in this case, it has all Extreme SuperHyperEdges. There's no Extreme SuperHyperConnectivities such that it has all Extreme SuperHyperVertices. There aren't less than only **four** Extreme SuperHyperVertices **inside** the intended Extreme SuperHyperSet. Thus the non-obvious Extreme SuperHyperConnectivities is up. The obvious simple Extreme type-SuperHyperSet called the Extreme SuperHyperVertices. But the Extreme SuperHyperSet of the Extreme SuperHyperEdges[SuperHyperVertices],

 $\begin{aligned} \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivities} &= \\ \{V_i, E_i, V_6, E_{17}, V_{16}, d_1, V_1\}_{i=2}^5 \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} &= 11z^8. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivities} &= \{V_1, V_i, V_{16}, V_1\}_{i=2}^6. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} &= 11z^8. \end{aligned}$ 

Doesn't have less than four SuperHyperVertices <u>inside</u> the intended Extreme SuperHyperSet. Thus the non-obvious simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities <u>is</u> up. To sum them up, the Extreme SuperHyperSet of the Extreme

SuperHyperEdges[SuperHyperVertices],

 $\begin{aligned} \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivities} &= \\ \{V_i, E_i, V_6, E_{17}, V_{16}, d_1, V_1\}_{i=2}^5 \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} &= 11z^8. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivities} &= \{V_1, V_i, V_{16}, V_1\}_{i=2}^6. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} &= 11z^8. \end{aligned}$ 

 $\underline{\mathbf{Is}} \text{ the non-obvious simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities. Since the Extreme SuperHyperSet of the Extreme SuperHyperEdges[SuperHyperVertices], the extreme SuperHyperVertices], the extreme SuperHyperVertices is the extreme SuperHyperVertices.$ 

 $\begin{aligned} \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivities} &= \\ \{V_i, E_i, V_6, E_{17}, V_{16}, d_1, V_1\}_{i=2}^5 \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} &= 11z^8. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivities} &= \{V_1, V_i, V_{16}, V_1\}_{i=2}^6. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} &= 11z^8. \end{aligned}$ 

Is an Extreme SuperHyperConnectivities C(ESHG) for a Neutrosophic SuperHyper-Graph ESHG : (V, E) is the Extreme SuperHyperSet S of Extreme SuperHyperVertices[SuperHyperEdges] such that there's only one Extreme consecutive Extreme sequence of Extreme SuperHyperVertices and Extreme SuperHyperEdges form only one Extreme SuperHyperConnectivities, but it has either all Extreme SuperHyperEdges or all Extreme SuperHyperVertices and in this case, it has all Extreme SuperHyperEdges. There's no Extreme SuperHyperConnectivities such that it has all Extreme SuperHyperVertices, given by that Extreme type-SuperHyperSet; and it's called the Extreme SuperHyperConnectivities <u>and</u> it's a <u>Extreme SuperHyperConnectivities</u>. Since it <u>has</u> the maximum Extreme cardinality of an Extreme SuperHyperSet S of Extreme Super-HyperEdges[SuperHyperVertices] such that there's only one Extreme consecutive Extreme sequence of Extreme SuperHyperVertices and Extreme SuperHyperEdges form only one Extreme SuperHyperConnectivities but it has either all Extreme SuperHyperEdges form only one Extreme SuperHyperVertices and Extreme SuperHyperEdges form only one Extreme SuperHyperVertices and in this case, it has all Extreme SuperHyperEdges. There aren't only less than four Extreme SuperHyperVertices <u>inside</u> the intended Extreme SuperHyperSet,

$$\begin{split} \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivities} &= \\ \{V_i, E_i, V_6, E_{17}, V_{16}, d_1, V_1\}_{i=2}^5 \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} &= 11z^8. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivities} &= \{V_1, V_i, V_{16}, V_1\}_{i=2}^6. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} &= 11z^8. \end{split}$$

Thus the non-obvious Extreme SuperHyperConnectivities,

 $\mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivities} = \{V_i, E_i, V_6, E_{17}, V_{16}, d_1, V_1\}_{i=2}^5 \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} = 11z^8.$ 

Henry Garrett  $\,\cdot\,$  Independent Researcher  $\,\cdot\,$  Department of Mathematics  $\,\cdot\,$  DrHenryGarrett@gmail.com  $\,\cdot\,$  Manhattan, NY, USA

 $\mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivities} = \{V_1, V_i, V_{16}, V_1\}_{i=2}^6.$  $\mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} = 11z^8.$ 

Is up. The non-obvious simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities, is:

 $\begin{aligned} \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivities} &= \\ \{V_i, E_i, V_6, E_{17}, V_{16}, d_1, V_1\}_{i=2}^5 \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} &= 11z^8. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivities} &= \{V_1, V_i, V_{16}, V_1\}_{i=2}^6. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} &= 11z^8. \end{aligned}$ 

Is the Extreme SuperHyperSet, is:

 $\begin{aligned} \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivities} &= \\ \{V_i, E_i, V_6, E_{17}, V_{16}, d_1, V_1\}_{i=2}^5 \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} &= 11z^8. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivities} &= \{V_1, V_i, V_{16}, V_1\}_{i=2}^6. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} &= 11z^8. \end{aligned}$ 

Doesn't include only less than four SuperHyperVertices in a connected Extreme SuperHyperGraph ESHG : (V, E). It's interesting to mention that the only Extreme type-SuperHyperSet called the

### "Extreme SuperHyperConnectivities"

amid those obvious non-obvious simple non-simple Extreme type-SuperHyperSets called the

### Extreme SuperHyperConnectivities,

is only and only

 $\begin{aligned} \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivities} &= \\ \{V_i, E_i, V_6, E_{17}, V_{16}, d_1, V_1\}_{i=2}^5 \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} &= 11z^8. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivities} &= \{V_1, V_i, V_{16}, V_1\}_{i=2}^6. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} &= 11z^8. \end{aligned}$ 

In a connected Neutrosophic SuperHyperGraph ESHG: (V, E) of highly-embedding-connected SuperHyperModel as the Figure (8.9).

• On the Figure (8.10), the SuperHyperNotion, namely, SuperHyperConnectivities, is up. There's neither empty SuperHyperEdge nor loop SuperHyperEdge. The following Extreme SuperHyperSet of Extreme SuperHyperEdges[SuperHyperVertices] is the simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities. There's no coverage on either all

Henry Garrett · Independent Researcher · Department of Mathematics · DrHenryGarrett@gmail.com · Manhattan, NY, USA

SuperHyperVertices or all SuperHyperEdges. Thus the quasi-discussion on the intended notion is up. Disclaimer: The terms are in this item are referred to the prefix "quasi" since the notion isn't seen and applied totally but somehow the coincidence is achieved in the terms of neither of all SuperHyperVertices or all SuperHyperEdges in any coverage. Thus the terms Extreme SuperHyperConnectivities, Extreme Quasi-SuperHyperConnectivities SuperHyperPolynomial, Extreme R-Quasi-SuperHyperConnectivities, and Extreme R-Quasi-SuperHyperConnectivities SuperHyperPolynomial are up even neither of the analogous terms have the prefix 'quasi" and even more all the context are about the quasi-style of the studied notion and the used notion is quasi-notion even they're addressed without the term "quasi". Furthermore, for the convenient usage and the harmony of the context with the used title and other applied segments , the term "quasi" isn't used more than the following groups of expressions. The Extreme SuperHyperSet of Extreme SuperHyperEdges[SuperHyperVertices],

 $\begin{aligned} \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivities} &= \\ \{V_{14}, E_4, V_{12}, E_6, V_{13}, E_7, V_{14}\} \\ \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivitiesSuperHyperPolynomial} &= 3z^3. \\ \mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivities} &= \\ \{V_{14}V_{12}, V_{13}, V_{14}\} \end{aligned}$ 

 $\mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivitiesSuperHyperPolynomial} = 3z^4.$ 

The following Extreme SuperHyperSet of Extreme SuperHyperEdges[SuperHyperVertices] is the Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities. The Extreme SuperHyperSet of Extreme SuperHyperEdges[SuperHyperVertices],

 $\begin{aligned} \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivities} &= \\ \{V_{14}, E_4, V_{12}, E_6, V_{13}, E_7, V_{14}\} \\ \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivitiesSuperHyperPolynomial} &= 3z^3. \\ \mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivities} &= \\ \{V_{14}V_{12}, V_{13}, V_{14}\} \end{aligned}$ 

 $\mathcal{C}(NSHG)_{Extreme R-SuperHyperConnectivitiesSuperHyperPolynomial} = 3z^4.$ 

Is the Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities. The Extreme SuperHyperSet of the Extreme SuperHyperEdges[SuperHyperVertices],

 $\begin{aligned} \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivities} &= \\ \{V_{14}, E_4, V_{12}, E_6, V_{13}, E_7, V_{14}\} \\ \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivitiesSuperHyperPolynomial} &= 3z^3. \\ \mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivities} &= \\ \{V_{14}V_{12}, V_{13}, V_{14}\} \end{aligned}$ 

 $\mathcal{C}(NSHG)_{Extreme R-SuperHyperConnectivitiesSuperHyperPolynomial} = 3z^4.$ 

Henry Garrett  $\,\cdot\,$  Independent Researcher  $\,\cdot\,$  Department of Mathematics  $\,\cdot\,$  DrHenryGarrett@gmail.com  $\,\cdot\,$  Manhattan, NY, USA

Is an Extreme SuperHyperConnectivities C(ESHG) for an Neutrosophic SuperHyper-Graph  $\overline{ESHG}: (V, E)$  is an Extreme type-SuperHyperSet with the maximum Extreme cardinality of an Extreme SuperHyperSet S of Extreme SuperHyperEdges[SuperHyperVertices] such that there's only one Extreme consecutive sequence of the Extreme SuperHyperVertices and the Extreme SuperHyperEdges form only one Extreme SuperHyperConnectivities. There are not only four Extreme SuperHyperVertices inside the intended Extreme SuperHyperSet. Thus the non-obvious Extreme SuperHyperConnectivities isn't up. The obvious simple Extreme type-SuperHyperSet called the Extreme SuperHyperConnectivities is an Extreme SuperHyperSet includes only less than four Extreme SuperHyperVertices. But the Extreme SuperHyperSet of the Extreme SuperHyperEdges[SuperHyperVertices],

 $\begin{aligned} \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivities} &= \\ \{V_{14}, E_4, V_{12}, E_6, V_{13}, E_7, V_{14}\} \\ \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivitiesSuperHyperPolynomial} &= 3z^3. \\ \mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivities} &= \\ \{V_{14}V_{12}, V_{13}, V_{14}\} \end{aligned}$ 

 $\mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivitiesSuperHyperPolynomial} = 3z^4.$ 

Does has less than four SuperHyperVertices <u>inside</u> the intended Extreme SuperHyperSet. Thus the non-obvious simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities <u>isn't</u> up. To sum them up, the Extreme SuperHyperSet of the Extreme SuperHyperEdges[SuperHyperVertices],

 $\begin{aligned} \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivities} &= \\ \{V_{14}, E_4, V_{12}, E_6, V_{13}, E_7, V_{14}\} \\ \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivitiesSuperHyperPolynomial} &= 3z^3. \\ \mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivities} &= \\ \{V_{14}V_{12}, V_{13}, V_{14}\} \end{aligned}$ 

 $\mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivitiesSuperHyperPolynomial} = 3z^4.$ 

**<u>Is</u>** the non-obvious simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities. Since the Extreme SuperHyperSet of the Extreme SuperHyperEdges[SuperHyperVertices],

$$\begin{split} \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivities} &= \\ \{V_{14}, E_4, V_{12}, E_6, V_{13}, E_7, V_{14}\} \\ \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivitiesSuperHyperPolynomial} &= 3z^3. \\ \mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivities} &= \\ \{V_{14}V_{12}, V_{13}, V_{14}\} \end{split}$$

 $\mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivitiesSuperHyperPolynomial} = 3z^4.$ 

Henry Garrett · Independent Researcher · Department of Mathematics · DrHenryGarrett@gmail.com · Manhattan, NY, USA

Is an Extreme SuperHyperConnectivities C(ESHG) for a Neutrosophic SuperHyper-Graph ESHG : (V, E) is the Extreme SuperHyperSet S of Extreme SuperHyperVertices[SuperHyperEdges] such that there's only one Extreme consecutive Extreme sequence of Extreme SuperHyperVertices and Extreme SuperHyperEdges form only one Extreme SuperHyperConnectivities given by that Extreme type-SuperHyperSet called the Extreme SuperHyperConnectivities <u>and</u> it's an Extreme <u>SuperHyperConnectivities</u>. Since it's <u>the maximum Extreme cardinality</u> of an Extreme SuperHyperSet S of Extreme Super-HyperEdges[SuperHyperVertices] such that there's only one Extreme consecutive Extreme sequence of Extreme SuperHyperVertices and Extreme SuperHyperEdges form only one Extreme SuperHyperConnectivities. There are not only less than four Extreme SuperHyper-Vertices <u>inside</u> the intended Extreme SuperHyperSet,

$$\begin{split} \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivities} &= \\ \{V_{14}, E_4, V_{12}, E_6, V_{13}, E_7, V_{14}\} \\ \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivitiesSuperHyperPolynomial} &= 3z^3. \\ \mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivities} &= \\ \{V_{14}V_{12}, V_{13}, V_{14}\} \end{split}$$

 $\mathcal{C}(NSHG)_{Extreme R-SuperHyperConnectivitiesSuperHyperPolynomial} = 3z^4.$ 

Thus the non-obvious Extreme SuperHyperConnectivities,

$$\begin{split} \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivities} &= \\ \{V_{14}, E_4, V_{12}, E_6, V_{13}, E_7, V_{14}\} \\ \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivitiesSuperHyperPolynomial} &= 3z^3. \\ \mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivities} &= \\ \{V_{14}V_{12}, V_{13}, V_{14}\} \end{split}$$

 $\mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivitiesSuperHyperPolynomial} = 3z^4.$ 

Is up. The obvious simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities, is:

$$\begin{split} \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivities} &= \\ \{V_{14}, E_4, V_{12}, E_6, V_{13}, E_7, V_{14}\} \\ \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivitiesSuperHyperPolynomial} &= 3z^3. \\ \mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivities} &= \\ \{V_{14}V_{12}, V_{13}, V_{14}\} \end{split}$$

 $\mathcal{C}(NSHG)_{Extreme R-SuperHyperConnectivitiesSuperHyperPolynomial} = 3z^4.$ 

Is the Extreme SuperHyperSet, is:

 $\mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivities} =$ 

 $\{V_{14}, E_4, V_{12}, E_6, V_{13}, E_7, V_{14} \}$   $C(NSHG)_{ExtremeSuperHyperConnectivitiesSuperHyperPolynomial} = 3z^3.$   $C(NSHG)_{ExtremeR-SuperHyperConnectivities} =$   $\{V_{14}V_{12}, V_{13}, V_{14} \}$ 

 $\mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivitiesSuperHyperPolynomial} = 3z^4.$ 

Does includes only less than four SuperHyperVertices in a connected Extreme SuperHyperGraph ESHG: (V, E). It's interesting to mention that the only simple Extreme type-SuperHyperSet called the

# "Extreme SuperHyperConnectivities"

amid those obvious[non-obvious] simple Extreme type-SuperHyperSets called the

# Extreme SuperHyperConnectivities,

is only and only

 $\begin{aligned} \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivities} &= \\ \{V_{14}, E_4, V_{12}, E_6, V_{13}, E_7, V_{14}\} \\ \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivitiesSuperHyperPolynomial} &= 3z^3. \\ \mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivities} &= \\ \{V_{14}V_{12}, V_{13}, V_{14}\} \end{aligned}$ 

 $\mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivitiesSuperHyperPolynomial} = 3z^4.$ 

In a connected Neutrosophic SuperHyperGraph ESHG: (V, E) of dense SuperHyperModel as the Figure (8.10).

• On the Figure (8.11), the SuperHyperNotion, namely, SuperHyperConnectivities, is up. There's neither empty SuperHyperEdge nor loop SuperHyperEdge. The Extreme SuperHyperSet of Extreme SuperHyperEdges[SuperHyperVertices],

 $\begin{aligned} \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivities} &= \\ \{V_1, E_6, V_5, E_5, V_6, E_4, V_4, E_7, V_2, E_1, V_1\} \\ \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivitiesSuperHyperPolynomial} &= 3z^5. \\ \mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivities} &= \\ \{V_1, V_5, V_6, V_4, V_2, V_1\} \\ \mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivitiesSuperHyperPolynomial} &= 3z^6. \end{aligned}$ 

The following Extreme SuperHyperSet of Extreme SuperHyperEdges[SuperHyperVertices] is the Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities. The Extreme

SuperHyperSet of Extreme SuperHyperEdges[SuperHyperVertices],

 $\begin{aligned} \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivities} &= \\ \{V_1, E_6, V_5, E_5, V_6, E_4, V_4, E_7, V_2, E_1, V_1\} \\ \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivitiesSuperHyperPolynomial} &= 3z^5. \\ \mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivities} &= \\ \{V_1, V_5, V_6, V_4, V_2, V_1\} \\ \mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivitiesSuperHyperPolynomial} &= 3z^6. \end{aligned}$ 

Is the Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities. The Extreme SuperHyperSet of the Extreme SuperHyperEdges[SuperHyperVertices],

 $\begin{aligned} \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivities} &= \\ \{V_1, E_6, V_5, E_5, V_6, E_4, V_4, E_7, V_2, E_1, V_1\} \\ \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivitiesSuperHyperPolynomial} &= 3z^5. \\ \mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivities} &= \\ \{V_1, V_5, V_6, V_4, V_2, V_1\} \\ \mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivitiesSuperHyperPolynomial} &= 3z^6. \end{aligned}$ 

Is an Extreme SuperHyperConnectivities C(ESHG) for an Neutrosophic SuperHyper-Graph ESHG: (V, E) is an Extreme type-SuperHyperSet with the maximum Extreme cardinality of an Extreme SuperHyperSet S of Extreme SuperHyperEdges[SuperHyperVertices] such that there's only one Extreme consecutive sequence of the Extreme SuperHyperVertices and the Extreme SuperHyperEdges form only one Extreme SuperHyperConnectivities. There are not only four Extreme SuperHyperVertices inside the intended Extreme SuperHyperSet. Thus the non-obvious Extreme SuperHyperConnectivities isn't up. The obvious simple Extreme type-SuperHyperSet called the Extreme SuperHyperConnectivities is an Extreme SuperHyperSet includes only less than four Extreme SuperHyperVertices. But the Extreme SuperHyperSet of the Extreme SuperHyperVertices],

 $\begin{aligned} \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivities} &= \\ \{V_1, E_6, V_5, E_5, V_6, E_4, V_4, E_7, V_2, E_1, V_1\} \\ \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivitiesSuperHyperPolynomial} &= 3z^5. \\ \mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivities} &= \\ \{V_1, V_5, V_6, V_4, V_2, V_1\} \\ \mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivitiesSuperHyperPolynomial} &= 3z^6. \end{aligned}$ 

Does has less than four SuperHyperVertices <u>inside</u> the intended Extreme SuperHyperSet. Thus the non-obvious simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities <u>is</u> up. To sum them up, the Extreme SuperHyperSet of the Extreme SuperHyperEdges[SuperHyperVertices],

 $\mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivities} = \{V_1, E_6, V_5, E_5, V_6, E_4, V_4, E_7, V_2, E_1, V_1\}$ 

 $\mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivitiesSuperHyperPolynomial} = 3z^{5}.$  $\mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivities} = \{V_{1}, V_{5}, V_{6}, V_{4}, V_{2}, V_{1}\}$  $\mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivitiesSuperHyperPolynomial} = 3z^{6}.$ 

 $\underline{Is}$  the non-obvious simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities. Since the Extreme SuperHyperSet of the Extreme SuperHyperEdges[SuperHyperVertices],

 $\begin{aligned} \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivities} &= \\ \{V_1, E_6, V_5, E_5, V_6, E_4, V_4, E_7, V_2, E_1, V_1\} \\ \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivitiesSuperHyperPolynomial} &= 3z^5. \\ \mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivities} &= \\ \{V_1, V_5, V_6, V_4, V_2, V_1\} \\ \mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivitiesSuperHyperPolynomial} &= 3z^6. \end{aligned}$ 

Is an Extreme SuperHyperConnectivities C(ESHG) for a Neutrosophic SuperHyper-Graph ESHG : (V, E) is the Extreme SuperHyperSet S of Extreme SuperHyperVertices[SuperHyperEdges] such that there's only one Extreme consecutive Extreme sequence of Extreme SuperHyperVertices and Extreme SuperHyperEdges form only one Extreme SuperHyperConnectivities given by that Extreme type-SuperHyperSet called the Extreme SuperHyperConnectivities <u>and</u> it's an Extreme <u>SuperHyperConnectivities</u>. Since it's <u>the maximum Extreme cardinality</u> of an Extreme SuperHyperSet S of Extreme Super-HyperEdges[SuperHyperVertices] such that there's only one Extreme consecutive Extreme sequence of Extreme SuperHyperVertices and Extreme SuperHyperEdges form only one Extreme SuperHyperConnectivities. There are not only less than four Extreme SuperHyper-Vertices <u>inside</u> the intended Extreme SuperHyperSet,

 $\begin{aligned} \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivities} &= \\ \{V_1, E_6, V_5, E_5, V_6, E_4, V_4, E_7, V_2, E_1, V_1\} \\ \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivitiesSuperHyperPolynomial} &= 3z^5. \\ \mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivities} &= \\ \{V_1, V_5, V_6, V_4, V_2, V_1\} \\ \mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivitiesSuperHyperPolynomial} &= 3z^6. \end{aligned}$ 

Thus the non-obvious Extreme SuperHyperConnectivities,

 $\begin{aligned} \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivities} &= \\ \{V_1, E_6, V_5, E_5, V_6, E_4, V_4, E_7, V_2, E_1, V_1\} \\ \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivitiesSuperHyperPolynomial} &= 3z^5. \\ \mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivities} &= \\ \{V_1, V_5, V_6, V_4, V_2, V_1\} \\ \mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivitiesSuperHyperPolynomial} &= 3z^6. \end{aligned}$ 

Is up. The obvious simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities, is not:

 $\begin{aligned} \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivities} &= \\ \{V_1, E_6, V_5, E_5, V_6, E_4, V_4, E_7, V_2, E_1, V_1\} \\ \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivitiesSuperHyperPolynomial} &= 3z^5. \\ \mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivities} &= \\ \{V_1, V_5, V_6, V_4, V_2, V_1\} \\ \mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivitiesSuperHyperPolynomial} &= 3z^6. \end{aligned}$ 

Is the Extreme SuperHyperSet, is not:

$$\begin{split} \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivities} &= \\ \{V_1, E_6, V_5, E_5, V_6, E_4, V_4, E_7, V_2, E_1, V_1\} \\ \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivitiesSuperHyperPolynomial} &= 3z^5. \\ \mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivities} &= \\ \{V_1, V_5, V_6, V_4, V_2, V_1\} \\ \mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivitiesSuperHyperPolynomial} &= 3z^6. \end{split}$$

Does includes only less than four SuperHyperVertices in a connected Extreme SuperHyperGraph ESHG: (V, E). It's interesting to mention that the only simple Extreme type-SuperHyperSet called the

# "Extreme SuperHyperConnectivities"

amid those obvious non-obvious simple Extreme type-SuperHyperSets called the

### Extreme SuperHyperConnectivities,

is only and only

 $\begin{aligned} \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivities} &= \\ \{V_1, E_6, V_5, E_5, V_6, E_4, V_4, E_7, V_2, E_1, V_1\} \\ \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivitiesSuperHyperPolynomial} &= 3z^5. \\ \mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivities} &= \\ \{V_1, V_5, V_6, V_4, V_2, V_1\} \\ \mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivitiesSuperHyperPolynomial} &= 3z^6. \end{aligned}$ 

In a connected Neutrosophic SuperHyperGraph ESHG: (V, E).

• On the Figure (8.12), the SuperHyperNotion, namely, SuperHyperConnectivities, is up. There's neither empty SuperHyperEdge nor loop SuperHyperEdge. The following Extreme SuperHyperSet of Extreme SuperHyperEdges[SuperHyperVertices] is the simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities. There's only one Extreme

SuperHyperEdges between any given Extreme amount of Extreme SuperHyperVertices. Thus there isn't any Extreme SuperHyperConnectivities at all. The Extreme SuperHyperSet of Extreme SuperHyperEdges[SuperHyperVertices],

 $\begin{aligned} \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivities} &= \{\} \\ \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivitiesSuperHyperPolynomial} &= 0. \\ \mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivities} &= \{\} \\ \mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivitiesSuperHyperPolynomial} &= 0. \end{aligned}$ 

The following Extreme SuperHyperSet of Extreme SuperHyperEdges[SuperHyperVertices] is the Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities. The Extreme SuperHyperSet of Extreme SuperHyperEdges[SuperHyperVertices],

 $\begin{aligned} \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivities} &= \{\} \\ \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivitiesSuperHyperPolynomial} &= 0. \\ \mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivities} &= \{\} \\ \mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivitiesSuperHyperPolynomial} &= 0. \end{aligned}$ 

Is the Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities. The Extreme SuperHyperSet of the Extreme SuperHyperEdges[SuperHyperVertices],

 $C(NSHG)_{ExtremeSuperHyperConnectivities} = \{\} \\ C(NSHG)_{ExtremeSuperHyperConnectivitiesSuperHyperPolynomial} = 0. \\ C(NSHG)_{ExtremeR-SuperHyperConnectivities} = \{\} \\ C(NSHG)_{ExtremeR-SuperHyperConnectivitiesSuperHyperPolynomial} = 0. \\ \end{cases}$ 

Is an Extreme SuperHyperConnectivities C(ESHG) for an Neutrosophic SuperHyper-Graph  $\overline{ESHG}: (V, E)$  is an Extreme type-SuperHyperSet with the maximum Extreme cardinality of an Extreme SuperHyperSet S of Extreme SuperHyperEdges[SuperHyperVertices] such that there's only one Extreme consecutive sequence of the Extreme SuperHyperVertices and the Extreme SuperHyperEdges form only one Extreme SuperHyperConnectivities. There are not only <u>four</u> Extreme SuperHyperVertices <u>inside</u> the intended Extreme SuperHyperSet. Thus the non-obvious Extreme SuperHyperConnectivities isn't up. The obvious simple Extreme type-SuperHyperSet called the Extreme SuperHyperConnectivities is an Extreme SuperHyperSet <u>includes</u> only less than <u>four</u> Extreme SuperHyperVertices. But the Extreme SuperHyperSet of the Extreme SuperHyperCertices],

 $C(NSHG)_{ExtremeSuperHyperConnectivities} = \{\} \\ C(NSHG)_{ExtremeSuperHyperConnectivitiesSuperHyperPolynomial} = 0. \\ C(NSHG)_{ExtremeR-SuperHyperConnectivities} = \{\} \\ C(NSHG)_{ExtremeR-SuperHyperConnectivitiesSuperHyperPolynomial} = 0. \\ \end{cases}$ 

Does has less than four SuperHyperVertices <u>inside</u> the intended Extreme SuperHyperSet. Thus the non-obvious simple Extreme type-SuperHyperSet of the Extreme SuperHyperCon-

nectivities <u>is</u> up. To sum them up, the Extreme SuperHyperSet of the Extreme SuperHyperEdges[SuperHyperVertices],

 $\mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivities} = \{\} \\ \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivitiesSuperHyperPolynomial} = 0. \\ \mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivities} = \{\} \\ \mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivitiesSuperHyperPolynomial} = 0. \end{cases}$ 

 $\underline{Is}$  the non-obvious simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities. Since the Extreme SuperHyperSet of the Extreme SuperHyperEdges[SuperHyperVertices],

 $\begin{aligned} \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivities} &= \{\} \\ \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivitiesSuperHyperPolynomial} &= 0. \\ \mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivities} &= \{\} \\ \mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivitiesSuperHyperPolynomial} &= 0. \end{aligned}$ 

Is an Extreme SuperHyperConnectivities C(ESHG) for a Neutrosophic SuperHyper-Graph ESHG : (V, E) is the Extreme SuperHyperSet S of Extreme SuperHyperVertices[SuperHyperEdges] such that there's only one Extreme consecutive Extreme sequence of Extreme SuperHyperVertices and Extreme SuperHyperEdges form only one Extreme SuperHyperConnectivities given by that Extreme type-SuperHyperSet called the Extreme SuperHyperConnectivities <u>and</u> it's an Extreme <u>SuperHyperConnectivities</u>. Since it's <u>the maximum Extreme cardinality</u> of an Extreme SuperHyperSet S of Extreme Super-HyperEdges[SuperHyperVertices] such that there's only one Extreme consecutive Extreme sequence of Extreme SuperHyperVertices and Extreme SuperHyperEdges form only one Extreme SuperHyperConnectivities. There are not only less than four Extreme SuperHyper-Vertices **inside** the intended Extreme SuperHyperSet,

 $\mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivities} = \{\}$   $\mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivitiesSuperHyperPolynomial} = 0.$   $\mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivities} = \{\}$   $\mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivitiesSuperHyperPolynomial} = 0.$ 

Thus the non-obvious Extreme SuperHyperConnectivities,

 $\mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivities} = \{\}$   $\mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivitiesSuperHyperPolynomial} = 0.$   $\mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivities} = \{\}$   $\mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivitiesSuperHyperPolynomial} = 0.$ 

Is up. The obvious simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities, is not:

 $\mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivities} = \{\}$  $\mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivitiesSuperHyperPolynomial} = 0.$ 

 $\mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivities} = \{\}$  $\mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivitiesSuperHyperPolynomial} = 0.$ 

Is the Extreme SuperHyperSet, is not:

 $\begin{aligned} \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivities} &= \{\} \\ \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivitiesSuperHyperPolynomial} &= 0. \\ \mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivities} &= \{\} \\ \mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivitiesSuperHyperPolynomial} &= 0. \end{aligned}$ 

Does includes only less than four SuperHyperVertices in a connected Extreme SuperHyperGraph ESHG: (V, E). It's interesting to mention that the only simple Extreme type-SuperHyperSet called the

### "Extreme SuperHyperConnectivities"

amid those obvious[non-obvious] simple Extreme type-SuperHyperSets called the

### Extreme SuperHyperConnectivities,

is only and only

 $C(NSHG)_{ExtremeSuperHyperConnectivities} = \{\} \\ C(NSHG)_{ExtremeSuperHyperConnectivitiesSuperHyperPolynomial} = 0. \\ C(NSHG)_{ExtremeR-SuperHyperConnectivities} = \{\} \\ C(NSHG)_{ExtremeR-SuperHyperConnectivitiesSuperHyperPolynomial} = 0. \\ \end{cases}$ 

In a connected Neutrosophic SuperHyperGraph ESHG: (V, E).

• On the Figure (8.13), the SuperHyperNotion, namely, SuperHyperConnectivities, is up. There's neither empty SuperHyperEdge nor loop SuperHyperEdge. The following Extreme SuperHyperSet of Extreme SuperHyperEdges[SuperHyperVertices] is the simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities. The Extreme SuperHyperSet of Extreme SuperHyperVertices],

$$\begin{split} \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivities} &= \\ \{V_1, E_1, V_2, E_{10}, V_3, E_8, V_6, E_4, V_4, E_2, V_5, E_6, V_1\}. \\ \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivitiesSuperHyperPolynomial} &= z^6. \\ \mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivities} &= \{V_i\}_{i=1}^6. \\ \mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivitiesSuperHyperPolynomial} &= z^6. \end{split}$$

is the simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities. The following Extreme SuperHyperSet of Extreme SuperHyperEdges[SuperHyperVertices] is the

Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities. The Extreme SuperHyperSet of Extreme SuperHyperEdges[SuperHyperVertices],

$$\begin{split} \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivities} &= \\ \{V_1, E_1, V_2, E_{10}, V_3, E_8, V_6, E_4, V_4, E_2, V_5, E_6, V_1\}. \\ \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivitiesSuperHyperPolynomial} &= z^6. \\ \mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivities} &= \{V_i\}_{i=1}^6. \\ \mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivitiesSuperHyperPolynomial} &= z^6. \end{split}$$

Is the Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities. The Extreme SuperHyperSet of the Extreme SuperHyperEdges[SuperHyperVertices],

 $\begin{aligned} \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivities} &= \\ \{V_1, E_1, V_2, E_{10}, V_3, E_8, V_6, E_4, V_4, E_2, V_5, E_6, V_1\}. \\ \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivitiesSuperHyperPolynomial} &= z^6. \\ \mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivities} &= \{V_i\}_{i=1}^6. \\ \mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivitiesSuperHyperPolynomial} &= z^6. \end{aligned}$ 

Is an Extreme SuperHyperConnectivities C(ESHG) for an Neutrosophic SuperHyper-Graph  $\overline{ESHG}: (V, E)$  is an Extreme type-SuperHyperSet with the maximum Extreme cardinality of an Extreme SuperHyperSet S of Extreme SuperHyperEdges[SuperHyperVertices] such that there's only one Extreme consecutive sequence of the Extreme SuperHyperVertices and the Extreme SuperHyperEdges form only one Extreme SuperHyperConnectivities. There are not only four Extreme SuperHyperVertices inside the intended Extreme SuperHyperSet. Thus the non-obvious Extreme SuperHyperConnectivities isn't up. The obvious simple Extreme type-SuperHyperSet called the Extreme SuperHyperConnectivities is an Extreme SuperHyperSet includes only less than four Extreme SuperHyperVertices. But the Extreme SuperHyperSet of the Extreme SuperHyperVertices],

$$\begin{split} \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivities} &= \\ \{V_1, E_1, V_2, E_{10}, V_3, E_8, V_6, E_4, V_4, E_2, V_5, E_6, V_1\}. \\ \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivitiesSuperHyperPolynomial} &= z^6. \\ \mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivities} &= \{V_i\}_{i=1}^6. \\ \mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivitiesSuperHyperPolynomial} &= z^6. \end{split}$$

Does has less than four SuperHyperVertices <u>inside</u> the intended Extreme SuperHyperSet. Thus the non-obvious simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities <u>is</u> up. To sum them up, the Extreme SuperHyperSet of the Extreme SuperHyperEdges[SuperHyperVertices],

 $\begin{aligned} \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivities} &= \\ \{V_1, E_1, V_2, E_{10}, V_3, E_8, V_6, E_4, V_4, E_2, V_5, E_6, V_1\}. \\ \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivitiesSuperHyperPolynomial} &= z^6. \\ \mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivities} &= \{V_i\}_{i=1}^6. \end{aligned}$ 

Henry Garrett  $\,\cdot\,$  Independent Researcher  $\,\cdot\,$  Department of Mathematics  $\,\cdot\,$  DrHenryGarrett@gmail.com  $\,\cdot\,$  Manhattan, NY, USA

 $\mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivitiesSuperHyperPolynomial} = z^{6}.$ 

 $\underline{Is}$  the non-obvious simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities. Since the Extreme SuperHyperSet of the Extreme SuperHyperEdges[SuperHyperVertices],

$$\begin{split} \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivities} &= \\ \{V_1, E_1, V_2, E_{10}, V_3, E_8, V_6, E_4, V_4, E_2, V_5, E_6, V_1\}. \\ \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivitiesSuperHyperPolynomial} &= z^6. \\ \mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivities} &= \{V_i\}_{i=1}^6. \\ \mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivitiesSuperHyperPolynomial} &= z^6. \end{split}$$

Is an Extreme SuperHyperConnectivities C(ESHG) for a Neutrosophic SuperHyper-Graph ESHG : (V, E) is the Extreme SuperHyperSet S of Extreme SuperHyperVertices[SuperHyperEdges] such that there's only one Extreme consecutive Extreme sequence of Extreme SuperHyperVertices and Extreme SuperHyperEdges form only one Extreme SuperHyperConnectivities given by that Extreme type-SuperHyperSet called the Extreme SuperHyperConnectivities <u>and</u> it's an Extreme <u>SuperHyperConnectivities</u>. Since it's <u>the maximum Extreme cardinality</u> of an Extreme SuperHyperSet S of Extreme Super-HyperEdges[SuperHyperVertices] such that there's only one Extreme consecutive Extreme sequence of Extreme SuperHyperVertices and Extreme SuperHyperEdges form only one Extreme SuperHyperConnectivities. There are not only less than four Extreme SuperHyper-Vertices <u>inside</u> the intended Extreme SuperHyperSet,

$$\begin{split} \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivities} &= \\ \{V_1, E_1, V_2, E_{10}, V_3, E_8, V_6, E_4, V_4, E_2, V_5, E_6, V_1\}.\\ \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivitiesSuperHyperPolynomial} &= z^6.\\ \mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivities} &= \{V_i\}_{i=1}^6.\\ \mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivitiesSuperHyperPolynomial} &= z^6. \end{split}$$

Thus the non-obvious Extreme SuperHyperConnectivities,

$$\begin{split} \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivities} &= \\ \{V_1, E_1, V_2, E_{10}, V_3, E_8, V_6, E_4, V_4, E_2, V_5, E_6, V_1\}.\\ \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivitiesSuperHyperPolynomial} &= z^6.\\ \mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivities} &= \{V_i\}_{i=1}^6.\\ \mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivitiesSuperHyperPolynomial} &= z^6. \end{split}$$

Is up. The obvious simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities, is not:

$$\begin{split} \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivities} &= \\ \{V_1, E_1, V_2, E_{10}, V_3, E_8, V_6, E_4, V_4, E_2, V_5, E_6, V_1\}. \\ \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivitiesSuperHyperPolynomial} &= z^6. \\ \mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivities} &= \{V_i\}_{i=1}^6. \\ \mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivitiesSuperHyperPolynomial} &= z^6. \end{split}$$

Is the Extreme SuperHyperSet, is not:

$$\begin{split} \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivities} &= \\ \{V_1, E_1, V_2, E_{10}, V_3, E_8, V_6, E_4, V_4, E_2, V_5, E_6, V_1\}. \\ \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivitiesSuperHyperPolynomial} &= z^6. \\ \mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivities} &= \{V_i\}_{i=1}^6. \\ \mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivitiesSuperHyperPolynomial} &= z^6. \end{split}$$

Does includes only less than four SuperHyperVertices in a connected Extreme SuperHyperGraph ESHG: (V, E). It's interesting to mention that the only simple Extreme type-SuperHyperSet called the

# "Extreme SuperHyperConnectivities"

amid those obvious non-obvious simple Extreme type-SuperHyperSets called the

# Extreme SuperHyperConnectivities,

is only and only

$$\begin{split} \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivities} &= \\ \{V_1, E_1, V_2, E_{10}, V_3, E_8, V_6, E_4, V_4, E_2, V_5, E_6, V_1\}. \\ \mathcal{C}(NSHG)_{ExtremeSuperHyperConnectivitiesSuperHyperPolynomial} &= z^6. \\ \mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivities} &= \{V_i\}_{i=1}^6. \\ \mathcal{C}(NSHG)_{ExtremeR-SuperHyperConnectivitiesSuperHyperPolynomial} &= z^6. \end{split}$$

In a connected Neutrosophic SuperHyperGraph ESHG : (V, E).

• On the Figure (8.14), the SuperHyperNotion, namely, SuperHyperConnectivities, is up. There's neither empty SuperHyperEdge nor loop SuperHyperEdge. The following Extreme SuperHyperSet of Extreme SuperHyperEdges[SuperHyperVertices] is the simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities. The Extreme SuperHyperSet of Extreme SuperHyperVertices],

 $C(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{\}. \\ C(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} = 0. \\ C(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivities} = \{\}. \\ C(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} = 0. \\ C(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitieSUP} \\ C(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitieSUP}$ 

is the simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities. The following Extreme SuperHyperSet of Extreme SuperHyperEdges[SuperHyperVertices] is the Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities. The Extreme SuperHyperSet of Extreme SuperHyperEdges[SuperHyperVertices],

 $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{\}.$ 

Henry Garrett  $\,\cdot\,$  Independent Researcher  $\,\cdot\,$  Department of Mathematics  $\,\cdot\,$  DrHenryGarrett@gmail.com  $\,\cdot\,$  Manhattan, NY, USA

 $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} = 0.$  $\mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivities} = \{\}.$  $\mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} = 0.$ 

Is the Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities. The Extreme SuperHyperSet of the Extreme SuperHyperEdges[SuperHyperVertices],

 $\begin{aligned} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{\}. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} &= 0. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivities} &= \{\}. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} &= 0. \end{aligned}$ 

Is an Extreme SuperHyperConnectivities C(ESHG) for an Neutrosophic SuperHyper-Graph  $\overline{ESHG}: (V, E)$  is an Extreme type-SuperHyperSet with the maximum Extreme cardinality of an Extreme SuperHyperSet S of Extreme SuperHyperEdges[SuperHyperVertices] such that there's only one Extreme consecutive sequence of the Extreme SuperHyperVertices and the Extreme SuperHyperEdges form only one Extreme SuperHyperConnectivities. There are not only <u>four</u> Extreme SuperHyperVertices <u>inside</u> the intended Extreme SuperHyperSet. Thus the non-obvious Extreme SuperHyperConnectivities isn't up. The obvious simple Extreme type-SuperHyperSet called the Extreme SuperHyperConnectivities is an Extreme SuperHyperSet <u>includes</u> only less than <u>four</u> Extreme SuperHyperVertices. But the Extreme SuperHyperSet of the Extreme SuperHyperVertices],

 $\begin{aligned} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{\}. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} &= 0. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivities} &= \{\}. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} &= 0. \end{aligned}$ 

Doesn't have less than four SuperHyperVertices **inside** the intended Extreme SuperHyperSet. Thus the non-obvious simple Extreme type-SuperHyperSet of the Extreme SuperHyper-Connectivities **isn't** up. To sum them up, the Extreme SuperHyperSet of the Extreme SuperHyperEdges[SuperHyperVertices],

 $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{\}. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} = 0. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivities} = \{\}. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} = 0. \\ \end{array}$ 

**<u>Is</u>** the non-obvious simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities. Since the Extreme SuperHyperSet of the Extreme SuperHyperEdges[SuperHyperVertices],

$$\begin{split} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{\}. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} &= 0. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivities} &= \{\}. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} &= 0. \end{split}$$

Henry Garrett  $\cdot$  Independent Researcher  $\cdot$  Department of Mathematics  $\cdot$  DrHenryGarrett@gmail.com  $\cdot$  Manhattan, NY, USA

Is an Extreme SuperHyperConnectivities C(ESHG) for a Neutrosophic SuperHyper-Graph ESHG : (V, E) is the Extreme SuperHyperSet S of Extreme SuperHyperVertices[SuperHyperEdges] such that there's only one Extreme consecutive Extreme sequence of Extreme SuperHyperVertices and Extreme SuperHyperEdges form only one Extreme SuperHyperConnectivities given by that Extreme type-SuperHyperSet called the Extreme SuperHyperConnectivities <u>and</u> it's an Extreme <u>SuperHyperConnectivities</u>. Since it's <u>the maximum Extreme cardinality</u> of an Extreme SuperHyperSet S of Extreme Super-HyperEdges[SuperHyperVertices] such that there's only one Extreme consecutive Extreme sequence of Extreme SuperHyperVertices and Extreme SuperHyperEdges form only one Extreme SuperHyperConnectivities. There are not only less than four Extreme SuperHyper-Vertices <u>inside</u> the intended Extreme SuperHyperSet,

 $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{\}. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} = 0. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivities} = \{\}. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} = 0. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitieSUperHyperPolynomial} = 0. \\ \mathcal{C}(NSHG)_{Extre$ 

Thus the non-obvious Extreme SuperHyperConnectivities,

 $\begin{aligned} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{\}. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} &= 0. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivities} &= \{\}. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} &= 0. \end{aligned}$ 

Is up. The obvious simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities, is:

$$\begin{split} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{\}. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} &= 0. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivities} &= \{\}. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} &= 0. \end{split}$$

Is the Extreme SuperHyperSet, is:

 $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{\}.$   $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} = 0.$   $\mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivities} = \{\}.$   $\mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} = 0.$ 

Does includes only less than four SuperHyperVertices in a connected Extreme SuperHyperGraph ESHG: (V, E). It's interesting to mention that the only simple Extreme type-SuperHyperSet called the

# "Extreme SuperHyperConnectivities"

amid those obvious non-obvious simple Extreme type-SuperHyperSets called the

### Extreme SuperHyperConnectivities,

is only and only

 $\begin{aligned} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{\}. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} &= 0. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivities} &= \{\}. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} &= 0. \end{aligned}$ 

In a connected Neutrosophic SuperHyperGraph ESHG : (V, E). It's noted that this Extreme SuperHyperGraph ESHG : (V, E) is an Extreme graph G : (V, E) thus the notions in both settings are coincided.

• On the Figure (8.15), the SuperHyperNotion, namely, SuperHyperConnectivities, is up. There's neither empty SuperHyperEdge nor loop SuperHyperEdge. The following Extreme SuperHyperSet of Extreme SuperHyperEdges[SuperHyperVertices] is the simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities. The Extreme SuperHyperSet of Extreme SuperHyperEdges[SuperHyperVertices],

 $\begin{aligned} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{\}. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} &= 0. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivities} &= \{\}. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} &= 0 \end{aligned}$ 

is the simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities. The following Extreme SuperHyperSet of Extreme SuperHyperEdges[SuperHyperVertices] is the Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities. The Extreme SuperHyperSet of Extreme SuperHyperEdges[SuperHyperVertices],

 $\begin{aligned} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{\}. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} &= 0. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivities} &= \{\}. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} &= 0. \end{aligned}$ 

Is the Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities. The Extreme SuperHyperSet of the Extreme SuperHyperEdges[SuperHyperVertices],

 $\begin{aligned} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{\}. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} &= 0. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivities} &= \{\}. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} &= 0. \end{aligned}$ 

Is an **Extreme SuperHyperConnectivities** C(ESHG) for an Neutrosophic SuperHyper-Graph  $\overline{ESHG}: (V, E)$  is an Extreme type-SuperHyperSet with **the maximum Extreme cardinality** of an Extreme SuperHyperSet S of Extreme SuperHyperEdges[SuperHyperVertices] such that

Henry Garrett · Independent Researcher · Department of Mathematics · DrHenryGarrett@gmail.com · Manhattan, NY, USA

there's only one Extreme consecutive sequence of the Extreme SuperHyperVertices and the Extreme SuperHyperEdges form only one Extreme SuperHyperConnectivities. There are <u>not</u> only <u>four</u> Extreme SuperHyperVertices <u>inside</u> the intended Extreme SuperHyperSet. Thus the non-obvious Extreme SuperHyperConnectivities isn't up. The obvious simple Extreme type-SuperHyperSet called the Extreme SuperHyperConnectivities is an Extreme SuperHyperSet <u>includes</u> only less than <u>four</u> Extreme SuperHyperVertices. But the Extreme SuperHyperSet of the Extreme SuperHyperVertices],

 $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{\}. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} = 0. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivities} = \{\}. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} = 0. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitieSUperHyperPolynomial} = 0. \\ \mathcal{C}(NSHG)_{Extrem$ 

Doesn't have less than four SuperHyperVertices <u>inside</u> the intended Extreme SuperHyperSet. Thus the non-obvious simple Extreme type-SuperHyperSet of the Extreme SuperHyper-Connectivities <u>isn't</u> up. To sum them up, the Extreme SuperHyperSet of the Extreme SuperHyperEdges[SuperHyperVertices],

 $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{\}. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} = 0. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivities} = \{\}. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} = 0. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitieSUperHyperPolynomial} = 0. \\ \mathcal{C}(NSHG)_{Extre$ 

<u>Is</u> the non-obvious simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities. Since the Extreme SuperHyperSet of the Extreme SuperHyperEdges[SuperHyperVertices],

 $\begin{aligned} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{\}. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} &= 0. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivities} &= \{\}. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} &= 0. \end{aligned}$ 

Is an Extreme SuperHyperConnectivities C(ESHG) for a Neutrosophic SuperHyper-Graph ESHG : (V, E) is the Extreme SuperHyperSet S of Extreme SuperHyperVertices[SuperHyperEdges] such that there's only one Extreme consecutive Extreme sequence of Extreme SuperHyperVertices and Extreme SuperHyperEdges form only one Extreme SuperHyperConnectivities given by that Extreme type-SuperHyperSet called the Extreme SuperHyperConnectivities <u>and</u> it's an Extreme <u>SuperHyperConnectivities</u>. Since it's <u>the maximum Extreme cardinality</u> of an Extreme SuperHyperSet S of Extreme Super-HyperEdges[SuperHyperVertices] such that there's only one Extreme consecutive Extreme sequence of Extreme SuperHyperVertices and Extreme SuperHyperEdges form only one Extreme SuperHyperConnectivities. There are not only less than four Extreme SuperHyper-Vertices <u>inside</u> the intended Extreme SuperHyperSet,

> $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{\}.$  $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} = 0.$

Henry Garrett  $\,\cdot\,$  Independent Researcher  $\,\cdot\,$  Department of Mathematics  $\,\cdot\,$  DrHenryGarrett@gmail.com  $\,\cdot\,$  Manhattan, NY, USA

 $\mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivities} = \{\}.$ 

 $\mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} = 0.$ 

Thus the non-obvious Extreme SuperHyperConnectivities,

$$\begin{split} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{\}. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} &= 0. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivities} &= \{\}. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} &= 0. \end{split}$$

Is up. The obvious simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities, is:

 $\begin{aligned} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{\}. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} &= 0. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivities} &= \{\}. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} &= 0. \end{aligned}$ 

Is the Extreme SuperHyperSet, is:

 $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{\}.$   $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} = 0.$   $\mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivities} = \{\}.$   $\mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} = 0.$ 

Does includes only less than four SuperHyperVertices in a connected Extreme SuperHyperGraph ESHG: (V, E). It's interesting to mention that the only simple Extreme type-SuperHyperSet called the

### "Extreme SuperHyperConnectivities"

amid those obvious[non-obvious] simple Extreme type-SuperHyperSets called the

# Extreme SuperHyperConnectivities,

is only and only

 $\begin{aligned} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{\}. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} &= 0. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivities} &= \{\}. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} &= 0. \end{aligned}$ 

In a connected Neutrosophic SuperHyperGraph ESHG: (V, E). It's noted that this Extreme SuperHyperGraph ESHG: (V, E) is an Extreme graph G: (V, E) thus the notions in both settings are coincided. In a connected Neutrosophic SuperHyperGraph ESHG: (V, E) as Linearly-Connected SuperHyperModel On the Figure (8.15).

Henry Garrett  $\,\cdot\,$  Independent Researcher  $\,\cdot\,$  Department of Mathematics  $\,\cdot\,$  DrHenryGarrett@gmail.com  $\,\cdot\,$  Manhattan, NY, USA

• On the Figure (8.16), the SuperHyperNotion, namely, SuperHyperConnectivities, is up. There's neither empty SuperHyperEdge nor loop SuperHyperEdge. The following Extreme SuperHyperSet of Extreme SuperHyperEdges[SuperHyperVertices] is the simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities. The Extreme SuperHyperSet of Extreme SuperHyperEdges[SuperHyperVertices],

| $ \begin{split} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_8, E_3, V_9, E_4, V_8\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_8, E_3, V_{10}, E_4, V_8\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_8, E_3, V_{11}, E_4, V_8\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, E_3, V_8, E_4, V_9\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, E_3, V_{10}, E_4, V_9\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, E_3, V_{11}, E_4, V_9\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, E_3, V_{11}, E_4, V_9\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, E_3, V_{11}, E_4, V_9\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{10}, E_3, V_8, E_4, V_{10}\}. \end{split}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_3, V_9, E_4, V_{10}\}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_3, V_{11}, E_4, V_{10}\}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_3, V_8, E_4, V_{11}\}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_3, V_9, E_4, V_{11}\}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_3, V_{10}, E_4, V_{11}\}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_4, V_9, E_3, V_8\}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_4, V_{10}, E_3, V_8\}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_4, V_{11}, E_3, V_8\}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $ \begin{aligned} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, E_4, V_8, E_3, V_9\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, E_4, V_{10}, E_3, V_9\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, E_4, V_{11}, E_3, V_9\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{10}, E_4, V_8, E_3, V_{10}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{10}, E_4, V_9, E_3, V_{10}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{10}, E_4, V_{11}, E_3, V_{10}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, E_4, V_{11}, E_3, V_{10}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, E_4, V_9, E_3, V_{11}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, E_4, V_9, E_3, V_{11}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, E_4, V_{10}, E_3, V_{11}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, E_4, V_{1$ |
| $ \begin{aligned} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{15}, E_4, V_{17}, E_5, V_{15}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{17}, E_4, V_{15}, E_5, V_{17}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{15}, E_5, V_{17}, E_4, V_{15}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{17}, E_5, V_{15}, E_4, V_{17}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} &= 28z^2.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_8, V_9, V_8\}. \end{aligned}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

Henry Garrett $\,\cdot\,$ Independent Researcher $\,\cdot\,$ Department of Mathematics $\,\cdot\,$ Dr<br/>HenryGarrett@gmail.com $\,\cdot\,$ Manhattan, NY, USA

 $\begin{aligned} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_8, V_{10}, V_8\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_8, V_{11}, V_8\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, V_8, V_9\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, V_{10}, V_9\}. \end{aligned}$ 

$$\begin{split} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, V_{11}, V_9\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{10}, V_8, V_{10}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{10}, V_9, V_{10}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{10}, V_{11}, V_{10}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, V_8, V_{11}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, V_9, V_{11}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, V_{10}, V_{11}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{15}V_{17}, V_{15}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{17}, V_{15}, V_{17}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperC$$

is the simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities. The following Extreme SuperHyperSet of Extreme SuperHyperEdges[SuperHyperVertices] is the Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities. The Extreme SuperHyperSet of Extreme SuperHyperEdges[SuperHyperVertices],

| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_3, V_9, E_4, V_8\}.$       |
|--------------------------------------------------------------------------------------------------|
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_3, V_{10}, E_4, V_8\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_3, V_{11}, E_4, V_8\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_3, V_8, E_4, V_9\}.$       |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_3, V_{10}, E_4, V_9\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_3, V_{11}, E_4, V_9\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_3, V_8, E_4, V_{10}\}.$ |

| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_3, V_9, E_4, V_{10}\}.$    |
|-----------------------------------------------------------------------------------------------------|
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_3, V_{11}, E_4, V_{10}\}.$ |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_3, V_8, E_4, V_{11}\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_3, V_9, E_4, V_{11}\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_3, V_{10}, E_4, V_{11}\}.$ |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_4, V_9, E_3, V_8\}.$          |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_4, V_{10}, E_3, V_8\}.$       |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_4, V_{11}, E_3, V_8\}.$       |

| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_4, V_8, E_3, V_9\}.$          |
|-----------------------------------------------------------------------------------------------------|
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_4, V_{10}, E_3, V_9\}.$       |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_4, V_{11}, E_3, V_9\}.$       |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_4, V_8, E_3, V_{10}\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_4, V_9, E_3, V_{10}\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_4, V_{11}, E_3, V_{10}\}.$ |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_4, V_8, E_3, V_{11}\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_4, V_9, E_3, V_{11}\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_4, V_{10}, E_3, V_{11}\}.$ |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{15}, E_4, V_{17}, E_5, V_{15}\}.$ |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{17}, E_4, V_{15}, E_5, V_{17}\}.$ |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{15}, E_5, V_{17}, E_4, V_{15}\}.$ |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{17}, E_5, V_{15}, E_4, V_{17}\}.$ |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} = 28z^2.$            |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, V_9, V_8\}.$                    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, V_{10}, V_8\}.$                 |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, V_{11}, V_8\}.$                 |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, V_8, V_9\}.$                    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, V_{10}, V_9\}.$                 |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, V_{11}, V_9\}.$                 |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, V_8, V_{10}\}.$              |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, V_9, V_{10}\}.$              |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, V_{11}, V_{10}\}.$           |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, V_8, V_{11}\}.$              |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, V_9, V_{11}\}.$              |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, V_{10}, V_{11}\}.$           |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{15}V_{17}, V_{15}\}.$             |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{17}, V_{15}, V_{17}\}.$           |
|                                                                                                     |

 $\mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} = 14z^3.$ 

Is the Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities. The Extreme SuperHyperSet of the Extreme SuperHyperEdges[SuperHyperVertices],

$$\begin{split} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_8, E_3, V_9, E_4, V_8\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_8, E_3, V_{10}, E_4, V_8\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_8, E_3, V_{11}, E_4, V_8\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, E_3, V_8, E_4, V_9\}. \end{split}$$

Henry Garrett  $\,\cdot\,$  Independent Researcher  $\,\cdot\,$  Department of Mathematics  $\,\cdot\,$  DrHenryGarrett@gmail.com  $\,\cdot\,$  Manhattan, NY, USA

| Henry Garrett $\cdot$ | Independent Researcher $\cdot$ Department of Mathematics $\cdot$ |  |
|-----------------------|------------------------------------------------------------------|--|
|                       | DrHenryGarrett@gmail.com · Manhattan, NY, USA                    |  |

| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_3, V_{10}, E_4, V_9\}.$    |
|--------------------------------------------------------------------------------------------------|
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_3, V_{11}, E_4, V_9\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_3, V_8, E_4, V_{10}\}.$ |

| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_3, V_9, E_4, V_{10}\}.$    |
|-----------------------------------------------------------------------------------------------------|
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_3, V_{11}, E_4, V_{10}\}.$ |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_3, V_8, E_4, V_{11}\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_3, V_9, E_4, V_{11}\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_3, V_{10}, E_4, V_{11}\}.$ |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_4, V_9, E_3, V_8\}.$          |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_4, V_{10}, E_3, V_8\}.$       |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_4, V_{11}, E_3, V_8\}.$       |

| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_4, V_8, E_3, V_9\}.$          |
|-----------------------------------------------------------------------------------------------------|
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_4, V_{10}, E_3, V_9\}.$       |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_4, V_{11}, E_3, V_9\}.$       |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_4, V_8, E_3, V_{10}\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_4, V_9, E_3, V_{10}\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_4, V_{11}, E_3, V_{10}\}.$ |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_4, V_8, E_3, V_{11}\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_4, V_9, E_3, V_{11}\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_4, V_{10}, E_3, V_{11}\}.$ |

 $C(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{15}, E_4, V_{17}, E_5, V_{15}\}. \\ C(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{17}, E_4, V_{15}, E_5, V_{17}\}. \\ C(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{15}, E_5, V_{17}, E_4, V_{15}\}. \\ C(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{17}, E_5, V_{15}, E_4, V_{17}\}. \\ C(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} = 28z^2. \\ C(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, V_9, V_8\}. \\ C(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, V_{10}, V_8\}. \\ C(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, V_{11}, V_8\}. \\ C(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, V_8, V_9\}. \\ C(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, V_8, V_9\}. \\ C(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, V_{10}, V_9\}. \\ \end{array}$ 

 $\begin{aligned} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, V_{11}, V_9\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{10}, V_8, V_{10}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{10}, V_9, V_{10}\}. \end{aligned}$ 

| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, V_{11}, V_{10}\}.$  |
|--------------------------------------------------------------------------------------------|
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, V_8, V_{11}\}.$     |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, V_9, V_{11}\}.$     |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, V_{10}, V_{11}\}.$  |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{15}V_{17}, V_{15}\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{17}, V_{15}, V_{17}\}.$  |
| $\mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} = 14z^3.$ |
|                                                                                            |

Is an Extreme SuperHyperConnectivities C(ESHG) for an Neutrosophic SuperHyper-Graph  $\overline{ESHG}: (V, E)$  is an Extreme type-SuperHyperSet with the maximum Extreme cardinality of an Extreme SuperHyperSet S of Extreme SuperHyperEdges[SuperHyperVertices] such that there's only one Extreme consecutive sequence of the Extreme SuperHyperVertices and the Extreme SuperHyperEdges form only one Extreme SuperHyperConnectivities. There are not only <u>four</u> Extreme SuperHyperVertices <u>inside</u> the intended Extreme SuperHyperSet. Thus the non-obvious Extreme SuperHyperConnectivities isn't up. The obvious simple Extreme type-SuperHyperSet called the Extreme SuperHyperConnectivities is an Extreme SuperHyperSet <u>includes</u> only less than <u>four</u> Extreme SuperHyperVertices. But the Extreme SuperHyperSet of the Extreme SuperHyperEdges[SuperHyperVertices],

| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_3, V_9, E_4, V_8\}.$       |
|--------------------------------------------------------------------------------------------------|
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_3, V_{10}, E_4, V_8\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_3, V_{11}, E_4, V_8\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_3, V_8, E_4, V_9\}.$       |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_3, V_{10}, E_4, V_9\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_3, V_{11}, E_4, V_9\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_3, V_8, E_4, V_{10}\}.$ |
|                                                                                                  |

| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_3, V_9, E_4, V_{10}\}.$    |
|-----------------------------------------------------------------------------------------------------|
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_3, V_{11}, E_4, V_{10}\}.$ |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_3, V_8, E_4, V_{11}\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_3, V_9, E_4, V_{11}\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_3, V_{10}, E_4, V_{11}\}.$ |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_4, V_9, E_3, V_8\}.$          |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_4, V_{10}, E_3, V_8\}.$       |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_4, V_{11}, E_3, V_8\}.$       |

| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_4, V_8, E_3, V_9\}.$       |
|--------------------------------------------------------------------------------------------------|
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_4, V_{10}, E_3, V_9\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_4, V_{11}, E_3, V_9\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_4, V_8, E_3, V_{10}\}.$ |

 $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_4, V_9, E_3, V_{10}\}.$  $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHuperConnectivities} = \{V_{10}, E_4, V_{11}, E_3, V_{10}\}.$  $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_4, V_8, E_3, V_{11}\}.$  $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_4, V_9, E_3, V_{11}\}.$  $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_4, V_{10}, E_3, V_{11}\}.$  $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{15}, E_4, V_{17}, E_5, V_{15}\}.$  $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{17}, E_4, V_{15}, E_5, V_{17}\}.$  $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{15}, E_5, V_{17}, E_4, V_{15}\}.$  $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{17}, E_5, V_{15}, E_4, V_{17}\}.$  $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} = 28z^2.$  $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, V_9, V_8\}.$  $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, V_{10}, V_8\}.$  $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, V_{11}, V_8\}.$  $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, V_8, V_9\}.$  $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, V_{10}, V_9\}.$  $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, V_{11}, V_9\}.$  $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, V_8, V_{10}\}.$  $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, V_9, V_{10}\}.$ 

- $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, V_{11}, V_{10}\}.$
- $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, V_{11}, V_{10}\}.$
- $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, V_{9}, V_{11}\}.$
- $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, V_{10}, V_{11}\}.$

 $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{15}V_{17}, V_{15}\}.$ 

 $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{17}, V_{15}, V_{17}\}.$ 

 $\mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} = 14z^3.$ 

Does has less than four SuperHyperVertices <u>inside</u> the intended Extreme SuperHyperSet. Thus the non-obvious simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities <u>isn't</u> up. To sum them up, the Extreme SuperHyperSet of the Extreme SuperHyperEdges[SuperHyperVertices],

| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{ij}, V_{ij}, V_{ij}$ | $V_8, E_3, V_9, E_4, V_8\}.$       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{i}, V_{i}, V_$ | $V_8, E_3, V_{10}, E_4, V_8\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{ij}, V_{ij}, V_{ij}$ | $V_8, E_3, V_{11}, E_4, V_8\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{i}, V_{i}, V_$ | $V_9, E_3, V_8, E_4, V_9\}.$       |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{ij}, V_{ij}, V_{ij}$ | $V_9, E_3, V_{10}, E_4, V_9\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{ij}, V_{ij}, V_{ij}$ | $V_9, E_3, V_{11}, E_4, V_9\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{ij}\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $V_{10}, E_3, V_8, E_4, V_{10}\}.$ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                    |

| $ \begin{aligned} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{10}, E_3, V_9, E_4, V_{10}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{10}, E_3, V_{11}, E_4, V_{10}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, E_3, V_8, E_4, V_{11}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, E_3, V_9, E_4, V_{11}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, E_3, V_{10}, E_4, V_{11}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_8, E_4, V_9, E_3, V_8\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_8, E_4, V_{10}, E_3, V_8\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_8, E_4, V_{11}, E_3, V_8\}. \end{aligned}$                                                                                                                                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $ \begin{aligned} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, E_4, V_8, E_3, V_9\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, E_4, V_{10}, E_3, V_9\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, E_4, V_{11}, E_3, V_9\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{10}, E_4, V_8, E_3, V_{10}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{10}, E_4, V_9, E_3, V_{10}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{10}, E_4, V_{11}, E_3, V_{10}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, E_4, V_8, E_3, V_{11}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, E_4, V_9, E_3, V_{11}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, E_4, V_{10}, E_3, V_{11}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, E_4, V_{10}, E_3, V_{11}\}.\\ \end{aligned}$ |
| $ \begin{aligned} \mathcal{C}(NSHG)_{Extreme} Quasi-SuperHyperConnectivities} &= \{V_{15}, E_4, V_{17}, E_5, V_{15}\}.\\ \mathcal{C}(NSHG)_{Extreme} Quasi-SuperHyperConnectivities} &= \{V_{17}, E_4, V_{15}, E_5, V_{17}\}.\\ \mathcal{C}(NSHG)_{Extreme} Quasi-SuperHyperConnectivities} &= \{V_{15}, E_5, V_{17}, E_4, V_{15}\}.\\ \mathcal{C}(NSHG)_{Extreme} Quasi-SuperHyperConnectivities} &= \{V_{17}, E_5, V_{15}, E_4, V_{17}\}.\\ \mathcal{C}(NSHG)_{Extreme} Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} &= 28z^2.\\ \mathcal{C}(NSHG)_{Extreme} Quasi-SuperHyperConnectivities} &= \{V_8, V_9, V_8\}.\\ \mathcal{C}(NSHG)_{Extreme} Quasi-SuperHyperConnectivities} &= \{V_8, V_{10}, V_8\}.\\ \mathcal{C}(NSHG)_{Extreme} Quasi-SuperHyperConnectivities} &= \{V_8, V_{11}, V_8\}.\\ \mathcal{C}(NSHG)_{Extreme} Quasi-SuperHyperConnectivities} &= \{V_9, V_8, V_9\}.\\ \mathcal{C}(NSHG)_{Extreme} Quasi-SuperHyperConnectivities} &= \{V_9, V_{10}, V_9\}. \end{aligned}$                                               |

| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, V_{11}, V_9\}.$       |
|-------------------------------------------------------------------------------------------|
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, V_8, V_{10}\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, V_9, V_{10}\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, V_{11}, V_{10}\}.$ |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, V_8, V_{11}\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, V_9, V_{11}\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, V_{10}, V_{11}\}.$ |
|                                                                                           |

Henry Garrett $\,\cdot\,$ Independent Researcher $\,\cdot\,$ Department of Mathematics $\,\cdot\,$ Dr<br/>HenryGarrett@gmail.com $\,\cdot\,$ Manhattan, NY, USA

 $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{15}V_{17}, V_{15}\}.$  $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{17}, V_{15}, V_{17}\}.$  $\mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} = 14z^{3}.$ 

 $\underline{\mathbf{Is}} \text{ the non-obvious simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities. Since the Extreme SuperHyperSet of the Extreme SuperHyperEdges[SuperHyperVertices], the extreme SuperHyperVertices], the extreme SuperHyperVertices is the extreme SuperHyperVertices in the extreme SuperHyperVertices is the extreme SuperHyper$ 

$$\begin{split} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_8, E_3, V_9, E_4, V_8\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_8, E_3, V_{10}, E_4, V_8\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_8, E_3, V_{11}, E_4, V_8\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, E_3, V_8, E_4, V_9\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, E_3, V_{10}, E_4, V_9\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, E_3, V_{11}, E_4, V_9\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, E_3, V_{11}, E_4, V_9\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, E_3, V_{11}, E_4, V_9\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{10}, E_3, V_8, E_4, V_{10}\}. \end{split}$$

$$\begin{split} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{10}, E_3, V_9, E_4, V_{10}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{10}, E_3, V_{11}, E_4, V_{10}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, E_3, V_8, E_4, V_{11}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, E_3, V_9, E_4, V_{11}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, E_3, V_{10}, E_4, V_{11}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_8, E_4, V_9, E_3, V_8\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_8, E_4, V_{10}, E_3, V_8\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_8, E_4, V_{11}, E_3, V_8\}. \end{split}$$

$$\begin{split} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, E_4, V_8, E_3, V_9\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, E_4, V_{10}, E_3, V_9\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, E_4, V_{11}, E_3, V_9\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{10}, E_4, V_8, E_3, V_{10}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{10}, E_4, V_9, E_3, V_{10}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{10}, E_4, V_9, E_3, V_{10}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, E_4, V_8, E_3, V_{11}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, E_4, V_9, E_3, V_{11}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, E_4, V_9, E_3, V_{11}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, E_4, V_{10}, E_$$

 $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{15}, E_4, V_{17}, E_5, V_{15}\}.$   $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{17}, E_4, V_{15}, E_5, V_{17}\}.$   $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{15}, E_5, V_{17}, E_4, V_{15}\}.$   $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{17}, E_5, V_{15}, E_4, V_{17}\}.$   $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} = 28z^2.$ 

| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, V_9, V_8\}.$    |
|-------------------------------------------------------------------------------------|
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, V_{10}, V_8\}.$ |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, V_{11}, V_8\}.$ |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, V_8, V_9\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, V_{10}, V_9\}.$ |

$$\begin{split} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, V_{11}, V_9\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{10}, V_8, V_{10}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{10}, V_9, V_{10}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{10}, V_{11}, V_{10}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, V_8, V_{11}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, V_9, V_{11}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, V_{10}, V_{11}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, V_{10}, V_{11}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{15}V_{17}, V_{15}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{17}, V_{15}, V_{17}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperC$$

Is an Extreme SuperHyperConnectivities C(ESHG) for a Neutrosophic SuperHyper-Graph ESHG : (V, E) is the Extreme SuperHyperSet S of Extreme SuperHyperVertices[SuperHyperEdges] such that there's only one Extreme consecutive Extreme sequence of Extreme SuperHyperVertices and Extreme SuperHyperEdges form only one Extreme SuperHyperConnectivities given by that Extreme type-SuperHyperSet called the Extreme SuperHyperConnectivities <u>and</u> it's an Extreme <u>SuperHyperConnectivities</u>. Since it's <u>the maximum Extreme cardinality</u> of an Extreme SuperHyperSet S of Extreme Super-HyperEdges[SuperHyperVertices] such that there's only one Extreme consecutive Extreme sequence of Extreme SuperHyperVertices and Extreme SuperHyperEdges form only one Extreme SuperHyperConnectivities. There are only less than four Extreme SuperHyperVertices **inside** the intended Extreme SuperHyperSet,

| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_3, V_9, E_4, V_{10}\}.$    |
|-----------------------------------------------------------------------------------------------------|
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_3, V_{11}, E_4, V_{10}\}.$ |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_3, V_8, E_4, V_{11}\}.$    |

 $C(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_3, V_9, E_4, V_{11}\}. \\ C(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_3, V_{10}, E_4, V_{11}\}. \\ C(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_4, V_9, E_3, V_8\}. \\ C(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_4, V_{10}, E_3, V_8\}. \\ C(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_4, V_{11}, E_3, V_8\}.$ 

| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_4, V_8, E_3, V_9\}.$          |
|-----------------------------------------------------------------------------------------------------|
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_4, V_{10}, E_3, V_9\}.$       |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_4, V_{11}, E_3, V_9\}.$       |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_4, V_8, E_3, V_{10}\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_4, V_9, E_3, V_{10}\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_4, V_{11}, E_3, V_{10}\}.$ |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_4, V_8, E_3, V_{11}\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_4, V_9, E_3, V_{11}\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_4, V_{10}, E_3, V_{11}\}.$ |

- $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{15}, E_4, V_{17}, E_5, V_{15}\}. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{17}, E_4, V_{15}, E_5, V_{17}\}. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{15}, E_5, V_{17}, E_4, V_{15}\}. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{17}, E_5, V_{15}, E_4, V_{17}\}. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} = 28z^2. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, V_9, V_8\}. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, V_{10}, V_8\}. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, V_{11}, V_8\}. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, V_8, V_9\}. \\ \end{array}$
- $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, V_{10}, V_9\}.$
- $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, V_{11}, V_9\}.$
- $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, V_8, V_{10}\}.$
- $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, V_9, V_{10}\}.$
- $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, V_{11}, V_{10}\}.$
- $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, V_8, V_{11}\}.$
- $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, V_9, V_{11}\}.$
- $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, V_{10}, V_{11}\}.$
- $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{15}V_{17}, V_{15}\}.$
- $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{17}, V_{15}, V_{17}\}.$

 $\mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} = 14z^3.$ 

 $C(NSHG) ExtremeQuasi-SuperHyperConnectivities = \{V_8, E_3, V_9, E_4, V_8\}. \\ C(NSHG) ExtremeQuasi-SuperHyperConnectivities = \{V_8, E_3, V_{10}, E_4, V_8\}. \\ C(NSHG) ExtremeQuasi-SuperHyperConnectivities = \{V_8, E_3, V_{11}, E_4, V_8\}. \\ C(NSHG) ExtremeQuasi-SuperHyperConnectivities = \{V_9, E_3, V_8, E_4, V_9\}. \\ C(NSHG) ExtremeQuasi-SuperHyperConnectivities = \{V_9, E_3, V_{10}, E_4, V_9\}. \\ C(NSHG) ExtremeQuasi-SuperHyperConnectivities = \{V_9, E_3, V_{11}, E_4, V_9\}. \\ C(NSHG) ExtremeQuasi-SuperHyperConnectivities = \{V_{10}, E_3, V_9, E_4, V_{10}\}. \\ C(NSHG) ExtremeQuasi-SuperHyperConnectivities = \{V_{10}, E_3, V_9, E_4, V_{10}\}. \\ C(NSHG) ExtremeQuasi-SuperHyperConnectivities = \{V_{10}, E_3, V_1, E_4, V_{10}\}. \\ C(NSHG) ExtremeQuasi-SuperHyperConnectivities = \{V_{11}, E_3, V_8, E_4, V_{11}\}. \\ C(NSHG) ExtremeQuasi-SuperHyperConnectivities = \{V_{11}, E_3, V_9, E_4, V_{11}\}. \\ C(NSHG) ExtremeQuasi-SuperHyperConnectivities = \{V_{11}, E_3, V_{10}, E_4, V_{11}\}. \\ C(NSHG) ExtremeQuasi-SuperHyperConnectivities = \{V_{11}, E_3, V_{10}, E_4, V_{11}\}. \\ C(NSHG) ExtremeQuasi-SuperHyperConnectivities = \{V_{11}, E_3, V_{10}, E_4, V_{11}\}. \\ C(NSHG) ExtremeQuasi-SuperHyperConnectivities = \{V_8, E_4, V_{10}, E_3, V_8\}. \\ C(NSHG) ExtremeQuasi-SuperHyperConnectivities = \{V_8, E_4, V_{10}, E_3, V_8\}. \\ C(NSHG) ExtremeQuasi-SuperHyperConnectivities = \{V_8, E_4, V_{11}, E_3, V_8\}. \\ C(NSHG) ExtremeQuasi-SuperHyperConnectivities = \{V_8, E_4, V_{11}, E_3, V_8\}. \\ C(NSHG) ExtremeQuasi-SuperHyperConnectivities = \{V_8, E_4, V_{11}, E_3, V_8\}. \\ C(NSHG) ExtremeQuasi-SuperHyperConnectivities = \{V_8, E_4, V_{11}, E_3, V_8\}. \\ C(NSHG) ExtremeQuasi-SuperHyperConnectivities = \{V_9, E_4, V_8, E_3, V_9\}. \\ C(NSHG) ExtremeQuasi-SuperHyperConnectivities = \{V_9, E_4, V_8, E_3, V_9\}. \\ C(NSHG) ExtremeQuasi-SuperHyperConnectivities = \{V_9, E_4, V_8, E_3, V_9\}. \\ C(NSHG) ExtremeQuasi-SuperHyperConnectivities = \{V_9, E_4, V_8, E_3, V_9\}. \\ C(NSHG) ExtremeQuasi-SuperHyperConnectivities = \{V_9, E_4, V_8, E_3, V_9\}. \\ C(NSHG) ExtremeQuasi-SuperHyper$ 

Thus the non-obvious Extreme SuperHyperConnectivities,

| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_4, V_8, E_3, V_9\}.$          |
|-----------------------------------------------------------------------------------------------------|
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_4, V_{10}, E_3, V_9\}.$       |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_4, V_{11}, E_3, V_9\}.$       |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_4, V_8, E_3, V_{10}\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_4, V_9, E_3, V_{10}\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_4, V_{11}, E_3, V_{10}\}.$ |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_4, V_8, E_3, V_{11}\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_4, V_9, E_3, V_{11}\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_4, V_{10}, E_3, V_{11}\}.$ |

$$\begin{split} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{15}, E_4, V_{17}, E_5, V_{15}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{17}, E_4, V_{15}, E_5, V_{17}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{15}, E_5, V_{17}, E_4, V_{15}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{17}, E_5, V_{15}, E_4, V_{17}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} &= 28z^2.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_8, V_9, V_8\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_8, V_{10}, V_8\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_8, V_{11}, V_8\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, V_8, V_9\}. \end{split}$$

 $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, V_{10}, V_9\}.$ 

$$\begin{split} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, V_{11}, V_9\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{10}, V_8, V_{10}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{10}, V_9, V_{10}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{10}, V_{11}, V_{10}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, V_8, V_{11}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, V_9, V_{11}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, V_{10}, V_{11}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{15}V_{17}, V_{15}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{17}, V_{15}, V_{17}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperC$$

Is up. The obvious simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities, is:

 $\begin{aligned} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_8, E_3, V_9, E_4, V_8\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_8, E_3, V_{10}, E_4, V_8\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_8, E_3, V_{11}, E_4, V_8\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, E_3, V_8, E_4, V_9\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, E_3, V_{10}, E_4, V_9\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, E_3, V_{11}, E_4, V_9\}. \end{aligned}$ 

 $\begin{aligned} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{10}, E_3, V_9, E_4, V_{10}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{10}, E_3, V_{11}, E_4, V_{10}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, E_3, V_8, E_4, V_{11}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, E_3, V_9, E_4, V_{11}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, E_3, V_{10}, E_4, V_{11}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_8, E_4, V_{9}, E_3, V_8\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_8, E_4, V_{10}, E_3, V_8\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_8, E_4, V_{10}, E_3, V_8\}. \end{aligned}$ 

$$\begin{split} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, E_4, V_8, E_3, V_9\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, E_4, V_{10}, E_3, V_9\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, E_4, V_{11}, E_3, V_9\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{10}, E_4, V_8, E_3, V_{10}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{10}, E_4, V_9, E_3, V_{10}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{10}, E_4, V_{11}, E_3, V_{10}\}. \end{split}$$

| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_4, V_8, E_3, V_{11}\}.$<br>$\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_4, V_9, E_3, V_{11}\}.$<br>$\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_4, V_{10}, E_3, V_{11}\}.$ |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{15}, E_4, V_{17}, E_5, V_{15}\}.$                                                                                                                                                                                                         |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{17}, E_4, V_{15}, E_5, V_{17}\}.$                                                                                                                                                                                                         |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{15}, E_5, V_{17}, E_4, V_{15}\}.$                                                                                                                                                                                                         |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{17}, E_5, V_{15}, E_4, V_{17}\}.$                                                                                                                                                                                                         |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} = 28z^2.$                                                                                                                                                                                                                    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, V_9, V_8\}.$                                                                                                                                                                                                                            |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, V_{10}, V_8\}.$                                                                                                                                                                                                                         |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, V_{11}, V_8\}.$                                                                                                                                                                                                                         |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, V_8, V_9\}.$                                                                                                                                                                                                                            |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, V_{10}, V_9\}.$                                                                                                                                                                                                                         |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, V_{11}, V_9\}.$                                                                                                                                                                                                                         |

 $C(NSHG) ExtremeQuasi-SuperHyperConnectivities = \{V_9, V_{11}, V_9\}.$   $C(NSHG) ExtremeQuasi-SuperHyperConnectivities = \{V_{10}, V_8, V_{10}\}.$   $C(NSHG) ExtremeQuasi-SuperHyperConnectivities = \{V_{10}, V_9, V_{10}\}.$   $C(NSHG) ExtremeQuasi-SuperHyperConnectivities = \{V_{10}, V_{11}, V_{10}\}.$   $C(NSHG) ExtremeQuasi-SuperHyperConnectivities = \{V_{11}, V_8, V_{11}\}.$   $C(NSHG) ExtremeQuasi-SuperHyperConnectivities = \{V_{11}, V_9, V_{11}\}.$   $C(NSHG) ExtremeQuasi-SuperHyperConnectivities = \{V_{11}, V_9, V_{11}\}.$   $C(NSHG) ExtremeQuasi-SuperHyperConnectivities = \{V_{11}, V_{10}, V_{11}\}.$   $C(NSHG) ExtremeQuasi-SuperHyperConnectivities = \{V_{11}, V_{10}, V_{11}\}.$   $C(NSHG) ExtremeQuasi-SuperHyperConnectivities = \{V_{11}, V_{10}, V_{11}\}.$   $C(NSHG) ExtremeQuasi-SuperHyperConnectivities = \{V_{11}, V_{15}, V_{17}\}.$   $C(NSHG) ExtremeQuasi-SuperHyperConnectivities = \{V_{11}, V_{15}, V_{17}\}.$ 

Does includes only less than four SuperHyperVertices in a connected Extreme SuperHyperGraph ESHG: (V, E). It's interesting to mention that the only simple Extreme type-SuperHyperSet called the

# "Extreme SuperHyperConnectivities"

amid those obvious[non-obvious] simple Extreme type-SuperHyperSets called the

# Extreme SuperHyperConnectivities,

is only and only

$$\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_3, V_9, E_4, V_8\}.$$
$$\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_3, V_{10}, E_4, V_8\}.$$

Henry Garrett  $\cdot$  Independent Researcher  $\cdot$  Department of Mathematics  $\cdot$  DrHenryGarrett@gmail.com  $\cdot$  Manhattan, NY, USA

| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_3, V_{11}, E_4, V_8\}.$    |
|--------------------------------------------------------------------------------------------------|
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_3, V_8, E_4, V_9\}.$       |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_3, V_{10}, E_4, V_9\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_3, V_{11}, E_4, V_9\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_3, V_8, E_4, V_{10}\}.$ |

| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_3, V_9, E_4, V_{10}\}.$    |
|-----------------------------------------------------------------------------------------------------|
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_3, V_{11}, E_4, V_{10}\}.$ |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_3, V_8, E_4, V_{11}\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_3, V_9, E_4, V_{11}\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_3, V_{10}, E_4, V_{11}\}.$ |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_4, V_9, E_3, V_8\}.$          |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_4, V_{10}, E_3, V_8\}.$       |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_4, V_{11}, E_3, V_8\}.$       |
|                                                                                                     |

$$\begin{split} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{15}, E_4, V_{17}, E_5, V_{15}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{17}, E_4, V_{15}, E_5, V_{17}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{15}, E_5, V_{17}, E_4, V_{15}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{17}, E_5, V_{15}, E_4, V_{17}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} &= 28z^2.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_8, V_9, V_8\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_8, V_{10}, V_8\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_8, V_{11}, V_8\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, V_8, V_9\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, V_8, V_9\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, V_{10}, V_9\}. \end{split}$$

Henry Garrett  $\,\cdot\,$  Independent Researcher  $\,\cdot\,$  Department of Mathematics  $\,\cdot\,$  DrHenryGarrett@gmail.com  $\,\cdot\,$  Manhattan, NY, USA

| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, V_{11}, V_9\}.$        |
|--------------------------------------------------------------------------------------------|
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, V_8, V_{10}\}.$     |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, V_9, V_{10}\}.$     |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, V_{11}, V_{10}\}.$  |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, V_8, V_{11}\}.$     |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, V_9, V_{11}\}.$     |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, V_{10}, V_{11}\}.$  |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{15}V_{17}, V_{15}\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{17}, V_{15}, V_{17}\}.$  |
| $\mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} = 14z^3.$ |

In a connected Neutrosophic SuperHyperGraph ESHG : (V, E).

• On the Figure (8.17), the SuperHyperNotion, namely, SuperHyperConnectivities, is up. There's neither empty SuperHyperEdge nor loop SuperHyperEdge. The following Extreme SuperHyperSet of Extreme SuperHyperEdges[SuperHyperVertices] is the simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities. The Extreme SuperHyperSet of Extreme SuperHyperEdges[SuperHyperVertices],

| $ \begin{split} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_8, E_3, V_9, E_4, V_8\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_8, E_3, V_{10}, E_4, V_8\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_8, E_3, V_{11}, E_4, V_8\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, E_3, V_8, E_4, V_9\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, E_3, V_{10}, E_4, V_9\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, E_3, V_{11}, E_4, V_9\}. \end{split}$                                                                                                                                                                                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_3, V_8, E_4, V_{10}\}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $ \begin{aligned} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{10}, E_3, V_9, E_4, V_{10}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{10}, E_3, V_{11}, E_4, V_{10}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, E_3, V_8, E_4, V_{11}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, E_3, V_9, E_4, V_{11}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, E_3, V_{10}, E_4, V_{11}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_8, E_4, V_9, E_3, V_8\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_8, E_4, V_{10}, E_3, V_8\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_8, E_4, V_{11}, E_3, V_8\}. \end{aligned}$ |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_4, V_8, E_3, V_9\}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_4, V_{10}, E_3, V_9\}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\mathcal{C}(NSHG)_{Extreme Quasi-SuperHyperConnectivities} = \{V_9, E_4, V_{11}, E_3, V_9\}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (-, -, -, -, -, -, -, -, -, -, -, -, -, -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

 $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_4, V_8, E_3, V_{10}\}.$ 

$$\begin{split} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{10}, E_4, V_9, E_3, V_{10}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{10}, E_4, V_{11}, E_3, V_{10}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, E_4, V_8, E_3, V_{11}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, E_4, V_9, E_3, V_{11}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, E_4, V_{10}, E_3, V_{11}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{15}, E_4, V_{17}, E_5, V_{15}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{15}, E_4, V_{17}, E_5, V_{15}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{15}, E_5, V_{17}, E_4, V_{15}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{15}, E_5, V_{17}, E_4, V_{15}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{17}, E_5, V_{15}, E_4, V_{17}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{17}, E_5, V_{15}, E_4, V_{17}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{17}, E_5, V_{15}, E_4, V_{17}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{17}, V_{15}, V_{15}, E_4, V_{17}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{17}, V_{15}, V_{15}, V_{15}, E_{15}, V_{17}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{17}, V_{15}, V_{15}, V_{15}, V_{15}, V_{15}, V_{15}, V_{15}, V_{15}, V_{15}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{17}, V_{15}, V_{15},$$

- $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, V_{10}, V_9\}.$
- $$\begin{split} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, V_{11}, V_9\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{10}, V_8, V_{10}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{10}, V_9, V_{10}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{10}, V_{11}, V_{10}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, V_8, V_{11}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, V_9, V_{11}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, V_{10}, V_{11}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{15}V_{17}, V_{15}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{17}, V_{15}, V_{17}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperC$$

is the simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities. The following Extreme SuperHyperSet of Extreme SuperHyperEdges[SuperHyperVertices] is the Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities. The Extreme SuperHyperSet of Extreme SuperHyperEdges[SuperHyperVertices],

| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_3, V_9, E_4, V_8\}.$       |
|--------------------------------------------------------------------------------------------------|
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_3, V_{10}, E_4, V_8\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_3, V_{11}, E_4, V_8\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_3, V_8, E_4, V_9\}.$       |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_3, V_{10}, E_4, V_9\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_3, V_{11}, E_4, V_9\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_3, V_8, E_4, V_{10}\}.$ |
|                                                                                                  |

| $ \begin{aligned} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{10}, E_3, V_9, E_4, V_{10}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{10}, E_3, V_{11}, E_4, V_{10}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, E_3, V_8, E_4, V_{11}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, E_3, V_9, E_4, V_{11}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, E_3, V_{10}, E_4, V_{11}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_8, E_4, V_9, E_3, V_8\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_8, E_4, V_{10}, E_3, V_8\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_8, E_4, V_{11}, E_3, V_8\}. \end{aligned}$                                                                                                                                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $ \begin{aligned} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, E_4, V_8, E_3, V_9\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, E_4, V_{10}, E_3, V_9\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, E_4, V_{11}, E_3, V_9\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{10}, E_4, V_8, E_3, V_{10}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{10}, E_4, V_9, E_3, V_{10}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{10}, E_4, V_{11}, E_3, V_{10}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, E_4, V_8, E_3, V_{11}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, E_4, V_9, E_3, V_{11}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, E_4, V_{10}, E_3, V_{11}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, E_4, V_{10}, E_3, V_{11}\}.\\ \end{aligned}$ |
| $ \begin{aligned} \mathcal{C}(NSHG)_{Extreme} Quasi-SuperHyperConnectivities} &= \{V_{15}, E_4, V_{17}, E_5, V_{15}\}.\\ \mathcal{C}(NSHG)_{Extreme} Quasi-SuperHyperConnectivities} &= \{V_{17}, E_4, V_{15}, E_5, V_{17}\}.\\ \mathcal{C}(NSHG)_{Extreme} Quasi-SuperHyperConnectivities} &= \{V_{15}, E_5, V_{17}, E_4, V_{15}\}.\\ \mathcal{C}(NSHG)_{Extreme} Quasi-SuperHyperConnectivities} &= \{V_{17}, E_5, V_{15}, E_4, V_{17}\}.\\ \mathcal{C}(NSHG)_{Extreme} Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} &= 28z^2.\\ \mathcal{C}(NSHG)_{Extreme} Quasi-SuperHyperConnectivities} &= \{V_8, V_9, V_8\}.\\ \mathcal{C}(NSHG)_{Extreme} Quasi-SuperHyperConnectivities} &= \{V_8, V_{10}, V_8\}.\\ \mathcal{C}(NSHG)_{Extreme} Quasi-SuperHyperConnectivities} &= \{V_8, V_{11}, V_8\}.\\ \mathcal{C}(NSHG)_{Extreme} Quasi-SuperHyperConnectivities} &= \{V_9, V_8, V_9\}.\\ \mathcal{C}(NSHG)_{Extreme} Quasi-SuperHyperConnectivities} &= \{V_9, V_{10}, V_9\}. \end{aligned}$                                               |

| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, V_{11}, V_9\}.$       |
|-------------------------------------------------------------------------------------------|
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, V_8, V_{10}\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, V_9, V_{10}\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, V_{11}, V_{10}\}.$ |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, V_8, V_{11}\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, V_9, V_{11}\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, V_{10}, V_{11}\}.$ |
|                                                                                           |

Henry Garrett $\,\cdot\,$ Independent Researcher $\,\cdot\,$ Department of Mathematics $\,\cdot\,$ Dr<br/>HenryGarrett@gmail.com $\,\cdot\,$ Manhattan, NY, USA

 $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{15}V_{17}, V_{15}\}.$  $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{17}, V_{15}, V_{17}\}.$  $\mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} = 14z^{3}.$ 

Is the Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities. The Extreme SuperHyperSet of the Extreme SuperHyperEdges[SuperHyperVertices],

| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_3, V_9, E_4, V_8\}.$       |
|--------------------------------------------------------------------------------------------------|
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_3, V_{10}, E_4, V_8\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_3, V_{11}, E_4, V_8\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_3, V_8, E_4, V_9\}.$       |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_3, V_{10}, E_4, V_9\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_3, V_{11}, E_4, V_9\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_3, V_8, E_4, V_{10}\}.$ |
|                                                                                                  |

| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_4, V_8, E_3, V_9\}.$          |
|-----------------------------------------------------------------------------------------------------|
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_4, V_{10}, E_3, V_9\}.$       |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_4, V_{11}, E_3, V_9\}.$       |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_4, V_8, E_3, V_{10}\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_4, V_9, E_3, V_{10}\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_4, V_{11}, E_3, V_{10}\}.$ |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_4, V_8, E_3, V_{11}\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_4, V_9, E_3, V_{11}\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_4, V_{10}, E_3, V_{11}\}.$ |

| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{15}, E_4, V_{17}, E_5, V_{15}\}.$ |   |
|-----------------------------------------------------------------------------------------------------|---|
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{17}, E_4, V_{15}, E_5, V_{17}\}.$ |   |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{15}, E_5, V_{17}, E_4, V_{15}\}.$ |   |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{17}, E_5, V_{15}, E_4, V_{17}\}.$ |   |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} = 28z^2$             | • |

| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, V_9, V_8\}.$    |
|-------------------------------------------------------------------------------------|
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, V_{10}, V_8\}.$ |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, V_{11}, V_8\}.$ |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, V_8, V_9\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, V_{10}, V_9\}.$ |

$$\begin{split} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, V_{11}, V_9\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{10}, V_8, V_{10}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{10}, V_9, V_{10}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{10}, V_{11}, V_{10}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, V_8, V_{11}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, V_9, V_{11}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, V_{10}, V_{11}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{15}V_{17}, V_{15}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{17}, V_{15}, V_{17}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperC$$

Is an Extreme SuperHyperConnectivities C(ESHG) for an Neutrosophic SuperHyper-Graph  $\overline{ESHG}: (V, E)$  is an Extreme type-SuperHyperSet with the maximum Extreme cardinality of an Extreme SuperHyperSet S of Extreme SuperHyperEdges[SuperHyperVertices] such that there's only one Extreme consecutive sequence of the Extreme SuperHyperVertices and the Extreme SuperHyperEdges form only one Extreme SuperHyperConnectivities. There are not only four Extreme SuperHyperVertices inside the intended Extreme SuperHyperSet. Thus the non-obvious Extreme SuperHyperConnectivities isn't up. The obvious simple Extreme type-SuperHyperSet called the Extreme SuperHyperConnectivities is an Extreme SuperHyperSet includes only less than four Extreme SuperHyperVertices. But the Extreme SuperHyperSet of the Extreme SuperHyperEdges[SuperHyperVertices],

| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_3, V_9, E_4, V_8\}.$       |
|--------------------------------------------------------------------------------------------------|
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_3, V_{10}, E_4, V_8\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_3, V_{11}, E_4, V_8\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_3, V_8, E_4, V_9\}.$       |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_3, V_{10}, E_4, V_9\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_3, V_{11}, E_4, V_9\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_3, V_8, E_4, V_{10}\}.$ |

| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_3, V_9, E_4, V_{10}\}.$    |
|-----------------------------------------------------------------------------------------------------|
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_3, V_{11}, E_4, V_{10}\}.$ |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_3, V_8, E_4, V_{11}\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_3, V_9, E_4, V_{11}\}.$    |

| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_3, V_{10}, E_4, V_{11}\}.$ $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_4, V_9, E_3, V_8\}.$ $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_4, V_{10}, E_3, V_8\}.$ $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_4, V_{11}, E_3, V_8\}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $ \begin{aligned} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, E_4, V_8, E_3, V_9\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, E_4, V_{10}, E_3, V_9\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, E_4, V_{11}, E_3, V_9\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{10}, E_4, V_8, E_3, V_{10}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{10}, E_4, V_9, E_3, V_{10}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{10}, E_4, V_{11}, E_3, V_{10}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{10}, E_4, V_{11}, E_3, V_{10}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, E_4, V_8, E_3, V_{11}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, E_4, V_9, E_3, V_{11}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, E_4, V_{10}, E_3, V_{11}\}.\\ \end{aligned}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $ \begin{aligned} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{15}, E_4, V_{17}, E_5, V_{15}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{17}, E_4, V_{15}, E_5, V_{17}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{15}, E_5, V_{17}, E_4, V_{15}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{17}, E_5, V_{15}, E_4, V_{17}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} &= 28z^2.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_8, V_9, V_8\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_8, V_{10}, V_8\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_8, V_{11}, V_8\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_8, V_{11}, V_8\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, V_8, V_9\}. \end{aligned}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $ C(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, V_{10}, V_9\}. \\ C(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, V_{11}, V_9\}. \\ C(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, V_8, V_{10}\}. \\ C(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, V_9, V_{10}\}. \\ C(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, V_{11}, V_{10}\}. \\ C(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, V_8, V_{11}\}. \\ C(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, V_9, V_{11}\}. \\ C(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, V_{10}, V_{11}\}. \\ C(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{15}V_{17}, V_{15}\}. \\ C(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{17}, V_{15}, V_{17}\}. \\ C(NSHG)_{ExtremeQuasi-SuperHyperConnectiV$ |

Does has less than four SuperHyperVertices <u>inside</u> the intended Extreme SuperHyperSet. Thus the non-obvious simple Extreme type-SuperHyperSet of the Extreme SuperHyper-

Connectivities <u>isn't</u> up. To sum them up, the Extreme SuperHyperSet of the Extreme SuperHyperEdges[SuperHyperVertices],

| $ \begin{split} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_8, E_3, V_9, E_4, V_8\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_8, E_3, V_{10}, E_4, V_8\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_8, E_3, V_{11}, E_4, V_8\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, E_3, V_8, E_4, V_9\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, E_3, V_{10}, E_4, V_9\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, E_3, V_{11}, E_4, V_9\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, E_3, V_{11}, E_4, V_9\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, E_3, V_{11}, E_4, V_9\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{10}, E_3, V_8, E_4, V_{10}\}. \end{split}$ |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_3, V_9, E_4, V_{10}\}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_3, V_{11}, E_4, V_{10}\}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_3, V_8, E_4, V_{11}\}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_3, V_9, E_4, V_{11}\}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_3, V_{10}, E_4, V_{11}\}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_4, V_9, E_3, V_8\}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_4, V_{10}, E_3, V_8\}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_4, V_{11}, E_3, V_8\}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_4, V_8, E_3, V_9\}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_4, V_{10}, E_3, V_9\}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_4, V_{11}, E_3, V_9\}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_4, V_8, E_3, V_{10}\}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_4, V_9, E_3, V_{10}\}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_4, V_{11}, E_3, V_{10}\}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_4, V_8, E_3, V_{11}\}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_4, V_9, E_3, V_{11}\}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_4, V_{10}, E_3, V_{11}\}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{15}, E_4, V_{17}, E_5, V_{15}\}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{17}, E_4, V_{15}, E_5, V_{17}\}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{15}, E_5, V_{17}, E_4, V_{15}\}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\mathcal{C}(NSHG)_{Extreme Quasi-SuperHyperConnectivities} = \{V_{17}, E_5, V_{15}, E_4, V_{17}\}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} = 28z^2.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, V_9, V_8\}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, V_{10}, V_8\}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, V_{11}, V_8\}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

Henry Garrett $\,\cdot\,$ Independent Researcher $\,\cdot\,$ Department of Mathematics $\,\cdot\,$ Dr<br/>HenryGarrett@gmail.com $\,\cdot\,$ Manhattan, NY, USA

 $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, V_8, V_9\}.$  $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, V_{10}, V_9\}.$ 

| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, V_{11}, V_9\}.$         |
|---------------------------------------------------------------------------------------------|
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, V_8, V_{10}\}.$      |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, V_9, V_{10}\}.$      |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, V_{11}, V_{10}\}.$   |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, V_8, V_{11}\}.$      |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, V_9, V_{11}\}.$      |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, V_{10}, V_{11}\}.$   |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{15}V_{17}, V_{15}\}.$     |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{17}, V_{15}, V_{17}\}.$   |
| $\mathcal{C}(NSHG)_{Extreme R-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} = 14z^3.$ |

 $\underline{Is}$  the non-obvious simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities. Since the Extreme SuperHyperSet of the Extreme SuperHyperEdges[SuperHyperVertices],

$$\begin{split} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_8, E_3, V_9, E_4, V_8\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_8, E_3, V_{10}, E_4, V_8\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_8, E_3, V_{11}, E_4, V_8\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, E_3, V_8, E_4, V_9\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, E_3, V_{10}, E_4, V_9\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, E_3, V_{11}, E_4, V_9\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, E_3, V_{11}, E_4, V_9\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, E_3, V_{11}, E_4, V_9\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{10}, E_3, V_8, E_4, V_{10}\}. \end{split}$$

 $\begin{aligned} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{10}, E_3, V_9, E_4, V_{10}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{10}, E_3, V_{11}, E_4, V_{10}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, E_3, V_8, E_4, V_{11}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, E_3, V_9, E_4, V_{11}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, E_3, V_{10}, E_4, V_{11}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_8, E_4, V_{9}, E_3, V_8\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_8, E_4, V_{10}, E_3, V_8\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_8, E_4, V_{10}, E_3, V_8\}. \end{aligned}$ 

| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_4, V_8, E_3, V_9\}.$       |
|--------------------------------------------------------------------------------------------------|
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_4, V_{10}, E_3, V_9\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_4, V_{11}, E_3, V_9\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_4, V_8, E_3, V_{10}\}.$ |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_4, V_9, E_3, V_{10}\}.$ |
|                                                                                                  |

| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_4, V_{11}, E_3, V_{10}\}.$ |
|-----------------------------------------------------------------------------------------------------|
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_4, V_8, E_3, V_{11}\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_4, V_9, E_3, V_{11}\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_4, V_{10}, E_3, V_{11}\}.$ |

- $\begin{aligned} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{15}, E_4, V_{17}, E_5, V_{15}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{17}, E_4, V_{15}, E_5, V_{17}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{15}, E_5, V_{17}, E_4, V_{15}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{17}, E_5, V_{15}, E_4, V_{17}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} &= 28z^2.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_8, V_9, V_8\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_8, V_{10}, V_8\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_8, V_{11}, V_8\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, V_8, V_9\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, V_{10}, V_9\}. \end{aligned}$
- $\begin{array}{l} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, V_{11}, V_9\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, V_8, V_{10}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, V_9, V_{10}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, V_{11}, V_{10}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, V_8, V_{11}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, V_9, V_{11}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, V_{10}, V_{11}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{15}V_{17}, V_{15}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{17}, V_{15}, V_{17}\}.\\ \end{array}$

Is an Extreme SuperHyperConnectivities C(ESHG) for a Neutrosophic SuperHyper-Graph ESHG : (V, E) is the Extreme SuperHyperSet S of Extreme SuperHyperVertices[SuperHyperEdges] such that there's only one Extreme consecutive Extreme sequence of Extreme SuperHyperVertices and Extreme SuperHyperEdges form only one Extreme SuperHyperConnectivities given by that Extreme type-SuperHyperSet called the Extreme SuperHyperConnectivities <u>and</u> it's an Extreme <u>SuperHyperConnectivities</u>. Since it's <u>the maximum Extreme cardinality</u> of an Extreme SuperHyperSet S of Extreme Super-HyperEdges[SuperHyperVertices] such that there's only one Extreme consecutive Extreme sequence of Extreme SuperHyperVertices and Extreme SuperHyperEdges form only one Extreme SuperHyperConnectivities. There are only less than four Extreme SuperHyperVertices <u>inside</u> the intended Extreme SuperHyperSet,

 $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_3, V_9, E_4, V_8\}.$ 

Henry Garrett $\,\cdot\,$ Independent Researcher $\,\cdot\,$ Department of Mathematics $\,\cdot\,$ Dr<br/>HenryGarrett@gmail.com $\,\cdot\,$ Manhattan, NY, USA

| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_3, V_{10}, E_4, V_8\}.$    |
|--------------------------------------------------------------------------------------------------|
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_3, V_{11}, E_4, V_8\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_3, V_8, E_4, V_9\}.$       |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_3, V_{10}, E_4, V_9\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_3, V_{11}, E_4, V_9\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_3, V_8, E_4, V_{10}\}.$ |

| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_3, V_9, E_4, V_{10}\}.$    |
|-----------------------------------------------------------------------------------------------------|
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_3, V_{11}, E_4, V_{10}\}.$ |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_3, V_8, E_4, V_{11}\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_3, V_9, E_4, V_{11}\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_3, V_{10}, E_4, V_{11}\}.$ |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_4, V_9, E_3, V_8\}.$          |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_4, V_{10}, E_3, V_8\}.$       |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_4, V_{11}, E_3, V_8\}.$       |

- $$\begin{split} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, E_4, V_8, E_3, V_9\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, E_4, V_{10}, E_3, V_9\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, E_4, V_{11}, E_3, V_9\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{10}, E_4, V_8, E_3, V_{10}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{10}, E_4, V_9, E_3, V_{10}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{10}, E_4, V_9, E_3, V_{10}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, E_4, V_8, E_3, V_{11}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, E_4, V_9, E_3, V_{11}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, E_4, V_9, E_3, V_{11}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, E_4, V_9, E_3, V_{11}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, E_4, V_{10}, E_3,$$
- $$\begin{split} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{15}, E_4, V_{17}, E_5, V_{15}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{17}, E_4, V_{15}, E_5, V_{17}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{15}, E_5, V_{17}, E_4, V_{15}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{17}, E_5, V_{15}, E_4, V_{17}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} &= 28z^2.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_8, V_9, V_8\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_8, V_{10}, V_8\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_8, V_{11}, V_8\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, V_8, V_9\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, V_{10}, V_9\}.\\ \end{split}$$

Henry Garrett $\,\cdot\,$ Independent Researcher $\,\cdot\,$ Department of Mathematics $\,\cdot\,$ Dr<br/>HenryGarrett@gmail.com $\,\cdot\,$ Manhattan, NY, USA

| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, V_{11}, V_9\}.$        |
|--------------------------------------------------------------------------------------------|
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, V_8, V_{10}\}.$     |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, V_9, V_{10}\}.$     |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, V_{11}, V_{10}\}.$  |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, V_8, V_{11}\}.$     |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, V_9, V_{11}\}.$     |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, V_{10}, V_{11}\}.$  |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{15}V_{17}, V_{15}\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{17}, V_{15}, V_{17}\}.$  |
| $\mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} = 14z^3.$ |

Thus the non-obvious Extreme SuperHyperConnectivities,

| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_3, V_9, E_4, V_8\}.$       |
|--------------------------------------------------------------------------------------------------|
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_3, V_{10}, E_4, V_8\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_3, V_{11}, E_4, V_8\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_3, V_8, E_4, V_9\}.$       |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_3, V_{10}, E_4, V_9\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_3, V_{11}, E_4, V_9\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_3, V_8, E_4, V_{10}\}.$ |

| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_3, V_9, E_4, V_{10}\}.$    |
|-----------------------------------------------------------------------------------------------------|
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_3, V_{11}, E_4, V_{10}\}.$ |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_3, V_8, E_4, V_{11}\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_3, V_9, E_4, V_{11}\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_3, V_{10}, E_4, V_{11}\}.$ |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_4, V_9, E_3, V_8\}.$          |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_4, V_{10}, E_3, V_8\}.$       |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_4, V_{11}, E_3, V_8\}.$       |

| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_4, V_8, E_3, V_9\}.$          |
|-----------------------------------------------------------------------------------------------------|
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_4, V_{10}, E_3, V_9\}.$       |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_4, V_{11}, E_3, V_9\}.$       |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_4, V_8, E_3, V_{10}\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_4, V_9, E_3, V_{10}\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_4, V_{11}, E_3, V_{10}\}.$ |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_4, V_8, E_3, V_{11}\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_4, V_9, E_3, V_{11}\}.$    |
|                                                                                                     |

Henry Garrett $\,\cdot\,$ Independent Researcher $\,\cdot\,$ Department of Mathematics $\,\cdot\,$ Dr<br/>HenryGarrett@gmail.com $\,\cdot\,$ Manhattan, NY, USA

 $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_4, V_{10}, E_3, V_{11}\}.$ 

 $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{15}, E_4, V_{17}, E_5, V_{15}\}.$  $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{17}, E_4, V_{15}, E_5, V_{17}\}.$ 

 $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{15}, E_5, V_{17}, E_4, V_{15}\}.$ 

 $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{17}, E_5, V_{15}, E_4, V_{17}\}.$ 

 $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} = 28z^2.$ 

 $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, V_9, V_8\}.$ 

 $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, V_{10}, V_8\}.$ 

 $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, V_{11}, V_8\}.$ 

 $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, V_8, V_9\}.$ 

 $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, V_{10}, V_9\}.$ 

$$\begin{split} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, V_{11}, V_9\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{10}, V_8, V_{10}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{10}, V_9, V_{10}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{10}, V_{11}, V_{10}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, V_8, V_{11}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, V_9, V_{11}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, V_{10}, V_{11}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{15}V_{17}, V_{15}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{17}, V_{15}, V_{17}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperC$$

Is up. The obvious simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities, is:

$$\begin{split} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_8, E_3, V_9, E_4, V_8\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_8, E_3, V_{10}, E_4, V_8\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_8, E_3, V_{11}, E_4, V_8\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, E_3, V_8, E_4, V_9\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, E_3, V_{10}, E_4, V_9\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, E_3, V_{11}, E_4, V_9\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{10}, E_3, V_8, E_4, V_{10}\}.\\ \end{split}$$

 $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_3, V_9, E_4, V_{10}\}. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_3, V_{11}, E_4, V_{10}\}. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_3, V_8, E_4, V_{11}\}. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_3, V_9, E_4, V_{11}\}.$ 

| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_3, V_{10}, E_4, V_{11}\}.$ $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_4, V_9, E_3, V_8\}.$ $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_4, V_{10}, E_3, V_8\}.$ $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_4, V_{11}, E_3, V_8\}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_4, V_8, E_3, V_9\}.$ $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_4, V_{10}, E_3, V_9\}.$ $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_4, V_{11}, E_3, V_9\}.$ $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_4, V_8, E_3, V_{10}\}.$ $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_4, V_9, E_3, V_{10}\}.$ $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_4, V_{11}, E_3, V_{10}\}.$ $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_4, V_8, E_3, V_{11}\}.$ $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_4, V_9, E_3, V_{11}\}.$ $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_4, V_9, E_3, V_{11}\}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_4, V_{10}, E_3, V_{11}\}.$ $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{15}, E_4, V_{17}, E_5, V_{15}\}.$ $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{15}, E_4, V_{15}, E_5, V_{17}\}.$ $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{15}, E_5, V_{17}, E_4, V_{15}\}.$ $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{17}, E_5, V_{15}, E_4, V_{17}\}.$ $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} = 28z^2.$ $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, V_9, V_8\}.$ $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, V_{10}, V_8\}.$ $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, V_{11}, V_8\}.$ $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, V_8, V_9\}.$ $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, V_8, V_9\}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, V_{10}, V_9\}. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, V_{11}, V_9\}. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, V_8, V_{10}\}. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, V_9, V_{10}\}. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, V_{11}, V_{10}\}. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, V_8, V_{11}\}. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, V_9, V_{11}\}. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, V_{10}, V_{11}\}. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, V_{10}, V_{11}\}. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{15}V_{17}, V_{15}\}. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{17}, V_{15}, V_{17}\}. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = V_{17}, V_{15}, V_{17}\}. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{17}, V_{15}, V_{17}\}. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = V_{17}, V_{15}, V_{17}\}. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities$ |

Does includes only less than four SuperHyperVertices in a connected Extreme SuperHyperGraph ESHG: (V, E). It's interesting to mention that the only simple Extreme type-SuperHyperSet called the

Henry Garrett $\,\cdot\,$ Independent Researcher $\,\cdot\,$ Department of Mathematics $\,\cdot\,$ Dr<br/>HenryGarrett@gmail.com $\,\cdot\,$ Manhattan, NY, USA

# "Extreme SuperHyperConnectivities"

amid those obvious non-obvious simple Extreme type-SuperHyperSets called the

# Extreme SuperHyperConnectivities,

#### is only and only

| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_3, V_9, E_4, V_8\}.$       |
|--------------------------------------------------------------------------------------------------|
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_3, V_{10}, E_4, V_8\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_3, V_{11}, E_4, V_8\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_3, V_8, E_4, V_9\}.$       |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_3, V_{10}, E_4, V_9\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_3, V_{11}, E_4, V_9\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_3, V_8, E_4, V_{10}\}.$ |

| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_3, V_9, E_4, V_{10}\}.$    |
|-----------------------------------------------------------------------------------------------------|
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_3, V_{11}, E_4, V_{10}\}.$ |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_3, V_8, E_4, V_{11}\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_3, V_9, E_4, V_{11}\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_3, V_{10}, E_4, V_{11}\}.$ |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_4, V_9, E_3, V_8\}.$          |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_4, V_{10}, E_3, V_8\}.$       |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_4, V_{11}, E_3, V_8\}.$       |

$$\begin{split} & \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_4, V_8, E_3, V_9\}.\\ & \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_4, V_{10}, E_3, V_9\}.\\ & \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_4, V_{11}, E_3, V_9\}.\\ & \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_4, V_8, E_3, V_{10}\}.\\ & \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_4, V_9, E_3, V_{10}\}.\\ & \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_4, V_{11}, E_3, V_{10}\}.\\ & \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_4, V_8, E_3, V_{11}\}.\\ & \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_4, V_9, E_3, V_{11}\}.\\ & \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_4, V_{10}, E_3, V_{11}\}.\\ & \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitie$$

Henry Garrett · Independent Researcher · Department of Mathematics · DrHenryGarrett@gmail.com · Manhattan, NY, USA

| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{15}, E_4, V_{17}, E_5, V_{15}\}.$ |
|-----------------------------------------------------------------------------------------------------|
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{17}, E_4, V_{15}, E_5, V_{17}\}.$ |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{15}, E_5, V_{17}, E_4, V_{15}\}.$ |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{17}, E_5, V_{15}, E_4, V_{17}\}.$ |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} = 28z^2.$            |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, V_9, V_8\}.$                    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, V_{10}, V_8\}.$                 |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, V_{11}, V_8\}.$                 |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, V_8, V_9\}.$                    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, V_{10}, V_9\}.$                 |
|                                                                                                     |

$$\begin{split} \mathcal{C}(NSHG)_{Extreme} Quasi-SuperHyperConnectivities} &= \{V_9, V_{11}, V_9\}.\\ \mathcal{C}(NSHG)_{Extreme} Quasi-SuperHyperConnectivities} &= \{V_{10}, V_8, V_{10}\}.\\ \mathcal{C}(NSHG)_{Extreme} Quasi-SuperHyperConnectivities} &= \{V_{10}, V_9, V_{10}\}.\\ \mathcal{C}(NSHG)_{Extreme} Quasi-SuperHyperConnectivities} &= \{V_{10}, V_{11}, V_{10}\}.\\ \mathcal{C}(NSHG)_{Extreme} Quasi-SuperHyperConnectivities} &= \{V_{11}, V_8, V_{11}\}.\\ \mathcal{C}(NSHG)_{Extreme} Quasi-SuperHyperConnectivities} &= \{V_{11}, V_9, V_{11}\}.\\ \mathcal{C}(NSHG)_{Extreme} Quasi-SuperHyperConnectivities} &= \{V_{11}, V_{10}, V_{11}\}.\\ \mathcal{C}(NSHG)_{Extreme} Quasi-SuperHyperConnectivities} &= \{V_{15}V_{17}, V_{15}\}.\\ \mathcal{C}(NSHG)_{Extreme} Quasi-SuperHyperConnectivities} &= \{V_{17}, V_{15}, V_{17}\}.\\ \mathcal{C}(NSHG)_{Extreme} Quasi-SuperHyperConnectivities} &= \{V_{17}, V_{1$$

In a connected Neutrosophic SuperHyperGraph ESHG : (V, E).

• On the Figure (8.18), the SuperHyperNotion, namely, SuperHyperConnectivities, is up. There's neither empty SuperHyperEdge nor loop SuperHyperEdge. The following Extreme SuperHyperSet of Extreme SuperHyperEdges[SuperHyperVertices] is the simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities. The Extreme SuperHyperSet of Extreme SuperHyperVertices],

| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_3, V_9, E_4, V_8\}.$       |
|--------------------------------------------------------------------------------------------------|
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_3, V_{10}, E_4, V_8\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_3, V_{11}, E_4, V_8\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_3, V_8, E_4, V_9\}.$       |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_3, V_{10}, E_4, V_9\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_3, V_{11}, E_4, V_9\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_3, V_8, E_4, V_{10}\}.$ |
|                                                                                                  |

 $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_3, V_9, E_4, V_{10}\}.$  $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_3, V_{11}, E_4, V_{10}\}.$ 

| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_3, V_8, E_4, V_{11}\}.$    |
|-----------------------------------------------------------------------------------------------------|
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_3, V_9, E_4, V_{11}\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_3, V_{10}, E_4, V_{11}\}.$ |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_4, V_9, E_3, V_8\}.$          |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_4, V_{10}, E_3, V_8\}.$       |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_4, V_{11}, E_3, V_8\}.$       |

- $$\begin{split} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, E_4, V_8, E_3, V_9\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, E_4, V_{10}, E_3, V_9\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, E_4, V_{11}, E_3, V_9\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{10}, E_4, V_8, E_3, V_{10}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{10}, E_4, V_9, E_3, V_{10}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{10}, E_4, V_9, E_3, V_{10}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, E_4, V_8, E_3, V_{11}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, E_4, V_9, E_3, V_{11}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, E_4, V_9, E_3, V_{11}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, E_4, V_{10}, E_$$
- $\begin{aligned} \mathcal{C}(NSHG)_{Extreme} Quasi-SuperHyperConnectivities} &= \{V_{15}, E_4, V_{17}, E_5, V_{15}\}.\\ \mathcal{C}(NSHG)_{Extreme} Quasi-SuperHyperConnectivities} &= \{V_{17}, E_4, V_{15}, E_5, V_{17}\}.\\ \mathcal{C}(NSHG)_{Extreme} Quasi-SuperHyperConnectivities} &= \{V_{15}, E_5, V_{17}, E_4, V_{15}\}.\\ \mathcal{C}(NSHG)_{Extreme} Quasi-SuperHyperConnectivities} &= \{V_{17}, E_5, V_{15}, E_4, V_{17}\}.\\ \mathcal{C}(NSHG)_{Extreme} Quasi-SuperHyperConnectivities} &= \{V_{17}, E_1, V_{23}, E_2, V_{1}\}.\\ \mathcal{C}(NSHG)_{Extreme} Quasi-SuperHyperConnectivities} &= \{V_{23}, E_1, V_2, E_2, V_{23}\}.\\ \mathcal{C}(NSHG)_{Extreme} Quasi-SuperHyperConnectivities} &= \{V_{23}, E_2, V_1, E_1, V_{23}\}.\\ \mathcal{C}(NSHG)_{Extreme} Quasi-SuperHyperConnectivities} &= \{V_{23}, E_2, V_1, E_1, V_{23}\}.\\ \mathcal{C}(NSHG)_{Extreme} Quasi-SuperHyperConnectivities} &= \{V_8, V_9, V_8\}.\\ \mathcal{C}(NSHG)_{Extreme} Quasi-SuperHyperConnectivities} &= \{V_8, V_{10}, V_8\}.\\ \mathcal{C}(NSHG)_{Extreme} Quasi-SuperHyperConnectivities} &= \{V_8, V_{10}, V_8\}.\\ \mathcal{C}(NSHG)_{Extreme} Quasi-SuperHyperConnectivities} &= \{V_8, V_{11}, V_8\}.\\ \mathcal{C}(NSHG)_{Extreme} Quasi-SuperHyperConnectivities} &= \{V_8, V_{11}, V_8\}.\\ \mathcal{C}(NSHG)_{Extreme} Quasi-SuperHyperConnectivities} &= \{V_8, V_{10}, V_8\}.\\ \mathcal{C}(NSHG)_{Extreme} Quasi-SuperHyperConnectivities} &= \{V_9, V_8, V_9\}.\\ \mathcal{C}(NSHG)_{Extreme} Quasi-SuperHyperConnectivities} &= \{V_9, V_8, V_9\}.\\ \mathcal{C}(NSHG)_{Extreme} Quasi-SuperHyperConnectivities} &= \{V_9, V_{10}, V_9\}.\\ \mathcal{C}(NS$
- $$\begin{split} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, V_{11}, V_9\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{10}, V_8, V_{10}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{10}, V_9, V_{10}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{10}, V_{11}, V_{10}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, V_8, V_{11}\}. \end{split}$$

| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, V_9, V_{11}\}.$     |
|--------------------------------------------------------------------------------------------|
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, V_{10}, V_{11}\}.$  |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{15}V_{17}, V_{15}\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{17}, V_{15}, V_{17}\}.$  |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_1, V_{23}, V_1\}.$        |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{23}, V_1, V_{23}\}.$     |
| $\mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} = 16z^3.$ |

is the simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities. The following Extreme SuperHyperSet of Extreme SuperHyperEdges[SuperHyperVertices] is the Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities. The Extreme SuperHyperSet of Extreme SuperHyperEdges[SuperHyperVertices],

| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_3, V_9, E_4, V_8\}.$       |
|--------------------------------------------------------------------------------------------------|
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_3, V_{10}, E_4, V_8\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_3, V_{11}, E_4, V_8\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_3, V_8, E_4, V_9\}.$       |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_3, V_{10}, E_4, V_9\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_3, V_{11}, E_4, V_9\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_3, V_8, E_4, V_{10}\}.$ |

| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_3, V_9, E_4, V_{10}\}.$    |
|-----------------------------------------------------------------------------------------------------|
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_3, V_{11}, E_4, V_{10}\}.$ |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_3, V_8, E_4, V_{11}\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_3, V_9, E_4, V_{11}\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_3, V_{10}, E_4, V_{11}\}.$ |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_4, V_9, E_3, V_8\}.$          |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_4, V_{10}, E_3, V_8\}.$       |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_4, V_{11}, E_3, V_8\}.$       |

| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_4, V_8, E_3, V_9\}.$          |
|-----------------------------------------------------------------------------------------------------|
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_4, V_{10}, E_3, V_9\}.$       |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_4, V_{11}, E_3, V_9\}.$       |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_4, V_8, E_3, V_{10}\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_4, V_9, E_3, V_{10}\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_4, V_{11}, E_3, V_{10}\}.$ |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_4, V_8, E_3, V_{11}\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_4, V_9, E_3, V_{11}\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_4, V_{10}, E_3, V_{11}\}.$ |
|                                                                                                     |

Henry Garrett $\,\cdot\,$ Independent Researcher $\,\cdot\,$ Department of Mathematics $\,\cdot\,$ Dr<br/>HenryGarrett@gmail.com $\,\cdot\,$ Manhattan, NY, USA

| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{15}, E_4, V_{17}, E_5, V_{15}\}.$ |
|-----------------------------------------------------------------------------------------------------|
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{17}, E_4, V_{15}, E_5, V_{17}\}.$ |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{15}, E_5, V_{17}, E_4, V_{15}\}.$ |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{17}, E_5, V_{15}, E_4, V_{17}\}.$ |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_1, E_1, V_{23}, E_2, V_1\}.$       |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{23}, E_1, V_2, E_2, V_{23}\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_1, E_2, V_{23}, E_1, V_1\}.$       |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{23}, E_2, V_1, E_1, V_{23}\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} = 32^2.$             |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, V_9, V_8\}.$                    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, V_{10}, V_8\}.$                 |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, V_{11}, V_8\}.$                 |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, V_8, V_9\}.$                    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, V_{10}, V_9\}.$                 |

$$\begin{split} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, V_{11}, V_9\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{10}, V_8, V_{10}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{10}, V_9, V_{10}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{10}, V_{11}, V_{10}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, V_8, V_{11}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, V_9, V_{11}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, V_{10}, V_{11}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{15}V_{17}, V_{15}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{17}, V_{15}, V_{17}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, V_{23}, V_{1}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{23}, V_{1}, V_{23}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &$$

Is the Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities. The Extreme SuperHyperSet of the Extreme SuperHyperEdges[SuperHyperVertices],

| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_3, V_9, E_4, V_8, E_8, V_9, E_8, V_8, V_8, V_8, V_8, V_8, V_8, V_8, V$ | $V_8$ .      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_3, V_{10}, E_4\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $, V_8 \}.$  |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_3, V_{11}, E_4\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $,V_8\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_3, V_8, E_4,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $V_9$ .      |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_3, V_{10}, E_4\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $,V_{9}\}.$  |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_3, V_{11}, E_4\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $,V_{9}\}.$  |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_3, V_8, E_4\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $,V_{10}\}.$ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |

| $ \begin{aligned} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{10}, E_3, V_9, E_4, V_{10}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{10}, E_3, V_{11}, E_4, V_{10}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, E_3, V_8, E_4, V_{11}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, E_3, V_9, E_4, V_{11}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, E_3, V_{10}, E_4, V_{11}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_8, E_4, V_9, E_3, V_8\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_8, E_4, V_{10}, E_3, V_8\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_8, E_4, V_{11}, E_3, V_8\}. \end{aligned}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $ \begin{aligned} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, E_4, V_8, E_3, V_9\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, E_4, V_{10}, E_3, V_9\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, E_4, V_{11}, E_3, V_9\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{10}, E_4, V_8, E_3, V_{10}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{10}, E_4, V_9, E_3, V_{10}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{10}, E_4, V_{11}, E_3, V_{10}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, E_4, V_8, E_3, V_{11}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, E_4, V_9, E_3, V_{11}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, E_4, V_9, E_3, V_{11}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, E_4, V_{10}, E_3, V_{11}\}.\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $ \begin{aligned} \mathcal{C}(NSHG) & \texttt{ExtremeQuasi-SuperHyperConnectivities} = \{V_{15}, E_4, V_{17}, E_5, V_{15}\}.\\ \mathcal{C}(NSHG) & \texttt{ExtremeQuasi-SuperHyperConnectivities} = \{V_{17}, E_4, V_{15}, E_5, V_{17}\}.\\ \mathcal{C}(NSHG) & \texttt{ExtremeQuasi-SuperHyperConnectivities} = \{V_{15}, E_5, V_{17}, E_4, V_{15}\}.\\ \mathcal{C}(NSHG) & \texttt{ExtremeQuasi-SuperHyperConnectivities} = \{V_{17}, E_5, V_{15}, E_4, V_{17}\}.\\ \mathcal{C}(NSHG) & \texttt{ExtremeQuasi-SuperHyperConnectivities} = \{V_{17}, E_5, V_{15}, E_4, V_{17}\}.\\ \mathcal{C}(NSHG) & \texttt{ExtremeQuasi-SuperHyperConnectivities} = \{V_{12}, E_1, V_{23}, E_2, V_1\}.\\ \mathcal{C}(NSHG) & \texttt{ExtremeQuasi-SuperHyperConnectivities} = \{V_{23}, E_1, V_2, E_2, V_{23}\}.\\ \mathcal{C}(NSHG) & \texttt{ExtremeQuasi-SuperHyperConnectivities} = \{V_{23}, E_2, V_1, E_1, V_{23}\}.\\ \mathcal{C}(NSHG) & \texttt{ExtremeQuasi-SuperHyperConnectivities} = \{V_{23}, E_2, V_1, E_1, V_{23}\}.\\ \mathcal{C}(NSHG) & \texttt{ExtremeQuasi-SuperHyperConnectivities} = \{V_{8}, V_{9}, V_{8}\}.\\ \mathcal{C}(NSHG) & \texttt{ExtremeQuasi-SuperHyperConnectivities} = \{V_{8}, V_{9}, V_{8}\}.\\ \mathcal{C}(NSHG) & \texttt{ExtremeQuasi-SuperHyperConnectivities} = \{V_{8}, V_{10}, V_{8}\}.\\ \mathcal{C}(NSHG) & \texttt{ExtremeQuasi-SuperHyperConnectivities} = \{V_{8}, V_{10}, V_{8}\}.\\ \mathcal{C}(NSHG) & \texttt{ExtremeQuasi-SuperHyperConnectivities} = \{V_{9}, V_{8}, V_{9}\}.\\ \mathcal{C}(NSHG) & \texttt{ExtremeQuasi-SuperHyperConnectivities} = \{V_{9}, V_{8}, V_{9}\}.\\ \mathcal{C}(NSHG) & \texttt{ExtremeQuasi-SuperHyperConnectivities} = \{V_{9}, V_{10}, V_{9}\}.\\ \mathcal{C}($ |

| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, V_{11}, V_9\}.$    |
|----------------------------------------------------------------------------------------|
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, V_8, V_{10}\}.$ |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, V_9, V_{10}\}.$ |

Henry Garrett $\,\cdot\,$ Independent Researcher $\,\cdot\,$ Department of Mathematics $\,\cdot\,$ Dr<br/>HenryGarrett@gmail.com $\,\cdot\,$ Manhattan, NY, USA

| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, V_{11}, V_{10}\}.$  |
|--------------------------------------------------------------------------------------------|
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, V_8, V_{11}\}.$     |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, V_9, V_{11}\}.$     |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, V_{10}, V_{11}\}.$  |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{15}V_{17}, V_{15}\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{17}, V_{15}, V_{17}\}.$  |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_1, V_{23}, V_1\}.$        |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{23}, V_1, V_{23}\}.$     |
| $\mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} = 16z^3.$ |

Is an Extreme SuperHyperConnectivities C(ESHG) for an Neutrosophic SuperHyper-Graph  $\overline{ESHG}: (V, E)$  is an Extreme type-SuperHyperSet with the maximum Extreme cardinality of an Extreme SuperHyperSet S of Extreme SuperHyperEdges[SuperHyperVertices] such that there's only one Extreme consecutive sequence of the Extreme SuperHyperVertices and the Extreme SuperHyperEdges form only one Extreme SuperHyperConnectivities. There are not only <u>four</u> Extreme SuperHyperVertices <u>inside</u> the intended Extreme SuperHyperSet. Thus the non-obvious Extreme SuperHyperConnectivities isn't up. The obvious simple Extreme type-SuperHyperSet called the Extreme SuperHyperConnectivities is an Extreme SuperHyperSet <u>includes</u> only less than <u>four</u> Extreme SuperHyperVertices. But the Extreme SuperHyperSet of the Extreme SuperHyperEdges[SuperHyperVertices],

| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_3, V_9, E_4, V_8\}.$       |
|--------------------------------------------------------------------------------------------------|
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_3, V_{10}, E_4, V_8\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_3, V_{11}, E_4, V_8\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_3, V_8, E_4, V_9\}.$       |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_3, V_{10}, E_4, V_9\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_3, V_{11}, E_4, V_9\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_3, V_8, E_4, V_{10}\}.$ |

 $\begin{aligned} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{10}, E_3, V_9, E_4, V_{10}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{10}, E_3, V_{11}, E_4, V_{10}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, E_3, V_8, E_4, V_{11}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, E_3, V_9, E_4, V_{11}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, E_3, V_{10}, E_4, V_{11}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_8, E_4, V_{9}, E_3, V_8\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_8, E_4, V_{10}, E_3, V_8\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_8, E_4, V_{11}, E_3, V_8\}. \end{aligned}$ 

 $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_4, V_8, E_3, V_9\}.$  $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_4, V_{10}, E_3, V_9\}.$ 

| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_4, V_{11}, E_3, V_9\}.$        |
|------------------------------------------------------------------------------------------------------|
| $\mathcal{C}(NSHG)_{Extreme Quasi-SuperHyperConnectivities} = \{V_{10}, E_4, V_8, E_3, V_{10}\}.$    |
| $\mathcal{C}(NSHG)_{Extreme Quasi-SuperHyperConnectivities} = \{V_{10}, E_4, V_9, E_3, V_{10}\}.$    |
| $\mathcal{C}(NSHG)_{Extreme Quasi-SuperHyperConnectivities} = \{V_{10}, E_4, V_{11}, E_3, V_{10}\}.$ |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_4, V_8, E_3, V_{11}\}.$     |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_4, V_9, E_3, V_{11}\}.$     |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_4, V_{10}, E_3, V_{11}\}.$  |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{15}, E_4, V_{17}, E_5, V_{15}\}.$  |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{17}, E_4, V_{15}, E_5, V_{17}\}.$  |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{15}, E_5, V_{17}, E_4, V_{15}\}.$  |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{17}, E_5, V_{15}, E_4, V_{17}\}.$  |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_1, E_1, V_{23}, E_2, V_1\}.$        |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{23}, E_1, V_2, E_2, V_{23}\}.$     |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_1, E_2, V_{23}, E_1, V_1\}.$        |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{23}, E_2, V_1, E_1, V_{23}\}.$     |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} = 32^2$ .             |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, V_9, V_8\}.$                     |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, V_{10}, V_8\}.$                  |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, V_{11}, V_8\}.$                  |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, V_8, V_9\}.$                     |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, V_{10}, V_9\}.$                  |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, V_{11}, V_9\}.$                  |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, V_8, V_{10}\}.$               |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, V_9, V_{10}\}.$               |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, V_{11}, V_{10}\}.$            |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, V_8, V_{11}\}.$               |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, V_9, V_{11}\}.$               |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, V_{10}, V_{11}\}.$            |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{15}V_{17}, V_{15}\}.$              |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{17}, V_{15}, V_{17}\}.$            |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_1, V_{23}, V_1\}.$                  |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{23}, V_1, V_{23}\}.$               |
| $\mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} = 16z^3.$           |
|                                                                                                      |

Does has less than four SuperHyperVertices <u>inside</u> the intended Extreme SuperHyperSet. Thus the non-obvious simple Extreme type-SuperHyperSet of the Extreme SuperHyper-Connectivities <u>isn't</u> up. To sum them up, the Extreme SuperHyperSet of the Extreme

Henry Garrett $\,\cdot\,$ Independent Researcher $\,\cdot\,$ Department of Mathematics $\,\cdot\,$ Dr<br/>HenryGarrett@gmail.com $\,\cdot\,$ Manhattan, NY, USA

SuperHyperEdges[SuperHyperVertices],

| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_3, V_9, E_4, V_8\}.$       |
|--------------------------------------------------------------------------------------------------|
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_3, V_{10}, E_4, V_8\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_3, V_{11}, E_4, V_8\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_3, V_8, E_4, V_9\}.$       |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_3, V_{10}, E_4, V_9\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_3, V_{11}, E_4, V_9\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_3, V_8, E_4, V_{10}\}.$ |

| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_3, V_9, E_4, V_{10}\}.$    |
|-----------------------------------------------------------------------------------------------------|
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_3, V_{11}, E_4, V_{10}\}.$ |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_3, V_8, E_4, V_{11}\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_3, V_9, E_4, V_{11}\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_3, V_{10}, E_4, V_{11}\}.$ |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_4, V_9, E_3, V_8\}.$          |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_4, V_{10}, E_3, V_8\}.$       |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_4, V_{11}, E_3, V_8\}.$       |

- $$\begin{split} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, E_4, V_8, E_3, V_9\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, E_4, V_{10}, E_3, V_9\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, E_4, V_{11}, E_3, V_9\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{10}, E_4, V_8, E_3, V_{10}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{10}, E_4, V_9, E_3, V_{10}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{10}, E_4, V_9, E_3, V_{10}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, E_4, V_8, E_3, V_{11}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, E_4, V_9, E_3, V_{11}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, E_4, V_9, E_3, V_{11}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, E_4, V_{10}, E_$$
- $$\begin{split} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{15}, E_4, V_{17}, E_5, V_{15}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{17}, E_4, V_{15}, E_5, V_{17}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{15}, E_5, V_{17}, E_4, V_{15}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{17}, E_5, V_{15}, E_4, V_{17}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{17}, E_1, V_{23}, E_2, V_1\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{23}, E_1, V_2, E_2, V_{23}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{13}, E_2, V_1, E_1, V_{23}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{23}, E_2, V_1, E_1, V_{23}\}.\\ \mathcal{C}($$

| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, V_9, V_8\}.$    |
|-------------------------------------------------------------------------------------|
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, V_{10}, V_8\}.$ |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, V_{11}, V_8\}.$ |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, V_8, V_9\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, V_{10}, V_9\}.$ |

| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, V_{11}, V_9\}.$        |
|--------------------------------------------------------------------------------------------|
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, V_8, V_{10}\}.$     |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, V_9, V_{10}\}.$     |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, V_{11}, V_{10}\}.$  |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, V_8, V_{11}\}.$     |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, V_9, V_{11}\}.$     |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, V_{10}, V_{11}\}.$  |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{15}V_{17}, V_{15}\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{17}, V_{15}, V_{17}\}.$  |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_1, V_{23}, V_1\}.$        |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{23}, V_1, V_{23}\}.$     |
| $\mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} = 16z^3.$ |
|                                                                                            |

 $\underline{\mathbf{Is}} \text{ the non-obvious simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities. Since the Extreme SuperHyperSet of the Extreme SuperHyperEdges[SuperHyperVertices], the extreme SuperHyperVertices], the extreme SuperHyperVertices is the extreme SuperHyperVertices in the extreme SuperHyperVertices is the extreme SuperHyper$ 

| $ \begin{aligned} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_8, E_3, V_{10}, E_4, V_8\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_8, E_3, V_{11}, E_4, V_8\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, E_3, V_8, E_4, V_9\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, E_3, V_{10}, E_4, V_9\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, E_3, V_{11}, E_4, V_9\}. \end{aligned}$ |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_3, V_8, E_4, V_9\}.$<br>$\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_3, V_{10}, E_4, V_9\}.$                                                                                                                                                                                                                                                                                                                            |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_3, V_{10}, E_4, V_9\}.$                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_3, V_{11}, E_4, V_9\}.$                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ( )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_3, V_8, E_4, V_{10}\}.$                                                                                                                                                                                                                                                                                                                                                                                                                       |

| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_3, V_9, E_4, V_{10}\}.$    |
|-----------------------------------------------------------------------------------------------------|
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_3, V_{11}, E_4, V_{10}\}.$ |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_3, V_8, E_4, V_{11}\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_3, V_9, E_4, V_{11}\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_3, V_{10}, E_4, V_{11}\}.$ |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_4, V_9, E_3, V_8\}.$          |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_4, V_{10}, E_3, V_8\}.$       |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_4, V_{11}, E_3, V_8\}.$       |

Henry Garrett $\,\cdot\,$ Independent Researcher $\,\cdot\,$ Department of Mathematics $\,\cdot\,$ Dr<br/>HenryGarrett@gmail.com $\,\cdot\,$ Manhattan, NY, USA

| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_4, V_8, E_3, V_9\}.$          |
|-----------------------------------------------------------------------------------------------------|
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_4, V_{10}, E_3, V_9\}.$       |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_4, V_{11}, E_3, V_9\}.$       |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_4, V_8, E_3, V_{10}\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_4, V_9, E_3, V_{10}\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_4, V_{11}, E_3, V_{10}\}.$ |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_4, V_8, E_3, V_{11}\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_4, V_9, E_3, V_{11}\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_4, V_{10}, E_3, V_{11}\}.$ |

- $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{15}, E_4, V_{17}, E_5, V_{15}\}. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{17}, E_4, V_{15}, E_5, V_{17}\}. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{15}, E_5, V_{17}, E_4, V_{15}\}. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{17}, E_5, V_{15}, E_4, V_{17}\}. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{17}, E_1, V_{23}, E_2, V_{1}\}. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{23}, E_1, V_2, E_2, V_{23}\}. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{23}, E_2, V_1, E_1, V_{23}\}. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{23}, E_2, V_1, E_1, V_{23}\}. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{8}, V_{9}, V_{8}\}. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{8}, V_{10}, V_{8}\}. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{8}, V_{10}, V_{8}\}. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{8}, V_{10}, V_{8}\}. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{8}, V_{11}, V_{8}\}. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{9}, V_{8}, V_{9}\}. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{9}, V_{10}, V_{9}\}. \\ \end{array}$
- $\begin{array}{l} \mathcal{C}(NSHG)_{Extreme}Quasi-SuperHyperConnectivities} = \{V_9, V_{11}, V_9\}.\\ \mathcal{C}(NSHG)_{Extreme}Quasi-SuperHyperConnectivities} = \{V_{10}, V_8, V_{10}\}.\\ \mathcal{C}(NSHG)_{Extreme}Quasi-SuperHyperConnectivities} = \{V_{10}, V_9, V_{10}\}.\\ \mathcal{C}(NSHG)_{Extreme}Quasi-SuperHyperConnectivities} = \{V_{10}, V_{11}, V_{10}\}.\\ \mathcal{C}(NSHG)_{Extreme}Quasi-SuperHyperConnectivities} = \{V_{11}, V_8, V_{11}\}.\\ \mathcal{C}(NSHG)_{Extreme}Quasi-SuperHyperConnectivities} = \{V_{11}, V_9, V_{11}\}.\\ \mathcal{C}(NSHG)_{Extreme}Quasi-SuperHyperConnectivities} = \{V_{11}, V_{10}, V_{11}\}.\\ \mathcal{C}(NSHG)_{Extreme}Quasi-SuperHyperConnectivities} = \{V_{11}, V_{10}, V_{11}\}.\\ \mathcal{C}(NSHG)_{Extreme}Quasi-SuperHyperConnectivities} = \{V_{17}, V_{15}, V_{17}\}.\\ \mathcal{C}(NSHG)_{Extreme}Quasi-SuperHyperConnectivities} = \{V_{11}, V_{23}, V_{1}\}.\\ \mathcal{C}(NSHG)_{Extreme}Quasi-SuperHyperConnectivities} = \{V_{23}, V_{1}, V_{23}\}.\\ \mathcal{C}(NSHG)_{Extreme}Quasi-SuperHyperConnectivit$

Henry Garrett · Independent Researcher · Department of Mathematics · DrHenryGarrett@gmail.com · Manhattan, NY, USA

erHyperGirth C(ESHG) for a Neutrosophic SuperHyperGraph ESHG : (V, E) is the Extreme SuperHyperSet S of Extreme SuperHyperVertices[SuperHyperEdges] such that there's only one Extreme consecutive Extreme sequence of Extreme SuperHyperVertices and Extreme SuperHyperEdges form only one Extreme SuperHyperConnectivities given by that Extreme type-SuperHyperSet called the Extreme SuperHyperConnectivities and it's an Extreme SuperHyperConnectivities. Since it's the maximum Extreme cardinality of an Extreme SuperHyperSet S of Extreme SuperHyperEdges[SuperHyperVertices] such that there's only one Extreme consecutive Extreme sequence of Extreme SuperHyperVertices and Extreme SuperHyperEdges form only one Extreme SuperHyperVertices. There are only less than four Extreme SuperHyperVertices inside the intended Extreme SuperHyperSet,

| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_3, V_9, E_4, V_8\}.$       |
|--------------------------------------------------------------------------------------------------|
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_3, V_{10}, E_4, V_8\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_3, V_{11}, E_4, V_8\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_3, V_8, E_4, V_9\}.$       |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_3, V_{10}, E_4, V_9\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_3, V_{11}, E_4, V_9\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_3, V_8, E_4, V_{10}\}.$ |

| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_3, V_9, E_4, V_{10}\}.$    |
|-----------------------------------------------------------------------------------------------------|
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_3, V_{11}, E_4, V_{10}\}.$ |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_3, V_8, E_4, V_{11}\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_3, V_9, E_4, V_{11}\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_3, V_{10}, E_4, V_{11}\}.$ |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_4, V_9, E_3, V_8\}.$          |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_4, V_{10}, E_3, V_8\}.$       |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_4, V_{11}, E_3, V_8\}.$       |

| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_4, V_8, E_3, V_9\}.$          |
|-----------------------------------------------------------------------------------------------------|
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_4, V_{10}, E_3, V_9\}.$       |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_4, V_{11}, E_3, V_9\}.$       |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_4, V_8, E_3, V_{10}\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_4, V_9, E_3, V_{10}\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_4, V_{11}, E_3, V_{10}\}.$ |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_4, V_8, E_3, V_{11}\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_4, V_9, E_3, V_{11}\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_4, V_{10}, E_3, V_{11}\}.$ |
|                                                                                                     |

| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} =$ | $\{V_{15},$ | $E_4,$ | $V_{17},$ | $E_5,$ | $V_{15}$ }. |
|---------------------------------------------------------------|-------------|--------|-----------|--------|-------------|
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} =$ | $\{V_{17},$ | $E_4,$ | $V_{15},$ | $E_5,$ | $V_{17}$ .  |

$$\begin{split} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{15}, E_5, V_{17}, E_4, V_{15}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{17}, E_5, V_{15}, E_4, V_{17}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_1, E_1, V_{23}, E_2, V_1\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{23}, E_1, V_2, E_2, V_{23}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{12}, E_2, V_{23}, E_1, V_1\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{23}, E_2, V_1, E_1, V_{23}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{23}, E_2, V_1, E_1, V_{23}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} &= 32^2.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_8, V_9, V_8\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_8, V_{10}, V_8\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_8, V_{11}, V_8\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, V_8, V_9\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, V_8, V_9\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, V_{10}, V_9\}. \end{aligned}$$

$$\begin{split} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, V_{11}, V_9\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{10}, V_8, V_{10}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{10}, V_9, V_{10}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{10}, V_{11}, V_{10}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, V_8, V_{11}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, V_9, V_{11}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, V_{10}, V_{11}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, V_{10}, V_{11}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{15}V_{17}, V_{15}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, V_{23}, V_{11}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{12}, V_{12}, V_{12}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{23}, V_{1}, V_{23}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities}$$

Thus the non-obvious Extreme SuperHyperConnectivities,

$$\begin{split} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_8, E_3, V_9, E_4, V_8\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_8, E_3, V_{10}, E_4, V_8\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_8, E_3, V_{11}, E_4, V_8\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, E_3, V_8, E_4, V_9\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, E_3, V_{10}, E_4, V_9\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, E_3, V_{11}, E_4, V_9\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, E_3, V_{11}, E_4, V_9\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, E_3, V_{11}, E_4, V_9\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, E_3, V_{10}, E_4, V_9\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, E_3, V_{11}, E_4, V_9\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, E_3, V_{11}, E_4, V_9\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, E_3, V_{10}, E_4, V_9\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, E_3, V_{10}, E_4, V_9\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, E_3, V_{10}, E_4, V_{10}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{10}, E_3, V_8, E_4, V_{10}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{10}, V_{10}, V_{10},$$

 $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_3, V_9, E_4, V_{10}\}.$  $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_3, V_{11}, E_4, V_{10}\}.$ 

| _ | <u> </u>                                                                                            |  |
|---|-----------------------------------------------------------------------------------------------------|--|
|   | $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_3, V_8, E_4, V_{11}\}.$    |  |
|   | $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_3, V_9, E_4, V_{11}\}.$    |  |
|   | $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_3, V_{10}, E_4, V_{11}\}.$ |  |
|   | $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_4, V_9, E_3, V_8\}.$          |  |
|   | $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_4, V_{10}, E_3, V_8\}.$       |  |
|   | $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_4, V_{11}, E_3, V_8\}.$       |  |
|   |                                                                                                     |  |
|   | $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_4, V_8, E_3, V_9\}.$          |  |
|   | $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_4, V_{10}, E_3, V_9\}.$       |  |
|   | $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_4, V_{11}, E_3, V_9\}.$       |  |
|   | $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_4, V_8, E_3, V_{10}\}.$    |  |
|   | $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_4, V_9, E_3, V_{10}\}.$    |  |
|   | $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_4, V_{11}, E_3, V_{10}\}.$ |  |
|   | $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_4, V_8, E_3, V_{11}\}.$    |  |
|   | $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_4, V_9, E_3, V_{11}\}.$    |  |
|   | $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_4, V_{10}, E_3, V_{11}\}.$ |  |
|   |                                                                                                     |  |
|   | $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{15}, E_4, V_{17}, E_5, V_{15}\}.$ |  |
|   | $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{17}, E_4, V_{15}, E_5, V_{17}\}.$ |  |
|   | $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{15}, E_5, V_{17}, E_4, V_{15}\}.$ |  |
|   | $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{17}, E_5, V_{15}, E_4, V_{17}\}.$ |  |
|   | $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_1, E_1, V_{23}, E_2, V_1\}.$       |  |
|   | $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{23}, E_1, V_2, E_2, V_{23}\}.$    |  |
|   | $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_1, E_2, V_{23}, E_1, V_1\}.$       |  |
|   | $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{23}, E_2, V_1, E_1, V_{23}\}.$    |  |
|   | $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} = 32^2.$             |  |
|   | $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, V_9, V_8\}.$                    |  |
|   | $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, V_{10}, V_8\}.$                 |  |
|   | $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, V_{11}, V_8\}.$                 |  |
|   | $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, V_8, V_9\}.$                    |  |
|   | $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, V_{10}, V_9\}.$                 |  |
|   |                                                                                                     |  |
|   | $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, V_{11}, V_9\}.$                 |  |
|   | $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, V_8, V_{10}\}.$              |  |
|   | $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, V_9, V_{10}\}.$              |  |
|   | $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, V_{11}, V_{10}\}.$           |  |
|   | $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHumerConnectivities} = \{V_{11}, V_8, V_{11}\}.$              |  |

 $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, V_8, V_{11}\}.$ 

Henry Garrett $\,\cdot\,$ Independent Researcher $\,\cdot\,$ Department of Mathematics $\,\cdot\,$ Dr<br/>HenryGarrett@gmail.com $\,\cdot\,$ Manhattan, NY, USA

| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, V_9, V_{11}\}.$     |
|--------------------------------------------------------------------------------------------|
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, V_{10}, V_{11}\}.$  |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{15}V_{17}, V_{15}\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{17}, V_{15}, V_{17}\}.$  |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_1, V_{23}, V_1\}.$        |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{23}, V_1, V_{23}\}.$     |
| $\mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} = 16z^3.$ |

Is up. The obvious simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities, is:

| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_3, V_9, E_4, V_8\}.$       |
|--------------------------------------------------------------------------------------------------|
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_3, V_{10}, E_4, V_8\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_3, V_{11}, E_4, V_8\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_3, V_8, E_4, V_9\}.$       |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_3, V_{10}, E_4, V_9\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_3, V_{11}, E_4, V_9\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_3, V_8, E_4, V_{10}\}.$ |

| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_3, V_9, E_4, V_{10}\}.$    |
|-----------------------------------------------------------------------------------------------------|
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_3, V_{11}, E_4, V_{10}\}.$ |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_3, V_8, E_4, V_{11}\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_3, V_9, E_4, V_{11}\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_3, V_{10}, E_4, V_{11}\}.$ |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_4, V_9, E_3, V_8\}.$          |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_4, V_{10}, E_3, V_8\}.$       |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_4, V_{11}, E_3, V_8\}.$       |

$$\begin{split} & \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_4, V_8, E_3, V_9\}.\\ & \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_4, V_{10}, E_3, V_9\}.\\ & \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_4, V_{11}, E_3, V_9\}.\\ & \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_4, V_8, E_3, V_{10}\}.\\ & \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_4, V_9, E_3, V_{10}\}.\\ & \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_4, V_{11}, E_3, V_{10}\}.\\ & \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_4, V_8, E_3, V_{11}\}.\\ & \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_4, V_9, E_3, V_{11}\}.\\ & \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, E_4, V_{10}, E_3, V_{11}\}.\\ & \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitie$$

| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, V_{11}, V_9\}.$        |
|--------------------------------------------------------------------------------------------|
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, V_8, V_{10}\}.$     |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, V_9, V_{10}\}.$     |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, V_{11}, V_{10}\}.$  |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, V_8, V_{11}\}.$     |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, V_9, V_{11}\}.$     |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{11}, V_{10}, V_{11}\}.$  |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{15}V_{17}, V_{15}\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{17}, V_{15}, V_{17}\}.$  |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_1, V_{23}, V_1\}.$        |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{23}, V_1, V_{23}\}.$     |
| $\mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} = 16z^3.$ |

Does includes only less than four SuperHyperVertices in a connected Extreme SuperHyperGraph ESHG: (V, E). It's interesting to mention that the only simple Extreme type-SuperHyperSet called the

# "Extreme SuperHyperConnectivities"

amid those obvious[non-obvious] simple Extreme type-SuperHyperSets called the

# Extreme SuperHyperConnectivities,

is only and only

$$\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_3, V_9, E_4, V_8\}.$$

Henry Garrett $\,\cdot\,$ Independent Researcher $\,\cdot\,$ Department of Mathematics $\,\cdot\,$ Dr<br/>HenryGarrett@gmail.com $\,\cdot\,$ Manhattan, NY, USA

| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_3, V_{10}, E_4, V_8\}.$    |
|--------------------------------------------------------------------------------------------------|
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, E_3, V_{11}, E_4, V_8\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_3, V_8, E_4, V_9\}.$       |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_3, V_{10}, E_4, V_9\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, E_3, V_{11}, E_4, V_9\}.$    |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{10}, E_3, V_8, E_4, V_{10}\}.$ |

- $$\begin{split} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, E_4, V_8, E_3, V_9\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, E_4, V_{10}, E_3, V_9\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_9, E_4, V_{11}, E_3, V_9\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{10}, E_4, V_8, E_3, V_{10}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{10}, E_4, V_9, E_3, V_{10}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{10}, E_4, V_9, E_3, V_{10}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, E_4, V_8, E_3, V_{11}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, E_4, V_9, E_3, V_{11}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, E_4, V_9, E_3, V_{11}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{11}, E_4, V_{10}, E_$$
- $\begin{aligned} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{15}, E_4, V_{17}, E_5, V_{15}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{17}, E_4, V_{15}, E_5, V_{17}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{15}, E_5, V_{17}, E_4, V_{15}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{17}, E_5, V_{15}, E_4, V_{17}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{17}, E_5, V_{15}, E_4, V_{17}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{12}, E_1, V_{23}, E_2, V_{1}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{12}, E_1, V_{22}, E_2, V_{23}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_{23}, E_2, V_1, E_1, V_{23}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} &= 32^2.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_8, V_9, V_8\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_8, V_{10}, V_8\}. \end{aligned}$

| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_8, V_{11}, V_8\}.$<br>$\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, V_8, V_9\}.$<br>$\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_9, V_{10}, V_9\}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $C(NSHG)ExtremeQuasi-SuperHyperConnectivities = \{V_9, V_{11}, V_9\}.$ $C(NSHG)ExtremeQuasi-SuperHyperConnectivities = \{V_{10}, V_8, V_{10}\}.$ $C(NSHG)ExtremeQuasi-SuperHyperConnectivities = \{V_{10}, V_9, V_{10}\}.$ $C(NSHG)ExtremeQuasi-SuperHyperConnectivities = \{V_{10}, V_{11}, V_{10}\}.$ $C(NSHG)ExtremeQuasi-SuperHyperConnectivities = \{V_{11}, V_8, V_{11}\}.$ $C(NSHG)ExtremeQuasi-SuperHyperConnectivities = \{V_{11}, V_9, V_{11}\}.$ $C(NSHG)ExtremeQuasi-SuperHyperConnectivities = \{V_{11}, V_9, V_{11}\}.$ $C(NSHG)ExtremeQuasi-SuperHyperConnectivities = \{V_{11}, V_{10}, V_{11}\}.$ $C(NSHG)ExtremeQuasi-SuperHyperConnectivities = \{V_{11}, V_{10}, V_{11}\}.$ $C(NSHG)ExtremeQuasi-SuperHyperConnectivities = \{V_{11}, V_{10}, V_{11}\}.$ $C(NSHG)ExtremeQuasi-SuperHyperConnectivities = \{V_{11}, V_{15}, V_{17}\}.$ $C(NSHG)ExtremeQuasi-SuperHyperConnectivities = \{V_{11}, V_{23}, V_{1}\}.$ |
| $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{13}, V_{23}, V_{13}\}.$ $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{23}, V_{13}, V_{23}\}.$ $\mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} = 16z^{3}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

In a connected Neutrosophic SuperHyperGraph ESHG: (V, E).

- On the Figure (8.19), the SuperHyperNotion, namely, SuperHyperConnectivities, is up. There's neither empty SuperHyperEdge nor loop SuperHyperEdge. The following Extreme SuperHyperSet of Extreme SuperHyperEdges[SuperHyperVertices] is the simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities. The Extreme SuperHyperSet of Extreme SuperHyperEdges[SuperHyperVertices],
  - $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{\}. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} = 0. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{\}. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} = 0. \\ \end{array}$

is the simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities. The following Extreme SuperHyperSet of Extreme SuperHyperEdges[SuperHyperVertices] is the Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities. The Extreme SuperHyperSet of Extreme SuperHyperEdges[SuperHyperVertices],

$$\begin{split} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{\}. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} = 0. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{\}. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} = 0. \end{split}$$

Is the Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities. The Extreme SuperHyperSet of the Extreme SuperHyperEdges[SuperHyperVertices],

 $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{\}.$ 

 $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} = 0.$  $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{\}.$  $\mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} = 0.$ 

Is an Extreme SuperHyperConnectivities C(ESHG) for an Neutrosophic SuperHyper-Graph  $\overline{ESHG}: (V, E)$  is an Extreme type-SuperHyperSet with the maximum Extreme cardinality of an Extreme SuperHyperSet S of Extreme SuperHyperEdges[SuperHyperVertices] such that there's only one Extreme consecutive sequence of the Extreme SuperHyperVertices and the Extreme SuperHyperEdges form only one Extreme SuperHyperConnectivities. There are not only four Extreme SuperHyperVertices inside the intended Extreme SuperHyperSet. Thus the non-obvious Extreme SuperHyperConnectivities isn't up. The obvious simple Extreme type-SuperHyperSet called the Extreme SuperHyperConnectivities is an Extreme SuperHyperSet includes only less than four Extreme SuperHyperVertices. But the Extreme SuperHyperSet of the Extreme SuperHyperVertices],

$$\begin{split} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{\}. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} &= 0. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{\}. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} &= 0. \end{split}$$

Does has less than four SuperHyperVertices <u>inside</u> the intended Extreme SuperHyperSet. Thus the non-obvious simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities <u>isn't</u> up. To sum them up, the Extreme SuperHyperSet of the Extreme SuperHyperEdges[SuperHyperVertices],

 $C(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{\}. \\ C(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} = 0. \\ C(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{\}. \\ C(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} = 0. \\ C(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitieSUperHyperPolynomial} = 0. \\ C(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitieSUperHyperConnectivitieSUperHyperPolynomial} = 0. \\ C(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitieSUperHyperConnectivitieSUperHyperConnectivitieSUperHyperConnectivitieSUperHyperConnectivitieSUperHyperConn$ 

**<u>Is</u>** the non-obvious simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities. Since the Extreme SuperHyperSet of the Extreme SuperHyperEdges[SuperHyperVertices],

 $\begin{aligned} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{\}. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} &= 0. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{\}. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} &= 0. \end{aligned}$ 

SuperHyperConnectivities C(ESHG) for a Neutrosophic SuperHyperGraph ESHG: (V, E) is the Extreme SuperHyperSet S of Extreme SuperHyperVertices[SuperHyperEdges] such that there's only one Extreme consecutive Extreme sequence of Extreme SuperHyperVertices and Extreme SuperHyperEdges form only one Extreme SuperHyperConnectivities given by that Extreme type-SuperHyperSet called the Extreme SuperHyperConnectivities and it's an Extreme SuperHyperConnectivities. Since it's the maximum Extreme cardinality of an Extreme SuperHyperSet S of Extreme SuperHyperVertices] such that

there's only one Extreme consecutive Extreme sequence of Extreme SuperHyperVertices and Extreme SuperHyperEdges form only one Extreme SuperHyperConnectivities. There are only less than four Extreme SuperHyperVertices **inside** the intended Extreme SuperHyperSet,

 $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{\}. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} = 0. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{\}. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} = 0. \\ \end{array}$ 

Thus the non-obvious Extreme SuperHyperConnectivities,

 $C(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{\}. \\ C(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} = 0. \\ C(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{\}. \\ C(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} = 0. \\ C(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitieSUperHyperPolynomial} = 0. \\ C(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitieSUperHyperConnectivitieSUperHyperPolynomial} = 0. \\ C(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitieSUperHyperPolynomial} = 0. \\ C(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitieSUperHyperConnectivitieSUperHyperConnectivitieSUperHyperConnectivitieSUperHyperConnectivitieSUperHyperConnectivitieSUperHyperConnectivitieSUperHyperConnectivitieSUperHyperConnectivitieSUperHyperConnectivitieSUperHyperConnectivitieSUperHyperConnectivitieSUper$ 

Is up. The obvious simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities, is:

 $\begin{aligned} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{\}. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} &= 0. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{\}. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} &= 0. \end{aligned}$ 

Does includes only less than four SuperHyperVertices in a connected Extreme SuperHyperGraph ESHG: (V, E). It's interesting to mention that the only simple Extreme type-SuperHyperSet called the

# "Extreme SuperHyperConnectivities"

amid those obvious non-obvious simple Extreme type-SuperHyperSets called the

### Extreme SuperHyperConnectivities,

is only and only

 $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{\}. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} = 0. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{\}. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} = 0. \\ \end{array}$ 

In a connected Neutrosophic SuperHyperGraph ESHG : (V, E).

• On the Figure (8.20), the SuperHyperNotion, namely, SuperHyperConnectivities, is up.

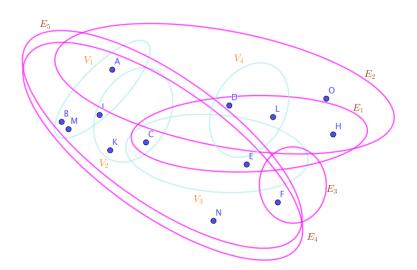


Figure 8.4: The SuperHyperGraphs Associated to the Notions of SuperHyperConnectivities in the Example (8.0.1)

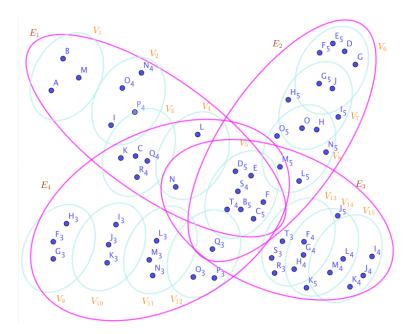


Figure 8.5: The SuperHyperGraphs Associated to the Notions of SuperHyperConnectivities in the Example (8.0.1)

Henry Garrett  $\,\cdot\,$  Independent Researcher  $\,\cdot\,$  Department of Mathematics  $\,\cdot\,$  DrHenryGarrett@gmail.com  $\,\cdot\,$  Manhattan, NY, USA

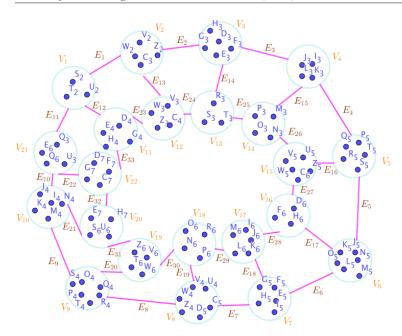


Figure 8.6: The SuperHyperGraphs Associated to the Notions of SuperHyperConnectivities in the Example (8.0.1)

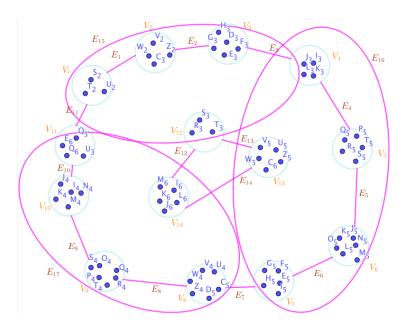


Figure 8.7: The SuperHyperGraphs Associated to the Notions of SuperHyperConnectivities in the Example (8.0.1)

Henry Garrett $\,\cdot\,$ Independent Researcher $\,\cdot\,$ Department of Mathematics $\,\cdot\,$ Dr<br/>HenryGarrett@gmail.com $\,\cdot\,$ Manhattan, NY, USA

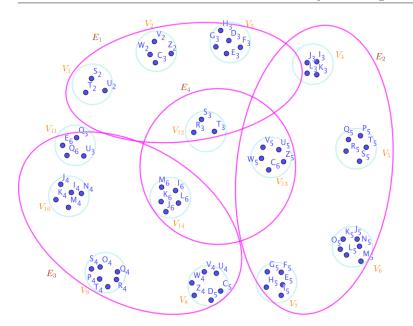


Figure 8.8: The SuperHyperGraphs Associated to the Notions of SuperHyperConnectivities in the Example (8.0.1)

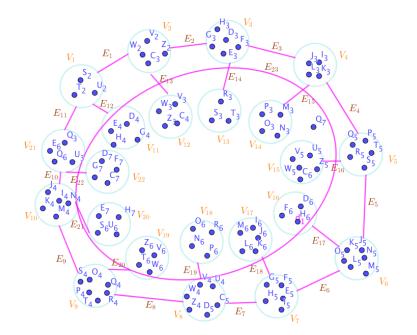


Figure 8.9: The SuperHyperGraphs Associated to the Notions of SuperHyperConnectivities in the Example (8.0.1)

Henry Garrett $\,\cdot\,$ Independent Researcher $\,\cdot\,$ Department of Mathematics $\,\cdot\,$ Dr<br/>HenryGarrett@gmail.com $\,\cdot\,$ Manhattan, NY, USA

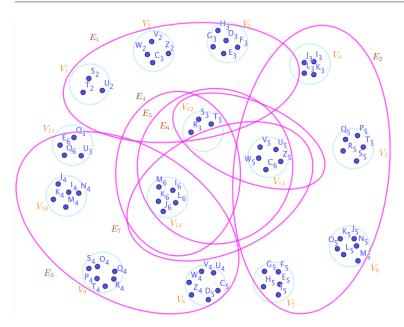


Figure 8.10: The SuperHyperGraphs Associated to the Notions of SuperHyperConnectivities in the Example (8.0.1)

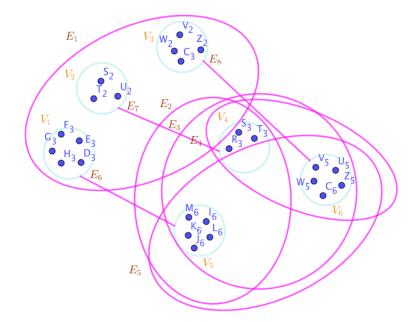


Figure 8.11: The SuperHyperGraphs Associated to the Notions of SuperHyperConnectivities in the Example (8.0.1)

Henry Garrett $\,\cdot\,$ Independent Researcher $\,\cdot\,$ Department of Mathematics $\,\cdot\,$ Dr<br/>HenryGarrett@gmail.com $\,\cdot\,$ Manhattan, NY, USA

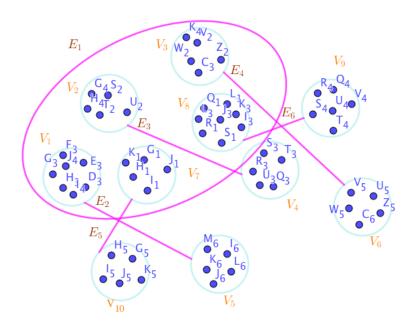


Figure 8.12: The SuperHyperGraphs Associated to the Notions of SuperHyperConnectivities in the Example (8.0.1)

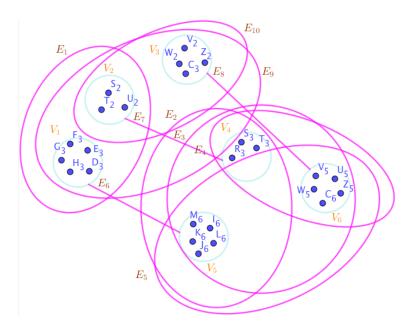


Figure 8.13: The SuperHyperGraphs Associated to the Notions of SuperHyperConnectivities in the Example (8.0.1)

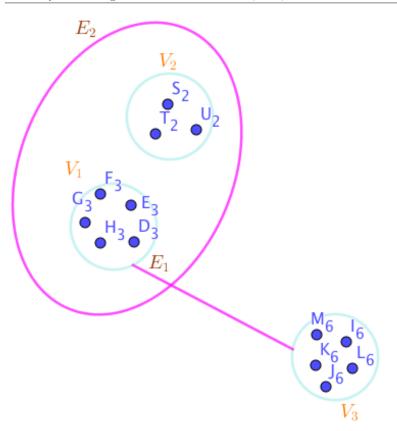


Figure 8.14: The SuperHyperGraphs Associated to the Notions of SuperHyperConnectivities in the Example (8.0.1)

**Proposition 8.0.2.** Assume a connected loopless Neutrosophic SuperHyperGraph ESHG : (V, E). Then in the worst case, literally,

$$\begin{split} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_1, E_1, V_2, E_2, V_3, E_3, V_4, E_4, V_1\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} &= z^4.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_1, V_2, V_3, V_4, V_1\}.\\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} &= z^5. \end{split}$$

Is an Extreme type-result-SuperHyperConnectivities. In other words, the least cardinality, the lower sharp bound for the cardinality, of an Extreme type-result-SuperHyperConnectivities is the cardinality of

 $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_1, E_1, V_2, E_2, V_3, E_3, V_4, E_4, V_1\}. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} = z^4. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_1, V_2, V_3, V_4, V_1\}.$ 

Henry Garrett  $\,\cdot\,$  Independent Researcher  $\,\cdot\,$  Department of Mathematics  $\,\cdot\,$  DrHenryGarrett@gmail.com  $\,\cdot\,$  Manhattan, NY, USA

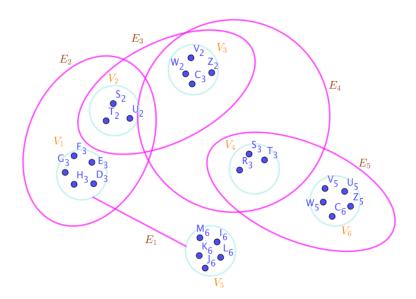


Figure 8.15: The SuperHyperGraphs Associated to the Notions of SuperHyperConnectivities in the Example (8.0.1)



Figure 8.16: The SuperHyperGraphs Associated to the Notions of SuperHyperConnectivities in the Example (8.0.1)

Henry Garrett $\,\cdot\,$ Independent Researcher $\,\cdot\,$ Department of Mathematics $\,\cdot\,$ Dr<br/>HenryGarrett@gmail.com $\,\cdot\,$ Manhattan, NY, USA

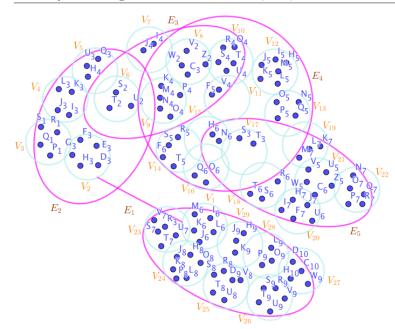


Figure 8.17: The SuperHyperGraphs Associated to the Notions of SuperHyperConnectivities in the Example (8.0.1)

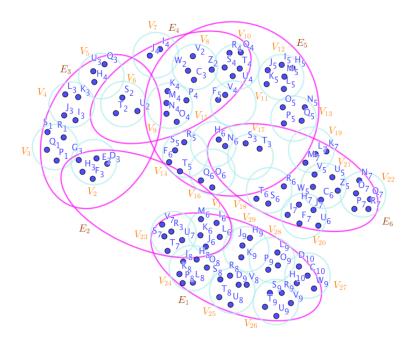


Figure 8.18: The SuperHyperGraphs Associated to the Notions of SuperHyperConnectivities in the Example (8.0.1)

Henry Garrett $\,\cdot\,$ Independent Researcher $\,\cdot\,$ Department of Mathematics $\,\cdot\,$ Dr<br/>HenryGarrett@gmail.com $\,\cdot\,$ Manhattan, NY, USA

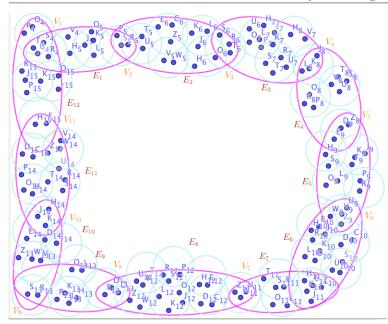


Figure 8.19: The SuperHyperGraphs Associated to the Notions of SuperHyperConnectivities in the Example (8.0.1)

 $\mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} = z^5.$ 

*Proof.* Assume a connected loopless Neutrosophic SuperHyperGraph ESHG : (V, E). The SuperHyperSet of the SuperHyperVertices  $V \setminus V \setminus \{V_1, V_2, V_3, V_4, V_1\}$  isn't an Extreme quasi-type-result-SuperHyperConnectivities since neither Extreme amount of Extreme SuperHyperEdges nor Extreme amount of Extreme SuperHyperVertices (-/SuperHyperEdges) more than one to form any Extreme kind of Extreme consecutive consequence as the Extreme icon and Extreme generator of the Extreme SuperHyperConnectivities in the terms of the Extreme longest form. Let us consider the Extreme SuperHyperSet

$$\begin{split} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_1, E_1, V_2, E_2, V_3, E_3, V_4, E_4, V_1\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} &= z^4.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_1, V_2, V_3, V_4, V_1\}.\\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} &= z^5. \end{split}$$

This Extreme SuperHyperSet of the Extreme SuperHyperVertices has the eligibilities to propose property such that there's only one Extreme consecutive Extreme sequence of Extreme SuperHyper-Vertices and Extreme SuperHyperEdges form only one Extreme SuperHyperConnectivities given by that Extreme type-SuperHyperSet called the Extreme SuperHyperConnectivities but the maximum Extreme cardinality indicates that these Extreme type-SuperHyperSets couldn't give us the Extreme

Henry Garrett · Independent Researcher · Department of Mathematics · DrHenryGarrett@gmail.com · Manhattan, NY, USA



Figure 8.20: The SuperHyperGraphs Associated to the Notions of SuperHyperConnectivities in the Example (8.0.1)

lower bound in the term of Extreme sharpness. In other words, the Extreme SuperHyperSet

 $\begin{aligned} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_1, E_1, V_2, E_2, V_3, E_3, V_4, E_4, V_1\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} &= z^4.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_1, V_2, V_3, V_4, V_1\}.\\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} &= z^5. \end{aligned}$ 

Of the Extreme SuperHyperVertices implies at least on-quasi-triangle style is up but sometimes the Extreme SuperHyperSet

$$\begin{split} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_1, E_1, V_2, E_2, V_3, E_3, V_4, E_4, V_1\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} &= z^4.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_1, V_2, V_3, V_4, V_1\}.\\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} &= z^5. \end{split}$$

Of the Extreme SuperHyperVertices is free-quasi-triangle and it doesn't make a contradiction to the supposition on the connected loopless Neutrosophic SuperHyperGraph ESHG: (V, E). Thus the minimum case never happens in the generality of the connected loopless Neutrosophic SuperHyperGraphs. Thus if we assume in the worst case, literally,

$$V \setminus V \setminus \{V_1, V_2, V_3, V_4, V_1\}$$

Henry Garrett  $\,\cdot\,$  Independent Researcher  $\,\cdot\,$  Department of Mathematics  $\,\cdot\,$  DrHenryGarrett@gmail.com  $\,\cdot\,$  Manhattan, NY, USA

Is an Extreme quasi-type-result-SuperHyperConnectivities. In other words, the least cardinality, the lower sharp bound for the Extreme cardinality, of an Extreme Extreme quasi-type-result-SuperHyperConnectivities is the cardinality of

$$V \setminus V \setminus \{V_1, V_2, V_3, V_4, V_1\}.$$

Then we've lost some connected loopless Extreme SuperHyperClasses of the connected loopless Neutrosophic SuperHyperGraphs titled free-triangle, on-triangle, and their quasi-types but the Extreme quasi-type-result-SuperHyperConnectivities is only up in this Extreme quasi-type-result-SuperHyperConnectivities. It's the contradiction to that fact on the Extreme generality. There are some counterexamples to deny this statement. One of them comes from the setting of the graph titled path and star as the counterexamples-classes or reversely direction cycle as the examples-classes, are well-known classes in that setting and they could be considered as the examples-classes and counterexamples-classes for the tight bound of

$$V \setminus V \setminus \{V_1, V_2, V_3, V_4, V_1\}.$$

Let  $V \setminus V \setminus \{z, z'\}$  in mind. There's no Extreme necessity on the Extreme SuperHyperEdge since we need at least three Extreme SuperHyperVertices to form an Extreme SuperHyperEdge. It doesn't withdraw the Extreme principles of the main Extreme definition since there's no Extreme condition to be satisfied but the Extreme condition is on the Extreme existence of the Extreme SuperHyperEdge instead of acting on the Extreme SuperHyperVertices. In other words, if there are three Extreme SuperHyperEdges, then the Extreme SuperHyperSet has the necessary condition for the intended Extreme definition to be Extremely applied. Thus the  $V \setminus V \setminus \{z, z'\}$  is withdrawn not by the Extreme conditions of the main Extreme definition but by the Extreme necessity of the Extreme pre-condition on the Extreme usage of the main Extreme definition.

To make sense with the precise Extreme words in the terms of "R-', the follow-up Extreme illustrations are Extremely coming up.

The following Extreme SuperHyperSet of Extreme SuperHyperVertices is the simple Extreme type-SuperHyperSet of the Extreme R-SuperHyperConnectivities.

$$V \setminus V \setminus \{a_E, b_{E'}, c_{E''}, c_{E'''}\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$$

The Extreme SuperHyperSet of Extreme SuperHyperVertices,

TT) TT) (

$$V \setminus V \setminus \{a_E, b_{E'}, c_{E''}, c_{E'''}\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$$

Is the simple Extreme type-SuperHyperSet of the Extreme R-SuperHyperConnectivities. The Extreme SuperHyperSet of the Extreme SuperHyperVertices,

$$V \setminus V \setminus \{a_E, b_{E'}, c_{E''}, c_{E'''}\}_{E \in \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

Is an **Extreme R-SuperHyperConnectivities** C(ESHG) for a Neutrosophic SuperHyperGraph  $ESH\overline{G}: (V, E)$  is an Extreme type-SuperHyperSet with the maximum Extreme cardinality of an Extreme SuperHyperSet S of Extreme SuperHyperVertices such that there's only one Extreme consecutive Extreme sequence of Extreme SuperHyperVertices and Extreme SuperHyperEdges form only one Extreme SuperHyperConnectivities given by that Extreme type-SuperHyperSet called the

Henry Garrett · Independent Researcher · Department of Mathematics · DrHenryGarrett@gmail.com · Manhattan, NY, USA

Extreme SuperHyperConnectivities, instead of all given by **Extreme SuperHyperConnectivities** is related to the Extreme SuperHyperSet of the Extreme SuperHyperVertices,

 $V \setminus V \setminus \{a_E, b_{E'}, c_{E''}, c_{E'''}\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$ 

There are <u>not</u> only <u>four</u> Extreme SuperHyperVertices <u>inside</u> the intended Extreme SuperHyperSet. Thus the non-obvious Extreme SuperHyperConnectivities is up. The obvious simple Extreme type-SuperHyperSet called the Extreme SuperHyperConnectivities is an Extreme SuperHyperSet <u>includes</u> only <u>four</u> Extreme SuperHyperVertices. But the Extreme SuperHyperSet of Extreme SuperHyperVertices,

 $V \setminus V \setminus \{a_E, b_{E'}, c_{E''}, c_{E'''}\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$ 

Doesn't have less than four SuperHyperVertices **inside** the intended Extreme SuperHyperSet since they've come from at least so far four Extreme SuperHyperEdges. Thus the non-obvious simple Extreme type-SuperHyperSet of the Extreme R-SuperHyperConnectivities **isn't** up. To sum them up, the Extreme SuperHyperSet of Extreme SuperHyperVertices,

 $V \setminus V \setminus \{a_E, b_{E'}, c_{E''}, c_{E'''}\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$ 

**Isn't** the non-obvious simple Extreme type-SuperHyperSet of the Extreme R-SuperHyperConnectivities. Since the Extreme SuperHyperSet of the Extreme SuperHyperEdges[SuperHyperVertices],

 $\begin{aligned} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_1, E_1, V_2, E_2, V_3, E_3, V_4, E_4, V_1\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} &= z^4.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_1, V_2, V_3, V_4, V_1\}.\\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} &= z^5. \end{aligned}$ 

SuperHyperConnectivities C(ESHG) for a Neutrosophic SuperHyperGraph ESHG: (V, E) is the Extreme SuperHyperSet S of Extreme SuperHyperVertices[SuperHyperEdges] such that there's only one Extreme consecutive Extreme sequence of Extreme SuperHyperVertices and Extreme SuperHyperEdges form only one Extreme SuperHyperConnectivities given by that Extreme type-SuperHyperSet called the Extreme SuperHyperConnectivities <u>and</u> it's an Extreme SuperHyperConnectivities. Since it's the maximum Extreme cardinality of an Extreme SuperHyperSet S of Extreme SuperHyperEdges[SuperHyperVertices] such that there's only one Extreme consecutive Extreme sequence of Extreme SuperHyperVertices and Extreme SuperHyperEdges form only one Extreme SuperHyperVertices. There are not only less than four Extreme SuperHyperVertices inside the intended Extreme SuperHyperSet,

 $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_1, E_1, V_2, E_2, V_3, E_3, V_4, E_4, V_1\}. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} = z^4. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_1, V_2, V_3, V_4, V_1\}. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} = z^5.$ 

Thus the non-obvious Extreme SuperHyperConnectivities,

 $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_1, E_1, V_2, E_2, V_3, E_3, V_4, E_4, V_1\}.$ 

Henry Garrett  $\,\cdot\,$  Independent Researcher  $\,\cdot\,$  Department of Mathematics  $\,\cdot\,$  DrHenryGarrett@gmail.com  $\,\cdot\,$  Manhattan, NY, USA

 $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} = z^{4}. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_{1}, V_{2}, V_{3}, V_{4}, V_{1}\}. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} = z^{5}.$ 

Is up. The obvious simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities, is not:

$$\begin{split} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_1, E_1, V_2, E_2, V_3, E_3, V_4, E_4, V_1\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} &= z^4.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_1, V_2, V_3, V_4, V_1\}.\\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} &= z^5. \end{split}$$

Does includes only less than four SuperHyperVertices in a connected Extreme SuperHyperGraph ESHG: (V, E). It's interesting to mention that the only simple Extreme type-SuperHyperSet called the

### "Extreme SuperHyperConnectivities"

amid those obvious[non-obvious] simple Extreme type-SuperHyperSets called the

#### Extreme SuperHyperConnectivities,

is only and only

$$\begin{split} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_1, E_1, V_2, E_2, V_3, E_3, V_4, E_4, V_1\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} &= z^4.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_1, V_2, V_3, V_4, V_1\}.\\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} &= z^5. \end{split}$$

In a connected Neutrosophic SuperHyperGraph ESHG: (V, E) with a illustrated SuperHyper-Modeling. It's also, not only an Extreme free-triangle embedded SuperHyperModel and an Extreme on-triangle embedded SuperHyperModel but also it's an Extreme girth embedded Super HyperModel. But all only non-obvious simple Extreme type-SuperHyperSets of the Extreme R-SuperHyperConnectivities amid those obvious simple Extreme type-SuperHyperSets of the Extreme SuperHyperConnectivities, are

$$V \setminus V \setminus \{a_E, b_{E'}, c_{E''}, c_{E'''}\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$$

In a connected Neutrosophic SuperHyperGraph ESHG : (V, E). To sum them up, assume a connected loopless Neutrosophic SuperHyperGraph ESHG : (V, E). Then in the worst case, literally,

$$\begin{split} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_1, E_1, V_2, E_2, V_3, E_3, V_4, E_4, V_1\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} &= z^4.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} &= \{V_1, V_2, V_3, V_4, V_1\}.\\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} &= z^5. \end{split}$$

Is an Extreme type-result-SuperHyperConnectivities. In other words, the least cardinality, the lower sharp bound for the cardinality, of an Extreme type-result-SuperHyperConnectivities is the cardinality of

 $\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_1, E_1, V_2, E_2, V_3, E_3, V_4, E_4, V_1\}. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} = z^4. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{V_1, V_2, V_3, V_4, V_1\}. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} = z^5.$ 

**Proposition 8.0.3.** Assume a simple Neutrosophic SuperHyperGraph ESHG: (V, E). Then the Extreme number of type-result-R-SuperHyperConnectivities has, the least Extreme cardinality, the lower sharp Extreme bound for Extreme cardinality, is the Extreme cardinality of

 $V \setminus V \setminus \{a_E, b_{E'}, c_{E''}, c_{E'''}\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$ 

If there's an Extreme type-result-R-SuperHyperConnectivities with the least Extreme cardinality, the lower sharp Extreme bound for cardinality.

*Proof.* The Extreme structure of the Extreme type-result-R-SuperHyperConnectivities decorates the Extreme SuperHyperVertices don't have received any Extreme connections so as this Extreme style implies different versions of Extreme SuperHyperEdges with the maximum Extreme cardinality in the terms of Extreme SuperHyperVertices are spotlight. The lower Extreme bound is to have the maximum Extreme groups of Extreme SuperHyperVertices have perfect Extreme connections inside each of SuperHyperEdges and the outside of this Extreme SuperHyperSet doesn't matter but regarding the connectedness of the used Neutrosophic SuperHyperGraph arising from its Extreme properties taken from the fact that it's simple. If there's no more than one Extreme SuperHyperVertex in the targeted Extreme SuperHyperSet, then there's no Extreme connection. Furthermore, the Extreme existence of one Extreme SuperHyperVertex has no Extreme effect to talk about the Extreme R-SuperHyperConnectivities. Since at least two Extreme SuperHyperVertices involve to make a title in the Extreme background of the Neutrosophic SuperHyperGraph. The Neutrosophic SuperHyperGraph is obvious if it has no Extreme SuperHyperEdge but at least two Extreme SuperHyperVertices make the Extreme version of Extreme SuperHyperEdge. Thus in the Extreme setting of non-obvious Neutrosophic SuperHyperGraph, there are at least one Extreme SuperHyperEdge. It's necessary to mention that the word "Simple" is used as Extreme adjective for the initial Neutrosophic SuperHyperGraph, induces there's no Extreme appearance of the loop Extreme version of the Extreme SuperHyperEdge and this Neutrosophic SuperHyperGraph is said to be loopless. The Extreme adjective "loop" on the basic Extreme framework engages one Extreme SuperHyperVertex but it never happens in this Extreme setting. With these Extreme bases, on a Neutrosophic SuperHyperGraph, there's at least one Extreme SuperHyperEdge thus there's at least an Extreme R-SuperHyperConnectivities has the Extreme cardinality of an Extreme SuperHyperEdge. Thus, an Extreme R-SuperHyperConnectivities has the Extreme cardinality at least an Extreme SuperHyperEdge. Assume an Extreme SuperHyperSet  $V \setminus V \setminus \{z\}$ . This Extreme SuperHyperSet isn't an Extreme R-SuperHyperConnectivities since either the Neutrosophic SuperHyperGraph is an obvious Extreme SuperHyperModel thus it never happens since there's no Extreme usage of this Extreme framework and even more there's no Extreme connection inside

or the Neutrosophic SuperHyperGraph isn't obvious and as its consequences, there's an Extreme contradiction with the term "Extreme R-SuperHyperConnectivities" since the maximum Extreme cardinality never happens for this Extreme style of the Extreme SuperHyperSet and beyond that there's no Extreme connection inside as mentioned in first Extreme case in the forms of drawback for this selected Extreme SuperHyperSet. Let

 $V \setminus V \setminus \{a_E, b_E, c_E, \dots, a_{E'}, b_{E'}, c_{E'}, \dots\}_{E, E' = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$ 

Comes up. This Extreme case implies having the Extreme style of on-quasi-triangle Extreme style on the every Extreme elements of this Extreme SuperHyperSet. Precisely, the Extreme R-SuperHyperConnectivities is the Extreme SuperHyperSet of the Extreme SuperHyperVertices such that some Extreme amount of the Extreme SuperHyperVertices are on-quasi-triangle Extreme style. The Extreme cardinality of the v SuperHypeSet

 $V \setminus V \setminus \{a_E, b_E, c_E, \dots, a_{E'}, b_{E'}, c_{E'}, \dots\}_{E, E' = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$ 

Is the maximum in comparison to the Extreme SuperHyperSet

$$V \setminus V \setminus \{a_E, b_E, c_E, \dots\}_{E=\{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

But the lower Extreme bound is up. Thus the minimum Extreme cardinality of the maximum Extreme cardinality ends up the Extreme discussion. The first Extreme term refers to the Extreme setting of the Neutrosophic SuperHyperGraph but this key point is enough since there's an Extreme SuperHyperClass of a Neutrosophic SuperHyperGraph has no on-quasi-triangle Extreme style amid some amount of its Extreme SuperHyperVertices. This Extreme setting of the Extreme SuperHyperModel proposes an Extreme SuperHyperSet has only some amount Extreme SuperHyperVertices from one Extreme SuperHyperEdge such that there's no Extreme SuperHyperVertices. The Extreme cardinality of this Extreme SuperHyperSet is the maximum and the Extreme case is occurred in the minimum Extreme situation. To sum them up, the Extreme SuperHyperSet

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

Has the maximum Extreme cardinality such that

$$V \setminus V \setminus \{a_E, b_E, c_E, \dots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

Contains some Extreme SuperHyperVertices such that there's distinct-covers-order-amount Extreme SuperHyperEdges for amount of Extreme SuperHyperVertices taken from the Extreme SuperHyperSet

$$V \setminus V \setminus \{a_E, b_E, c_E, \dots\}_{E=\{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$$

It means that the Extreme SuperHyperSet of the Extreme SuperHyperVertices

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

Henry Garrett · Independent Researcher · Department of Mathematics · DrHenryGarrett@gmail.com · Manhattan, NY, USA

Is an Extreme R-SuperHyperConnectivities for the Neutrosophic SuperHyperGraph as used Extreme background in the Extreme terms of worst Extreme case and the common theme of the lower Extreme bound occurred in the specific Extreme SuperHyperClasses of the Neutrosophic SuperHyperGraphs which are Extreme free-quasi-triangle.

To make sense with the precise words in the terms of "R-', the follow-up illustrations are coming up. The following Extreme SuperHyperSet of Extreme SuperHyperVertices is the simple Extreme type-SuperHyperSet of the Extreme R-SuperHyperConnectivities.

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$$

The Extreme SuperHyperSet of Extreme SuperHyperVertices,

--> --> 6

 $V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$ 

Is the simple Extreme type-SuperHyperSet of the Extreme R-SuperHyperConnectivities. The Extreme SuperHyperSet of the Extreme SuperHyperVertices,

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

Is an **Extreme R-SuperHyperConnectivities** C(ESHG) for an Neutrosophic SuperHyperGraph ESHG: (V, E) is an Extreme type-SuperHyperSet with the maximum Extreme cardinality of an Extreme SuperHyperSet S of Extreme SuperHyperVertices such that there's no an Extreme SuperHyperEdge amid some Extreme SuperHyperVertices instead of all given by **Extreme SuperHyperConnectivities** is related to the Extreme SuperHyperSet of the Extreme SuperHyperVertices,

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

There's <u>not</u> only <u>one</u> Extreme SuperHyperVertex <u>inside</u> the intended Extreme SuperHyperSet. Thus the non-obvious Extreme SuperHyperConnectivities is up. The obvious simple Extreme type-SuperHyperSet called the Extreme SuperHyperConnectivities is an Extreme SuperHyperSet <u>includes</u> only <u>one</u> Extreme SuperHyperVertex. But the Extreme SuperHyperSet of Extreme SuperHyperVertices,

 $V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$ 

doesn't have less than two SuperHyperVertices <u>inside</u> the intended Extreme SuperHyperSet since they've come from at least so far an SuperHyperEdge. Thus the non-obvious simple Extreme type-SuperHyperSet of the Extreme R-SuperHyperConnectivities <u>is</u> up. To sum them up, the Extreme SuperHyperSet of Extreme SuperHyperVertices,

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$$

<u>Is</u> the non-obvious simple Extreme type-SuperHyperSet of the Extreme R-SuperHyperConnectivities. Since the Extreme SuperHyperSet of the Extreme SuperHyperVertices,

$$(V \setminus V \setminus \{x, z\}) \cup \{xy\}$$

Henry Garrett  $\,\cdot\,$  Independent Researcher  $\,\cdot\,$  Department of Mathematics  $\,\cdot\,$  DrHenryGarrett@gmail.com  $\,\cdot\,$  Manhattan, NY, USA

or

$$(V \setminus V \setminus \{x, z\}) \cup \{zy\}$$

is an Extreme R-SuperHyperConnectivities C(ESHG) for an Neutrosophic SuperHyperGraph ESHG : (V, E) is the Extreme SuperHyperSet S of Extreme SuperHyperVertices such that there's no an Extreme SuperHyperEdge for some Extreme SuperHyperConnectivities <u>and</u> it's an Extreme type-SuperHyperSet called the Extreme SuperHyperConnectivities <u>and</u> it's an Extreme <u>SuperHyperConnectivities</u>. Since it's the maximum Extreme cardinality of an Extreme SuperHyperSet S of Extreme SuperHyperVertices such that there's no an Extreme SuperHyperSet S of Extreme SuperHyperVertices instead of all given by that Extreme type-SuperHyperSet S of Extreme SuperHyperVertices such that there's no an Extreme SuperHyperSet called the Extreme SuperHyperVertices instead of all given by that Extreme type-SuperHyperSet called the Extreme SuperHyperVertices. There isn't only less than two Extreme SuperHyperVertices instead the Extreme SuperHyperSet,

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

Thus the non-obvious Extreme R-SuperHyperConnectivities,

 $V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$ 

is up. The non-obvious simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities, not:

 $V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$ 

Is the Extreme SuperHyperSet, not:

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

does includes only less than two SuperHyperVertices in a connected Extreme SuperHyperGraph ESHG: (V, E) but it's impossible in the case, they've corresponded to an SuperHyperEdge. It's interesting to mention that the only non-obvious simple Extreme type-SuperHyperSet called the

### "Extreme R-SuperHyperConnectivities"

amid those obvious[non-obvious] simple Extreme type-SuperHyperSets called the

### Extreme R-SuperHyperConnectivities,

is only and only

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

In a connected Neutrosophic SuperHyperGraph ESHG: (V, E) with a illustrated SuperHyperModeling. It's also, not only an Extreme free-triangle embedded SuperHyperModel and an Extreme on-triangle embedded SuperHyperModel but also it's an Extreme stable embedded SuperHyperModel. But all only non-obvious simple Extreme type-SuperHyperSets of the Extreme R-SuperHyperConnectivities amid those obvious simple Extreme type-SuperHyperSets of the Extreme SuperHyperConnectivities, are

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E=\{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

Henry Garrett · Independent Researcher · Department of Mathematics · DrHenryGarrett@gmail.com · Manhattan, NY, USA

In a connected Neutrosophic SuperHyperGraph ESHG : (V, E).

.

To sum them up, assume a simple Neutrosophic SuperHyperGraph ESHG: (V, E). Then the Extreme number of R-SuperHyperConnectivities has, the least cardinality, the lower sharp bound for cardinality, is the Extreme cardinality of

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$$

If there's a R-SuperHyperConnectivities with the least cardinality, the lower sharp bound for cardinality.

**Proposition 8.0.4.** Assume a connected Extreme SuperHyperGraph ESHG : (V, E). If an Extreme SuperHyperEdge  $E \in E_{ESHG:(V,E)}$  has z Extreme SuperHyperVertices, then the Extreme cardinality of the Extreme R-SuperHyperConnectivities is at least

$$V \setminus (V \setminus \{a_E, b_E, c_E, \dots, z_E\}).$$

It's straightforward that the Extreme cardinality of the Extreme R-SuperHyperConnectivities is at least the maximum Extreme number of Extreme SuperHyperVertices of the Extreme SuperHyperEdges with the maximum number of the Extreme SuperHyperEdges. In other words, the maximum number of the Extreme SuperHyperEdges contains the maximum Extreme number of Extreme SuperHyperVertices are renamed to Extreme SuperHyperConnectivities in some cases but the maximum number of the Extreme SuperHyperEdge with the maximum Extreme number of Extreme SuperHyperVertices, has the Extreme SuperHyperVertices are contained in an Extreme R-SuperHyperConnectivities.

*Proof.* Assume an Extreme SuperHyperEdge  $E \in E_{ESHG:(V,E)}$  has z Extreme number of the Extreme SuperHyperVertices. Then every Extreme SuperHyperVertex has at least no Extreme SuperHyperEdge with others in common. Thus those Extreme SuperHyperVertices have the eligibles to be contained in an Extreme R-SuperHyperConnectivities. Those Extreme SuperHyperVertices are potentially included in an Extreme style-R-SuperHyperConnectivities. Formally, consider

$$V \setminus (V \setminus \{a_E, b_E, c_E, \dots, z_E\}).$$

Are the Extreme SuperHyperVertices of an Extreme SuperHyperEdge  $E \in E_{ESHG:(V,E)}$ . Thus

$$Z_i \sim Z_j, \ i \neq j, \ i, j = 1, 2, \dots, z.$$

where the  $\sim$  isn't an equivalence relation but only the symmetric relation on the Extreme SuperHyperVertices of the Neutrosophic SuperHyperGraph. The formal definition is as follows.

$$Z_i \sim Z_j, i \neq j, i, j = 1, 2, \ldots, z$$

if and only if  $Z_i$  and  $Z_j$  are the Extreme SuperHyperVertices and there's only and only one Extreme SuperHyperEdge  $E \in E_{ESHG:(V,E)}$  between the Extreme SuperHyperVertices  $Z_i$  and  $Z_j$ . The other definition for the Extreme SuperHyperEdge  $E \in E_{ESHG:(V,E)}$  in the terms of Extreme R-SuperHyperConnectivities is

 $\{a_E, b_E, c_E, \dots, z_E\}.$ 

This definition coincides with the definition of the Extreme R-SuperHyperConnectivities but with slightly differences in the maximum Extreme cardinality amid those Extreme type-SuperHyperSets

of the Extreme SuperHyperVertices. Thus the Extreme SuperHyperSet of the Extreme SuperHyperVertices,

$$\max |\{Z_1, Z_2, \dots, Z_z \mid Z_i \sim Z_j, i \neq j, i, j = 1, 2, \dots, z\}|_{\text{Extreme cardinality}},$$

and

$$V \setminus V \setminus \{a_E, o_E, c_E, \dots\}_{E=\{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

is formalized with mathematical literatures on the Extreme R-SuperHyperConnectivities. Let  $Z_i \stackrel{E}{\sim} Z_j$ , be defined as  $Z_i$  and  $Z_j$  are the Extreme SuperHyperVertices belong to the Extreme SuperHyperEdge  $E \in E_{ESHG;(V,E)}$ . Thus,

$$E = \{Z_1, Z_2, \dots, Z_z \mid Z_i \stackrel{E}{\sim} Z_j, \ i \neq j, \ i, j = 1, 2, \dots, z\}$$

Or

 $\{a_E, b_E, c_E, \ldots\}_{E=\{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$ 

But with the slightly differences,

 $\mathbf{T}_{Z} \setminus \mathbf{T}_{Z} \setminus \mathbf{f}$ 

Extreme R-SuperHyperConnectivities =

$$\{Z_1, Z_2, \dots, Z_z \mid \forall i \neq j, i, j = 1, 2, \dots, z, \exists E_x, Z_i \overset{E_x}{\sim} Z_j, \}.$$

Extreme R-SuperHyperConnectivities =

 $V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$ 

Thus  $E \in E_{ESHG:(V,E)}$  is an Extreme quasi-R-SuperHyperConnectivities where  $E \in E_{ESHG:(V,E)}$  is fixed that means  $E_x = E \in E_{ESHG:(V,E)}$ . for all Extreme intended SuperHyperVertices but in an Extreme SuperHyperConnectivities,  $E_x = E \in E_{ESHG:(V,E)}$  could be different and it's not unique. To sum them up, in a connected Extreme SuperHyperGraph ESHG : (V, E). If an Extreme SuperHyperEdge  $E \in E_{ESHG:(V,E)}$  has z Extreme SuperHyperVertices, then the Extreme cardinality of the Extreme R-SuperHyperConnectivities is at least

$$V \setminus (V \setminus \{a_E, b_E, c_E, \dots, z_E\}).$$

It's straightforward that the Extreme cardinality of the Extreme R-SuperHyperConnectivities is at least the maximum Extreme number of Extreme SuperHyperVertices of the Extreme SuperHyperEdges with the maximum number of the Extreme SuperHyperEdges. In other words, the maximum number of the Extreme SuperHyperEdges contains the maximum Extreme number of Extreme SuperHyperVertices are renamed to Extreme SuperHyperConnectivities in some cases but the maximum number of the Extreme SuperHyperEdge with the maximum Extreme number of Extreme SuperHyperVertices, has the Extreme SuperHyperVertices are contained in an Extreme R-SuperHyperConnectivities.

To make sense with the precise words in the terms of "R-', the follow-up illustrations are coming up. The following Extreme SuperHyperSet of Extreme SuperHyperVertices is the simple Extreme type-SuperHyperSet of the Extreme R-SuperHyperConnectivities.

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E=\{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

The Extreme SuperHyperSet of Extreme SuperHyperVertices,

 $V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$ 

Is the simple Extreme type-SuperHyperSet of the Extreme R-SuperHyperConnectivities. The Extreme SuperHyperSet of the Extreme SuperHyperVertices,

$$V \setminus V \setminus \{a_E, b_E, c_E, \dots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

Is an **Extreme R-SuperHyperConnectivities** C(ESHG) for an Neutrosophic SuperHyperGraph  $ESH\overline{G}: (V, E)$  is an Extreme type-SuperHyperSet with the maximum Extreme cardinality of an Extreme SuperHyperSet S of Extreme SuperHyperVertices such that there's no an Extreme SuperHyperEdge amid some Extreme SuperHyperVertices instead of all given by Extreme SuperHyperConnectivities is related to the Extreme SuperHyperSet of the Extreme SuperHyperVertices,

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

There's <u>not</u> only <u>one</u> Extreme SuperHyperVertex <u>inside</u> the intended Extreme SuperHyperSet. Thus the non-obvious Extreme SuperHyperConnectivities is up. The obvious simple Extreme type-SuperHyperSet called the Extreme SuperHyperConnectivities is an Extreme SuperHyperSet <u>includes</u> only <u>one</u> Extreme SuperHyperVertex. But the Extreme SuperHyperSet of Extreme SuperHyperVertices,

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E=\{E \in E_{ESHG}; (V,E) \mid |E| = \max\{|E| \mid E \in E_{ESHG}; (V,E)\}}\}$$

doesn't have less than two SuperHyperVertices <u>inside</u> the intended Extreme SuperHyperSet since they've come from at least so far an SuperHyperEdge. Thus the non-obvious simple Extreme type-SuperHyperSet of the Extreme R-SuperHyperConnectivities <u>is</u> up. To sum them up, the Extreme SuperHyperSet of Extreme SuperHyperVertices,

$$V \setminus V \setminus \{a_E, b_E, c_E, \dots\}_{E=\{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

<u>Is</u> the non-obvious simple Extreme type-SuperHyperSet of the Extreme R-SuperHyperConnectivities. Since the Extreme SuperHyperSet of the Extreme SuperHyperVertices,

$$(V \setminus V \setminus \{x, z\}) \cup \{xy\}$$
$$(V \setminus V \setminus \{x, z\}) \cup \{zy\}$$

or

TT \ TT \ (

is an Extreme R-SuperHyperConnectivities C(ESHG) for an Neutrosophic SuperHyperGraph ESHG : (V, E) is the Extreme SuperHyperSet S of Extreme SuperHyperVertices such that there's no an Extreme SuperHyperEdge for some Extreme SuperHyperConnectivities and it's an Extreme **SuperHyperConnectivities**. Since it's the maximum Extreme cardinality of an Extreme SuperHyperSet S of Extreme SuperHyperVertices such that there's no an Extreme SuperHyperSet S of Extreme SuperHyperConnectivities. Since it's the maximum Extreme cardinality of an Extreme SuperHyperSet S of Extreme SuperHyperVertices such that there's no an Extreme SuperHyperEdge for some amount Extreme SuperHyperVertices instead of all given by that Extreme

Henry Garrett · Independent Researcher · Department of Mathematics · DrHenryGarrett@gmail.com · Manhattan, NY, USA

type-SuperHyperSet called the Extreme SuperHyperConnectivities. There isn't only less than two Extreme SuperHyperVertices **inside** the intended Extreme SuperHyperSet,

 $V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$ 

Thus the non-obvious Extreme R-SuperHyperConnectivities,

 $V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$ 

is up. The non-obvious simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities, not:

 $V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$ 

Is the Extreme SuperHyperSet, not:

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG}(V, E) \mid |E| = \max\{|E| \mid E \in E_{ESHG}(V, E)\}}$$

does includes only less than two SuperHyperVertices in a connected Extreme SuperHyperGraph ESHG: (V, E) but it's impossible in the case, they've corresponded to an SuperHyperEdge. It's interesting to mention that the only non-obvious simple Extreme type-SuperHyperSet called the

# "Extreme R-SuperHyperConnectivities"

amid those obvious non-obvious simple Extreme type-SuperHyperSets called the

### Extreme R-SuperHyperConnectivities,

is only and only

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

In a connected Neutrosophic SuperHyperGraph ESHG: (V, E) with a illustrated SuperHyperModel eling. It's also, not only an Extreme free-triangle embedded SuperHyperModel and an Extreme on-triangle embedded SuperHyperModel but also it's an Extreme stable embedded SuperHyperModel. But all only non-obvious simple Extreme type-SuperHyperSets of the Extreme R-SuperHyperConnectivities amid those obvious simple Extreme type-SuperHyperSets of the Extreme SuperHyperConnectivities, are

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

In a connected Neutrosophic SuperHyperGraph ESHG : (V, E). To sum them up, assume a connected loopless Neutrosophic SuperHyperGraph ESHG : (V, E). Then in the worst case, literally,

 $V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$ 

is an Extreme R-SuperHyperConnectivities. In other words, the least cardinality, the lower sharp bound for the cardinality, of an Extreme R-SuperHyperConnectivities is the cardinality of

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

To sum them up, in a connected Extreme SuperHyperGraph ESHG: (V, E). If an Extreme SuperHyperEdge  $E \in E_{ESHG:(V,E)}$  has z Extreme SuperHyperVertices, then the Extreme cardinality of the Extreme R-SuperHyperConnectivities is at least

$$V \setminus (V \setminus \{a_E, b_E, c_E, \dots, z_E\}).$$

It's straightforward that the Extreme cardinality of the Extreme R-SuperHyperConnectivities is at least the maximum Extreme number of Extreme SuperHyperVertices of the Extreme SuperHyperEdges with the maximum number of the Extreme SuperHyperEdges. In other words, the maximum number of the Extreme SuperHyperVertices are renamed to Extreme SuperHyperConnectivities in some cases but the maximum number of the Extreme SuperHyperEdge with the maximum Extreme number of Extreme SuperHyperVertices, has the Extreme SuperHyperVertices are contained in an Extreme R-SuperHyperConnectivities.

**Proposition 8.0.5.** Assume a connected non-obvious Extreme SuperHyperGraph ESHG : (V, E). There's only one Extreme SuperHyperEdge  $E \in E_{ESHG:(V,E)}$  has only the maximum possibilities of the distinct interior Extreme SuperHyperVertices inside of any given Extreme quasi-R-SuperHyperConnectivities minus all Extreme SuperHypeNeighbor to some of them but not all of them. In other words, there's only an unique Extreme SuperHyperEdge  $E \in E_{ESHG:(V,E)}$  has only two distinct Extreme SuperHyperVertices in an Extreme quasi-R-SuperHyperConnectivities, minus all Extreme SuperHypeNeighbor to some of them but not all of them.

*Proof.* The obvious SuperHyperGraph has no Extreme SuperHyperEdges. But the non-obvious Extreme SuperHyperModel is up. The quasi-SuperHyperModel addresses some issues about the Extreme optimal SuperHyperObject. It specially delivers some remarks on the Extreme SuperHyperSet of the Extreme SuperHyperVertices such that there's distinct amount of Extreme SuperHyperEdges for distinct amount of Extreme SuperHyperVertices up to all taken from that Extreme SuperHyperSet of the Extreme SuperHyperVertices but this Extreme SuperHyperSet of the Extreme SuperHyperVertices is either has the maximum Extreme SuperHyperCardinality or it doesn't have maximum Extreme SuperHyperCardinality. In a non-obvious SuperHyperModel, there's at least one Extreme SuperHyperEdge containing at least all Extreme SuperHyperVertices. Thus it forms an Extreme quasi-R-SuperHyperConnectivities where the Extreme completion of the Extreme incidence is up in that. Thus it's, literarily, an Extreme embedded R-SuperHyperConnectivities. The SuperHyperNotions of embedded SuperHyperSet and quasi-SuperHyperSet coincide. In the original setting, these types of SuperHyperSets only don't satisfy on the maximum SuperHyperCardinality. Thus the embedded setting is elected such that those SuperHyperSets have the maximum Extreme SuperHyperCardinality and they're Extreme SuperHyperOptimal. The less than two distinct types of Extreme SuperHyperVertices are included in the minimum Extreme style of the embedded Extreme R-SuperHyperConnectivities. The interior types of the Extreme SuperHyperVertices are deciders. Since the Extreme number of SuperHyperNeighbors are only affected by the interior Extreme SuperHyperVertices. The common connections, more precise and more formal, the perfect unique connections inside the Extreme SuperHyperSet for any distinct types of Extreme SuperHyperVertices pose the Extreme R-SuperHyperConnectivities. Thus Extreme exterior SuperHyperVertices could be used only in one Extreme SuperHyperEdge and in Extreme SuperHyperRelation with the interior Extreme SuperHyperVertices in that Extreme SuperHyperEdge. In the embedded Extreme

SuperHyperConnectivities, there's the usage of exterior Extreme SuperHyperVertices since they've more connections inside more than outside. Thus the title "exterior" is more relevant than the title "interior". One Extreme SuperHyperVertex has no connection, inside. Thus, the Extreme SuperHyperSet of the Extreme SuperHyperVertices with one SuperHyperElement has been ignored in the exploring to lead on the optimal case implying the Extreme R-SuperHyperConnectivities. The Extreme R-SuperHyperConnectivities with the exclusion of the exclusion of all Extreme SuperHyperVertices in one Extreme SuperHyperEdge and with other terms, the Extreme R-SuperHyperConnectivities with the inclusion of all Extreme SuperHyperVertices in one Extreme SuperHyperEdge, is an Extreme quasi-R-SuperHyperConnectivities. To sum them up, in a connected non-obvious Extreme SuperHyperGraph ESHG: (V, E). There's only one Extreme SuperHyperEdge  $E \in E_{ESHG:(V,E)}$  has only the maximum possibilities of the distinct interior Extreme SuperHyperVertices inside of any given Extreme quasi-R-SuperHyperConnectivities minus all Extreme SuperHypeNeighbor to some of them but not all of them. In other words, there's only an unique Extreme SuperHyperEdge  $E \in E_{ESHG:(V,E)}$  has only two distinct Extreme SuperHyperVertices in an Extreme quasi-R-SuperHyperConnectivities, minus all Extreme SuperHypeNeighbor to some of them but not all of them.

To make sense with the precise words in the terms of "R-', the follow-up illustrations are coming up. The following Extreme SuperHyperSet of Extreme SuperHyperVertices is the simple Extreme type-SuperHyperSet of the Extreme R-SuperHyperConnectivities.

 $V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$ 

The Extreme SuperHyperSet of Extreme SuperHyperVertices,

 $V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$ 

Is the simple Extreme type-SuperHyperSet of the Extreme R-SuperHyperConnectivities. The Extreme SuperHyperSet of the Extreme SuperHyperVertices,

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG}; (V, E) \mid |E| = \max\{|E| \mid E \in E_{ESHG}; (V, E)\}}\}$$

Is an **Extreme R-SuperHyperConnectivities** C(ESHG) for an Neutrosophic SuperHyperGraph ESHG: (V, E) is an Extreme type-SuperHyperSet with **the maximum Extreme cardinality** of an Extreme SuperHyperSet S of Extreme SuperHyperVertices such that there's no an Extreme SuperHyperEdge amid some Extreme SuperHyperVertices instead of all given by **Extreme SuperHyperConnectivities** is related to the Extreme SuperHyperSet of the Extreme SuperHyperVertices,

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

There's <u>not</u> only <u>one</u> Extreme SuperHyperVertex <u>inside</u> the intended Extreme SuperHyperSet. Thus the non-obvious Extreme SuperHyperConnectivities is up. The obvious simple Extreme type-SuperHyperSet called the Extreme SuperHyperConnectivities is an Extreme SuperHyperSet <u>includes</u> only <u>one</u> Extreme SuperHyperVertex. But the Extreme SuperHyperSet of Extreme SuperHyperVertices,

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

doesn't have less than two SuperHyperVertices <u>inside</u> the intended Extreme SuperHyperSet since they've come from at least so far an SuperHyperEdge. Thus the non-obvious simple Extreme type-SuperHyperSet of the Extreme R-SuperHyperConnectivities <u>is</u> up. To sum them up, the Extreme SuperHyperSet of Extreme SuperHyperVertices,

$$V \setminus V \setminus \{a_E, b_E, c_E, \dots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$$

 $\underline{Is}$  the non-obvious simple Extreme type-SuperHyperSet of the Extreme R-SuperHyperConnectivities. Since the Extreme SuperHyperSet of the Extreme SuperHyperVertices,

$$(V \setminus V \setminus \{x, z\}) \cup \{xy\}$$

or

$$(V \setminus V \setminus \{x, z\}) \cup \{zy\}$$

is an Extreme R-SuperHyperConnectivities C(ESHG) for an Neutrosophic SuperHyperGraph ESHG : (V, E) is the Extreme SuperHyperSet S of Extreme SuperHyperVertices such that there's no an Extreme SuperHyperEdge for some Extreme SuperHyperConnectivities and it's an Extreme type-SuperHyperSet called the Extreme SuperHyperConnectivities and it's the maximum Extreme cardinality of an Extreme SuperHyperSet S of Extreme SuperHyperVertices such that there's no an Extreme SuperHyperSet S of Extreme SuperHyperVertices such that there's no an Extreme SuperHyperSet S of Extreme SuperHyperVertices instead of all given by that Extreme type-SuperHyperSet S of Extreme SuperHyperVertices instead of all given by that Extreme type-SuperHyperSet called the Extreme SuperHyperVertices instead of all given by that Extreme type-SuperHyperSet called the Extreme SuperHyperConnectivities. There isn't only less than two Extreme SuperHyperVertices instead the Extreme SuperHyperSet,

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$$

Thus the non-obvious Extreme R-SuperHyperConnectivities,

 $V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$ 

is up. The non-obvious simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities, not:

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$$

Is the Extreme SuperHyperSet, not:

$$V \setminus V \setminus \{a_E, b_E, c_E, \dots\}_{E = \{E \in E_{ESHG}; (V,E) \mid |E| = \max\{|E| \mid E \in E_{ESHG}; (V,E)\}}\}$$

does includes only less than two SuperHyperVertices in a connected Extreme SuperHyperGraph ESHG: (V, E) but it's impossible in the case, they've corresponded to an SuperHyperEdge. It's interesting to mention that the only non-obvious simple Extreme type-SuperHyperSet called the

#### "Extreme R-SuperHyperConnectivities"

amid those obvious non-obvious simple Extreme type-SuperHyperSets called the

#### Extreme R-SuperHyperConnectivities,

Henry Garrett  $\,\cdot\,$  Independent Researcher  $\,\cdot\,$  Department of Mathematics  $\,\cdot\,$  DrHenryGarrett@gmail.com  $\,\cdot\,$  Manhattan, NY, USA

is only and only

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG}; (V,E) \mid |E| = \max\{|E| \mid E \in E_{ESHG}; (V,E)\}} \}$$

In a connected Neutrosophic SuperHyperGraph ESHG: (V, E) with a illustrated SuperHyperModeling. It's also, not only an Extreme free-triangle embedded SuperHyperModel and an Extreme on-triangle embedded SuperHyperModel but also it's an Extreme stable embedded SuperHyperModel. But all only non-obvious simple Extreme type-SuperHyperSets of the Extreme R-SuperHyperConnectivities amid those obvious simple Extreme type-SuperHyperSets of the Extreme SuperHyperConnectivities, are

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG;(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG;(V,E)}\}\}}$$

In a connected Neutrosophic SuperHyperGraph ESHG : (V, E). To sum them up, assume a connected loopless Neutrosophic SuperHyperGraph ESHG : (V, E). Then in the worst case, literally,

$$V \setminus V \setminus \{a_E, b_E, c_E, \dots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

is an Extreme R-SuperHyperConnectivities. In other words, the least cardinality, the lower sharp bound for the cardinality, of an Extreme R-SuperHyperConnectivities is the cardinality of

 $V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$ 

To sum them up, in a connected non-obvious Extreme SuperHyperGraph ESHG: (V, E). There's only one Extreme SuperHyperEdge  $E \in E_{ESHG:(V,E)}$  has only the maximum possibilities of the distinct interior Extreme SuperHyperVertices inside of any given Extreme quasi-R-SuperHyperConnectivities minus all Extreme SuperHypeNeighbor to some of them but not all of them. In other words, there's only an unique Extreme SuperHyperEdge  $E \in E_{ESHG:(V,E)}$  has only two distinct Extreme SuperHyperVertices in an Extreme quasi-R-SuperHyperConnectivities, minus all Extreme SuperHypeNeighbor to some of them but not all of them.

**Proposition 8.0.6.** Assume a connected Neutrosophic SuperHyperGraph ESHG : (V, E). The all interior Extreme SuperHyperVertices belong to any Extreme quasi-R-SuperHyperConnectivities if for any of them, and any of other corresponded Extreme SuperHyperVertex, some interior Extreme SuperHyperVertices are mutually Extreme SuperHyperNeighbors with no Extreme exception at all minus all Extreme SuperHypeNeighbors to any amount of them.

*Proof.* The main definition of the Extreme R-SuperHyperConnectivities has two titles. an Extreme quasi-R-SuperHyperConnectivities and its corresponded quasi-maximum Extreme R-SuperHyperCardinality are two titles in the terms of quasi-R-styles. For any Extreme number, there's an Extreme quasi-R-SuperHyperConnectivities with that quasi-maximum Extreme SuperHyperCardinality in the terms of the embedded Neutrosophic SuperHyperGraph. If there's an embedded Neutrosophic SuperHyperGraph, then the Extreme quasi-SuperHyperNotions lead us to take the collection of all the Extreme quasi-R-SuperHyperConnectivitiess for all Extreme numbers less than its Extreme corresponded maximum number. The essence of the Extreme SuperHyperConnectivities ends up but this essence starts up in the terms of the Extreme quasi-R-SuperHyperConnectivities,

again and more in the operations of collecting all the Extreme quasi-R-SuperHyperConnectivitiess acted on the all possible used formations of the Neutrosophic SuperHyperGraph to achieve one Extreme number. This Extreme number is

considered as the equivalence class for all corresponded quasi-R-SuperHyperConnectivitiess. Let  $z_{\text{Extreme Number}}, S_{\text{Extreme SuperHyperSet}}$  and  $G_{\text{Extreme SuperHyperConnectivities}}$  be an Extreme number, an Extreme SuperHyperSet and an Extreme SuperHyperConnectivities. Then

$$\begin{split} &[z_{\text{Extreme Number}}]_{\text{Extreme Class}} = \{S_{\text{Extreme SuperHyperSet}} \mid \\ &S_{\text{Extreme SuperHyperSet}} = G_{\text{Extreme SuperHyperConnectivities}}, \\ &|S_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}} \\ &= z_{\text{Extreme Number}}\}. \end{split}$$

As its consequences, the formal definition of the Extreme SuperHyperConnectivities is re-formalized and redefined as follows.

$$\begin{split} G_{\text{Extreme SuperHyperConnectivities}} &\in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} = \\ &\cup_{z_{\text{Extreme Number}}} \{S_{\text{Extreme SuperHyperSet}} \mid \\ S_{\text{Extreme SuperHyperSet}} &= G_{\text{Extreme SuperHyperConnectivities}}, \\ &|S_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}} \\ &= z_{\text{Extreme Number}} \}. \end{split}$$

To get more precise perceptions, the follow-up expressions propose another formal technical definition for the Extreme SuperHyperConnectivities.

```
\begin{split} G_{\text{Extreme SuperHyperConnectivities}} &= \\ \{S \in \cup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} = \\ \cup_{z_{\text{Extreme Number}}} \{S_{\text{Extreme SuperHyperSet}} \mid \\ S_{\text{Extreme SuperHyperSet}} = G_{\text{Extreme SuperHyperConnectivities}}, \\ |S_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}} \\ &= z_{\text{Extreme Number}} \mid \\ |S_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}} \\ &= \max_{[z_{\text{Extreme Number}}]_{\text{Extreme Class}}} z_{\text{Extreme Number}} \}. \end{split}
```

In more concise and more convenient ways, the modified definition for the Extreme SuperHyperConnectivities poses the upcoming expressions.

 $G_{\text{Extreme SuperHyperConnectivities}} = \{S \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}] \text{Extreme Class} \mid |S_{\text{Extreme SuperHyperSet}}| \text{Extreme Cardinality} = \max_{\substack{[z_{\text{Extreme Number}}] \text{Extreme Class}}} z_{\text{Extreme Number}} \}.$ 

To translate the statement to this mathematical literature, the formulae will be revised.

 $G_{\text{Extreme SuperHyperConnectivities}} =$ 

 $\{S \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}] \text{Extreme Class} \mid |S_{\text{Extreme SuperHyperSet}}| \text{Extreme Cardinality} = \max_{\substack{[z_{\text{Extreme Number}}] \text{Extreme Class}}} z_{\text{Extreme Number}} \text{Extreme Number} = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}.$ 

And then,

 $G_{\text{Extreme SuperHyperConnectivities}} = \{S \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}] \text{Extreme Class} \mid |S_{\text{Extreme SuperHyperSet}}| \text{Extreme Cardinality} = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}.$ 

To get more visions in the closer look-up, there's an overall overlook.

$$\begin{split} G_{\text{Extreme SuperHyperConnectivities}} &\in \cup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} = \\ &\cup_{z_{\text{Extreme Number}}} \{S_{\text{Extreme SuperHyperSet}} \mid \\ S_{\text{Extreme SuperHyperSet}} &= G_{\text{Extreme SuperHyperConnectivities}}, \\ &|S_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}} \\ &= \max \{|E| \mid E \in E_{ESHG:(V,E)}\}\}. \end{split}$$

 $\begin{aligned} G_{\text{Extreme SuperHyperConnectivities}} &= \\ \{S \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} &= \\ \bigcup_{z_{\text{Extreme Number}}} \{S_{\text{Extreme SuperHyperSet}} \mid \\ S_{\text{Extreme SuperHyperSet}} = G_{\text{Extreme SuperHyperConnectivities}}, \\ &|S_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}} \\ &= z_{\text{Extreme Number}} \mid \\ &|S_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}} \\ &= \max \{|E| \mid E \in E_{ESHG:(V,E)}\}\}. \end{aligned}$ 

 $G_{\text{Extreme SuperHyperConnectivities}} = \{S \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}] \text{Extreme Class} \mid |S_{\text{Extreme SuperHyperSet}}| \text{Extreme Cardinality} = \max_{\substack{z_{\text{Extreme Number}} \in \text{Class}}} z_{\text{Extreme Number}} \\ = \max \{|E| \mid E \in E_{ESHG:(V,E)}\}\}.$ 

 $G_{\text{Extreme SuperHyperConnectivities}} = \{S \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} \mid |S_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}} = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}.$ 

Henry Garrett · Independent Researcher · Department of Mathematics · DrHenryGarrett@gmail.com · Manhattan, NY, USA

Now, the extension of these types of approaches is up. Since the new term, "Extreme SuperHyperNeighborhood", could be redefined as the collection of the Extreme SuperHyperVertices such that any amount of its Extreme SuperHyperVertices are incident to an Extreme SuperHyperEdge. It's, literarily, another name for "Extreme Quasi-SuperHyperConnectivities" but, precisely, it's the generalization of "Extreme Quasi-SuperHyperConnectivities" since "Extreme Quasi-SuperHyperConnectivities" happens "Extreme SuperHyperConnectivities" in a Neutrosophic SuperHyperGraph as initial framework and background but "Extreme SuperHyperNeighborhood" may not happens "Extreme SuperHyperConnectivities" in a Neutrosophic SuperHyperGraph as initial framework and preliminarily background since there are some ambiguities about the Extreme SuperHyperCardinality arise from it. To get orderly keywords, the terms, "Extreme SuperHyperNeighborhood", "Extreme Quasi-SuperHyperConnectivities", and "Extreme SuperHyperConnectivities" are up.

Thus, let  $z_{\text{Extreme Number}}$ ,  $N_{\text{Extreme SuperHyperNeighborhood}}$  and  $G_{\text{Extreme SuperHyperConnectivities}}$  be an Extreme number, an Extreme SuperHyperNeighborhood and an Extreme SuperHyperConnectivities and the new terms are up.

> $G_{\text{Extreme SuperHyperConnectivities}} \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} =$  $\cup_{z_{\text{Extreme Number}}} \{ N_{\text{Extreme SuperHyperNeighborhood}} \}$ N<sub>Extreme SuperHyperNeighborhood</sub> Extreme Cardinality  $\max_{[z_{\text{Extreme Number}}]_{\text{Extreme Class}}} z_{\text{Extreme Number}} \}.$  $G_{\text{Extreme SuperHyperConnectivities}} =$  $\{N_{\text{Extreme SuperHyperNeighborhood}} \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} =$

 $\cup_{z_{\text{Extreme Number}}} \{ N_{\text{Extreme SuperHyperNeighborhood}} \}$ 

N<sub>Extreme SuperHyperSet</sub> Extreme Cardinality

 $= z_{\text{Extreme Number}}$ 

N<sub>Extreme</sub> SuperHyperNeighborhood Extreme Cardinality

 $\max_{\substack{[z_{\text{Extreme Number}}] \in \text{Extreme Class}}} z_{\text{Extreme Number}} \}.$ 

 $G_{\text{Extreme SuperHyperConnectivities}} =$ 

 $\{N_{\text{Extreme SuperHyperNeighborhood}} \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}}$ 

 $|N_{\text{Extreme SuperHyperNeighborhood}}|$ Extreme Cardinality

 $\max_{\substack{[z_{\text{Extreme Number}}]_{\text{Extreme Class}}} z_{\text{Extreme Number}} \}.$ 

 $G_{\text{Extreme SuperHyperConnectivities}} =$ 

 $\{N_{\text{Extreme SuperHyperNeighborhood}} \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} |$  $|N_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}} = \max_{\substack{[z_{\text{Extreme Number}}]_{\text{Extreme Class}}} z_{\text{Extreme Number}} \}.$ 

And with go back to initial structure,

 $G_{\text{Extreme SuperHyperConnectivities}} \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} =$ 

 $\cup_{z_{\text{Extreme Number}}} \{ N_{\text{Extreme SuperHyperNeighborhood}} \mid$ 

 $|N_{\text{Extreme SuperHyperNeighborhood}}|_{\text{Extreme Cardinality}}$ = max { $|E| \mid E \in E_{ESHG:(V,E)}$ }.

 $= \max \left\{ |L| \mid L \in D_{ESHG:}(V,E) \right\} \right\}.$ 

 $G_{\text{Extreme SuperHyperConnectivities}} =$ 

 $\{N_{\text{Extreme SuperHyperNeighborhood}} \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} =$ 

 $\cup_{z_{\text{Extreme Number}}} \{ N_{\text{Extreme SuperHyperNeighborhood}} \}$ 

 $|N_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}}$ 

 $= z_{\text{Extreme Number}} \mid$ 

 $|N_{\text{Extreme SuperHyperNeighborhood}}|_{\text{Extreme Cardinality}}$ 

 $= \max\left\{ |E| \mid E \in E_{ESHG:(V,E)} \right\} \right\}.$ 

 $G_{\text{Extreme SuperHyperConnectivities}} =$ 

 $\{N_{\text{Extreme SuperHyperNeighborhood}} \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} |$ 

 $|N_{\text{Extreme SuperHyperNeighborhood}}|_{\text{Extreme Cardinality}}$ 

 $= \max_{[z_{\text{Extreme Number}}]_{\text{Extreme Class}}} z_{\text{Extreme Number}}$ 

 $= \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}.$ 

 $G_{\text{Extreme SuperHyperConnectivities}} = \{N_{\text{Extreme SuperHyperNeighborhood}} \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} | N_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}} = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}.$ 

Thus, in a connected Neutrosophic SuperHyperGraph ESHG: (V, E). The all interior Extreme SuperHyperVertices belong to any Extreme quasi-R-SuperHyperConnectivities if for any of them, and any of other corresponded Extreme SuperHyperVertex, some interior Extreme SuperHyperVertices are mutually Extreme SuperHyperNeighbors with no Extreme exception at all minus all Extreme SuperHypeNeighbors to any amount of them.

To make sense with the precise words in the terms of "R-', the follow-up illustrations are coming up. The following Extreme SuperHyperSet of Extreme SuperHyperVertices is the simple Extreme type-SuperHyperSet of the Extreme R-SuperHyperConnectivities.

 $V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$ 

The Extreme SuperHyperSet of Extreme SuperHyperVertices,

 $V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$ 

Is the simple Extreme type-SuperHyperSet of the Extreme R-SuperHyperConnectivities. The Extreme SuperHyperSet of the Extreme SuperHyperVertices,

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E=\{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

Henry Garrett · Independent Researcher · Department of Mathematics · DrHenryGarrett@gmail.com · Manhattan, NY, USA

Is an **Extreme R-SuperHyperConnectivities** C(ESHG) for an Neutrosophic SuperHyperGraph  $ESH\overline{G}: (V, E)$  is an Extreme type-SuperHyperSet with the maximum Extreme cardinality of an Extreme SuperHyperSet S of Extreme SuperHyperVertices such that there's no an Extreme SuperHyperEdge amid some Extreme SuperHyperVertices instead of all given by **Extreme SuperHyperConnectivities** is related to the Extreme SuperHyperSet of the Extreme SuperHyperVertices,

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

There's <u>not</u> only <u>one</u> Extreme SuperHyperVertex <u>inside</u> the intended Extreme SuperHyperSet. Thus the non-obvious Extreme SuperHyperConnectivities is up. The obvious simple Extreme type-SuperHyperSet called the Extreme SuperHyperConnectivities is an Extreme SuperHyperSet <u>includes</u> only <u>one</u> Extreme SuperHyperVertex. But the Extreme SuperHyperSet of Extreme SuperHyperVertices,

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

doesn't have less than two SuperHyperVertices <u>inside</u> the intended Extreme SuperHyperSet since they've come from at least so far an SuperHyperEdge. Thus the non-obvious simple Extreme type-SuperHyperSet of the Extreme R-SuperHyperConnectivities <u>is</u> up. To sum them up, the Extreme SuperHyperSet of Extreme SuperHyperVertices,

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

<u>Is</u> the non-obvious simple Extreme type-SuperHyperSet of the Extreme R-SuperHyperConnectivities. Since the Extreme SuperHyperSet of the Extreme SuperHyperVertices,

$$(V \setminus V \setminus \{x, z\}) \cup \{xy\}$$

or

$$(V \setminus V \setminus \{x, z\}) \cup \{zy\}$$

is an Extreme R-SuperHyperConnectivities C(ESHG) for an Neutrosophic SuperHyperGraph ESHG : (V, E) is the Extreme SuperHyperSet S of Extreme SuperHyperVertices such that there's no an Extreme SuperHyperEdge for some Extreme SuperHyperVertices instead of all given by that Extreme type-SuperHyperSet called the Extreme SuperHyperConnectivities <u>and</u> it's an Extreme <u>SuperHyperConnectivities</u>. Since it's the maximum Extreme cardinality of an Extreme SuperHyperSet S of Extreme SuperHyperVertices such that there's no an Extreme SuperHyperSet S of Extreme SuperHyperVertices instead of all given by that Extreme type-SuperHyperSet S of Extreme SuperHyperVertices instead of all given by that Extreme type-SuperHyperSet called the Extreme SuperHyperVertices. There isn't only less than two Extreme SuperHyperVertices instead the Extreme SuperHyperSet,

$$V \setminus V \setminus \{a_E, b_E, c_E, \dots\}_{E=\{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

Thus the non-obvious Extreme R-SuperHyperConnectivities,

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

is up. The non-obvious simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities. not:

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

Is the Extreme SuperHyperSet, not:

TT \ TT \ (

.

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG}; (V, E) \mid |E| = \max\{|E| \mid E \in E_{ESHG}; (V, E)\}}\}$$

does includes only less than two SuperHyperVertices in a connected Extreme SuperHyperGraph ESHG: (V, E) but it's impossible in the case, they've corresponded to an SuperHyperEdge. It's interesting to mention that the only non-obvious simple Extreme type-SuperHyperSet called the

#### "Extreme R-SuperHyperConnectivities"

amid those obvious non-obvious simple Extreme type-SuperHyperSets called the

#### Extreme R-SuperHyperConnectivities,

is only and only

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG}; (V, E) \mid |E| = \max\{|E| \mid E \in E_{ESHG}; (V, E)\}}$$

In a connected Neutrosophic SuperHyperGraph ESHG: (V, E) with a illustrated SuperHyperModeling. It's also, not only an Extreme free-triangle embedded SuperHyperModel and an Extreme on-triangle embedded SuperHyperModel but also it's an Extreme stable embedded SuperHyperModel. But all only non-obvious simple Extreme type-SuperHyperSets of the Extreme R-SuperHyperConnectivities amid those obvious simple Extreme type-SuperHyperSets of the Extreme SuperHyperConnectivities, are

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

In a connected Neutrosophic SuperHyperGraph ESHG: (V, E).

To sum them up, assume a connected loopless Neutrosophic SuperHyperGraph ESHG : (V, E). Then in the worst case, literally,

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

is an Extreme R-SuperHyperConnectivities. In other words, the least cardinality, the lower sharp bound for the cardinality, of an Extreme R-SuperHyperConnectivities is the cardinality of

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

To sum them up, in a connected Neutrosophic SuperHyperGraph ESHG: (V, E). The all interior Extreme SuperHyperVertices belong to any Extreme quasi-R-SuperHyperConnectivities if for any of them, and any of other corresponded Extreme SuperHyperVertex, some interior Extreme SuperHyperVertices are mutually Extreme SuperHyperNeighbors with no Extreme exception at all minus all Extreme SuperHypeNeighbors to any amount of them.

> Henry Garrett  $\,\cdot\,$  Independent Researcher  $\,\cdot\,$  Department of Mathematics  $\,\cdot\,$ DrHenryGarrett@gmail.com · Manhattan, NY, USA

**Proposition 8.0.7.** Assume a connected Neutrosophic SuperHyperGraph ESHG : (V, E). Any Extreme R-SuperHyperConnectivities only contains all interior Extreme SuperHyperVertices and all exterior Extreme SuperHyperVertices from the unique Extreme SuperHyperEdge where there's any of them has all possible Extreme SuperHyperNeighbors in and there's all Extreme SuperHyperNeighborhoods in with no exception minus all Extreme SuperHyperNeighbors to some of them not all of them but everything is possible about Extreme SuperHyperNeighborhoods and Extreme SuperHyperNeighbors out.

*Proof.* Assume a connected Extreme SuperHyperGraph ESHG : (V, E). Let an Extreme SuperHyperEdge  $ESHE : E \in E_{ESHG:(V,E)}$  has some Extreme SuperHyperVertices r. Consider all Extreme numbers of those Extreme SuperHyperVertices from that Extreme SuperHyperEdge excluding excluding more than r distinct Extreme SuperHyperVertices, exclude to any given Extreme SuperHyperSet of the Extreme SuperHyperVertices. Consider there's an Extreme R-SuperHyperConnectivities with the least cardinality, the lower sharp Extreme bound for Extreme cardinality. Assume a connected Neutrosophic SuperHyperGraph ESHG: (V, E). The Extreme SuperHyperSet of the Extreme SuperHyperVertices  $V_{ESHE} \setminus \{z\}$  is an Extreme SuperHyperSet S of the Extreme SuperHyperVertices such that there's an Extreme SuperHyperEdge to have some Extreme SuperHyperVertices uniquely but it isn't an Extreme R-SuperHyperConnectivities. Since it doesn't have the maximum Extreme cardinality of an Extreme SuperHyperSet S of Extreme SuperHyperVertices such that there's an Extreme SuperHyperEdge to have some SuperHyperVertices uniquely. The Extreme SuperHyperSet of the Extreme SuperHyperVertices  $V_{ESHE} \cup \{z\}$  is the maximum Extreme cardinality of an Extreme SuperHyperSet S of Extreme SuperHyperVertices but it isn't an Extreme R-SuperHyperConnectivities. Since it <u>doesn't do</u> the Extreme procedure such that such that there's an Extreme SuperHyperEdge to have some Extreme SuperHyperVertices uniquely [there are at least one Extreme SuperHyperVertex outside implying there's, sometimes in the connected Neutrosophic SuperHyperGraph ESHG: (V, E), an Extreme SuperHyperVertex, titled its Extreme SuperHyperNeighbor, to that Extreme SuperHyperVertex in the Extreme SuperHyperSet S so as S doesn't do "the Extreme procedure".]. There's only <u>one</u> Extreme SuperHyperVertex <u>outside</u> the intended Extreme SuperHyperSet,  $V_{ESHE} \cup \{z\}$ , in the terms of Extreme SuperHyperNeighborhood. Thus the obvious Extreme R-SuperHyperConnectivities,  $V_{ESHE}$ is up. The obvious simple Extreme type-SuperHyperSet of the Extreme R-SuperHyperConnectivities,  $V_{ESHE}$ , is an Extreme SuperHyperSet,  $V_{ESHE}$ , includes only all Extreme SuperHyperVertices does forms any kind of Extreme pairs are titled Extreme SuperHyperNeighbors in a connected Neutrosophic SuperHyperGraph ESHG : (V, E). Since the Extreme SuperHyperSet of the Extreme SuperHyperVertices  $V_{ESHE}$ , is the maximum Extreme SuperHyperCardinality of an Extreme SuperHyperSet S of Extreme SuperHyperVertices such that there's an Extreme SuperHyperEdge to have some Extreme SuperHyperVertices uniquely. Thus, in a connected Neutrosophic SuperHyperGraph ESHG: (V, E). Any Extreme R-SuperHyperConnectivities only contains all interior Extreme SuperHyperVertices and all exterior Extreme SuperHyperVertices from the unique Extreme SuperHyperEdge where there's any of them has all possible Extreme SuperHyperNeighbors in and there's all Extreme SuperHyperNeighborhoods in with no exception minus all Extreme SuperHypeNeighbors to some of them not all of them but everything is possible about Extreme SuperHyperNeighborhoods and Extreme SuperHyperNeighbors out.

To make sense with the precise words in the terms of "R-', the follow-up illustrations are coming up. The following Extreme SuperHyperSet of Extreme SuperHyperVertices is the simple Extreme

type-SuperHyperSet of the Extreme R-SuperHyperConnectivities.

 $V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$ 

The Extreme SuperHyperSet of Extreme SuperHyperVertices,

 $V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$ 

Is the simple Extreme type-SuperHyperSet of the Extreme R-SuperHyperConnectivities. The Extreme SuperHyperSet of the Extreme SuperHyperVertices,

 $V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$ 

Is an **Extreme R-SuperHyperConnectivities**  $\mathcal{C}(ESHG)$  for an Neutrosophic SuperHyperGraph ESHG: (V, E) is an Extreme type-SuperHyperSet with the maximum Extreme cardinality of an Extreme SuperHyperSet S of Extreme SuperHyperVertices such that there's no an Extreme SuperHyperEdge amid some Extreme SuperHyperVertices instead of all given by **Extreme SuperHyperConnectivities** is related to the Extreme SuperHyperSet of the Extreme SuperHyperVertices,

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG}; (V,E) \mid |E| = \max\{|E| \mid E \in E_{ESHG}; (V,E)\}}$$

There's not only **one** Extreme SuperHyperVertex **inside** the intended Extreme SuperHyperSet. Thus the non-obvious Extreme SuperHyperConnectivities is up. The obvious simple Extreme type-SuperHyperSet called the Extreme SuperHyperConnectivities is an Extreme SuperHyperSet includes only one Extreme SuperHyperVertex. But the Extreme SuperHyperSet of Extreme SuperHyperVertices,

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E=\{E \in E_{ESHG}; (V,E) \mid |E| = \max\{|E| \mid E \in E_{ESHG}; (V,E)\}}\}$$

2

doesn't have less than two SuperHyperVertices <u>inside</u> the intended Extreme SuperHyperSet since they've come from at least so far an SuperHyperEdge. Thus the non-obvious simple Extreme type-SuperHyperSet of the Extreme R-SuperHyperConnectivities is up. To sum them up, the Extreme SuperHyperSet of Extreme SuperHyperVertices,

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

Is the non-obvious simple Extreme type-SuperHyperSet of the Extreme R-SuperHyperConnectivities. Since the Extreme SuperHyperSet of the Extreme SuperHyperVertices,

$$(V \setminus V \setminus \{x, z\}) \cup \{xy\}$$

or

$$(V \setminus V \setminus \{x, z\}) \cup \{zy\}$$

is an Extreme R-SuperHyperConnectivities  $\mathcal{C}(ESHG)$  for an Neutrosophic SuperHyperGraph ESHG : (V, E) is the Extreme SuperHyperSet S of Extreme SuperHyperVertices such that there's no an Extreme SuperHyperEdge for some Extreme SuperHyperVertices instead of all given by that Extreme type-SuperHyperSet called the Extreme SuperHyperConnectivities and it's

an Extreme **SuperHyperConnectivities**. Since it's the maximum Extreme cardinality of an Extreme SuperHyperSet S of Extreme SuperHyperVertices such that there's no an Extreme SuperHyperEdge for some amount Extreme SuperHyperVertices instead of all given by that Extreme type-SuperHyperSet called the Extreme SuperHyperConnectivities. There isn't only less than two Extreme SuperHyperVertices inside the intended Extreme SuperHyperSet,

 $V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$ 

Thus the non-obvious Extreme R-SuperHyperConnectivities,

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$$

is up. The non-obvious simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities, not:

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

Is the Extreme SuperHyperSet, not:

 $V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG}; (V,E) \mid |E| = \max\{|E| \mid E \in E_{ESHG}; (V,E)\}\}}$ 

does includes only less than two SuperHyperVertices in a connected Extreme SuperHyperGraph ESHG: (V, E) but it's impossible in the case, they've corresponded to an SuperHyperEdge. It's interesting to mention that the only non-obvious simple Extreme type-SuperHyperSet called the

# "Extreme R-SuperHyperConnectivities"

amid those obvious non-obvious simple Extreme type-SuperHyperSets called the

#### Extreme R-SuperHyperConnectivities,

is only and only

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

In a connected Neutrosophic SuperHyperGraph ESHG: (V, E) with a illustrated SuperHyperModel eling. It's also, not only an Extreme free-triangle embedded SuperHyperModel and an Extreme on-triangle embedded SuperHyperModel but also it's an Extreme stable embedded SuperHyperModel. But all only non-obvious simple Extreme type-SuperHyperSets of the Extreme R-SuperHyperConnectivities amid those obvious simple Extreme type-SuperHyperSets of the Extreme SuperHyperConnectivities, are

$$V \setminus V \setminus \{a_E, b_E, c_E, \dots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$$

In a connected Neutrosophic SuperHyperGraph ESHG : (V, E). To sum them up, assume a connected loopless Neutrosophic SuperHyperGraph ESHG : (V, E). Then in the worst case, literally,

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

is an Extreme R-SuperHyperConnectivities. In other words, the least cardinality, the lower sharp bound for the cardinality, of an Extreme R-SuperHyperConnectivities is the cardinality of

 $V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$ 

To sum them up, assume a connected Neutrosophic SuperHyperGraph ESHG : (V, E). Any Extreme R-SuperHyperConnectivities only contains all interior Extreme SuperHyperVertices and all exterior Extreme SuperHyperVertices from the unique Extreme SuperHyperEdge where there's any of them has all possible Extreme SuperHyperNeighbors in and there's all Extreme SuperHyperNeighborhoods in with no exception minus all Extreme SuperHyperNeighbors to some of them not all of them but everything is possible about Extreme SuperHyperNeighborhoods and Extreme SuperHyperNeighbors out.

*Remark* 8.0.8. The words "Extreme SuperHyperConnectivities" and "Extreme SuperHyperDominating" both refer to the maximum Extreme type-style. In other words, they refer to the maximum Extreme SuperHyperNumber and the Extreme SuperHyperSet with the maximum Extreme Super-HyperCardinality.

**Proposition 8.0.9.** Assume a connected Neutrosophic SuperHyperGraph ESHG : (V, E). Consider an Extreme SuperHyperDominating. Then an Extreme SuperHyperConnectivities has the members poses only one Extreme representative in an Extreme quasi-SuperHyperDominating.

*Proof.* Assume a connected Extreme SuperHyperGraph ESHG : (V, E). Consider an Extreme SuperHyperDominating. By applying the Proposition (8.0.7), the Extreme results are up. Thus on a connected Neutrosophic SuperHyperGraph ESHG : (V, E). Consider an Extreme SuperHyperDominating. Then an Extreme SuperHyperConnectivities has the members poses only one Extreme representative in an Extreme quasi-SuperHyperDominating.

# CHAPTER 9

# **Results on Extreme SuperHyperClasses**

The previous Extreme approaches apply on the upcoming Extreme results on Extreme SuperHyper-Classes.

**Proposition 9.0.1.** Assume a connected Extreme SuperHyperPath ESHP: (V, E). Then an Extreme quasi-R-SuperHyperConnectivities-style with the maximum Extreme SuperHyperCardinality is an Extreme SuperHyperSet of the interior Extreme SuperHyperVertices.

**Proposition 9.0.2.** Assume a connected Extreme SuperHyperPath ESHP : (V, E). Then an Extreme quasi-R-SuperHyperConnectivities is an Extreme SuperHyperSet of the interior Extreme SuperHyperVertices from the unique Extreme SuperHyperEdges not excluding only any interior Extreme SuperHyperVertices from the Extreme unique SuperHyperEdges. an Extreme quasi-R-SuperHyperConnectivities has the Extreme number of all the interior Extreme SuperHyperVertices. Also,

$$\begin{split} \mathcal{C}(NSHG)_{Extreme} Quasi-SuperHyperConnectivities \\ &= \{E_{2i-1}\}_{i=1}^{\lfloor \frac{|E_{ESHG}:(V,E)|Extreme Cardinality}{2} \rfloor}.\\ \mathcal{C}(NSHG)_{Extreme} Quasi-SuperHyperConnectivitiesSuperHyperPolynomial \\ &= 2z^{\lfloor \frac{|E_{ESHG}:(V,E)|Extreme Cardinality}{2} \rfloor}.\\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivities} = \{V_i\}_{i=1}^{s}, \{V_j\}_{j=1}^{t}.\\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} = az^s + bz^t. \end{split}$$

*Proof.* Assume a connected loopless Neutrosophic SuperHyperGraph ESHG: (V, E). The SuperHyperSet of the SuperHyperVertices  $V \setminus V \setminus \{z\}$  isn't a quasi-R-SuperHyperConnectivities since neither amount of Extreme SuperHyperEdges nor amount of SuperHyperVertices where amount refers to the Extreme number of SuperHyperVertices(-/SuperHyperEdges) more than one to form any kind of SuperHyperEdges or any number of SuperHyperEdges. Let us consider the Extreme SuperHyperSet

 $V \setminus V \setminus \{a_E, b_E, c_E, \dots, a_{E'}, b_{E'}, c_{E'}, \dots\}_{E, E' = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$ 

This Extreme SuperHyperSet of the Extreme SuperHyperVertices has the eligibilities to propose property such that there's no Extreme SuperHyperVertex of an Extreme SuperHyperEdge is common and there's an Extreme SuperHyperEdge for all Extreme SuperHyperVertices but the maximum Extreme cardinality indicates that these Extreme type-SuperHyperSets couldn't give us the Extreme lower bound in the term of Extreme sharpness. In other words, the Extreme SuperHyperSet

 $V \setminus V \setminus \{a_E, b_E, c_E, \dots, a_{E'}, b_{E'}, c_{E'}, \dots\}_{E,E' = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$ 

of the Extreme SuperHyperVertices implies at least on-quasi-triangle style is up but sometimes the Extreme SuperHyperSet

$$V \setminus V \setminus \{a_E, b_E, c_E, \dots, a_{E'}, b_{E'}, c_{E'}, \dots\}_{E, E' = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

of the Extreme SuperHyperVertices is free-quasi-triangle and it doesn't make a contradiction to the supposition on the connected loopless Neutrosophic SuperHyperGraph ESHG: (V, E). Thus the minimum case never happens in the generality of the connected loopless Neutrosophic SuperHyperGraphs. Thus if we assume in the worst case, literally,

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

Is a quasi-R-SuperHyperConnectivities. In other words, the least cardinality, the lower sharp bound for the cardinality, of a quasi-R-SuperHyperConnectivities is the cardinality of

$$V \setminus V \setminus \{a_E, b_E, c_E, \dots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$$

Then we've lost some connected loopless Extreme SuperHyperClasses of the connected loopless Neutrosophic SuperHyperGraphs titled free-triangle, on-triangle, and their quasi-types but the SuperHyperStable is only up in this quasi-R-SuperHyperConnectivities. It's the contradiction to that fact on the generality. There are some counterexamples to deny this statement. One of them comes from the setting of the graph titled path and cycle as the counterexamples-classes or reversely direction star as the examples-classes, are well-known classes in that setting and they could be considered as the examples-classes and counterexamples-classes for the tight bound of

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

Let  $V \setminus V \setminus \{z\}$  in mind. There's no necessity on the SuperHyperEdge since we need at least two SuperHyperVertices to form a SuperHyperEdge. It doesn't withdraw the principles of the main definition since there's no condition to be satisfied but the condition is on the existence of the SuperHyperEdge instead of acting on the SuperHyperVertices. In other words, if there's a SuperHyperEdge, then the Extreme SuperHyperSet has the necessary condition for the intended definition to be applied. Thus the  $V \setminus V \setminus \{z\}$  is withdrawn not by the conditions of the main definition but by the necessity of the pre-condition on the usage of the main definition.

The Extreme structure of the Extreme R-SuperHyperConnectivities decorates the Extreme SuperHyperVertices don't have received any Extreme connections so as this Extreme style implies different versions of Extreme SuperHyperEdges with the maximum Extreme cardinality in the terms of Extreme SuperHyperVertices are spotlight. The lower Extreme bound is to have the maximum Extreme groups of Extreme SuperHyperVertices have perfect Extreme connections inside each of SuperHyperEdges and the outside of this Extreme SuperHyperSet doesn't matter but regarding the connectedness of the used Neutrosophic SuperHyperGraph arising from its Extreme properties taken from the fact that it's simple. If there's no more than one Extreme

Henry Garrett · Independent Researcher · Department of Mathematics · DrHenryGarrett@gmail.com · Manhattan, NY, USA

SuperHyperVertex in the targeted Extreme SuperHyperSet, then there's no Extreme connection. Furthermore, the Extreme existence of one Extreme SuperHyperVertex has no Extreme effect to talk about the Extreme R-SuperHyperConnectivities. Since at least two Extreme SuperHyperVertices involve to make a title in the Extreme background of the Neutrosophic SuperHyperGraph. The Neutrosophic SuperHyperGraph is obvious if it has no Extreme SuperHyperEdge but at least two Extreme SuperHyperVertices make the Extreme version of Extreme SuperHyperEdge. Thus in the Extreme setting of non-obvious Neutrosophic SuperHyperGraph, there are at least one Extreme SuperHyperEdge. It's necessary to mention that the word "Simple" is used as Extreme adjective for the initial Neutrosophic SuperHyperGraph, induces there's no Extreme appearance of the loop Extreme version of the Extreme SuperHyperEdge and this Neutrosophic SuperHyperGraph is said to be loopless. The Extreme adjective "loop" on the basic Extreme framework engages one Extreme SuperHyperVertex but it never happens in this Extreme setting. With these Extreme bases, on a Neutrosophic SuperHyperGraph, there's at least one Extreme SuperHyperEdge thus there's at least an Extreme R-SuperHyperConnectivities has the Extreme cardinality of an Extreme SuperHyperEdge. Thus, an Extreme R-SuperHyperConnectivities has the Extreme cardinality at least an Extreme SuperHyperEdge. Assume an Extreme SuperHyperSet  $V \setminus V \setminus \{z\}$ . This Extreme SuperHyperSet isn't an Extreme R-SuperHyperConnectivities since either the Neutrosophic SuperHyperGraph is an obvious Extreme SuperHyperModel thus it never happens since there's no Extreme usage of this Extreme framework and even more there's no Extreme connection inside or the Neutrosophic SuperHyperGraph isn't obvious and as its consequences, there's an Extreme contradiction with the term "Extreme R-SuperHyperConnectivities" since the maximum Extreme cardinality never happens for this Extreme style of the Extreme SuperHyperSet and beyond that there's no Extreme connection inside as mentioned in first Extreme case in the forms of drawback for this selected Extreme SuperHyperSet. Let

$$V \setminus V \setminus \{a_E, b_E, c_E, \dots, a_{E'}, b_{E'}, c_{E'}, \dots\}_{E, E'} = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}$$

Comes up. This Extreme case implies having the Extreme style of on-quasi-triangle Extreme style on the every Extreme elements of this Extreme SuperHyperSet. Precisely, the Extreme R-SuperHyperConnectivities is the Extreme SuperHyperSet of the Extreme SuperHyperVertices such that some Extreme amount of the Extreme SuperHyperVertices are on-quasi-triangle Extreme style. The Extreme cardinality of the v SuperHypeSet

$$V \setminus V \setminus \{a_E, b_E, c_E, \dots, a_{E'}, b_{E'}, c_{E'}, \dots\}_{E, E'} = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}$$

Is the maximum in comparison to the Extreme SuperHyperSet

.

-----

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

But the lower Extreme bound is up. Thus the minimum Extreme cardinality of the maximum Extreme cardinality ends up the Extreme discussion. The first Extreme term refers to the Extreme setting of the Neutrosophic SuperHyperGraph but this key point is enough since there's an Extreme SuperHyperClass of a Neutrosophic SuperHyperGraph has no on-quasi-triangle Extreme style amid some amount of its Extreme SuperHyperVertices. This Extreme setting of the Extreme SuperHyperModel proposes an Extreme SuperHyperSet has only some amount Extreme SuperHyperVertices from one Extreme SuperHyperEdge such that there's no Extreme amount of Extreme SuperHyperEdges more than one involving these some amount of these Extreme

SuperHyperVertices. The Extreme cardinality of this Extreme SuperHyperSet is the maximum and the Extreme case is occurred in the minimum Extreme situation. To sum them up, the Extreme SuperHyperSet

$$V \setminus V \setminus \{a_E, b_E, c_E, \dots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$$

Has the maximum Extreme cardinality such that

 $V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$ 

Contains some Extreme SuperHyperVertices such that there's distinct-covers-order-amount Extreme SuperHyperEdges for amount of Extreme SuperHyperVertices taken from the Extreme SuperHyperSet

 $V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$ 

It means that the Extreme SuperHyperSet of the Extreme SuperHyperVertices

 $V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$ 

Is an Extreme R-SuperHyperConnectivities for the Neutrosophic SuperHyperGraph as used Extreme background in the Extreme terms of worst Extreme case and the common theme of the lower Extreme bound occurred in the specific Extreme SuperHyperClasses of the Neutrosophic SuperHyperGraphs which are Extreme free-quasi-triangle.

Assume an Extreme SuperHyperEdge  $E \in E_{ESHG:(V,E)}$  has z Extreme number of the Extreme SuperHyperVertices. Then every Extreme SuperHyperVertex has at least no Extreme SuperHyperEdge with others in common. Thus those Extreme SuperHyperVertices have the eligibles to be contained in an Extreme R-SuperHyperConnectivities. Those Extreme SuperHyperVertices are potentially included in an Extreme style-R-SuperHyperConnectivities. Formally, consider

$$V \setminus (V \setminus \{a_E, b_E, c_E, \dots, z_E\}).$$

Are the Extreme SuperHyperVertices of an Extreme SuperHyperEdge  $E \in E_{ESHG;(V,E)}$ . Thus

$$Z_i \sim Z_j, \ i \neq j, \ i, j = 1, 2, \dots, z.$$

where the  $\sim$  isn't an equivalence relation but only the symmetric relation on the Extreme SuperHyperVertices of the Neutrosophic SuperHyperGraph. The formal definition is as follows.

$$Z_i \sim Z_j, \ i \neq j, \ i, j = 1, 2, \dots, z$$

if and only if  $Z_i$  and  $Z_j$  are the Extreme SuperHyperVertices and there's only and only one Extreme SuperHyperEdge  $E \in E_{ESHG:(V,E)}$  between the Extreme SuperHyperVertices  $Z_i$  and  $Z_j$ . The other definition for the Extreme SuperHyperEdge  $E \in E_{ESHG:(V,E)}$  in the terms of Extreme R-SuperHyperConnectivities is

$$\{a_E, b_E, c_E, \ldots, z_E\}$$
.

This definition coincides with the definition of the Extreme R-SuperHyperConnectivities but with slightly differences in the maximum Extreme cardinality amid those Extreme type-SuperHyperSets

of the Extreme SuperHyperVertices. Thus the Extreme SuperHyperSet of the Extreme SuperHyperVertices,

$$\max_{i} |\{Z_1, Z_2, \dots, Z_z \mid Z_i \sim Z_j, i \neq j, i, j = 1, 2, \dots, z\}|_{\text{Extreme cardinality}},$$

and

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$$

is formalized with mathematical literatures on the Extreme R-SuperHyperConnectivities. Let  $Z_i \stackrel{E}{\sim} Z_j$ , be defined as  $Z_i$  and  $Z_j$  are the Extreme SuperHyperVertices belong to the Extreme SuperHyperEdge  $E \in E_{ESHG:(V,E)}$ . Thus,

$$E = \{Z_1, Z_2, \dots, Z_z \mid Z_i \stackrel{E}{\sim} Z_j, \ i \neq j, \ i, j = 1, 2, \dots, z\}$$

Or

 $\{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$ 

But with the slightly differences,

Extreme R-SuperHyperConnectivities =

$$\{Z_1, Z_2, \dots, Z_z \mid \forall i \neq j, i, j = 1, 2, \dots, z, \exists E_x, Z_i \stackrel{L_x}{\sim} Z_j, \}.$$

Extreme R-SuperHyperConnectivities =  

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E=\{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$$

Thus  $E \in E_{ESHG:(V,E)}$  is an Extreme quasi-R-SuperHyperConnectivities where  $E \in E_{ESHG:(V,E)}$  is fixed that means  $E_x = E \in E_{ESHG:(V,E)}$ . for all Extreme intended SuperHyperVertices but in an Extreme SuperHyperConnectivities,  $E_x = E \in E_{ESHG:(V,E)}$  could be different and it's not unique. To sum them up, in a connected Extreme SuperHyperGraph ESHG : (V, E). If an Extreme SuperHyperEdge  $E \in E_{ESHG:(V,E)}$  has z Extreme SuperHyperVertices, then the Extreme cardinality of the Extreme R-SuperHyperConnectivities is at least

$$V \setminus (V \setminus \{a_E, b_E, c_E, \dots, z_E\}).$$

It's straightforward that the Extreme cardinality of the Extreme R-SuperHyperConnectivities is at least the maximum Extreme number of Extreme SuperHyperVertices of the Extreme SuperHyperEdges with the maximum number of the Extreme SuperHyperEdges. In other words, the maximum number of the Extreme SuperHyperEdges contains the maximum Extreme number of Extreme SuperHyperVertices are renamed to Extreme SuperHyperConnectivities in some cases but the maximum number of the Extreme SuperHyperEdge with the maximum Extreme number of Extreme SuperHyperVertices, has the Extreme SuperHyperVertices are contained in an Extreme R-SuperHyperConnectivities.

The obvious SuperHyperGraph has no Extreme SuperHyperEdges. But the non-obvious Extreme SuperHyperModel is up. The quasi-SuperHyperModel addresses some issues about the Extreme optimal SuperHyperObject. It specially delivers some remarks on the Extreme SuperHyperSet of the Extreme SuperHyperVertices such that there's distinct amount of Extreme

Henry Garrett  $\cdot$  Independent Researcher  $\cdot$  Department of Mathematics  $\cdot$  DrHenryGarrett@gmail.com  $\cdot$  Manhattan, NY, USA

SuperHyperEdges for distinct amount of Extreme SuperHyperVertices up to all taken from that Extreme SuperHyperSet of the Extreme SuperHyperVertices but this Extreme SuperHyperSet of the Extreme SuperHyperVertices is either has the maximum Extreme SuperHyperCardinality or it doesn't have maximum Extreme SuperHyperCardinality. In a non-obvious SuperHyperModel, there's at least one Extreme SuperHyperEdge containing at least all Extreme SuperHyperVertices. Thus it forms an Extreme quasi-R-SuperHyperConnectivities where the Extreme completion of the Extreme incidence is up in that. Thus it's, literarily, an Extreme embedded R-SuperHyperConnectivities. The SuperHyperNotions of embedded SuperHyperSet and quasi-SuperHyperSet coincide. In the original setting, these types of SuperHyperSets only don't satisfy on the maximum SuperHyperCardinality. Thus the embedded setting is elected such that those SuperHyperSets have the maximum Extreme SuperHyperCardinality and they're Extreme SuperHyperOptimal. The less than two distinct types of Extreme SuperHyperVertices are included in the minimum Extreme style of the embedded Extreme R-SuperHyperConnectivities. The interior types of the Extreme SuperHyperVertices are deciders. Since the Extreme number of SuperHyperNeighbors are only affected by the interior Extreme SuperHyperVertices. The common connections, more precise and more formal, the perfect unique connections inside the Extreme SuperHyperSet for any distinct types of Extreme SuperHyperVertices pose the Extreme R-SuperHyperConnectivities. Thus Extreme exterior SuperHyperVertices could be used only in one Extreme SuperHyperEdge and in Extreme SuperHyperRelation with the interior Extreme SuperHyperVertices in that Extreme SuperHyperEdge. In the embedded Extreme SuperHyperConnectivities, there's the usage of exterior Extreme SuperHyperVertices since they've more connections inside more than outside. Thus the title "exterior" is more relevant than the title "interior". One Extreme SuperHyperVertex has no connection, inside. Thus, the Extreme SuperHyperSet of the Extreme SuperHyperVertices with one SuperHyperElement has been ignored in the exploring to lead on the optimal case implying the Extreme R-SuperHyperConnectivities. The Extreme R-SuperHyperConnectivities with the exclusion of the exclusion of all Extreme SuperHyperVertices in one Extreme SuperHyperEdge and with other terms, the Extreme R-SuperHyperConnectivities with the inclusion of all Extreme SuperHyperVertices in one Extreme SuperHyperEdge, is an Extreme quasi-R-SuperHyperConnectivities. To sum them up, in a connected non-obvious Extreme SuperHyperGraph ESHG: (V, E). There's only one Extreme SuperHyperEdge  $E \in E_{ESHG:(V,E)}$  has only the maximum possibilities of the distinct interior Extreme SuperHyperVertices inside of any given Extreme quasi-R-SuperHyperConnectivities minus all Extreme SuperHypeNeighbor to some of them but not all of them. In other words, there's only an unique Extreme SuperHyperEdge  $E \in E_{ESHG:(V,E)}$  has only two distinct Extreme SuperHyperVertices in an Extreme quasi-R-SuperHyperConnectivities, minus all Extreme SuperHypeNeighbor to some of them but not all of them.

The main definition of the Extreme R-SuperHyperConnectivities has two titles. an Extreme quasi-R-SuperHyperConnectivities and its corresponded quasi-maximum Extreme R-SuperHyperCardinality are two titles in the terms of quasi-R-styles. For any Extreme number, there's an Extreme quasi-R-SuperHyperConnectivities with that quasi-maximum Extreme SuperHyperCardinality in the terms of the embedded Neutrosophic SuperHyperGraph. If there's an embedded Neutrosophic SuperHyperGraph, then the Extreme quasi-SuperHyperNotions lead us to take the collection of all the Extreme quasi-R-SuperHyperConnectivities for all Extreme numbers less than its Extreme corresponded maximum number. The essence of the Extreme SuperHyperConnectivities ends up but this essence starts up in the terms of the Extreme quasi-R-SuperHyperConnectivities, again and more in the operations of collecting all the Extreme quasi-R-SuperHyperConnectivitiess acted on the all possible used formations of the Neutrosophic SuperHyperGraph to achieve one Extreme

Henry Garrett  $\,\cdot\,$  Independent Researcher  $\,\cdot\,$  Department of Mathematics  $\,\cdot\,$  DrHenryGarrett@gmail.com  $\,\cdot\,$  Manhattan, NY, USA

number. This Extreme number is

considered as the equivalence class for all corresponded quasi-R-SuperHyperConnectivitiess. Let  $z_{\text{Extreme Number}}$ ,  $S_{\text{Extreme SuperHyperSet}}$  and  $G_{\text{Extreme SuperHyperConnectivities}}$  be an Extreme number, an Extreme SuperHyperSet and an Extreme SuperHyperConnectivities. Then

$$\begin{split} &[z_{\text{Extreme Number}}]_{\text{Extreme Class}} = \{S_{\text{Extreme SuperHyperSet}} \mid \\ &S_{\text{Extreme SuperHyperSet}} = G_{\text{Extreme SuperHyperConnectivities}}, \\ &|S_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}} \\ &= z_{\text{Extreme Number}}\}. \end{split}$$

As its consequences, the formal definition of the Extreme SuperHyperConnectivities is re-formalized and redefined as follows.

 $G_{\text{Extreme SuperHyperConnectivities}} \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} = \bigcup_{z_{\text{Extreme Number}}} \{S_{\text{Extreme SuperHyperSet}} \mid S_{\text{Extreme SuperHyperSet}} = G_{\text{Extreme SuperHyperConnectivities}}, \\ |S_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}} = z_{\text{Extreme Number}} \}.$ 

To get more precise perceptions, the follow-up expressions propose another formal technical definition for the Extreme SuperHyperConnectivities.

$$\begin{split} G_{\text{Extreme SuperHyperConnectivities}} &= \\ \{S \in \cup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} = \\ \cup_{z_{\text{Extreme Number}}} \{S_{\text{Extreme SuperHyperSet}} \mid \\ S_{\text{Extreme SuperHyperSet}} = G_{\text{Extreme SuperHyperConnectivities}}, \\ |S_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}} \\ &= z_{\text{Extreme Number}} \mid \\ |S_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}} \\ &= \max_{\substack{[z_{\text{Extreme Number}}]_{\text{Extreme Class}}} z_{\text{Extreme Number}} \}. \end{split}$$

In more concise and more convenient ways, the modified definition for the Extreme SuperHyperConnectivities poses the upcoming expressions.

 $G_{\text{Extreme SuperHyperConnectivities}} = \{S \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} \mid |S_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}} = \max_{\substack{[z_{\text{Extreme Number}}]_{\text{Extreme Class}}} z_{\text{Extreme Number}} \}.$ 

To translate the statement to this mathematical literature, the formulae will be revised.

 $G_{\text{Extreme SuperHyperConnectivities}} = \{S \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}] \text{Extreme Class} \mid |S_{\text{Extreme SuperHyperSet}}| \text{Extreme Cardinality} = \max_{\substack{z_{\text{Extreme Number}} \in \text{Class}}} z_{\text{Extreme Number}} \\ = \max \{|E| \mid E \in E_{ESHG:(V,E)}\}\}.$ 

And then,

 $G_{\text{Extreme SuperHyperConnectivities}} = \{S \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} \mid |S_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}} = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}.$ 

To get more visions in the closer look-up, there's an overall overlook.

 $G_{\text{Extreme SuperHyperConnectivities}} \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} = \bigcup_{z_{\text{Extreme Number}}} \{S_{\text{Extreme SuperHyperSet}} \mid S_{\text{Extreme SuperHyperSet}} = G_{\text{Extreme SuperHyperConnectivities}}, \\ |S_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}} = \max \{|E| \mid E \in E_{ESHG:(V,E)}\}\}.$ 

$$\begin{split} G_{\text{Extreme SuperHyperConnectivities}} &= \\ \{S \in \cup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} = \\ \cup_{z_{\text{Extreme Number}}} \{S_{\text{Extreme SuperHyperSet}} \mid \\ S_{\text{Extreme SuperHyperSet}} = G_{\text{Extreme SuperHyperConnectivities}}, \\ |S_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}} \\ &= z_{\text{Extreme Number}} \mid \\ |S_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}} \\ &= \max \{|E| \mid E \in E_{ESHG:(V,E)}\}\}. \end{split}$$

 $G_{\text{Extreme SuperHyperConnectivities}} = \{S \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}] \text{Extreme Class} \mid |S_{\text{Extreme SuperHyperSet}}| \text{Extreme Cardinality} = \max_{\substack{[z_{\text{Extreme Number}}] \text{Extreme Class}}} z_{\text{Extreme Number}} = \max \{|E| \mid E \in E_{ESHG:(V,E)}\}\}.$ 

 $G_{\text{Extreme SuperHyperConnectivities}} =$ 

Henry Garrett $\,\cdot\,$ Independent Researcher $\,\cdot\,$ Department of Mathematics $\,\cdot\,$ Dr<br/>HenryGarrett@gmail.com $\,\cdot\,$ Manhattan, NY, USA

 $\{S \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}] \text{Extreme Class} \mid |S_{\text{Extreme SuperHyperSet}}| \text{Extreme Cardinality}$ 

 $= \max \{ |E| \mid E \in E_{ESHG:(V,E)} \} \}.$ 

Now, the extension of these types of approaches is up. Since the new term, "Extreme SuperHyperNeighborhood", could be redefined as the collection of the Extreme SuperHyperVertices such that any amount of its Extreme SuperHyperVertices are incident to an Extreme SuperHyperEdge. It's, literarily, another name for "Extreme Quasi-SuperHyperConnectivities" but, precisely, it's the generalization of "Extreme Quasi-SuperHyperConnectivities" in a Neutrosophic SuperHyperConnectivities" happens "Extreme SuperHyperConnectivities" in a Neutrosophic SuperHyperGraph as initial framework and background but "Extreme SuperHyperGraph as initial framework and background since there are some ambiguities about the Extreme SuperHyperCardinality arise from it. To get orderly keywords, the terms, "Extreme SuperHyperNeighborhood", "Extreme Quasi-SuperHyperConnectivities", and "Extreme SuperHyperConnectivities" are up.

Thus, let  $z_{\text{Extreme Number}}$ ,  $N_{\text{Extreme SuperHyperNeighborhood}}$  and  $G_{\text{Extreme SuperHyperConnectivities}}$  be an Extreme number, an Extreme SuperHyperNeighborhood and an Extreme SuperHyperConnectivities and the new terms are up.

 $\begin{aligned} G_{\text{Extreme SuperHyperConnectivities}} &\in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} = \\ \bigcup_{z_{\text{Extreme Number}}} \{N_{\text{Extreme SuperHyperNeighborhood} \mid \\ |N_{\text{Extreme SuperHyperNeighborhood}|_{\text{Extreme Cardinality}} \\ &= \max_{[z_{\text{Extreme Number}}]_{\text{Extreme Class}}} z_{\text{Extreme Number}} \}. \\ G_{\text{Extreme SuperHyperConnectivities}} = \\ \{N_{\text{Extreme SuperHyperNeighborhood} \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} = \\ \bigcup_{z_{\text{Extreme Number}}} \{N_{\text{Extreme SuperHyperNeighborhood} \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} = \\ \bigcup_{z_{\text{Extreme SuperHyperSet}}} \{N_{\text{Extreme SuperHyperNeighborhood}} \mid \\ |N_{\text{Extreme SuperHyperNeighborhood}}|_{\text{Extreme Cardinality}} \\ &= z_{\text{Extreme Number}} \\ |N_{\text{Extreme SuperHyperNeighborhood}}|_{\text{Extreme Cardinality}} \\ &= \max_{[z_{\text{Extreme Number}}]_{\text{Extreme Class}}} z_{\text{Extreme Number}} \\ R_{\text{Extreme SuperHyperNeighborhood}}|_{\text{Extreme Number}} \\ \\ K_{\text{Extreme SuperHyperConnectivities}} \\ &= \{N_{\text{Extreme SuperHyperNeighborhood}} \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} \\ \\ K_{\text{Extreme SuperHyperNeighborhood}} \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} \\ \\ &= \{N_{\text{Extreme SuperHyperNeighborhood}} \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} \\ \\ \\ K_{\text{Extreme SuperHyperNeighborhood}} \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} \\ \\ \\ \\ \end{bmatrix} \\ \\ \end{bmatrix} \\ \end{bmatrix}$ 

 $= \max_{\substack{[z_{\text{Extreme Number}}]_{\text{Extreme Class}}}} z_{\text{Extreme Number}} \}.$ 

 $G_{\text{Extreme SuperHyperConnectivities}} =$ 

 $\{N_{\text{Extreme SuperHyperNeighborhood}} \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}}$ 

 $|N_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}} = \max_{\substack{[z_{\text{Extreme Number}}]_{\text{Extreme Class}}} z_{\text{Extreme Number}} \}.$ 

And with go back to initial structure,

 $G_{\text{Extreme SuperHyperConnectivities}} \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} = \bigcup_{z_{\text{Extreme Number}}} \{N_{\text{Extreme SuperHyperNeighborhood}} | \\ |N_{\text{Extreme SuperHyperNeighborhood}}|_{\text{Extreme Cardinality}} = \max \{|E| \mid E \in E_{ESHG:(V,E)}\}\}.$ 

 $G_{\text{Extreme SuperHyperConnectivities}} =$ 

 $\{N_{\text{Extreme SuperHyperNeighborhood}} \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} =$ 

 $\cup_{z_{\text{Extreme Number}}} \{ N_{\text{Extreme SuperHyperNeighborhood}} \mid$ 

 $|N_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}}$ 

 $= z_{\text{Extreme Number}}$ 

NExtreme SuperHyperNeighborhood Extreme Cardinality

 $= \max\left\{ |E| \mid E \in E_{ESHG:(V,E)} \right\} \right\}.$ 

 $G_{\text{Extreme SuperHyperConnectivities}} =$ 

 $\{N_{\text{Extreme SuperHyperNeighborhood}} \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}}$ 

 $|N_{\text{Extreme SuperHyperNeighborhood}}|_{\text{Extreme Cardinality}}$ 

 $= \max_{\substack{[z_{\text{Extreme Number}}]_{\text{Extreme Class}}}} z_{\text{Extreme Number}}$ 

 $= \max \{ |E| \mid E \in E_{ESHG;(V,E)} \} \}.$ 

$$\begin{split} G_{\text{Extreme SuperHyperConnectivities}} &= \\ \{N_{\text{Extreme SuperHyperNeighborhood}} \in \cup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} \mid \\ |N_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}} \\ &= \max \left\{ |E| \mid E \in E_{ESHG:(V,E)} \right\} \}. \end{split}$$

Thus, in a connected Neutrosophic SuperHyperGraph ESHG: (V, E). The all interior Extreme SuperHyperVertices belong to any Extreme quasi-R-SuperHyperConnectivities if for any of them, and any of other corresponded Extreme SuperHyperVertex, some interior Extreme SuperHyperVertices are mutually Extreme SuperHyperNeighbors with no Extreme exception at all minus all Extreme SuperHypeNeighbors to any amount of them.

To make sense with the precise words in the terms of "R-', the follow-up illustrations are coming up. The following Extreme SuperHyperSet of Extreme SuperHyperVertices is the simple Extreme type-SuperHyperSet of the Extreme R-SuperHyperConnectivities.

 $V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$ 

The Extreme SuperHyperSet of Extreme SuperHyperVertices,

 $V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$ 

Is the simple Extreme type-SuperHyperSet of the Extreme R-SuperHyperConnectivities. The Extreme SuperHyperSet of the Extreme SuperHyperVertices,

 $V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$ 

Is an **Extreme R-SuperHyperConnectivities** C(ESHG) for an Neutrosophic SuperHyperGraph ESHG: (V, E) is an Extreme type-SuperHyperSet with the maximum Extreme cardinality of an Extreme SuperHyperSet S of Extreme SuperHyperVertices such that there's no an Extreme SuperHyperEdge amid some Extreme SuperHyperVertices instead of all given by **Extreme SuperHyperConnectivities** is related to the Extreme SuperHyperSet of the Extreme SuperHyperVertices,

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

There's <u>not</u> only <u>one</u> Extreme SuperHyperVertex <u>inside</u> the intended Extreme SuperHyperSet. Thus the non-obvious Extreme SuperHyperConnectivities is up. The obvious simple Extreme type-SuperHyperSet called the Extreme SuperHyperConnectivities is an Extreme SuperHyperSet <u>includes</u> only <u>one</u> Extreme SuperHyperVertex. But the Extreme SuperHyperSet of Extreme SuperHyperVertices,

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

doesn't have less than two SuperHyperVertices <u>inside</u> the intended Extreme SuperHyperSet since they've come from at least so far an SuperHyperEdge. Thus the non-obvious simple Extreme type-SuperHyperSet of the Extreme R-SuperHyperConnectivities <u>is</u> up. To sum them up, the Extreme SuperHyperSet of Extreme SuperHyperVertices,

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

 $\underline{Is}$  the non-obvious simple Extreme type-SuperHyperSet of the Extreme R-SuperHyperConnectivities. Since the Extreme SuperHyperSet of the Extreme SuperHyperVertices,

$$(V \setminus V \setminus \{x, z\}) \cup \{xy\}$$

or

$$(V \setminus V \setminus \{x, z\}) \cup \{zy\}$$

is an Extreme R-SuperHyperConnectivities C(ESHG) for an Neutrosophic SuperHyperGraph ESHG : (V, E) is the Extreme SuperHyperSet S of Extreme SuperHyperVertices such that there's no an Extreme SuperHyperEdge for some Extreme SuperHyperConnectivities and it's an Extreme type-SuperHyperSet called the Extreme SuperHyperConnectivities and it's the maximum Extreme cardinality of an Extreme SuperHyperSet S of Extreme SuperHyperVertices such that there's no an Extreme SuperHyperSet S of Extreme SuperHyperVertices such that there's no an Extreme SuperHyperSet S of Extreme SuperHyperVertices instead of all given by that Extreme type-SuperHyperSet S of Extreme SuperHyperVertices instead of all given by that Extreme type-SuperHyperSet called the Extreme SuperHyperVertices. There isn't only less than two Extreme SuperHyperVertices instead the Extreme SuperHyperSet,

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

Thus the non-obvious Extreme R-SuperHyperConnectivities,

 $V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$ 

is up. The non-obvious simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities, not:

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$$

Is the Extreme SuperHyperSet, not:

------

 $V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$ 

does includes only less than two SuperHyperVertices in a connected Extreme SuperHyperGraph ESHG: (V, E) but it's impossible in the case, they've corresponded to an SuperHyperEdge. It's interesting to mention that the only non-obvious simple Extreme type-SuperHyperSet called the

# "Extreme R-SuperHyperConnectivities"

amid those obvious non-obvious simple Extreme type-SuperHyperSets called the

#### Extreme R-SuperHyperConnectivities,

is only and only

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

In a connected Neutrosophic SuperHyperGraph ESHG: (V, E) with a illustrated SuperHyperModel eling. It's also, not only an Extreme free-triangle embedded SuperHyperModel and an Extreme on-triangle embedded SuperHyperModel but also it's an Extreme stable embedded SuperHyperModel. But all only non-obvious simple Extreme type-SuperHyperSets of the Extreme R-SuperHyperConnectivities amid those obvious simple Extreme type-SuperHyperSets of the Extreme SuperHyperConnectivities, are

$$V \setminus V \setminus \left\{ a_E, b_E, c_E, \ldots \right\}_{E = \left\{ E \in E_{ESHG:(V,E)} \mid |E| = \max\left\{ |E| \mid E \in E_{ESHG:(V,E)} \right\} \right\}}.$$

In a connected Neutrosophic SuperHyperGraph ESHG : (V, E). To sum them up, assume a connected loopless Neutrosophic SuperHyperGraph ESHG : (V, E). Then in the worst case, literally,

$$V \setminus V \setminus \{a_E, b_E, c_E, \dots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

is an Extreme R-SuperHyperConnectivities. In other words, the least cardinality, the lower sharp bound for the cardinality, of an Extreme R-SuperHyperConnectivities is the cardinality of

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

To sum them up, in a connected Neutrosophic SuperHyperGraph ESHG : (V, E). The all interior Extreme SuperHyperVertices belong to any Extreme quasi-R-SuperHyperConnectivities if for any of

them, and any of other corresponded Extreme SuperHyperVertex, some interior Extreme SuperHyperVertices are mutually Extreme SuperHyperNeighbors with no Extreme exception at all minus all Extreme SuperHypeNeighbors to any amount of them.

Assume a connected Extreme SuperHyperGraph ESHG: (V, E). Let an Extreme SuperHyperEdge  $ESHE: E \in E_{ESHG;(V,E)}$  has some Extreme SuperHyperVertices r. Consider all Extreme numbers of those Extreme SuperHyperVertices from that Extreme SuperHyperEdge excluding excluding more than r distinct Extreme SuperHyperVertices, exclude to any given Extreme SuperHyperSet of the Extreme SuperHyperVertices. Consider there's an Extreme R-SuperHyperConnectivities with the least cardinality, the lower sharp Extreme bound for Extreme cardinality. Assume a connected Neutrosophic SuperHyperGraph ESHG : (V, E). The Extreme SuperHyperSet of the Extreme SuperHyperVertices  $V_{ESHE} \setminus \{z\}$  is an Extreme SuperHyperSet S of the Extreme SuperHyperVertices such that there's an Extreme SuperHyperEdge to have some Extreme SuperHyperVertices uniquely but it isn't an Extreme R-SuperHyperConnectivities. Since it doesn't have the maximum Extreme cardinality of an Extreme SuperHyperSet S of Extreme SuperHyper-Vertices such that there's an Extreme SuperHyperEdge to have some SuperHyperVertices uniquely. The Extreme SuperHyperSet of the Extreme SuperHyperVertices  $V_{ESHE} \cup \{z\}$  is the maximum Extreme cardinality of an Extreme SuperHyperSet S of Extreme SuperHyperVertices but it isn't an Extreme R-SuperHyperConnectivities. Since it **doesn't do** the Extreme procedure such that such that there's an Extreme SuperHyperEdge to have some Extreme SuperHyperVertices uniquely [there are at least one Extreme SuperHyperVertex outside implying there's, sometimes in the connected Neutrosophic SuperHyperGraph ESHG: (V, E), an Extreme SuperHyperVertex, titled its Extreme SuperHyperNeighbor, to that Extreme SuperHyperVertex in the Extreme SuperHyperSet S so as Sdoesn't do "the Extreme procedure".]. There's only **one** Extreme SuperHyperVertex **outside** the intended Extreme SuperHyperSet,  $V_{ESHE} \cup \{z\}$ , in the terms of Extreme SuperHyperNeighborhood. Thus the obvious Extreme R-SuperHyperConnectivities,  $V_{ESHE}$  is up. The obvious simple Extreme type-SuperHyperSet of the Extreme R-SuperHyperConnectivities,  $V_{ESHE}$ , is an Extreme SuperHyperSet, V<sub>ESHE</sub>, includes only all Extreme SuperHyperVertices does forms any kind of Extreme pairs are titled Extreme SuperHyperNeighbors in a connected Neutrosophic SuperHyperGraph ESHG: (V, E). Since the Extreme SuperHyperSet of the Extreme SuperHyperVertices  $V_{ESHE}$ , is the maximum Extreme SuperHyperCardinality of an Extreme SuperHyperSet S of Extreme SuperHyperVertices such that there's an Extreme SuperHyperEdge to have some Extreme SuperHyperVertices uniquely. Thus, in a connected Neutrosophic SuperHyperGraph ESHG: (V, E). Any Extreme R-SuperHyperConnectivities only contains all interior Extreme SuperHyperVertices and all exterior Extreme SuperHyperVertices from the unique Extreme SuperHyperEdge where there's any of them has all possible Extreme SuperHyperNeighbors in and there's all Extreme SuperHyperNeighborhoods in with no exception minus all Extreme SuperHypeNeighbors to some of them not all of them but everything is possible about Extreme SuperHyperNeighborhoods and Extreme SuperHyperNeighbors out.

The SuperHyperNotion, namely, SuperHyperConnectivities, is up. There's neither empty SuperHyperEdge nor loop SuperHyperEdge. The following Extreme SuperHyperSet of Extreme SuperHyperEdges[SuperHyperVertices] is the simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities. The Extreme SuperHyperSet of Extreme SuperHyperVertices],

$$\begin{split} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} \\ &= \{E_{2i-1}\}_{i=1}^{\lfloor \frac{|E_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}|}{2} \rfloor}. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} \end{split}$$

 $= 2z^{\lfloor \frac{|E_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}|}{2} \rfloor}.$   $\mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivities} = \{V_i\}_{i=1}^s, \{V_j\}_{j=1}^t.$  $\mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} = az^s + bz^t.$ 

is the simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities. The Extreme SuperHyperSet of the Extreme SuperHyperEdges[SuperHyperVertices],

$$\begin{split} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} \\ &= \{E_{2i-1}\}_{i=1}^{\lfloor \frac{|E_{ESHG}:(V,E)|Extreme Cardinality}{2} \rfloor}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} \\ &= 2z^{\lfloor \frac{|E_{ESHG}:(V,E)|Extreme Cardinality}{2} \rfloor}.\\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivities} = \{V_i\}_{i=1}^{s}, \{V_j\}_{j=1}^{t}.\\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} = az^s + bz^t. \end{split}$$

Is an **Extreme SuperHyperConnectivities** C(ESHG) for an Neutrosophic SuperHyperGraph  $ESH\overline{G}: (V, E)$  is an Extreme type-SuperHyperSet with the maximum Extreme cardinality of an Extreme SuperHyperSet S of Extreme SuperHyperEdges[SuperHyperVertices] such that there's no Extreme SuperHyperVertex of an Extreme SuperHyperEdge is common and there's an Extreme SuperHyperEdge for all Extreme SuperHyperVertices. There are <u>not</u> only <u>two</u> Extreme SuperHyperVertices inside the intended Extreme SuperHyperSet. Thus the non-obvious Extreme SuperHyperConnectivities is up. The obvious simple Extreme type-SuperHyperSet called the Extreme SuperHyperConnectivities is an Extreme SuperHyperSet includes only <u>two</u> Extreme SuperHyperVertices. But the Extreme SuperHyperSet of the Extreme SuperHyperVertices]

$$\begin{split} \mathcal{C}(NSHG) & \textit{ExtremeQuasi-SuperHyperConnectivities} \\ &= \{E_{2i-1}\}_{i=1}^{\lfloor \frac{|E_{ESHG}:(V,E)| \frac{|E_{XTREME} Cardinality|}{2} \rfloor}{2}}.\\ \mathcal{C}(NSHG) & \textit{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} \\ &= 2z^{\lfloor \frac{|E_{ESHG}:(V,E)| \frac{|E_{XTREME} Cardinality|}{2} \rfloor}{2}}.\\ \mathcal{C}(NSHG) & \textit{ExtremeR-Quasi-SuperHyperConnectivities} = \{V_i\}_{i=1}^{s}, \{V_j\}_{j=1}^{t}.\\ \mathcal{C}(NSHG) & \textit{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} = az^s + bz^t. \end{split}$$

Doesn't have less than three SuperHyperVertices <u>inside</u> the intended Extreme SuperHyperSet. Thus the non-obvious simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities <u>is</u> up. To sum them up, the Extreme SuperHyperSet of the Extreme SuperHyperEdges[SuperHyperVertices],

$$\begin{split} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} \\ &= \{E_{2i-1}\}_{i=1}^{\lfloor \frac{|E_{ESHG}:(V,E)|Extreme Cardinality}{2} \rfloor}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} \\ &= 2z^{\lfloor \frac{|E_{ESHG}:(V,E)|Extreme Cardinality}{2} \rfloor}.\\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivities} = \{V_i\}_{i=1}^{s}, \{V_j\}_{j=1}^{t}. \end{split}$$

 $\mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} = az^{s} + bz^{t}.$ 

<u>Is</u> the non-obvious simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities. Since the Extreme SuperHyperSet of the Extreme SuperHyperEdges[SuperHyperVertices],

$$\begin{split} \mathcal{C}(NSHG) & \textit{ExtremeQuasi-SuperHyperConnectivities} \\ &= \{E_{2i-1}\}_{i=1}^{\lfloor \frac{|E_{ESHG}:(V,E)|Extreme Cardinality}{2} \rfloor}.\\ \mathcal{C}(NSHG) & \textit{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} \\ &= 2z^{\lfloor \frac{|E_{ESHG}:(V,E)|Extreme Cardinality}{2} \rfloor}.\\ \mathcal{C}(NSHG) & \textit{ExtremeR-Quasi-SuperHyperConnectivities} \\ &= \{V_i\}_{i=1}^{s}, \{V_j\}_{j=1}^{t}.\\ \mathcal{C}(NSHG) & \textit{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} \\ &= az^{s} + bz^{t}. \end{split}$$

Is an Extreme SuperHyperConnectivities C(ESHG) for an Neutrosophic SuperHyperGraph ESHG : (V, E) is the Extreme SuperHyperSet S of Extreme SuperHyperVertices such that there's no an Extreme SuperHyperEdge for some Extreme SuperHyperVertices given by that Extreme type-SuperHyperSet called the Extreme SuperHyperConnectivities <u>and</u> it's an Extreme <u>SuperHyperConnectivities</u>. Since it's <u>the maximum Extreme cardinality</u> of an Extreme SuperHyperSet S of Extreme SuperHyperVertices] such that there's no Extreme SuperHyperVertex of an Extreme SuperHyperVertices] such that there's an Extreme SuperHyperEdge for all Extreme SuperHyperVertices. There aren't only less than three Extreme SuperHyperVertices <u>inside</u> the intended Extreme SuperHyperSet,

$$\begin{split} \mathcal{C}(NSHG) & \textit{ExtremeQuasi-SuperHyperConnectivities} \\ &= \{E_{2i-1}\}_{i=1}^{\lfloor \frac{|E_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}|}{2} \rfloor. \\ \mathcal{C}(NSHG) & \textit{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} \\ &= 2z^{\lfloor \frac{|E_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}|}{2} \rfloor}. \\ \mathcal{C}(NSHG) & \textit{ExtremeR-Quasi-SuperHyperConnectivities} = \{V_i\}_{i=1}^{s}, \{V_j\}_{j=1}^{t}. \\ \mathcal{C}(NSHG) & \textit{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} = az^s + bz^t. \end{split}$$

Thus the non-obvious Extreme SuperHyperConnectivities,

$$\begin{split} \mathcal{C}(NSHG) & \textit{ExtremeQuasi-SuperHyperConnectivities} \\ &= \{E_{2i-1}\}_{i=1}^{\lfloor \frac{|E_{ESHG}:(V,E)| \text{Extreme Cardinality}}{2} \rfloor}.\\ \mathcal{C}(NSHG) & \textit{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} \\ &= 2z^{\lfloor \frac{|E_{ESHG}:(V,E)| \text{Extreme Cardinality}}{2} \rfloor}.\\ \mathcal{C}(NSHG) & \textit{ExtremeR-Quasi-SuperHyperConnectivities} = \{V_i\}_{i=1}^{s}, \{V_j\}_{j=1}^{t}.\\ \mathcal{C}(NSHG) & \textit{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} = az^s + bz^t. \end{split}$$

Is up. The obvious simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities,

not:

$$\begin{split} \mathcal{C}(NSHG) & \textit{ExtremeQuasi-SuperHyperConnectivities} \\ &= \{E_{2i-1}\}_{i=1}^{\lfloor \frac{|E_{ESHG}:(V,E)| \text{Extreme Cardinality}}{2} \rfloor}.\\ \mathcal{C}(NSHG) & \textit{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} \\ &= 2z^{\lfloor \frac{|E_{ESHG}:(V,E)| \text{Extreme Cardinality}}{2} \rfloor}.\\ \mathcal{C}(NSHG) & \textit{ExtremeR-Quasi-SuperHyperConnectivities} \\ &= \{V_i\}_{i=1}^{s}, \{V_j\}_{j=1}^{t}.\\ \mathcal{C}(NSHG) & \textit{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} \\ &= az^{s} + bz^{t}. \end{split}$$

Is the Extreme SuperHyperSet, not:

$$\begin{split} \mathcal{C}(NSHG) & \textit{ExtremeQuasi-SuperHyperConnectivities} \\ &= \{E_{2i-1}\}_{i=1}^{\lfloor \frac{|E_{ESHG}:(V,E)| \text{Extreme Cardinality}|}{2} \rfloor}.\\ &\mathcal{C}(NSHG) \text{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} \\ &= 2z^{\lfloor \frac{|E_{ESHG}:(V,E)| \text{Extreme Cardinality}|}{2} \rfloor}.\\ &\mathcal{C}(NSHG) \text{ExtremeR-Quasi-SuperHyperConnectivities} = \{V_i\}_{i=1}^{s}, \{V_j\}_{j=1}^{t}.\\ &\mathcal{C}(NSHG) \text{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} = az^s + bz^t. \end{split}$$

Does includes only less than three SuperHyperVertices in a connected Extreme SuperHyperGraph ESHG: (V, E). It's interesting to mention that the only non-obvious simple Extreme type-SuperHyperSet called the

## "Extreme SuperHyperConnectivities"

amid those obvious[non-obvious] simple Extreme type-SuperHyperSets called the

## Extreme SuperHyperConnectivities,

is only and only

$$\begin{split} \mathcal{C}(NSHG)_{Extreme}Quasi-SuperHyperConnectivities \\ &= \{E_{2i-1}\}_{i=1}^{\lfloor \frac{|E_{ESHG}:(V,E)|Extreme Cardinality}{2} \rfloor}.\\ \mathcal{C}(NSHG)_{Extreme}Quasi-SuperHyperConnectivitiesSuperHyperPolynomial \\ &= 2z^{\lfloor \frac{|E_{ESHG}:(V,E)|Extreme Cardinality}{2} \rfloor}.\\ \mathcal{C}(NSHG)_{Extreme}R-Quasi-SuperHyperConnectivities = \{V_i\}_{i=1}^{s}, \{V_j\}_{j=1}^{t}.\\ \mathcal{C}(NSHG)_{Extreme}R-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial = az^s + bz^t. \end{split}$$

In a connected Neutrosophic SuperHyperGraph ESHG : (V, E).

**Example 9.0.3.** In the Figure (9.1), the connected Extreme SuperHyperPath ESHP : (V, E), is highlighted and featured. The Extreme SuperHyperSet, in the Extreme SuperHyperModel (9.1), is the SuperHyperConnectivities.

Henry Garrett $\,\cdot\,$ Independent Researcher $\,\cdot\,$ Department of Mathematics $\,\cdot\,$ Dr<br/>HenryGarrett@gmail.com $\,\cdot\,$ Manhattan, NY, USA

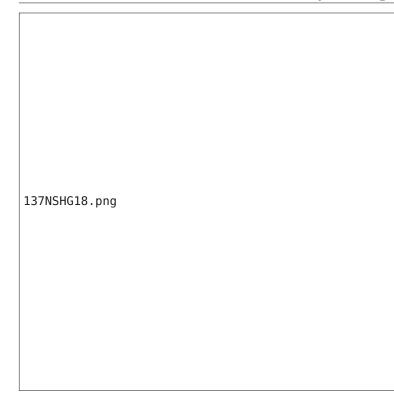


Figure 9.1: an Extreme SuperHyperPath Associated to the Notions of Extreme SuperHyperConnectivities in the Example (9.0.3)

**Proposition 9.0.4.** Assume a connected Extreme SuperHyperConnectivities ESHC : (V, E). Then an Extreme quasi-R-SuperHyperConnectivities is an Extreme SuperHyperSet of the interior Extreme SuperHyperVertices with only no Extreme exceptions on the form of interior Extreme SuperHyperVertices from the same Extreme SuperHyperNeighborhoods not excluding any Extreme SuperHyperVertex. an Extreme quasi-R-SuperHyperConnectivities has the Extreme half number of all the Extreme SuperHyperEdges in the terms of the maximum Extreme cardinality. Also,

$$\begin{split} \mathcal{C}(NSHG)_{Extreme} Quasi-SuperHyperConnectivities \\ &= \{E_{2i-1}\}_{i=1}^{\lfloor \frac{|E_{ESHG}:(V,E)|Extreme Cardinality|}{2} \rfloor}.\\ \mathcal{C}(NSHG)_{Extreme} Quasi-SuperHyperConnectivitiesSuperHyperPolynomial \\ &= 2z^{\lfloor \frac{|E_{ESHG}:(V,E)|Extreme Cardinality|}{2} \rfloor}.\\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivities} = \{V_i\}_{i=1}^{s}, \{V_j\}_{j=1}^{t}.\\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} = az^s + bz^t. \end{split}$$

*Proof.* Assume a connected loopless Neutrosophic SuperHyperGraph ESHG: (V, E). The SuperHyperSet of the SuperHyperVertices  $V \setminus V \setminus \{z\}$  isn't a quasi-R-SuperHyperConnectivities since

neither amount of Extreme SuperHyperEdges nor amount of SuperHyperVertices where amount refers to the Extreme number of SuperHyperVertices(-/SuperHyperEdges) more than one to form any kind of SuperHyperEdges or any number of SuperHyperEdges. Let us consider the Extreme SuperHyperSet

 $V \setminus V \setminus \{a_E, b_E, c_E, \dots, a_{E'}, b_{E'}, c_{E'}, \dots\}_{E, E' = \{E \in E_{ESHG}; (V, E) \mid |E| = \max\{|E| \mid E \in E_{ESHG}; (V, E)\}\}}$ 

This Extreme SuperHyperSet of the Extreme SuperHyperVertices has the eligibilities to propose property such that there's no Extreme SuperHyperVertex of an Extreme SuperHyperEdge is common and there's an Extreme SuperHyperEdge for all Extreme SuperHyperVertices but the maximum Extreme cardinality indicates that these Extreme type-SuperHyperSets couldn't give us the Extreme lower bound in the term of Extreme sharpness. In other words, the Extreme SuperHyperSet

 $V \setminus V \setminus \{a_E, b_E, c_E, \dots, a_{E'}, b_{E'}, c_{E'}, \dots\}_{E, E'} = \{E \in E_{ESHG;(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG;(V,E)}\}\}$ 

of the Extreme SuperHyperVertices implies at least on-quasi-triangle style is up but sometimes the Extreme SuperHyperSet

$$V \setminus V \setminus \{a_E, b_E, c_E, \dots, a_{E'}, b_{E'}, c_{E'}, \dots\}_{E, E'} = \{E \in E_{ESHG}(V, E) \mid |E| = \max\{|E| \mid E \in E_{ESHG}(V, E)\}\}$$

of the Extreme SuperHyperVertices is free-quasi-triangle and it doesn't make a contradiction to the supposition on the connected loopless Neutrosophic SuperHyperGraph ESHG: (V, E). Thus the minimum case never happens in the generality of the connected loopless Neutrosophic SuperHyperGraphs. Thus if we assume in the worst case, literally,

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E=\{E \in E_{ESHG}; (V,E) \mid |E| = \max\{|E| \mid E \in E_{ESHG}; (V,E)\}}\}$$

Is a quasi-R-SuperHyperConnectivities. In other words, the least cardinality, the lower sharp bound for the cardinality, of a quasi-R-SuperHyperConnectivities is the cardinality of

$$V \setminus V \setminus \{a_E, b_E, c_E, \dots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$$

Then we've lost some connected loopless Extreme SuperHyperClasses of the connected loopless Neutrosophic SuperHyperGraphs titled free-triangle, on-triangle, and their quasi-types but the SuperHyperStable is only up in this quasi-R-SuperHyperConnectivities. It's the contradiction to that fact on the generality. There are some counterexamples to deny this statement. One of them comes from the setting of the graph titled path and cycle as the counterexamples-classes or reversely direction star as the examples-classes, are well-known classes in that setting and they could be considered as the examples-classes and counterexamples-classes for the tight bound of

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

Let  $V \setminus V \setminus \{z\}$  in mind. There's no necessity on the SuperHyperEdge since we need at least two SuperHyperVertices to form a SuperHyperEdge. It doesn't withdraw the principles of the main definition since there's no condition to be satisfied but the condition is on the existence of the SuperHyperEdge instead of acting on the SuperHyperVertices. In other words, if there's a SuperHyperEdge, then the Extreme SuperHyperSet has the necessary condition for the intended definition to be applied. Thus the  $V \setminus V \setminus \{z\}$  is withdrawn not by the conditions of the main

Henry Garrett  $\,\cdot\,$  Independent Researcher  $\,\cdot\,$  Department of Mathematics  $\,\cdot\,$  DrHenryGarrett@gmail.com  $\,\cdot\,$  Manhattan, NY, USA

definition but by the necessity of the pre-condition on the usage of the main definition. The Extreme structure of the Extreme R-SuperHyperConnectivities decorates the Extreme SuperHyperVertices don't have received any Extreme connections so as this Extreme style implies different versions of Extreme SuperHyperEdges with the maximum Extreme cardinality in the terms of Extreme SuperHyperVertices are spotlight. The lower Extreme bound is to have the maximum Extreme groups of Extreme SuperHyperVertices have perfect Extreme connections inside each of SuperHyperEdges and the outside of this Extreme SuperHyperSet doesn't matter but regarding the connectedness of the used Neutrosophic SuperHyperGraph arising from its Extreme properties taken from the fact that it's simple. If there's no more than one Extreme SuperHyperVertex in the targeted Extreme SuperHyperSet, then there's no Extreme connection. Furthermore, the Extreme existence of one Extreme SuperHyperVertex has no Extreme effect to talk about the Extreme R-SuperHyperConnectivities. Since at least two Extreme SuperHyperVertices involve to make a title in the Extreme background of the Neutrosophic SuperHyperGraph. The Neutrosophic SuperHyperGraph is obvious if it has no Extreme SuperHyperEdge but at least two Extreme SuperHyperVertices make the Extreme version of Extreme SuperHyperEdge. Thus in the Extreme setting of non-obvious Neutrosophic SuperHyperGraph, there are at least one Extreme SuperHyperEdge. It's necessary to mention that the word "Simple" is used as Extreme adjective for the initial Neutrosophic SuperHyperGraph, induces there's no Extreme appearance of the loop Extreme version of the Extreme SuperHyperEdge and this Neutrosophic SuperHyperGraph is said to be loopless. The Extreme adjective "loop" on the basic Extreme framework engages one Extreme SuperHyperVertex but it never happens in this Extreme setting. With these Extreme bases, on a Neutrosophic SuperHyperGraph, there's at least one Extreme SuperHyperEdge thus there's at least an Extreme R-SuperHyperConnectivities has the Extreme cardinality of an Extreme SuperHyperEdge. Thus, an Extreme R-SuperHyperConnectivities has the Extreme cardinality at least an Extreme SuperHyperEdge. Assume an Extreme SuperHyperSet  $V \setminus V \setminus \{z\}$ . This Extreme SuperHyperSet isn't an Extreme R-SuperHyperConnectivities since either the Neutrosophic SuperHyperGraph is an obvious Extreme SuperHyperModel thus it never happens since there's no Extreme usage of this Extreme framework and even more there's no Extreme connection inside or the Neutrosophic SuperHyperGraph isn't obvious and as its consequences, there's an Extreme contradiction with the term "Extreme R-SuperHyperConnectivities" since the maximum Extreme cardinality never happens for this Extreme style of the Extreme SuperHyperSet and beyond that there's no Extreme connection inside as mentioned in first Extreme case in the forms of drawback for this selected Extreme SuperHyperSet. Let

$$V \setminus V \setminus \{a_E, b_E, c_E, \dots, a_{E'}, b_{E'}, c_{E'}, \dots\}_{E, E'} = \{E \in E_{ESHG;(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG;(V,E)}\}\}$$

Comes up. This Extreme case implies having the Extreme style of on-quasi-triangle Extreme style on the every Extreme elements of this Extreme SuperHyperSet. Precisely, the Extreme R-SuperHyperConnectivities is the Extreme SuperHyperSet of the Extreme SuperHyperVertices such that some Extreme amount of the Extreme SuperHyperVertices are on-quasi-triangle Extreme style. The Extreme cardinality of the v SuperHypeSet

$$V \setminus V \setminus \{a_E, b_E, c_E, \dots, a_{E'}, b_{E'}, c_{E'}, \dots\}_{E, E' = \{E \in E_{ESHG}: (V, E) \mid |E| = \max\{|E| \mid E \in E_{ESHG}: (V, E)\}\}}$$

Is the maximum in comparison to the Extreme SuperHyperSet

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$$

Henry Garrett · Independent Researcher · Department of Mathematics · DrHenryGarrett@gmail.com · Manhattan, NY, USA

But the lower Extreme bound is up. Thus the minimum Extreme cardinality of the maximum Extreme cardinality ends up the Extreme discussion. The first Extreme term refers to the Extreme setting of the Neutrosophic SuperHyperGraph but this key point is enough since there's an Extreme SuperHyperClass of a Neutrosophic SuperHyperGraph has no on-quasi-triangle Extreme style amid some amount of its Extreme SuperHyperVertices. This Extreme setting of the Extreme SuperHyperModel proposes an Extreme SuperHyperSet has only some amount Extreme SuperHyperVertices from one Extreme SuperHyperEdge such that there's no Extreme SuperHyperVertices. The Extreme cardinality of this Extreme SuperHyperSet is the maximum and the Extreme case is occurred in the minimum Extreme situation. To sum them up, the Extreme SuperHyperSet

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

Has the maximum Extreme cardinality such that

--> --> c

 $V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$ 

Contains some Extreme SuperHyperVertices such that there's distinct-covers-order-amount Extreme SuperHyperEdges for amount of Extreme SuperHyperVertices taken from the Extreme SuperHyperSet

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$$

It means that the Extreme SuperHyperSet of the Extreme SuperHyperVertices

$$V \setminus V \setminus \{a_E, b_E, c_E, \dots\}_{E=\{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$$

Is an Extreme R-SuperHyperConnectivities for the Neutrosophic SuperHyperGraph as used Extreme background in the Extreme terms of worst Extreme case and the common theme of the lower Extreme bound occurred in the specific Extreme SuperHyperClasses of the Neutrosophic SuperHyperGraphs which are Extreme free-quasi-triangle.

Assume an Extreme SuperHyperEdge  $E \in E_{ESHG:(V,E)}$  has z Extreme number of the Extreme SuperHyperVertices. Then every Extreme SuperHyperVertex has at least no Extreme SuperHyperEdge with others in common. Thus those Extreme SuperHyperVertices have the eligibles to be contained in an Extreme R-SuperHyperConnectivities. Those Extreme SuperHyperVertices are potentially included in an Extreme style-R-SuperHyperConnectivities. Formally, consider

$$V \setminus (V \setminus \{a_E, b_E, c_E, \dots, z_E\}).$$

Are the Extreme SuperHyperVertices of an Extreme SuperHyperEdge  $E \in E_{ESHG:(V,E)}$ . Thus

$$Z_i \sim Z_j, \ i \neq j, \ i, j = 1, 2, \ldots, z$$

where the  $\sim$  isn't an equivalence relation but only the symmetric relation on the Extreme SuperHyperVertices of the Neutrosophic SuperHyperGraph. The formal definition is as follows.

$$Z_i \sim Z_j, \ i \neq j, \ i, j = 1, 2, \dots, z$$

if and only if  $Z_i$  and  $Z_j$  are the Extreme SuperHyperVertices and there's only and only one Extreme SuperHyperEdge  $E \in E_{ESHG:(V,E)}$  between the Extreme SuperHyperVertices  $Z_i$  and  $Z_j$ . The other definition for the Extreme SuperHyperEdge  $E \in E_{ESHG:(V,E)}$  in the terms of Extreme R-SuperHyperConnectivities is

$$\{a_E, b_E, c_E, \ldots, z_E\}$$
.

This definition coincides with the definition of the Extreme R-SuperHyperConnectivities but with slightly differences in the maximum Extreme cardinality amid those Extreme type-SuperHyperSets of the Extreme SuperHyperVertices. Thus the Extreme SuperHyperSet of the Extreme SuperHyperVertices,

$$\max_{i} |\{Z_1, Z_2, \dots, Z_z \mid Z_i \sim Z_j, i \neq j, i, j = 1, 2, \dots, z\}|_{\text{Extreme cardinality}},$$

and

$$V \setminus V \setminus \{a_E, b_E, c_E, \dots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

is formalized with mathematical literatures on the Extreme R-SuperHyperConnectivities. Let  $Z_i \stackrel{E}{\sim} Z_j$ , be defined as  $Z_i$  and  $Z_j$  are the Extreme SuperHyperVertices belong to the Extreme SuperHyperEdge  $E \in E_{ESHG:(V,E)}$ . Thus,

$$E = \{Z_1, Z_2, \dots, Z_z \mid Z_i \stackrel{E}{\sim} Z_j, \ i \neq j, \ i, j = 1, 2, \dots, z\}.$$

Or

$$\{a_E, b_E, c_E, \dots\}_{E=\{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

But with the slightly differences,

Extreme R-SuperHyperConnectivities =

$$\{Z_1, Z_2, \dots, Z_z \mid \forall i \neq j, \ i, j = 1, 2, \dots, z, \ \exists E_x, \ Z_i \stackrel{L_x}{\sim} Z_j, \}.$$

Extreme R-SuperHyperConnectivities =

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$$

Thus  $E \in E_{ESHG:(V,E)}$  is an Extreme quasi-R-SuperHyperConnectivities where  $E \in E_{ESHG:(V,E)}$  is fixed that means  $E_x = E \in E_{ESHG:(V,E)}$ . for all Extreme intended SuperHyperVertices but in an Extreme SuperHyperConnectivities,  $E_x = E \in E_{ESHG:(V,E)}$  could be different and it's not unique. To sum them up, in a connected Extreme SuperHyperGraph ESHG : (V, E). If an Extreme SuperHyperEdge  $E \in E_{ESHG:(V,E)}$  has z Extreme SuperHyperVertices, then the Extreme cardinality of the Extreme R-SuperHyperConnectivities is at least

$$V \setminus (V \setminus \{a_E, b_E, c_E, \dots, z_E\}).$$

It's straightforward that the Extreme cardinality of the Extreme R-SuperHyperConnectivities is at least the maximum Extreme number of Extreme SuperHyperVertices of the Extreme SuperHyperEdges with the maximum number of the Extreme SuperHyperEdges. In other words, the maximum number of the Extreme SuperHyperEdges contains the maximum Extreme number of Extreme SuperHyperVertices are renamed to Extreme SuperHyperConnectivities in some cases

but the maximum number of the Extreme SuperHyperEdge with the maximum Extreme number of Extreme SuperHyperVertices, has the Extreme SuperHyperVertices are contained in an Extreme R-SuperHyperConnectivities.

The obvious SuperHyperGraph has no Extreme SuperHyperEdges. But the non-obvious Extreme SuperHyperModel is up. The quasi-SuperHyperModel addresses some issues about the Extreme optimal SuperHyperObject. It specially delivers some remarks on the Extreme SuperHyperSet of the Extreme SuperHyperVertices such that there's distinct amount of Extreme SuperHyperEdges for distinct amount of Extreme SuperHyperVertices up to all taken from that Extreme SuperHyperSet of the Extreme SuperHyperVertices but this Extreme SuperHyperSet of the Extreme SuperHyperVertices is either has the maximum Extreme SuperHyperCardinality or it doesn't have maximum Extreme SuperHyperCardinality. In a non-obvious SuperHyperModel, there's at least one Extreme SuperHyperEdge containing at least all Extreme SuperHyperVertices. Thus it forms an Extreme quasi-R-SuperHyperConnectivities where the Extreme completion of the Extreme incidence is up in that. Thus it's, literarily, an Extreme embedded R-SuperHyperConnectivities. The SuperHyperNotions of embedded SuperHyperSet and quasi-SuperHyperSet coincide. In the original setting, these types of SuperHyperSets only don't satisfy on the maximum SuperHyperCardinality. Thus the embedded setting is elected such that those SuperHyperSets have the maximum Extreme SuperHyperCardinality and they're Extreme SuperHyperOptimal. The less than two distinct types of Extreme SuperHyperVertices are included in the minimum Extreme style of the embedded Extreme R-SuperHyperConnectivities. The interior types of the Extreme SuperHyperVertices are deciders. Since the Extreme number of SuperHyperNeighbors are only affected by the interior Extreme SuperHyperVertices. The common connections, more precise and more formal, the perfect unique connections inside the Extreme SuperHyperSet for any distinct types of Extreme SuperHyperVertices pose the Extreme R-SuperHyperConnectivities. Thus Extreme exterior SuperHyperVertices could be used only in one Extreme SuperHyperEdge and in Extreme SuperHyperRelation with the interior Extreme SuperHyperVertices in that Extreme SuperHyperEdge. In the embedded Extreme SuperHyperConnectivities, there's the usage of exterior Extreme SuperHyperVertices since they've more connections inside more than outside. Thus the title "exterior" is more relevant than the title "interior". One Extreme SuperHyperVertex has no connection, inside. Thus, the Extreme SuperHyperSet of the Extreme SuperHyperVertices with one SuperHyperElement has been ignored in the exploring to lead on the optimal case implying the Extreme R-SuperHyperConnectivities. The Extreme R-SuperHyperConnectivities with the exclusion of the exclusion of all Extreme SuperHyperVertices in one Extreme SuperHyperEdge and with other terms, the Extreme R-SuperHyperConnectivities with the inclusion of all Extreme SuperHyperVertices in one Extreme SuperHyperEdge, is an Extreme quasi-R-SuperHyperConnectivities. To sum them up, in a connected non-obvious Extreme SuperHyperGraph ESHG: (V, E). There's only one Extreme SuperHyperEdge  $E \in E_{ESHG:(V,E)}$  has only the maximum possibilities of the distinct interior Extreme SuperHyperVertices inside of any given Extreme quasi-R-SuperHyperConnectivities minus all Extreme SuperHypeNeighbor to some of them but not all of them. In other words, there's only an unique Extreme SuperHyperEdge  $E \in E_{ESHG;(V,E)}$  has only two distinct Extreme SuperHyperVertices in an Extreme quasi-R-SuperHyperConnectivities, minus all Extreme SuperHypeNeighbor to some of them but not all of them.

The main definition of the Extreme R-SuperHyperConnectivities has two titles. an Extreme quasi-R-SuperHyperConnectivities and its corresponded quasi-maximum Extreme R-SuperHyperCardinality are two titles in the terms of quasi-R-styles. For any Extreme number, there's an Extreme quasi-R-SuperHyperConnectivities with that quasi-maximum Extreme SuperHyperCardinality in the

Henry Garrett  $\,\cdot\,$  Independent Researcher  $\,\cdot\,$  Department of Mathematics  $\,\cdot\,$  DrHenryGarrett@gmail.com  $\,\cdot\,$  Manhattan, NY, USA

terms of the embedded Neutrosophic SuperHyperGraph. If there's an embedded Neutrosophic SuperHyperGraph, then the Extreme quasi-SuperHyperNotions lead us to take the collection of all the Extreme quasi-R-SuperHyperConnectivitiess for all Extreme numbers less than its Extreme corresponded maximum number. The essence of the Extreme SuperHyperConnectivities ends up but this essence starts up in the terms of the Extreme quasi-R-SuperHyperConnectivities, again and more in the operations of collecting all the Extreme quasi-R-SuperHyperConnectivitiess acted on the all possible used formations of the Neutrosophic SuperHyperGraph to achieve one Extreme number. This Extreme number is

considered as the equivalence class for all corresponded quasi-R-SuperHyperConnectivitiess. Let  $z_{\text{Extreme Number}}$ ,  $S_{\text{Extreme SuperHyperSet}}$  and  $G_{\text{Extreme SuperHyperConnectivities}}$  be an Extreme number, an Extreme SuperHyperSet and an Extreme SuperHyperConnectivities. Then

$$\begin{split} & [z_{\text{Extreme Number}}]_{\text{Extreme Class}} = \{S_{\text{Extreme SuperHyperSet}} \mid \\ & S_{\text{Extreme SuperHyperSet}} = G_{\text{Extreme SuperHyperConnectivities}}, \\ & |S_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}} \\ & = z_{\text{Extreme Number}}\}. \end{split}$$

As its consequences, the formal definition of the Extreme SuperHyperConnectivities is re-formalized and redefined as follows.

 $G_{\text{Extreme SuperHyperConnectivities}} \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} =$ 

 $\cup_{z_{\text{Extreme Number}}} \{S_{\text{Extreme SuperHyperSet}} \mid$ 

 $S_{\text{Extreme SuperHyperSet}} = G_{\text{Extreme SuperHyperConnectivities}},$ 

 $|S_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}}$ 

 $= z_{\text{Extreme Number}} \}.$ 

To get more precise perceptions, the follow-up expressions propose another formal technical definition for the Extreme SuperHyperConnectivities.

$$\begin{split} G_{\text{Extreme SuperHyperConnectivities}} &= \\ \{S \in \cup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} = \\ \cup_{z_{\text{Extreme Number}}} \{S_{\text{Extreme SuperHyperSet}} \mid \\ S_{\text{Extreme SuperHyperSet}} = G_{\text{Extreme SuperHyperConnectivities}}, \\ |S_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}} \\ &= z_{\text{Extreme Number}} \mid \\ |S_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}} \\ &= \max_{\substack{[z_{\text{Extreme Number}}]_{\text{Extreme Class}}} z_{\text{Extreme Number}} \}. \end{split}$$

In more concise and more convenient ways, the modified definition for the Extreme SuperHyperConnectivities poses the upcoming expressions.

 $G_{\text{Extreme SuperHyperConnectivities}} = \{S \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}] \text{Extreme Class} \mid |S_{\text{Extreme SuperHyperSet}}| \text{Extreme Cardinality} = \max_{[z_{\text{Extreme Number}}] \text{Extreme Class}} z_{\text{Extreme Number}} \}.$ 

To translate the statement to this mathematical literature, the formulae will be revised.

 $G_{\text{Extreme SuperHyperConnectivities}} = \{S \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}] \text{Extreme Class} \mid |S_{\text{Extreme SuperHyperSet}}| \text{Extreme Cardinality} = \max_{\substack{z_{\text{Extreme Number}} \in \text{Class}}} z_{\text{Extreme Number}} \\ = \max \{|E| \mid E \in E_{ESHG:(V,E)}\}\}.$ 

And then,

 $G_{\text{Extreme SuperHyperConnectivities}} = \{S \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} \mid |S_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}} = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}.$ 

To get more visions in the closer look-up, there's an overall overlook.

 $G_{\text{Extreme SuperHyperConnectivities}} \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} = \bigcup_{z_{\text{Extreme Number}}} \{S_{\text{Extreme SuperHyperSet}} \mid S_{\text{Extreme SuperHyperSet}} = G_{\text{Extreme SuperHyperConnectivities}}, \\ |S_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}} = \max \{|E| \mid E \in E_{ESHG:(V,E)}\}\}.$ 

$$\begin{split} G_{\text{Extreme SuperHyperConnectivities}} &= \\ \{S \in \cup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} = \\ \cup_{z_{\text{Extreme Number}}} \{S_{\text{Extreme SuperHyperSet}} \mid \\ S_{\text{Extreme SuperHyperSet}} = G_{\text{Extreme SuperHyperConnectivities}}, \\ |S_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}} \\ &= z_{\text{Extreme Number}} \mid \\ |S_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}} \\ &= \max \{|E| \mid E \in E_{ESHG:(V,E)}\}\}. \end{split}$$

 $G_{\text{Extreme SuperHyperConnectivities}} = \{S \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}] \text{Extreme Class} \mid |S_{\text{Extreme SuperHyperSet}}| \text{Extreme Cardinality} = \max_{\substack{[z_{\text{Extreme Number}}] \text{Extreme Class}}} z_{\text{Extreme Number}} = \max \{|E| \mid E \in E_{ESHG:(V,E)}\}\}.$ 

 $G_{\text{Extreme SuperHyperConnectivities}} =$ 

Henry Garrett $\,\cdot\,$ Independent Researcher $\,\cdot\,$ Department of Mathematics $\,\cdot\,$ Dr<br/>HenryGarrett@gmail.com $\,\cdot\,$ Manhattan, NY, USA

 $\{S \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}] \text{Extreme Class} \mid |S_{\text{Extreme SuperHyperSet}}| \text{Extreme Cardinality}$ 

 $= \max \{ |E| \mid E \in E_{ESHG:(V,E)} \} \}.$ 

Now, the extension of these types of approaches is up. Since the new term, "Extreme SuperHyperNeighborhood", could be redefined as the collection of the Extreme SuperHyperVertices such that any amount of its Extreme SuperHyperVertices are incident to an Extreme SuperHyperEdge. It's, literarily, another name for "Extreme Quasi-SuperHyperConnectivities" but, precisely, it's the generalization of "Extreme Quasi-SuperHyperConnectivities" in a Neutrosophic SuperHyperConnectivities" happens "Extreme SuperHyperConnectivities" in a Neutrosophic SuperHyperGraph as initial framework and background but "Extreme SuperHyperGraph as initial framework and background since there are some ambiguities about the Extreme SuperHyperCardinality arise from it. To get orderly keywords, the terms, "Extreme SuperHyperNeighborhood", "Extreme Quasi-SuperHyperConnectivities", and "Extreme SuperHyperConnectivities" are up.

Thus, let  $z_{\text{Extreme Number}}$ ,  $N_{\text{Extreme SuperHyperNeighborhood}}$  and  $G_{\text{Extreme SuperHyperConnectivities}}$  be an Extreme number, an Extreme SuperHyperNeighborhood and an Extreme SuperHyperConnectivities and the new terms are up.

 $\begin{aligned} G_{\text{Extreme SuperHyperConnectivities}} &\in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} = \\ \bigcup_{z_{\text{Extreme Number}}} \{N_{\text{Extreme SuperHyperNeighborhood} \mid \\ |N_{\text{Extreme SuperHyperNeighborhood}|_{\text{Extreme Cardinality}} \\ &= \max_{[z_{\text{Extreme Number}}]_{\text{Extreme Class}}} z_{\text{Extreme Number}} \}. \\ G_{\text{Extreme SuperHyperConnectivities}} = \\ \{N_{\text{Extreme SuperHyperNeighborhood} \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} = \\ \bigcup_{z_{\text{Extreme Number}}} \{N_{\text{Extreme SuperHyperNeighborhood} \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} = \\ \bigcup_{z_{\text{Extreme SuperHyperSet}}} \{N_{\text{Extreme SuperHyperNeighborhood}} \mid \\ |N_{\text{Extreme SuperHyperNeighborhood}}|_{\text{Extreme Cardinality}} \\ &= z_{\text{Extreme Number}} \\ |N_{\text{Extreme SuperHyperNeighborhood}}|_{\text{Extreme Cardinality}} \\ &= \max_{[z_{\text{Extreme Number}}]_{\text{Extreme Class}}} z_{\text{Extreme Number}} \\ R_{\text{Extreme SuperHyperNeighborhood}}|_{\text{Extreme Number}} \\ \\ K_{\text{Extreme SuperHyperConnectivities}} \\ &= \{N_{\text{Extreme SuperHyperNeighborhood}} \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} \\ \\ K_{\text{Extreme SuperHyperNeighborhood}} \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} \\ \\ &= \{N_{\text{Extreme SuperHyperNeighborhood}} \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} \\ \\ \\ K_{\text{Extreme SuperHyperNeighborhood}} \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} \\ \\ \\ \\ \end{bmatrix} \\ \\ \end{bmatrix} \\ \end{bmatrix}$ 

 $= \max_{\substack{[z_{\text{Extreme Number}}]_{\text{Extreme Class}}}} z_{\text{Extreme Number}} \}.$ 

 $G_{\text{Extreme SuperHyperConnectivities}} =$ 

 $\{N_{\text{Extreme SuperHyperNeighborhood}} \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}}$ 

 $|N_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}} = \max_{\substack{[z_{\text{Extreme Number}}]_{\text{Extreme Class}}} z_{\text{Extreme Number}} \}.$ 

And with go back to initial structure,

 $G_{\text{Extreme SuperHyperConnectivities}} \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} = \bigcup_{z_{\text{Extreme Number}}} \{N_{\text{Extreme SuperHyperNeighborhood}} | \\ |N_{\text{Extreme SuperHyperNeighborhood}}|_{\text{Extreme Cardinality}} = \max \{|E| \mid E \in E_{ESHG:(V,E)}\}\}.$ 

 $G_{\text{Extreme SuperHyperConnectivities}} =$ 

 $\{N_{\text{Extreme SuperHyperNeighborhood}} \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} =$ 

 $\cup_{z_{\text{Extreme Number}}} \{ N_{\text{Extreme SuperHyperNeighborhood}} \mid$ 

 $|N_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}}$ 

 $= z_{\text{Extreme Number}}$ 

NExtreme SuperHyperNeighborhood Extreme Cardinality

 $= \max\left\{ |E| \mid E \in E_{ESHG:(V,E)} \right\} \right\}.$ 

 $G_{\text{Extreme SuperHyperConnectivities}} =$ 

 $\{N_{\text{Extreme SuperHyperNeighborhood}} \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}}$ 

 $|N_{\text{Extreme SuperHyperNeighborhood}}|_{\text{Extreme Cardinality}}$ 

 $= \max_{\substack{[z_{\text{Extreme Number}}]_{\text{Extreme Class}}}} z_{\text{Extreme Number}}$ 

 $= \max \{ |E| \mid E \in E_{ESHG;(V,E)} \} \}.$ 

$$\begin{split} G_{\text{Extreme SuperHyperConnectivities}} &= \\ \{N_{\text{Extreme SuperHyperNeighborhood}} \in \cup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} \mid \\ |N_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}} \\ &= \max \left\{ |E| \mid E \in E_{ESHG:(V,E)} \right\} \}. \end{split}$$

Thus, in a connected Neutrosophic SuperHyperGraph ESHG: (V, E). The all interior Extreme SuperHyperVertices belong to any Extreme quasi-R-SuperHyperConnectivities if for any of them, and any of other corresponded Extreme SuperHyperVertex, some interior Extreme SuperHyperVertices are mutually Extreme SuperHyperNeighbors with no Extreme exception at all minus all Extreme SuperHypeNeighbors to any amount of them.

To make sense with the precise words in the terms of "R-', the follow-up illustrations are coming up. The following Extreme SuperHyperSet of Extreme SuperHyperVertices is the simple Extreme type-SuperHyperSet of the Extreme R-SuperHyperConnectivities.

 $V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$ 

The Extreme SuperHyperSet of Extreme SuperHyperVertices,

 $V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$ 

Is the simple Extreme type-SuperHyperSet of the Extreme R-SuperHyperConnectivities. The Extreme SuperHyperSet of the Extreme SuperHyperVertices,

 $V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$ 

Is an **Extreme R-SuperHyperConnectivities** C(ESHG) for an Neutrosophic SuperHyperGraph ESHG: (V, E) is an Extreme type-SuperHyperSet with the maximum Extreme cardinality of an Extreme SuperHyperSet S of Extreme SuperHyperVertices such that there's no an Extreme SuperHyperEdge amid some Extreme SuperHyperVertices instead of all given by **Extreme SuperHyperConnectivities** is related to the Extreme SuperHyperSet of the Extreme SuperHyperVertices,

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

There's <u>not</u> only <u>one</u> Extreme SuperHyperVertex <u>inside</u> the intended Extreme SuperHyperSet. Thus the non-obvious Extreme SuperHyperConnectivities is up. The obvious simple Extreme type-SuperHyperSet called the Extreme SuperHyperConnectivities is an Extreme SuperHyperSet <u>includes</u> only <u>one</u> Extreme SuperHyperVertex. But the Extreme SuperHyperSet of Extreme SuperHyperVertices,

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

doesn't have less than two SuperHyperVertices <u>inside</u> the intended Extreme SuperHyperSet since they've come from at least so far an SuperHyperEdge. Thus the non-obvious simple Extreme type-SuperHyperSet of the Extreme R-SuperHyperConnectivities <u>is</u> up. To sum them up, the Extreme SuperHyperSet of Extreme SuperHyperVertices,

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

 $\underline{Is}$  the non-obvious simple Extreme type-SuperHyperSet of the Extreme R-SuperHyperConnectivities. Since the Extreme SuperHyperSet of the Extreme SuperHyperVertices,

$$(V \setminus V \setminus \{x, z\}) \cup \{xy\}$$

or

$$(V \setminus V \setminus \{x, z\}) \cup \{zy\}$$

is an Extreme R-SuperHyperConnectivities C(ESHG) for an Neutrosophic SuperHyperGraph ESHG : (V, E) is the Extreme SuperHyperSet S of Extreme SuperHyperVertices such that there's no an Extreme SuperHyperEdge for some Extreme SuperHyperConnectivities and it's an Extreme type-SuperHyperSet called the Extreme SuperHyperConnectivities and it's the maximum Extreme cardinality of an Extreme SuperHyperSet S of Extreme SuperHyperVertices such that there's no an Extreme SuperHyperSet S of Extreme SuperHyperVertices such that there's no an Extreme SuperHyperSet S of Extreme SuperHyperVertices instead of all given by that Extreme type-SuperHyperSet S of Extreme SuperHyperVertices instead of all given by that Extreme type-SuperHyperSet called the Extreme SuperHyperVertices. There isn't only less than two Extreme SuperHyperVertices instead the Extreme SuperHyperSet,

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

Thus the non-obvious Extreme R-SuperHyperConnectivities,

 $V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$ 

is up. The non-obvious simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities, not:

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$$

Is the Extreme SuperHyperSet, not:

------

 $V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$ 

does includes only less than two SuperHyperVertices in a connected Extreme SuperHyperGraph ESHG: (V, E) but it's impossible in the case, they've corresponded to an SuperHyperEdge. It's interesting to mention that the only non-obvious simple Extreme type-SuperHyperSet called the

# "Extreme R-SuperHyperConnectivities"

amid those obvious non-obvious simple Extreme type-SuperHyperSets called the

#### Extreme R-SuperHyperConnectivities,

is only and only

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

In a connected Neutrosophic SuperHyperGraph ESHG: (V, E) with a illustrated SuperHyperModel eling. It's also, not only an Extreme free-triangle embedded SuperHyperModel and an Extreme on-triangle embedded SuperHyperModel but also it's an Extreme stable embedded SuperHyperModel. But all only non-obvious simple Extreme type-SuperHyperSets of the Extreme R-SuperHyperConnectivities amid those obvious simple Extreme type-SuperHyperSets of the Extreme SuperHyperConnectivities, are

$$V \setminus V \setminus \left\{ a_E, b_E, c_E, \ldots \right\}_{E = \left\{ E \in E_{ESHG:(V,E)} \mid |E| = \max\left\{ |E| \mid E \in E_{ESHG:(V,E)} \right\} \right\}}.$$

In a connected Neutrosophic SuperHyperGraph ESHG : (V, E). To sum them up, assume a connected loopless Neutrosophic SuperHyperGraph ESHG : (V, E). Then in the worst case, literally,

$$V \setminus V \setminus \{a_E, b_E, c_E, \dots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

is an Extreme R-SuperHyperConnectivities. In other words, the least cardinality, the lower sharp bound for the cardinality, of an Extreme R-SuperHyperConnectivities is the cardinality of

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

To sum them up, in a connected Neutrosophic SuperHyperGraph ESHG : (V, E). The all interior Extreme SuperHyperVertices belong to any Extreme quasi-R-SuperHyperConnectivities if for any of

them, and any of other corresponded Extreme SuperHyperVertex, some interior Extreme SuperHyperVertices are mutually Extreme SuperHyperNeighbors with no Extreme exception at all minus all Extreme SuperHypeNeighbors to any amount of them.

Assume a connected Extreme SuperHyperGraph ESHG: (V, E). Let an Extreme SuperHyperEdge  $ESHE: E \in E_{ESHG;(V,E)}$  has some Extreme SuperHyperVertices r. Consider all Extreme numbers of those Extreme SuperHyperVertices from that Extreme SuperHyperEdge excluding excluding more than r distinct Extreme SuperHyperVertices, exclude to any given Extreme SuperHyperSet of the Extreme SuperHyperVertices. Consider there's an Extreme R-SuperHyperConnectivities with the least cardinality, the lower sharp Extreme bound for Extreme cardinality. Assume a connected Neutrosophic SuperHyperGraph ESHG : (V, E). The Extreme SuperHyperSet of the Extreme SuperHyperVertices  $V_{ESHE} \setminus \{z\}$  is an Extreme SuperHyperSet S of the Extreme SuperHyperVertices such that there's an Extreme SuperHyperEdge to have some Extreme SuperHyperVertices uniquely but it isn't an Extreme R-SuperHyperConnectivities. Since it doesn't have the maximum Extreme cardinality of an Extreme SuperHyperSet S of Extreme SuperHyper-Vertices such that there's an Extreme SuperHyperEdge to have some SuperHyperVertices uniquely. The Extreme SuperHyperSet of the Extreme SuperHyperVertices  $V_{ESHE} \cup \{z\}$  is the maximum Extreme cardinality of an Extreme SuperHyperSet S of Extreme SuperHyperVertices but it isn't an Extreme R-SuperHyperConnectivities. Since it **doesn't do** the Extreme procedure such that such that there's an Extreme SuperHyperEdge to have some Extreme SuperHyperVertices uniquely [there are at least one Extreme SuperHyperVertex outside implying there's, sometimes in the connected Neutrosophic SuperHyperGraph ESHG: (V, E), an Extreme SuperHyperVertex, titled its Extreme SuperHyperNeighbor, to that Extreme SuperHyperVertex in the Extreme SuperHyperSet S so as Sdoesn't do "the Extreme procedure".]. There's only **one** Extreme SuperHyperVertex **outside** the intended Extreme SuperHyperSet,  $V_{ESHE} \cup \{z\}$ , in the terms of Extreme SuperHyperNeighborhood. Thus the obvious Extreme R-SuperHyperConnectivities,  $V_{ESHE}$  is up. The obvious simple Extreme type-SuperHyperSet of the Extreme R-SuperHyperConnectivities,  $V_{ESHE}$ , is an Extreme SuperHyperSet, V<sub>ESHE</sub>, includes only all Extreme SuperHyperVertices does forms any kind of Extreme pairs are titled Extreme SuperHyperNeighbors in a connected Neutrosophic SuperHyperGraph ESHG: (V, E). Since the Extreme SuperHyperSet of the Extreme SuperHyperVertices  $V_{ESHE}$ , is the maximum Extreme SuperHyperCardinality of an Extreme SuperHyperSet S of Extreme SuperHyperVertices such that there's an Extreme SuperHyperEdge to have some Extreme SuperHyperVertices uniquely. Thus, in a connected Neutrosophic SuperHyperGraph ESHG: (V, E). Any Extreme R-SuperHyperConnectivities only contains all interior Extreme SuperHyperVertices and all exterior Extreme SuperHyperVertices from the unique Extreme SuperHyperEdge where there's any of them has all possible Extreme SuperHyperNeighbors in and there's all Extreme SuperHyperNeighborhoods in with no exception minus all Extreme SuperHypeNeighbors to some of them not all of them but everything is possible about Extreme SuperHyperNeighborhoods and Extreme SuperHyperNeighbors out.

The SuperHyperNotion, namely, SuperHyperConnectivities, is up. There's neither empty SuperHyperEdge nor loop SuperHyperEdge. The following Extreme SuperHyperSet of Extreme SuperHyperEdges[SuperHyperVertices] is the simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities. The Extreme SuperHyperSet of Extreme SuperHyperVertices],

$$\begin{split} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} \\ &= \{E_{2i-1}\}_{i=1}^{\lfloor \frac{|E_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}|}{2} \rfloor}. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} \end{split}$$

 $= 2z^{\lfloor \frac{|E_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}|}{2} \rfloor}.$   $\mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivities} = \{V_i\}_{i=1}^s, \{V_j\}_{j=1}^t.$  $\mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} = az^s + bz^t.$ 

is the simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities. The Extreme SuperHyperSet of the Extreme SuperHyperEdges[SuperHyperVertices],

$$\begin{split} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} \\ &= \{E_{2i-1}\}_{i=1}^{\lfloor \frac{|E_{ESHG}:(V,E)|Extreme Cardinality}{2} \rfloor}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} \\ &= 2z^{\lfloor \frac{|E_{ESHG}:(V,E)|Extreme Cardinality}{2} \rfloor}.\\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivities} = \{V_i\}_{i=1}^{s}, \{V_j\}_{j=1}^{t}.\\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} = az^s + bz^t. \end{split}$$

Is an **Extreme SuperHyperConnectivities** C(ESHG) for an Neutrosophic SuperHyperGraph  $ESH\overline{G}: (V, E)$  is an Extreme type-SuperHyperSet with the maximum Extreme cardinality of an Extreme SuperHyperSet S of Extreme SuperHyperEdges[SuperHyperVertices] such that there's no Extreme SuperHyperVertex of an Extreme SuperHyperEdge is common and there's an Extreme SuperHyperEdge for all Extreme SuperHyperVertices. There are <u>not</u> only <u>two</u> Extreme SuperHyperVertices inside the intended Extreme SuperHyperSet. Thus the non-obvious Extreme SuperHyperConnectivities is up. The obvious simple Extreme type-SuperHyperSet called the Extreme SuperHyperConnectivities is an Extreme SuperHyperSet includes only <u>two</u> Extreme SuperHyperVertices. But the Extreme SuperHyperSet of the Extreme SuperHyperVertices]

$$\begin{split} \mathcal{C}(NSHG) & \textit{ExtremeQuasi-SuperHyperConnectivities} \\ &= \{E_{2i-1}\}_{i=1}^{\lfloor \frac{|E_{ESHG}:(V,E)| \frac{|E_{XTREME} Cardinality|}{2} \rfloor}{2}}.\\ \mathcal{C}(NSHG) & \textit{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} \\ &= 2z^{\lfloor \frac{|E_{ESHG}:(V,E)| \frac{|E_{XTREME} Cardinality|}{2} \rfloor}{2}}.\\ \mathcal{C}(NSHG) & \textit{ExtremeR-Quasi-SuperHyperConnectivities} = \{V_i\}_{i=1}^{s}, \{V_j\}_{j=1}^{t}.\\ \mathcal{C}(NSHG) & \textit{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} = az^s + bz^t. \end{split}$$

Doesn't have less than three SuperHyperVertices <u>inside</u> the intended Extreme SuperHyperSet. Thus the non-obvious simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities <u>is</u> up. To sum them up, the Extreme SuperHyperSet of the Extreme SuperHyperEdges[SuperHyperVertices],

$$\begin{split} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} \\ &= \{E_{2i-1}\}_{i=1}^{\lfloor \frac{|E_{ESHG}:(V,E)|Extreme Cardinality}{2} \rfloor}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} \\ &= 2z^{\lfloor \frac{|E_{ESHG}:(V,E)|Extreme Cardinality}{2} \rfloor}.\\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivities} = \{V_i\}_{i=1}^{s}, \{V_j\}_{j=1}^{t}. \end{split}$$

 $\mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} = az^{s} + bz^{t}.$ 

<u>Is</u> the non-obvious simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities. Since the Extreme SuperHyperSet of the Extreme SuperHyperEdges[SuperHyperVertices],

$$\begin{split} \mathcal{C}(NSHG) & \textit{ExtremeQuasi-SuperHyperConnectivities} \\ &= \{E_{2i-1}\}_{i=1}^{\lfloor \frac{|E_{ESHG}:(V,E)|Extreme Cardinality}{2} \rfloor}.\\ \mathcal{C}(NSHG) & \textit{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} \\ &= 2z^{\lfloor \frac{|E_{ESHG}:(V,E)|Extreme Cardinality}{2} \rfloor}.\\ \mathcal{C}(NSHG) & \textit{ExtremeR-Quasi-SuperHyperConnectivities} \\ &= \{V_i\}_{i=1}^{s}, \{V_j\}_{j=1}^{t}.\\ \mathcal{C}(NSHG) & \textit{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} \\ &= az^{s} + bz^{t}. \end{split}$$

Is an Extreme SuperHyperConnectivities C(ESHG) for an Neutrosophic SuperHyperGraph ESHG : (V, E) is the Extreme SuperHyperSet S of Extreme SuperHyperVertices such that there's no an Extreme SuperHyperEdge for some Extreme SuperHyperVertices given by that Extreme type-SuperHyperSet called the Extreme SuperHyperConnectivities <u>and</u> it's an Extreme <u>SuperHyperConnectivities</u>. Since it's <u>the maximum Extreme cardinality</u> of an Extreme SuperHyperSet S of Extreme SuperHyperVertices] such that there's no Extreme SuperHyperVertex of an Extreme SuperHyperVertices] such that there's an Extreme SuperHyperEdge for all Extreme SuperHyperVertices. There aren't only less than three Extreme SuperHyperVertices <u>inside</u> the intended Extreme SuperHyperSet,

$$\begin{split} \mathcal{C}(NSHG) & \textit{ExtremeQuasi-SuperHyperConnectivities} \\ &= \{E_{2i-1}\}_{i=1}^{\lfloor \frac{|E_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}|}{2} \rfloor. \\ \mathcal{C}(NSHG) & \textit{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} \\ &= 2z^{\lfloor \frac{|E_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}|}{2} \rfloor}. \\ \mathcal{C}(NSHG) & \textit{ExtremeR-Quasi-SuperHyperConnectivities} = \{V_i\}_{i=1}^{s}, \{V_j\}_{j=1}^{t}. \\ \mathcal{C}(NSHG) & \textit{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} = az^s + bz^t. \end{split}$$

Thus the non-obvious Extreme SuperHyperConnectivities,

$$\begin{split} \mathcal{C}(NSHG) & \textit{ExtremeQuasi-SuperHyperConnectivities} \\ &= \{E_{2i-1}\}_{i=1}^{\lfloor \frac{|E_{ESHG}:(V,E)| \text{Extreme Cardinality}}{2} \rfloor}.\\ \mathcal{C}(NSHG) & \textit{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} \\ &= 2z^{\lfloor \frac{|E_{ESHG}:(V,E)| \text{Extreme Cardinality}}{2} \rfloor}.\\ \mathcal{C}(NSHG) & \textit{ExtremeR-Quasi-SuperHyperConnectivities} = \{V_i\}_{i=1}^{s}, \{V_j\}_{j=1}^{t}.\\ \mathcal{C}(NSHG) & \textit{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} = az^s + bz^t. \end{split}$$

Is up. The obvious simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities,

not:

$$\begin{split} \mathcal{C}(NSHG) & \textit{ExtremeQuasi-SuperHyperConnectivities} \\ &= \{E_{2i-1}\}_{i=1}^{\lfloor \frac{|E_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}|}{2}}.\\ \mathcal{C}(NSHG) & \textit{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} \\ &= 2z^{\lfloor \frac{|E_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}|}{2}}.\\ \mathcal{C}(NSHG) & \textit{ExtremeR-Quasi-SuperHyperConnectivities} \\ &= \{V_i\}_{i=1}^{s}, \{V_j\}_{j=1}^{t}.\\ \mathcal{C}(NSHG) & \textit{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} \\ &= az^s + bz^t. \end{split}$$

Is the Extreme SuperHyperSet, not:

$$\begin{split} \mathcal{C}(NSHG) & \textit{ExtremeQuasi-SuperHyperConnectivities} \\ &= \{E_{2i-1}\}_{i=1}^{\lfloor \frac{|E_{ESHG}:(V,E)| \text{Extreme Cardinality}|}{2} \rfloor}.\\ &\mathcal{C}(NSHG) \text{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} \\ &= 2z^{\lfloor \frac{|E_{ESHG}:(V,E)| \text{Extreme Cardinality}|}{2} \rfloor}.\\ &\mathcal{C}(NSHG) \text{ExtremeR-Quasi-SuperHyperConnectivities} = \{V_i\}_{i=1}^{s}, \{V_j\}_{j=1}^{t}.\\ &\mathcal{C}(NSHG) \text{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} = az^s + bz^t. \end{split}$$

Does includes only less than three SuperHyperVertices in a connected Extreme SuperHyperGraph ESHG: (V, E). It's interesting to mention that the only non-obvious simple Extreme type-SuperHyperSet called the

## "Extreme SuperHyperConnectivities"

amid those obvious[non-obvious] simple Extreme type-SuperHyperSets called the

#### Extreme SuperHyperConnectivities,

is only and only

$$\begin{split} \mathcal{C}(NSHG) & \textit{ExtremeQuasi-SuperHyperConnectivities} \\ &= \{E_{2i-1}\}_{i=1}^{\lfloor \frac{|E_{ESHG}:(V,E)| \text{Extreme Cardinality}}{2} \rfloor}.\\ \mathcal{C}(NSHG) & \textit{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} \\ &= 2z^{\lfloor \frac{|E_{ESHG}:(V,E)| \text{Extreme Cardinality}}{2} \rfloor}.\\ \mathcal{C}(NSHG) & \textit{ExtremeR-Quasi-SuperHyperConnectivities} \\ &= \{V_i\}_{i=1}^{s}, \{V_j\}_{j=1}^{t}.\\ \mathcal{C}(NSHG) & \textit{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} \\ &= az^{s} + bz^{t}. \end{split}$$

In a connected Neutrosophic SuperHyperGraph ESHG: (V, E).

**Example 9.0.5.** In the Figure (9.2), the connected Extreme SuperHyperConnectivities NSHC: (V, E), is highlighted and featured. The obtained Extreme SuperHyperSet, in the Extreme SuperHyperModel (9.2), is the Extreme SuperHyperConnectivities.

Henry Garrett  $\,\cdot\,$  Independent Researcher  $\,\cdot\,$  Department of Mathematics  $\,\cdot\,$  DrHenryGarrett@gmail.com  $\,\cdot\,$  Manhattan, NY, USA



Figure 9.2: an Extreme SuperHyperConnectivities Associated to the Extreme Notions of Extreme SuperHyperConnectivities in the Extreme Example (9.0.5)

**Proposition 9.0.6.** Assume a connected Extreme SuperHyperStar ESHS : (V, E). Then an Extreme quasi-R-SuperHyperConnectivities is an Extreme SuperHyperSet of the interior Extreme SuperHyper-Vertices, corresponded to an Extreme SuperHyperEdge. an Extreme quasi-R-SuperHyperConnectivities has the Extreme number of the Extreme cardinality of the one Extreme SuperHyperEdge. Also,

$$\begin{split} \mathcal{C}(NSHG)_{Extreme}Quasi-SuperHyperConnectivities \\ &= \{E \in E_{ESHG:(V,E)}\}.\\ \mathcal{C}(NSHG)_{Extreme}Quasi-SuperHyperConnectivitiesSuperHyperPolynomial \\ &= \sum_{|E_{ESHG:(V,E)}|Extreme Cardinality}} z^{|E|Extreme Cardinality | E:\in E_{ESHG:(V,E)}}.\\ \mathcal{C}(NSHG)_{Extreme R-Quasi-SuperHyperConnectivities} = \{V_i\}_{i=1}^{s}, \{V_j\}_{j=1}^{t}, \dots,\\ \mathcal{C}(NSHG)_{Extreme R-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} = z^s + z^t +, \dots. \end{split}$$

*Proof.* Assume a connected loopless Neutrosophic SuperHyperGraph ESHG: (V, E). The SuperHyperSet of the SuperHyperVertices  $V \setminus V \setminus \{z\}$  isn't a quasi-R-SuperHyperConnectivities since neither amount of Extreme SuperHyperEdges nor amount of SuperHyperVertices where amount refers to the Extreme number of SuperHyperVertices(-/SuperHyperEdges) more than one to form

any kind of SuperHyperEdges or any number of SuperHyperEdges. Let us consider the Extreme SuperHyperSet

$$V \setminus V \setminus \{a_E, b_E, c_E, \dots, a_{E'}, b_{E'}, c_{E'}, \dots\}_{E, E' = \{E \in E_{ESHG}(V, E) \mid |E| = \max\{|E| \mid E \in E_{ESHG}(V, E)\}\}}$$

This Extreme SuperHyperSet of the Extreme SuperHyperVertices has the eligibilities to propose property such that there's no Extreme SuperHyperVertex of an Extreme SuperHyperEdge is common and there's an Extreme SuperHyperEdge for all Extreme SuperHyperVertices but the maximum Extreme cardinality indicates that these Extreme type-SuperHyperSets couldn't give us the Extreme lower bound in the term of Extreme sharpness. In other words, the Extreme SuperHyperSet

$$V \setminus V \setminus \{a_E, b_E, c_E, \dots, a_{E'}, b_{E'}, c_{E'}, \dots\}_{E, E'} = \{E \in E_{ESHG;(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG;(V,E)}\}\}$$

of the Extreme SuperHyperVertices implies at least on-quasi-triangle style is up but sometimes the Extreme SuperHyperSet

$$V \setminus V \setminus \{a_E, b_E, c_E, \dots, a_{E'}, b_{E'}, c_{E'}, \dots\}_{E, E' = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

of the Extreme SuperHyperVertices is free-quasi-triangle and it doesn't make a contradiction to the supposition on the connected loopless Neutrosophic SuperHyperGraph ESHG: (V, E). Thus the minimum case never happens in the generality of the connected loopless Neutrosophic SuperHyperGraphs. Thus if we assume in the worst case, literally,

$$V \setminus V \setminus \{a_E, b_E, c_E, \dots\}_{E=\{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

**TT**) **TT**) (

Is a quasi-R-SuperHyperConnectivities. In other words, the least cardinality, the lower sharp bound for the cardinality, of a quasi-R-SuperHyperConnectivities is the cardinality of

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

Then we've lost some connected loopless Extreme SuperHyperClasses of the connected loopless Neutrosophic SuperHyperGraphs titled free-triangle, on-triangle, and their quasi-types but the SuperHyperStable is only up in this quasi-R-SuperHyperConnectivities. It's the contradiction to that fact on the generality. There are some counterexamples to deny this statement. One of them comes from the setting of the graph titled path and cycle as the counterexamples-classes or reversely direction star as the examples-classes, are well-known classes in that setting and they could be considered as the examples-classes and counterexamples-classes for the tight bound of

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

Let  $V \setminus V \setminus \{z\}$  in mind. There's no necessity on the SuperHyperEdge since we need at least two SuperHyperVertices to form a SuperHyperEdge. It doesn't withdraw the principles of the main definition since there's no condition to be satisfied but the condition is on the existence of the SuperHyperEdge instead of acting on the SuperHyperVertices. In other words, if there's a SuperHyperEdge, then the Extreme SuperHyperSet has the necessary condition for the intended definition to be applied. Thus the  $V \setminus V \setminus \{z\}$  is withdrawn not by the conditions of the main definition but by the necessity of the pre-condition on the usage of the main definition.

The Extreme structure of the Extreme R-SuperHyperConnectivities decorates the Extreme

SuperHyperVertices don't have received any Extreme connections so as this Extreme style implies different versions of Extreme SuperHyperEdges with the maximum Extreme cardinality in the terms of Extreme SuperHyperVertices are spotlight. The lower Extreme bound is to have the maximum Extreme groups of Extreme SuperHyperVertices have perfect Extreme connections inside each of SuperHyperEdges and the outside of this Extreme SuperHyperSet doesn't matter but regarding the connectedness of the used Neutrosophic SuperHyperGraph arising from its Extreme properties taken from the fact that it's simple. If there's no more than one Extreme SuperHyperVertex in the targeted Extreme SuperHyperSet, then there's no Extreme connection. Furthermore, the Extreme existence of one Extreme SuperHyperVertex has no Extreme effect to talk about the Extreme R-SuperHyperConnectivities. Since at least two Extreme SuperHyperVertices involve to make a title in the Extreme background of the Neutrosophic SuperHyperGraph. The Neutrosophic SuperHyperGraph is obvious if it has no Extreme SuperHyperEdge but at least two Extreme SuperHyperVertices make the Extreme version of Extreme SuperHyperEdge. Thus in the Extreme setting of non-obvious Neutrosophic SuperHyperGraph, there are at least one Extreme SuperHyperEdge. It's necessary to mention that the word "Simple" is used as Extreme adjective for the initial Neutrosophic SuperHyperGraph, induces there's no Extreme appearance of the loop Extreme version of the Extreme SuperHyperEdge and this Neutrosophic SuperHyperGraph is said to be loopless. The Extreme adjective "loop" on the basic Extreme framework engages one Extreme SuperHyperVertex but it never happens in this Extreme setting. With these Extreme bases, on a Neutrosophic SuperHyperGraph, there's at least one Extreme SuperHyperEdge thus there's at least an Extreme R-SuperHyperConnectivities has the Extreme cardinality of an Extreme SuperHyperEdge. Thus, an Extreme R-SuperHyperConnectivities has the Extreme cardinality at least an Extreme SuperHyperEdge. Assume an Extreme SuperHyperSet  $V \setminus V \setminus \{z\}$ . This Extreme SuperHyperSet isn't an Extreme R-SuperHyperConnectivities since either the Neutrosophic SuperHyperGraph is an obvious Extreme SuperHyperModel thus it never happens since there's no Extreme usage of this Extreme framework and even more there's no Extreme connection inside or the Neutrosophic SuperHyperGraph isn't obvious and as its consequences, there's an Extreme contradiction with the term "Extreme R-SuperHyperConnectivities" since the maximum Extreme cardinality never happens for this Extreme style of the Extreme SuperHyperSet and beyond that there's no Extreme connection inside as mentioned in first Extreme case in the forms of drawback for this selected Extreme SuperHyperSet. Let

$$V \setminus V \setminus \{a_E, b_E, c_E, \dots, a_{E'}, b_{E'}, c_{E'}, \dots\}_{E, E'} = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}$$

Comes up. This Extreme case implies having the Extreme style of on-quasi-triangle Extreme style on the every Extreme elements of this Extreme SuperHyperSet. Precisely, the Extreme R-SuperHyperConnectivities is the Extreme SuperHyperSet of the Extreme SuperHyperVertices such that some Extreme amount of the Extreme SuperHyperVertices are on-quasi-triangle Extreme style. The Extreme cardinality of the v SuperHypeSet

$$V \setminus V \setminus \{a_E, b_E, c_E, \dots, a_{E'}, b_{E'}, c_{E'}, \dots\}_{E, E' = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

Is the maximum in comparison to the Extreme SuperHyperSet

$$V \setminus V \setminus \{a_E, b_E, c_E, \dots\}_{E=\{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

But the lower Extreme bound is up. Thus the minimum Extreme cardinality of the maximum Extreme cardinality ends up the Extreme discussion. The first Extreme term refers to the

Extreme setting of the Neutrosophic SuperHyperGraph but this key point is enough since there's an Extreme SuperHyperClass of a Neutrosophic SuperHyperGraph has no on-quasi-triangle Extreme style amid some amount of its Extreme SuperHyperVertices. This Extreme setting of the Extreme SuperHyperModel proposes an Extreme SuperHyperSet has only some amount Extreme SuperHyperVertices from one Extreme SuperHyperEdge such that there's no Extreme amount of Extreme SuperHyperEdges more than one involving these some amount of these Extreme SuperHyperVertices. The Extreme cardinality of this Extreme SuperHyperSet is the maximum and the Extreme case is occurred in the minimum Extreme situation. To sum them up, the Extreme SuperHyperSet

 $V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$ 

Has the maximum Extreme cardinality such that

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

Contains some Extreme SuperHyperVertices such that there's distinct-covers-order-amount Extreme SuperHyperEdges for amount of Extreme SuperHyperVertices taken from the Extreme SuperHyperSet

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

It means that the Extreme SuperHyperSet of the Extreme SuperHyperVertices

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

Is an Extreme R-SuperHyperConnectivities for the Neutrosophic SuperHyperGraph as used Extreme background in the Extreme terms of worst Extreme case and the common theme of the lower Extreme bound occurred in the specific Extreme SuperHyperClasses of the Neutrosophic SuperHyperGraphs which are Extreme free-quasi-triangle.

Assume an Extreme SuperHyperEdge  $E \in E_{ESHG:(V,E)}$  has z Extreme number of the Extreme SuperHyperVertices. Then every Extreme SuperHyperVertex has at least no Extreme SuperHyperEdge with others in common. Thus those Extreme SuperHyperVertices have the eligibles to be contained in an Extreme R-SuperHyperConnectivities. Those Extreme SuperHyperVertices are potentially included in an Extreme style-R-SuperHyperConnectivities. Formally, consider

$$V \setminus (V \setminus \{a_E, b_E, c_E, \dots, z_E\}).$$

Are the Extreme SuperHyperVertices of an Extreme SuperHyperEdge  $E \in E_{ESHG:(V,E)}$ . Thus

$$Z_i \sim Z_j, \ i \neq j, \ i, j = 1, 2, \dots, z.$$

where the  $\sim$  isn't an equivalence relation but only the symmetric relation on the Extreme SuperHyperVertices of the Neutrosophic SuperHyperGraph. The formal definition is as follows.

$$Z_i \sim Z_j, \ i \neq j, \ i, j = 1, 2, \dots, z$$

if and only if  $Z_i$  and  $Z_j$  are the Extreme SuperHyperVertices and there's only and only one Extreme SuperHyperEdge  $E \in E_{ESHG:(V,E)}$  between the Extreme SuperHyperVertices  $Z_i$  and  $Z_j$ .

The other definition for the Extreme SuperHyperEdge  $E \in E_{ESHG:(V,E)}$  in the terms of Extreme R-SuperHyperConnectivities is

$$\{a_E, b_E, c_E, \ldots, z_E\}.$$

This definition coincides with the definition of the Extreme R-SuperHyperConnectivities but with slightly differences in the maximum Extreme cardinality amid those Extreme type-SuperHyperSets of the Extreme SuperHyperVertices. Thus the Extreme SuperHyperSet of the Extreme SuperHyperVertices,

$$\max |\{Z_1, Z_2, \dots, Z_z \mid Z_i \sim Z_j, i \neq j, i, j = 1, 2, \dots, z\}|_{\text{Extreme cardinality}},$$

and

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E \in \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

is formalized with mathematical literatures on the Extreme R-SuperHyperConnectivities. Let  $Z_i \stackrel{E}{\sim} Z_j$ , be defined as  $Z_i$  and  $Z_j$  are the Extreme SuperHyperVertices belong to the Extreme SuperHyperEdge  $E \in E_{ESHG:(V,E)}$ . Thus,

$$E = \{Z_1, Z_2, \dots, Z_z \mid Z_i \stackrel{E}{\sim} Z_j, \ i \neq j, \ i, j = 1, 2, \dots, z\}.$$

Or

 $\{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$ 

But with the slightly differences,

Extreme R-SuperHyperConnectivities =

$$\{Z_1, Z_2, \dots, Z_z \mid \forall i \neq j, \ i, j = 1, 2, \dots, z, \ \exists E_x, \ Z_i \stackrel{E_x}{\sim} Z_j, \}.$$

Extreme R-SuperHyperConnectivities =  $V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E=\{E \in E_{ESHG:(V,E)} \mid |E|=\max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$ 

Thus  $E \in E_{ESHG:(V,E)}$  is an Extreme quasi-R-SuperHyperConnectivities where  $E \in E_{ESHG:(V,E)}$ is fixed that means  $E_x = E \in E_{ESHG:(V,E)}$ . for all Extreme intended SuperHyperVertices but in an Extreme SuperHyperConnectivities,  $E_x = E \in E_{ESHG:(V,E)}$  could be different and it's not unique. To sum them up, in a connected Extreme SuperHyperGraph ESHG : (V, E). If an Extreme SuperHyperEdge  $E \in E_{ESHG:(V,E)}$  has z Extreme SuperHyperVertices, then the Extreme cardinality of the Extreme R-SuperHyperConnectivities is at least

$$V \setminus (V \setminus \{a_E, b_E, c_E, \dots, z_E\}).$$

It's straightforward that the Extreme cardinality of the Extreme R-SuperHyperConnectivities is at least the maximum Extreme number of Extreme SuperHyperVertices of the Extreme SuperHyperEdges with the maximum number of the Extreme SuperHyperEdges. In other words, the maximum number of the Extreme SuperHyperEdges contains the maximum Extreme number of Extreme SuperHyperVertices are renamed to Extreme SuperHyperConnectivities in some cases but the maximum number of the Extreme SuperHyperEdge with the maximum Extreme number of Extreme SuperHyperVertices, has the Extreme SuperHyperVertices are contained in an Extreme

## R-SuperHyperConnectivities.

The obvious SuperHyperGraph has no Extreme SuperHyperEdges. But the non-obvious Extreme SuperHyperModel is up. The quasi-SuperHyperModel addresses some issues about the Extreme optimal SuperHyperObject. It specially delivers some remarks on the Extreme SuperHyperSet of the Extreme SuperHyperVertices such that there's distinct amount of Extreme SuperHyperEdges for distinct amount of Extreme SuperHyperVertices up to all taken from that Extreme SuperHyperSet of the Extreme SuperHyperVertices but this Extreme SuperHyperSet of the Extreme SuperHyperVertices is either has the maximum Extreme SuperHyperCardinality or it doesn't have maximum Extreme SuperHyperCardinality. In a non-obvious SuperHyperModel, there's at least one Extreme SuperHyperEdge containing at least all Extreme SuperHyperVertices. Thus it forms an Extreme quasi-R-SuperHyperConnectivities where the Extreme completion of the Extreme incidence is up in that. Thus it's, literarily, an Extreme embedded R-SuperHyperConnectivities. The SuperHyperNotions of embedded SuperHyperSet and quasi-SuperHyperSet coincide. In the original setting, these types of SuperHyperSets only don't satisfy on the maximum SuperHyperCardinality. Thus the embedded setting is elected such that those SuperHyperSets have the maximum Extreme SuperHyperCardinality and they're Extreme SuperHyperOptimal. The less than two distinct types of Extreme SuperHyperVertices are included in the minimum Extreme style of the embedded Extreme R-SuperHyperConnectivities. The interior types of the Extreme SuperHyperVertices are deciders. Since the Extreme number of SuperHyperNeighbors are only affected by the interior Extreme SuperHyperVertices. The common connections, more precise and more formal, the perfect unique connections inside the Extreme SuperHyperSet for any distinct types of Extreme SuperHyperVertices pose the Extreme R-SuperHyperConnectivities. Thus Extreme exterior SuperHyperVertices could be used only in one Extreme SuperHyperEdge and in Extreme SuperHyperRelation with the interior Extreme SuperHyperVertices in that Extreme SuperHyperEdge. In the embedded Extreme SuperHyperConnectivities, there's the usage of exterior Extreme SuperHyperVertices since they've more connections inside more than outside. Thus the title "exterior" is more relevant than the title "interior". One Extreme SuperHyperVertex has no connection, inside. Thus, the Extreme SuperHyperSet of the Extreme SuperHyperVertices with one SuperHyperElement has been ignored in the exploring to lead on the optimal case implying the Extreme R-SuperHyperConnectivities. The Extreme R-SuperHyperConnectivities with the exclusion of the exclusion of all Extreme SuperHyperVertices in one Extreme SuperHyperEdge and with other terms, the Extreme R-SuperHyperConnectivities with the inclusion of all Extreme SuperHyperVertices in one Extreme SuperHyperEdge, is an Extreme quasi-R-SuperHyperConnectivities. To sum them up, in a connected non-obvious Extreme SuperHyperGraph ESHG: (V, E). There's only one Extreme SuperHyperEdge  $E \in E_{ESHG:(V,E)}$  has only the maximum possibilities of the distinct interior Extreme SuperHyperVertices inside of any given Extreme quasi-R-SuperHyperConnectivities minus all Extreme SuperHypeNeighbor to some of them but not all of them. In other words, there's only an unique Extreme SuperHyperEdge  $E \in E_{ESHG:(V,E)}$  has only two distinct Extreme SuperHyperVertices in an Extreme quasi-R-SuperHyperConnectivities, minus all Extreme SuperHypeNeighbor to some of them but not all of them.

The main definition of the Extreme R-SuperHyperConnectivities has two titles. an Extreme quasi-R-SuperHyperConnectivities and its corresponded quasi-maximum Extreme R-SuperHyperCardinality are two titles in the terms of quasi-R-styles. For any Extreme number, there's an Extreme quasi-R-SuperHyperConnectivities with that quasi-maximum Extreme SuperHyperCardinality in the terms of the embedded Neutrosophic SuperHyperGraph. If there's an embedded Neutrosophic SuperHyperConsolid us to take the collection of

Henry Garrett  $\,\cdot\,$  Independent Researcher  $\,\cdot\,$  Department of Mathematics  $\,\cdot\,$  DrHenryGarrett@gmail.com  $\,\cdot\,$  Manhattan, NY, USA

all the Extreme quasi-R-SuperHyperConnectivitiess for all Extreme numbers less than its Extreme corresponded maximum number. The essence of the Extreme SuperHyperConnectivities ends up but this essence starts up in the terms of the Extreme quasi-R-SuperHyperConnectivities, again and more in the operations of collecting all the Extreme quasi-R-SuperHyperConnectivitiess acted on the all possible used formations of the Neutrosophic SuperHyperGraph to achieve one Extreme number. This Extreme number is

considered as the equivalence class for all corresponded quasi-R-SuperHyperConnectivitiess. Let  $z_{\text{Extreme Number}}, S_{\text{Extreme SuperHyperSet}}$  and  $G_{\text{Extreme SuperHyperConnectivities}}$  be an Extreme number, an Extreme SuperHyperSet and an Extreme SuperHyperConnectivities. Then

 $[z_{\text{Extreme Number}}]_{\text{Extreme Class}} = \{S_{\text{Extreme SuperHyperSet}} \mid S_{\text{Extreme SuperHyperSet}} = G_{\text{Extreme SuperHyperConnectivities}}, \\ |S_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}} = z_{\text{Extreme Number}}\}.$ 

As its consequences, the formal definition of the Extreme SuperHyperConnectivities is re-formalized and redefined as follows.

$$\begin{split} G_{\text{Extreme SuperHyperConnectivities}} &\in \cup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} = \\ &\cup_{z_{\text{Extreme Number}}} \{S_{\text{Extreme SuperHyperSet}} \mid \\ S_{\text{Extreme SuperHyperSet}} &= G_{\text{Extreme SuperHyperConnectivities}}, \\ &|S_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}} \\ &= z_{\text{Extreme Number}} \}. \end{split}$$

To get more precise perceptions, the follow-up expressions propose another formal technical definition for the Extreme SuperHyperConnectivities.

$$\begin{split} G_{\text{Extreme SuperHyperConnectivities}} &= \\ \{S \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} = \\ \bigcup_{z_{\text{Extreme Number}}} \{S_{\text{Extreme SuperHyperSet}} \mid \\ S_{\text{Extreme SuperHyperSet}} = G_{\text{Extreme SuperHyperConnectivities}}, \\ |S_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}} \\ &= z_{\text{Extreme Number}} \mid \\ |S_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}} \\ &= \max_{[z_{\text{Extreme Number}}]_{\text{Extreme Class}}} z_{\text{Extreme Number}} \}. \end{split}$$

In more concise and more convenient ways, the modified definition for the Extreme SuperHyperConnectivities poses the upcoming expressions.

 $G_{\text{Extreme SuperHyperConnectivities}} = \{S \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}] \text{Extreme Class} \mid |S_{\text{Extreme SuperHyperSet}}| \text{Extreme Cardinality} = \max_{[z_{\text{Extreme Number}}] \text{Extreme Class}} z_{\text{Extreme Number}} \}.$ 

To translate the statement to this mathematical literature, the formulae will be revised.

 $G_{\text{Extreme SuperHyperConnectivities}} = \{S \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}] \text{Extreme Class} \mid |S_{\text{Extreme SuperHyperSet}}| \text{Extreme Cardinality} = \max_{\substack{z_{\text{Extreme Number}} \in \text{Class}}} z_{\text{Extreme Number}} \\ = \max \{|E| \mid E \in E_{ESHG:(V,E)}\}\}.$ 

And then,

 $G_{\text{Extreme SuperHyperConnectivities}} = \{S \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} \mid |S_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}} = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}.$ 

To get more visions in the closer look-up, there's an overall overlook.

 $G_{\text{Extreme SuperHyperConnectivities}} \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} = \bigcup_{z_{\text{Extreme Number}}} \{S_{\text{Extreme SuperHyperSet}} \mid S_{\text{Extreme SuperHyperSet}} = G_{\text{Extreme SuperHyperConnectivities}}, \\ |S_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}} = \max \{|E| \mid E \in E_{ESHG:(V,E)}\}\}.$ 

$$\begin{split} G_{\text{Extreme SuperHyperConnectivities}} &= \\ \{S \in \cup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} = \\ \cup_{z_{\text{Extreme Number}}} \{S_{\text{Extreme SuperHyperSet}} \mid \\ S_{\text{Extreme SuperHyperSet}} = G_{\text{Extreme SuperHyperConnectivities}}, \\ |S_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}} \\ &= z_{\text{Extreme Number}} \mid \\ |S_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}} \\ &= \max \{|E| \mid E \in E_{ESHG:(V,E)}\}\}. \end{split}$$

 $G_{\text{Extreme SuperHyperConnectivities}} = \{S \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}] \text{Extreme Class} \mid |S_{\text{Extreme SuperHyperSet}}| \text{Extreme Cardinality} = \max_{\substack{[z_{\text{Extreme Number}}] \text{Extreme Class}}} z_{\text{Extreme Number}} = \max \{|E| \mid E \in E_{ESHG:(V,E)}\}\}.$ 

 $G_{\text{Extreme SuperHyperConnectivities}} =$ 

Henry Garrett $\,\cdot\,$ Independent Researcher $\,\cdot\,$ Department of Mathematics $\,\cdot\,$ Dr<br/>HenryGarrett@gmail.com $\,\cdot\,$ Manhattan, NY, USA

 $\{S \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}] \text{Extreme Class} \mid |S_{\text{Extreme SuperHyperSet}}| \text{Extreme Cardinality}$ 

 $= \max \{ |E| \mid E \in E_{ESHG:(V,E)} \} \}.$ 

Now, the extension of these types of approaches is up. Since the new term, "Extreme SuperHyperNeighborhood", could be redefined as the collection of the Extreme SuperHyperVertices such that any amount of its Extreme SuperHyperVertices are incident to an Extreme SuperHyperEdge. It's, literarily, another name for "Extreme Quasi-SuperHyperConnectivities" but, precisely, it's the generalization of "Extreme Quasi-SuperHyperConnectivities" in a Neutrosophic SuperHyperConnectivities" happens "Extreme SuperHyperConnectivities" in a Neutrosophic SuperHyperGraph as initial framework and background but "Extreme SuperHyperGraph as initial framework and background since there are some ambiguities about the Extreme SuperHyperCardinality arise from it. To get orderly keywords, the terms, "Extreme SuperHyperNeighborhood", "Extreme Quasi-SuperHyperConnectivities", and "Extreme SuperHyperConnectivities" are up.

Thus, let  $z_{\text{Extreme Number}}$ ,  $N_{\text{Extreme SuperHyperNeighborhood}}$  and  $G_{\text{Extreme SuperHyperConnectivities}}$  be an Extreme number, an Extreme SuperHyperNeighborhood and an Extreme SuperHyperConnectivities and the new terms are up.

 $\begin{aligned} G_{\text{Extreme SuperHyperConnectivities}} &\in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} = \\ \bigcup_{z_{\text{Extreme Number}}} \{N_{\text{Extreme SuperHyperNeighborhood} \mid \\ |N_{\text{Extreme SuperHyperNeighborhood}|_{\text{Extreme Cardinality}} \\ &= \max_{[z_{\text{Extreme Number}}]_{\text{Extreme Class}}} z_{\text{Extreme Number}} \}. \\ G_{\text{Extreme SuperHyperConnectivities}} = \\ \{N_{\text{Extreme SuperHyperNeighborhood} \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} = \\ \bigcup_{z_{\text{Extreme Number}}} \{N_{\text{Extreme SuperHyperNeighborhood} \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} = \\ \bigcup_{z_{\text{Extreme SuperHyperSet}}} \{N_{\text{Extreme SuperHyperNeighborhood}} \mid \\ |N_{\text{Extreme SuperHyperNeighborhood}}|_{\text{Extreme Cardinality}} \\ &= z_{\text{Extreme Number}} \\ |N_{\text{Extreme SuperHyperNeighborhood}}|_{\text{Extreme Cardinality}} \\ &= \max_{[z_{\text{Extreme Number}}]_{\text{Extreme Class}}} z_{\text{Extreme Number}} \\ R_{\text{Extreme SuperHyperNeighborhood}}|_{\text{Extreme Number}} \\ \\ K_{\text{Extreme SuperHyperConnectivities}} \\ &= \{N_{\text{Extreme SuperHyperNeighborhood}} \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} \\ \\ K_{\text{Extreme SuperHyperNeighborhood}} \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} \\ \\ &= \{N_{\text{Extreme SuperHyperNeighborhood}} \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} \\ \\ \\ K_{\text{Extreme SuperHyperNeighborhood}} \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} \\ \\ \\ \\ \end{bmatrix} \\ \end{bmatrix}$ 

 $= \max_{\substack{[z_{\text{Extreme Number}}]_{\text{Extreme Class}}}} z_{\text{Extreme Number}} \}.$ 

 $G_{\text{Extreme SuperHyperConnectivities}} =$ 

 $\{N_{\text{Extreme SuperHyperNeighborhood}} \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}}$ 

 $|N_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}} = \max_{\substack{[z_{\text{Extreme Number}}]_{\text{Extreme Class}}} z_{\text{Extreme Number}} \}.$ 

And with go back to initial structure,

 $G_{\text{Extreme SuperHyperConnectivities}} \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} = \bigcup_{z_{\text{Extreme Number}}} \{N_{\text{Extreme SuperHyperNeighborhood}} | \\ |N_{\text{Extreme SuperHyperNeighborhood}}|_{\text{Extreme Cardinality}} = \max \{|E| \mid E \in E_{ESHG:(V,E)}\}\}.$ 

 $G_{\text{Extreme SuperHyperConnectivities}} =$ 

 $\{N_{\text{Extreme SuperHyperNeighborhood}} \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} =$ 

 $\cup_{z_{\text{Extreme Number}}} \{ N_{\text{Extreme SuperHyperNeighborhood}} \mid$ 

 $|N_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}}$ 

 $= z_{\text{Extreme Number}}$ 

NExtreme SuperHyperNeighborhood Extreme Cardinality

 $= \max\left\{ |E| \mid E \in E_{ESHG:(V,E)} \right\} \right\}.$ 

 $G_{\text{Extreme SuperHyperConnectivities}} =$ 

 $\{N_{\text{Extreme SuperHyperNeighborhood}} \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}}$ 

 $|N_{\text{Extreme SuperHyperNeighborhood}}|_{\text{Extreme Cardinality}}$ 

 $= \max_{\substack{[z_{\text{Extreme Number}}]_{\text{Extreme Class}}}} z_{\text{Extreme Number}}$ 

 $= \max \{ |E| \mid E \in E_{ESHG;(V,E)} \} \}.$ 

$$\begin{split} G_{\text{Extreme SuperHyperConnectivities}} &= \\ \{N_{\text{Extreme SuperHyperNeighborhood}} \in \cup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} \mid \\ |N_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}} \\ &= \max \left\{ |E| \mid E \in E_{ESHG:(V,E)} \right\} \}. \end{split}$$

Thus, in a connected Neutrosophic SuperHyperGraph ESHG: (V, E). The all interior Extreme SuperHyperVertices belong to any Extreme quasi-R-SuperHyperConnectivities if for any of them, and any of other corresponded Extreme SuperHyperVertex, some interior Extreme SuperHyperVertices are mutually Extreme SuperHyperNeighbors with no Extreme exception at all minus all Extreme SuperHypeNeighbors to any amount of them.

To make sense with the precise words in the terms of "R-', the follow-up illustrations are coming up. The following Extreme SuperHyperSet of Extreme SuperHyperVertices is the simple Extreme type-SuperHyperSet of the Extreme R-SuperHyperConnectivities.

 $V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$ 

The Extreme SuperHyperSet of Extreme SuperHyperVertices,

 $V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$ 

Is the simple Extreme type-SuperHyperSet of the Extreme R-SuperHyperConnectivities. The Extreme SuperHyperSet of the Extreme SuperHyperVertices,

 $V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$ 

Is an **Extreme R-SuperHyperConnectivities** C(ESHG) for an Neutrosophic SuperHyperGraph ESHG: (V, E) is an Extreme type-SuperHyperSet with the maximum Extreme cardinality of an Extreme SuperHyperSet S of Extreme SuperHyperVertices such that there's no an Extreme SuperHyperEdge amid some Extreme SuperHyperVertices instead of all given by **Extreme SuperHyperConnectivities** is related to the Extreme SuperHyperSet of the Extreme SuperHyperVertices,

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

There's <u>not</u> only <u>one</u> Extreme SuperHyperVertex <u>inside</u> the intended Extreme SuperHyperSet. Thus the non-obvious Extreme SuperHyperConnectivities is up. The obvious simple Extreme type-SuperHyperSet called the Extreme SuperHyperConnectivities is an Extreme SuperHyperSet <u>includes</u> only <u>one</u> Extreme SuperHyperVertex. But the Extreme SuperHyperSet of Extreme SuperHyperVertices,

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

doesn't have less than two SuperHyperVertices <u>inside</u> the intended Extreme SuperHyperSet since they've come from at least so far an SuperHyperEdge. Thus the non-obvious simple Extreme type-SuperHyperSet of the Extreme R-SuperHyperConnectivities <u>is</u> up. To sum them up, the Extreme SuperHyperSet of Extreme SuperHyperVertices,

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

 $\underline{Is}$  the non-obvious simple Extreme type-SuperHyperSet of the Extreme R-SuperHyperConnectivities. Since the Extreme SuperHyperSet of the Extreme SuperHyperVertices,

$$(V \setminus V \setminus \{x, z\}) \cup \{xy\}$$

or

$$(V \setminus V \setminus \{x, z\}) \cup \{zy\}$$

is an Extreme R-SuperHyperConnectivities C(ESHG) for an Neutrosophic SuperHyperGraph ESHG : (V, E) is the Extreme SuperHyperSet S of Extreme SuperHyperVertices such that there's no an Extreme SuperHyperEdge for some Extreme SuperHyperConnectivities and it's an Extreme type-SuperHyperSet called the Extreme SuperHyperConnectivities and it's the maximum Extreme cardinality of an Extreme SuperHyperSet S of Extreme SuperHyperVertices such that there's no an Extreme SuperHyperSet S of Extreme SuperHyperVertices such that there's no an Extreme SuperHyperSet S of Extreme SuperHyperVertices instead of all given by that Extreme type-SuperHyperSet S of Extreme SuperHyperVertices instead of all given by that Extreme type-SuperHyperSet called the Extreme SuperHyperVertices. There isn't only less than two Extreme SuperHyperVertices instead the Extreme SuperHyperSet,

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

Thus the non-obvious Extreme R-SuperHyperConnectivities,

 $V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$ 

is up. The non-obvious simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities, not:

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$$

Is the Extreme SuperHyperSet, not:

------

 $V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$ 

does includes only less than two SuperHyperVertices in a connected Extreme SuperHyperGraph ESHG: (V, E) but it's impossible in the case, they've corresponded to an SuperHyperEdge. It's interesting to mention that the only non-obvious simple Extreme type-SuperHyperSet called the

# "Extreme R-SuperHyperConnectivities"

amid those obvious non-obvious simple Extreme type-SuperHyperSets called the

#### Extreme R-SuperHyperConnectivities,

is only and only

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

In a connected Neutrosophic SuperHyperGraph ESHG: (V, E) with a illustrated SuperHyperModel eling. It's also, not only an Extreme free-triangle embedded SuperHyperModel and an Extreme on-triangle embedded SuperHyperModel but also it's an Extreme stable embedded SuperHyperModel. But all only non-obvious simple Extreme type-SuperHyperSets of the Extreme R-SuperHyperConnectivities amid those obvious simple Extreme type-SuperHyperSets of the Extreme SuperHyperConnectivities, are

$$V \setminus V \setminus \left\{ a_E, b_E, c_E, \ldots \right\}_{E = \left\{ E \in E_{ESHG:(V,E)} \mid |E| = \max\left\{ |E| \mid E \in E_{ESHG:(V,E)} \right\} \right\}}.$$

In a connected Neutrosophic SuperHyperGraph ESHG : (V, E). To sum them up, assume a connected loopless Neutrosophic SuperHyperGraph ESHG : (V, E). Then in the worst case, literally,

$$V \setminus V \setminus \{a_E, b_E, c_E, \dots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

is an Extreme R-SuperHyperConnectivities. In other words, the least cardinality, the lower sharp bound for the cardinality, of an Extreme R-SuperHyperConnectivities is the cardinality of

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

To sum them up, in a connected Neutrosophic SuperHyperGraph ESHG : (V, E). The all interior Extreme SuperHyperVertices belong to any Extreme quasi-R-SuperHyperConnectivities if for any of

them, and any of other corresponded Extreme SuperHyperVertex, some interior Extreme SuperHyperVertices are mutually Extreme SuperHyperNeighbors with no Extreme exception at all minus all Extreme SuperHypeNeighbors to any amount of them.

Assume a connected Extreme SuperHyperGraph ESHG: (V, E). Let an Extreme SuperHyperEdge  $ESHE: E \in E_{ESHG;(V,E)}$  has some Extreme SuperHyperVertices r. Consider all Extreme numbers of those Extreme SuperHyperVertices from that Extreme SuperHyperEdge excluding excluding more than r distinct Extreme SuperHyperVertices, exclude to any given Extreme SuperHyperSet of the Extreme SuperHyperVertices. Consider there's an Extreme R-SuperHyperConnectivities with the least cardinality, the lower sharp Extreme bound for Extreme cardinality. Assume a connected Neutrosophic SuperHyperGraph ESHG : (V, E). The Extreme SuperHyperSet of the Extreme SuperHyperVertices  $V_{ESHE} \setminus \{z\}$  is an Extreme SuperHyperSet S of the Extreme SuperHyperVertices such that there's an Extreme SuperHyperEdge to have some Extreme SuperHyperVertices uniquely but it isn't an Extreme R-SuperHyperConnectivities. Since it doesn't have the maximum Extreme cardinality of an Extreme SuperHyperSet S of Extreme SuperHyper-Vertices such that there's an Extreme SuperHyperEdge to have some SuperHyperVertices uniquely. The Extreme SuperHyperSet of the Extreme SuperHyperVertices  $V_{ESHE} \cup \{z\}$  is the maximum Extreme cardinality of an Extreme SuperHyperSet S of Extreme SuperHyperVertices but it isn't an Extreme R-SuperHyperConnectivities. Since it **doesn't do** the Extreme procedure such that such that there's an Extreme SuperHyperEdge to have some Extreme SuperHyperVertices uniquely [there are at least one Extreme SuperHyperVertex outside implying there's, sometimes in the connected Neutrosophic SuperHyperGraph ESHG: (V, E), an Extreme SuperHyperVertex, titled its Extreme SuperHyperNeighbor, to that Extreme SuperHyperVertex in the Extreme SuperHyperSet S so as Sdoesn't do "the Extreme procedure".]. There's only **one** Extreme SuperHyperVertex **outside** the intended Extreme SuperHyperSet,  $V_{ESHE} \cup \{z\}$ , in the terms of Extreme SuperHyperNeighborhood. Thus the obvious Extreme R-SuperHyperConnectivities,  $V_{ESHE}$  is up. The obvious simple Extreme type-SuperHyperSet of the Extreme R-SuperHyperConnectivities,  $V_{ESHE}$ , is an Extreme SuperHyperSet, V<sub>ESHE</sub>, includes only all Extreme SuperHyperVertices does forms any kind of Extreme pairs are titled Extreme SuperHyperNeighbors in a connected Neutrosophic SuperHyperGraph ESHG: (V, E). Since the Extreme SuperHyperSet of the Extreme SuperHyperVertices  $V_{ESHE}$ , is the maximum Extreme SuperHyperCardinality of an Extreme SuperHyperSet S of Extreme SuperHyperVertices such that there's an Extreme SuperHyperEdge to have some Extreme SuperHyperVertices uniquely. Thus, in a connected Neutrosophic SuperHyperGraph ESHG: (V, E). Any Extreme R-SuperHyperConnectivities only contains all interior Extreme SuperHyperVertices and all exterior Extreme SuperHyperVertices from the unique Extreme SuperHyperEdge where there's any of them has all possible Extreme SuperHyperNeighbors in and there's all Extreme SuperHyperNeighborhoods in with no exception minus all Extreme SuperHypeNeighbors to some of them not all of them but everything is possible about Extreme SuperHyperNeighborhoods and Extreme SuperHyperNeighbors out.

The SuperHyperNotion, namely, SuperHyperConnectivities, is up. There's neither empty SuperHyperEdge nor loop SuperHyperEdge. The following Extreme SuperHyperSet of Extreme SuperHyperEdges[SuperHyperVertices] is the simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities. The Extreme SuperHyperSet of Extreme SuperHyperVertices],

 $\begin{aligned} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} \\ &= \{E \in E_{ESHG:(V,E)}\}. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} \end{aligned}$ 

$$= \sum_{\substack{|E_{ESHG:(V,E)}| \text{Extreme Cardinality}}} z^{|E|_{\text{Extreme Cardinality}} | E:\in E_{ESHG:(V,E)}.$$

$$\mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivities} = \{V_i\}_{i=1}^s, \{V_j\}_{j=1}^t, \dots$$

$$\mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} = z^s + z^t +, \dots$$

is the simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities. The Extreme SuperHyperSet of the Extreme SuperHyperEdges[SuperHyperVertices],

$$\begin{split} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} \\ &= \{E \in E_{ESHG:(V,E)}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} \\ &= \sum_{|E_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}} z^{|E|_{\text{Extreme Cardinality}} | E:\in E_{ESHG:(V,E)}}.\\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivities} = \{V_i\}_{i=1}^{s}, \{V_j\}_{j=1}^{t}, \dots,\\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} = z^s + z^t +, \dots \end{split}$$

Is an **Extreme SuperHyperConnectivities** C(ESHG) for an Neutrosophic SuperHyperGraph ESHG: (V, E) is an Extreme type-SuperHyperSet with the maximum Extreme cardinality of an Extreme SuperHyperSet S of Extreme SuperHyperEdges[SuperHyperVertices] such that there's no Extreme SuperHyperVertex of an Extreme SuperHyperEdge is common and there's an Extreme SuperHyperEdge for all Extreme SuperHyperVertices. There are <u>not</u> only <u>two</u> Extreme SuperHyperVertices inside the intended Extreme SuperHyperSet. Thus the non-obvious Extreme SuperHyperConnectivities is up. The obvious simple Extreme type-SuperHyperSet called the Extreme SuperHyperConnectivities is an Extreme SuperHyperSet includes only two Extreme SuperHyperVertices. But the Extreme SuperHyperSet of the Extreme SuperHyperVertices]

$$\begin{split} \mathcal{C}(NSHG)_{Extreme}Quasi-SuperHyperConnectivities \\ &= \{E \in E_{ESHG:(V,E)}\}.\\ \mathcal{C}(NSHG)_{Extreme}Quasi-SuperHyperConnectivitiesSuperHyperPolynomial \\ &= \sum_{|E_{ESHG:(V,E)}| \text{Extreme Cardinality}} z^{|E|_{\text{Extreme Cardinality}} | E:\in E_{ESHG:(V,E)}.\\ \mathcal{C}(NSHG)_{Extreme}R-Quasi-SuperHyperConnectivities = \{V_i\}_{i=1}^{s}, \{V_j\}_{j=1}^{t}, \dots \\ \mathcal{C}(NSHG)_{Extreme}R-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial = z^s + z^t +, \dots \end{split}$$

Doesn't have less than three SuperHyperVertices <u>inside</u> the intended Extreme SuperHyperSet. Thus the non-obvious simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities <u>is</u> up. To sum them up, the Extreme SuperHyperSet of the Extreme SuperHyperEdges[SuperHyperVertices],

$$\begin{split} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} \\ &= \{E \in E_{ESHG:(V,E)}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} \\ &= \sum_{|E_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}} z^{|E|_{\text{Extreme Cardinality}} | E:\in E_{ESHG:(V,E)}}. \end{split}$$

 $\mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivities} = \{V_i\}_{i=1}^s, \{V_j\}_{j=1}^t, \dots, \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} = z^s + z^t +, \dots.$ 

**<u>Is</u>** the non-obvious simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities. Since the Extreme SuperHyperSet of the Extreme SuperHyperEdges[SuperHyperVertices],

$$\begin{split} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} \\ &= \{E \in E_{ESHG:(V,E)}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} \\ &= \sum_{|E_{ESHG:(V,E)}|_{Extreme Cardinality}} z^{|E|_{Extreme Cardinality} | E:\in E_{ESHG:(V,E)}}.\\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivities} = \{V_i\}_{i=1}^{s}, \{V_j\}_{j=1}^{t}, \dots.\\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} = z^s + z^t +, \dots. \end{split}$$

Is an Extreme SuperHyperConnectivities C(ESHG) for an Neutrosophic SuperHyperGraph ESHG: (V, E) is the Extreme SuperHyperSet S of Extreme SuperHyperVertices such that there's no an Extreme SuperHyperEdge for some Extreme SuperHyperVertices given by that Extreme type-SuperHyperSet called the Extreme SuperHyperConnectivities <u>and</u> it's an Extreme <u>SuperHyperConnectivities</u>. Since it's <u>the maximum Extreme cardinality</u> of an Extreme SuperHyperSet S of Extreme SuperHyperVertices] such that there's no Extreme SuperHyperVertex of an Extreme SuperHyperVertices] such that there's no Extreme SuperHyperVertex of an Extreme SuperHyperVertices. There aren't only less than three Extreme SuperHyperVertices <u>inside</u> the intended Extreme SuperHyperSet,

$$\begin{split} \mathcal{C}(NSHG)_{Extreme}Quasi-SuperHyperConnectivities \\ &= \{E \in E_{ESHG:(V,E)}\}.\\ \mathcal{C}(NSHG)_{Extreme}Quasi-SuperHyperConnectivitiesSuperHyperPolynomial \\ &= \sum_{|E_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}} z^{|E|_{\text{Extreme Cardinality}} | E:\in E_{ESHG:(V,E)}}.\\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivities} = \{V_i\}_{i=1}^{s}, \{V_j\}_{j=1}^{t}, \dots, \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} = z^s + z^t +, \dots. \end{split}$$

Thus the non-obvious Extreme SuperHyperConnectivities,

$$\begin{split} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} \\ &= \{E \in E_{ESHG:(V,E)}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} \\ &= \sum_{|E_{ESHG:(V,E)}| \in \text{xtreme Cardinality}} z^{|E| \in \text{xtreme Cardinality}} | E:\in E_{ESHG:(V,E)}.\\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivities} = \{V_i\}_{i=1}^{s}, \{V_j\}_{j=1}^{t}, \dots, \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} = z^s + z^t +, \dots. \end{split}$$

Is up. The obvious simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities, not:

$$\begin{split} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} \\ &= \{E \in E_{ESHG:(V,E)}\}. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} \\ &= \sum_{|E_{ESHG:(V,E)}|_{Extreme Cardinality}} z^{|E|_{Extreme Cardinality} | E:\in E_{ESHG:(V,E)}}. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivities} = \{V_i\}_{i=1}^{s}, \{V_j\}_{j=1}^{t}, \dots \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} = z^s + z^t +, \dots. \end{split}$$

Is the Extreme SuperHyperSet, not:

$$\begin{split} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} \\ &= \{E \in E_{ESHG:(V,E)}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} \\ &= \sum_{|E_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}} z^{|E|_{\text{Extreme Cardinality}} | E:\in E_{ESHG:(V,E)}}.\\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivities} = \{V_i\}_{i=1}^{s}, \{V_j\}_{j=1}^{t}, \dots, \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} = z^s + z^t +, \dots. \end{split}$$

Does includes only less than three SuperHyperVertices in a connected Extreme SuperHyperGraph ESHG: (V, E). It's interesting to mention that the only non-obvious simple Extreme type-SuperHyperSet called the

### "Extreme SuperHyperConnectivities"

amid those obvious non-obvious simple Extreme type-SuperHyperSets called the

# Extreme SuperHyperConnectivities,

is only and only

$$\begin{split} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} \\ &= \{E \in E_{ESHG:(V,E)}\}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} \\ &= \sum_{|E_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}} z^{|E|_{\text{Extreme Cardinality}} | E:\in E_{ESHG:(V,E)}}.\\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivities} = \{V_i\}_{i=1}^{s}, \{V_j\}_{j=1}^{t}, \dots, \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} = z^s + z^t +, \dots. \end{split}$$

In a connected Neutrosophic SuperHyperGraph ESHG : (V, E).

Henry Garrett $\,\cdot\,$ Independent Researcher $\,\cdot\,$ Department of Mathematics $\,\cdot\,$ Dr<br/>HenryGarrett@gmail.com $\,\cdot\,$ Manhattan, NY, USA

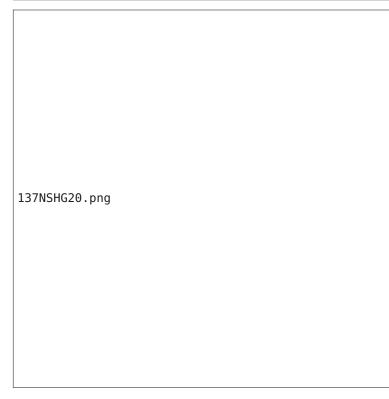


Figure 9.3: an Extreme SuperHyperStar Associated to the Extreme Notions of Extreme SuperHyperConnectivities in the Extreme Example (9.0.7)

**Example 9.0.7.** In the Figure (9.3), the connected Extreme SuperHyperStar ESHS : (V, E), is highlighted and featured. The obtained Extreme SuperHyperSet, by the Algorithm in previous Extreme result, of the Extreme SuperHyperVertices of the connected Extreme SuperHyperStar ESHS : (V, E), in the Extreme SuperHyperModel (9.3), is the Extreme SuperHyperConnectivities.

**Proposition 9.0.8.** Assume a connected Extreme SuperHyperBipartite ESHB : (V, E). Then an Extreme R-SuperHyperConnectivities is an Extreme SuperHyperSet of the interior Extreme SuperHyperVertices with no Extreme exceptions in the form of interior Extreme SuperHyperVertices titled Extreme SuperHyperNeighbors. an Extreme R-SuperHyperConnectivities has the Extreme maximum number of on Extreme cardinality of the minimum SuperHyperPart minus those have common Extreme SuperHyperNeighbors and not unique Extreme SuperHyperNeighbors. Also,

$$\begin{split} \mathcal{C}(NSHG) & \textit{ExtremeQuasi-SuperHyperConnectivities} \\ &= \{E_{2i-1}\}_{i=1}^{\min|P_{ESHG:(V,E)}|\textit{Extreme Cardinality}}. \\ \mathcal{C}(NSHG) & \textit{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} \\ &= z^{\min|P_{ESHG:(V,E)}|\textit{Extreme Cardinality}}. \\ \mathcal{C}(NSHG) & \textit{ExtremeR-Quasi-SuperHyperConnectivities} = \{V_i\}_{i=1}^{s}. \end{split}$$

 $\mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} = az^{s}$ .

*Proof.* Assume a connected loopless Neutrosophic SuperHyperGraph ESHG: (V, E). The SuperHyperSet of the SuperHyperVertices  $V \setminus V \setminus \{z\}$  isn't a quasi-R-SuperHyperConnectivities since neither amount of Extreme SuperHyperEdges nor amount of SuperHyperVertices where amount refers to the Extreme number of SuperHyperVertices(-/SuperHyperEdges) more than one to form any kind of SuperHyperEdges or any number of SuperHyperEdges. Let us consider the Extreme SuperHyperSet

 $V \setminus V \setminus \{a_E, b_E, c_E, \dots, a_{E'}, b_{E'}, c_{E'}, \dots\}_{E, E' = \{E \in E_{ESHG}; (V, E) \mid |E| = \max\{|E| \mid E \in E_{ESHG}; (V, E)\}\}}$ 

This Extreme SuperHyperSet of the Extreme SuperHyperVertices has the eligibilities to propose property such that there's no Extreme SuperHyperVertex of an Extreme SuperHyperEdge is common and there's an Extreme SuperHyperEdge for all Extreme SuperHyperVertices but the maximum Extreme cardinality indicates that these Extreme type-SuperHyperSets couldn't give us the Extreme lower bound in the term of Extreme sharpness. In other words, the Extreme SuperHyperSet

 $V \setminus V \setminus \{a_E, b_E, c_E, \dots, a_{E'}, b_{E'}, c_{E'}, \dots\}_{E,E'} = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}$ 

of the Extreme SuperHyperVertices implies at least on-quasi-triangle style is up but sometimes the Extreme SuperHyperSet

$$V \setminus V \setminus \{a_E, b_E, c_E, \dots, a_{E'}, b_{E'}, c_{E'}, \dots\}_{E, E'} = \{E \in E_{ESHG;(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG;(V,E)}\}\}$$

of the Extreme SuperHyperVertices is free-quasi-triangle and it doesn't make a contradiction to the supposition on the connected loopless Neutrosophic SuperHyperGraph ESHG: (V, E). Thus the minimum case never happens in the generality of the connected loopless Neutrosophic SuperHyperGraphs. Thus if we assume in the worst case, literally,

 $V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$ 

Is a quasi-R-SuperHyperConnectivities. In other words, the least cardinality, the lower sharp bound for the cardinality, of a quasi-R-SuperHyperConnectivities is the cardinality of

 $V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$ 

Then we've lost some connected loopless Extreme SuperHyperClasses of the connected loopless Neutrosophic SuperHyperGraphs titled free-triangle, on-triangle, and their quasi-types but the SuperHyperStable is only up in this quasi-R-SuperHyperConnectivities. It's the contradiction to that fact on the generality. There are some counterexamples to deny this statement. One of them comes from the setting of the graph titled path and cycle as the counterexamples-classes or reversely direction star as the examples-classes, are well-known classes in that setting and they could be considered as the examples-classes and counterexamples-classes for the tight bound of

$$V \setminus V \setminus \{a_E, b_E, c_E, \dots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

Let  $V \setminus V \setminus \{z\}$  in mind. There's no necessity on the SuperHyperEdge since we need at least two SuperHyperVertices to form a SuperHyperEdge. It doesn't withdraw the principles of the

Henry Garrett · Independent Researcher · Department of Mathematics · DrHenryGarrett@gmail.com · Manhattan, NY, USA

main definition since there's no condition to be satisfied but the condition is on the existence of the SuperHyperEdge instead of acting on the SuperHyperVertices. In other words, if there's a SuperHyperEdge, then the Extreme SuperHyperSet has the necessary condition for the intended definition to be applied. Thus the  $V \setminus V \setminus \{z\}$  is withdrawn not by the conditions of the main definition but by the necessity of the pre-condition on the usage of the main definition.

The Extreme structure of the Extreme R-SuperHyperConnectivities decorates the Extreme SuperHyperVertices don't have received any Extreme connections so as this Extreme style implies different versions of Extreme SuperHyperEdges with the maximum Extreme cardinality in the terms of Extreme SuperHyperVertices are spotlight. The lower Extreme bound is to have the maximum Extreme groups of Extreme SuperHyperVertices have perfect Extreme connections inside each of SuperHyperEdges and the outside of this Extreme SuperHyperSet doesn't matter but regarding the connectedness of the used Neutrosophic SuperHyperGraph arising from its Extreme properties taken from the fact that it's simple. If there's no more than one Extreme SuperHyperVertex in the targeted Extreme SuperHyperSet, then there's no Extreme connection. Furthermore, the Extreme existence of one Extreme SuperHyperVertex has no Extreme effect to talk about the Extreme R-SuperHyperConnectivities. Since at least two Extreme SuperHyperVertices involve to make a title in the Extreme background of the Neutrosophic SuperHyperGraph. The Neutrosophic SuperHyperGraph is obvious if it has no Extreme SuperHyperEdge but at least two Extreme SuperHyperVertices make the Extreme version of Extreme SuperHyperEdge. Thus in the Extreme setting of non-obvious Neutrosophic SuperHyperGraph, there are at least one Extreme SuperHyperEdge. It's necessary to mention that the word "Simple" is used as Extreme adjective for the initial Neutrosophic SuperHyperGraph, induces there's no Extreme appearance of the loop Extreme version of the Extreme SuperHyperEdge and this Neutrosophic SuperHyperGraph is said to be loopless. The Extreme adjective "loop" on the basic Extreme framework engages one Extreme SuperHyperVertex but it never happens in this Extreme setting. With these Extreme bases, on a Neutrosophic SuperHyperGraph, there's at least one Extreme SuperHyperEdge thus there's at least an Extreme R-SuperHyperConnectivities has the Extreme cardinality of an Extreme SuperHyperEdge. Thus, an Extreme R-SuperHyperConnectivities has the Extreme cardinality at least an Extreme SuperHyperEdge. Assume an Extreme SuperHyperSet  $V \setminus V \setminus \{z\}$ . This Extreme SuperHyperSet isn't an Extreme R-SuperHyperConnectivities since either the Neutrosophic SuperHyperGraph is an obvious Extreme SuperHyperModel thus it never happens since there's no Extreme usage of this Extreme framework and even more there's no Extreme connection inside or the Neutrosophic SuperHyperGraph isn't obvious and as its consequences, there's an Extreme contradiction with the term "Extreme R-SuperHyperConnectivities" since the maximum Extreme cardinality never happens for this Extreme style of the Extreme SuperHyperSet and beyond that there's no Extreme connection inside as mentioned in first Extreme case in the forms of drawback for this selected Extreme SuperHyperSet. Let

$$V \setminus V \setminus \{a_E, b_E, c_E, \dots, a_{E'}, b_{E'}, c_{E'}, \dots\}_{E, E' = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

Comes up. This Extreme case implies having the Extreme style of on-quasi-triangle Extreme style on the every Extreme elements of this Extreme SuperHyperSet. Precisely, the Extreme R-SuperHyperConnectivities is the Extreme SuperHyperSet of the Extreme SuperHyperVertices such that some Extreme amount of the Extreme SuperHyperVertices are on-quasi-triangle Extreme style. The Extreme cardinality of the v SuperHypeSet

$$V \setminus V \setminus \{a_E, b_E, c_E, \dots, a_{E'}, b_{E'}, c_{E'}, \dots\}_{E, E'} = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}$$

Is the maximum in comparison to the Extreme SuperHyperSet

 $V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$ 

But the lower Extreme bound is up. Thus the minimum Extreme cardinality of the maximum Extreme cardinality ends up the Extreme discussion. The first Extreme term refers to the Extreme setting of the Neutrosophic SuperHyperGraph but this key point is enough since there's an Extreme SuperHyperClass of a Neutrosophic SuperHyperGraph has no on-quasi-triangle Extreme style amid some amount of its Extreme SuperHyperVertices. This Extreme setting of the Extreme SuperHyperModel proposes an Extreme SuperHyperSet has only some amount Extreme SuperHyperVertices from one Extreme SuperHyperEdge such that there's no Extreme SuperHyperVertices. The Extreme cardinality of this Extreme SuperHyperSet is the maximum and the Extreme case is occurred in the minimum Extreme situation. To sum them up, the Extreme SuperHyperSet

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$$

Has the maximum Extreme cardinality such that

$$V \setminus V \setminus \{a_E, b_E, c_E, \dots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$$

Contains some Extreme SuperHyperVertices such that there's distinct-covers-order-amount Extreme SuperHyperEdges for amount of Extreme SuperHyperVertices taken from the Extreme SuperHyperSet

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

It means that the Extreme SuperHyperSet of the Extreme SuperHyperVertices

 $V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$ 

Is an Extreme R-SuperHyperConnectivities for the Neutrosophic SuperHyperGraph as used Extreme background in the Extreme terms of worst Extreme case and the common theme of the lower Extreme bound occurred in the specific Extreme SuperHyperClasses of the Neutrosophic SuperHyperGraphs which are Extreme free-quasi-triangle.

Assume an Extreme SuperHyperEdge  $E \in E_{ESHG:(V,E)}$  has z Extreme number of the Extreme SuperHyperVertices. Then every Extreme SuperHyperVertex has at least no Extreme SuperHyperEdge with others in common. Thus those Extreme SuperHyperVertices have the eligibles to be contained in an Extreme R-SuperHyperConnectivities. Those Extreme SuperHyperVertices are potentially included in an Extreme style-R-SuperHyperConnectivities. Formally, consider

$$V \setminus (V \setminus \{a_E, b_E, c_E, \dots, z_E\}).$$

Are the Extreme SuperHyperVertices of an Extreme SuperHyperEdge  $E \in E_{ESHG:(V,E)}$ . Thus

$$Z_i \sim Z_j, \ i \neq j, \ i, j = 1, 2, \dots, z.$$

where the  $\sim$  isn't an equivalence relation but only the symmetric relation on the Extreme SuperHyperVertices of the Neutrosophic SuperHyperGraph. The formal definition is as follows.

$$Z_i \sim Z_j, \ i \neq j, \ i, j = 1, 2, \dots, z$$

if and only if  $Z_i$  and  $Z_j$  are the Extreme SuperHyperVertices and there's only and only one Extreme SuperHyperEdge  $E \in E_{ESHG:(V,E)}$  between the Extreme SuperHyperVertices  $Z_i$  and  $Z_j$ . The other definition for the Extreme SuperHyperEdge  $E \in E_{ESHG:(V,E)}$  in the terms of Extreme R-SuperHyperConnectivities is

 $\{a_E, b_E, c_E, \ldots, z_E\}.$ 

This definition coincides with the definition of the Extreme R-SuperHyperConnectivities but with slightly differences in the maximum Extreme cardinality amid those Extreme type-SuperHyperSets of the Extreme SuperHyperVertices. Thus the Extreme SuperHyperSet of the Extreme SuperHyperVertices,

$$\max_{z} |\{Z_1, Z_2, \dots, Z_z \mid Z_i \sim Z_j, \ i \neq j, \ i, j = 1, 2, \dots, z\}|_{\text{Extreme cardinality}},$$

and

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG}; (V, E) \mid |E| = \max\{|E| \mid E \in E_{ESHG}; (V, E)\}}$$

is formalized with mathematical literatures on the Extreme R-SuperHyperConnectivities. Let  $Z_i \stackrel{E}{\sim} Z_j$ , be defined as  $Z_i$  and  $Z_j$  are the Extreme SuperHyperVertices belong to the Extreme SuperHyperEdge  $E \in E_{ESHG:(V,E)}$ . Thus,

$$E = \{Z_1, Z_2, \dots, Z_z \mid Z_i \stackrel{E}{\sim} Z_j, \ i \neq j, \ i, j = 1, 2, \dots, z\}$$

Or

$$\{a_E, b_E, c_E, \dots\}_{E=\{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

But with the slightly differences,

Extreme R-SuperHyperConnectivities =

$$\{Z_1, Z_2, \dots, Z_z \mid \forall i \neq j, \ i, j = 1, 2, \dots, z, \ \exists E_x, \ Z_i \stackrel{L_x}{\sim} Z_j, \}.$$

Extreme R-SuperHyperConnectivities =

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

Thus  $E \in E_{ESHG:(V,E)}$  is an Extreme quasi-R-SuperHyperConnectivities where  $E \in E_{ESHG:(V,E)}$ is fixed that means  $E_x = E \in E_{ESHG:(V,E)}$ . for all Extreme intended SuperHyperVertices but in an Extreme SuperHyperConnectivities,  $E_x = E \in E_{ESHG:(V,E)}$  could be different and it's not unique. To sum them up, in a connected Extreme SuperHyperGraph ESHG : (V, E). If an Extreme SuperHyperEdge  $E \in E_{ESHG:(V,E)}$  has z Extreme SuperHyperVertices, then the Extreme cardinality of the Extreme R-SuperHyperConnectivities is at least

$$V \setminus (V \setminus \{a_E, b_E, c_E, \dots, z_E\}).$$

It's straightforward that the Extreme cardinality of the Extreme R-SuperHyperConnectivities is at least the maximum Extreme number of Extreme SuperHyperVertices of the Extreme SuperHyperEdges with the maximum number of the Extreme SuperHyperEdges. In other words, the maximum number of the Extreme SuperHyperEdges contains the maximum Extreme number of Extreme SuperHyperVertices are renamed to Extreme SuperHyperConnectivities in some cases but the maximum number of the Extreme SuperHyperEdge with the maximum Extreme number of Extreme SuperHyperVertices, has the Extreme SuperHyperVertices are contained in an Extreme R-SuperHyperConnectivities.

The obvious SuperHyperGraph has no Extreme SuperHyperEdges. But the non-obvious Extreme SuperHyperModel is up. The quasi-SuperHyperModel addresses some issues about the Extreme optimal SuperHyperObject. It specially delivers some remarks on the Extreme SuperHyperSet of the Extreme SuperHyperVertices such that there's distinct amount of Extreme SuperHyperEdges for distinct amount of Extreme SuperHyperVertices up to all taken from that Extreme SuperHyperSet of the Extreme SuperHyperVertices but this Extreme SuperHyperSet of the Extreme SuperHyperVertices is either has the maximum Extreme SuperHyperCardinality or it doesn't have maximum Extreme SuperHyperCardinality. In a non-obvious SuperHyperModel, there's at least one Extreme SuperHyperEdge containing at least all Extreme SuperHyperVertices. Thus it forms an Extreme quasi-R-SuperHyperConnectivities where the Extreme completion of the Extreme incidence is up in that. Thus it's, literarily, an Extreme embedded R-SuperHyperConnectivities. The SuperHyperNotions of embedded SuperHyperSet and quasi-SuperHyperSet coincide. In the original setting, these types of SuperHyperSets only don't satisfy on the maximum SuperHyperCardinality. Thus the embedded setting is elected such that those SuperHyperSets have the maximum Extreme SuperHyperCardinality and they're Extreme SuperHyperOptimal. The less than two distinct types of Extreme SuperHyperVertices are included in the minimum Extreme style of the embedded Extreme R-SuperHyperConnectivities. The interior types of the Extreme SuperHyperVertices are deciders. Since the Extreme number of SuperHyperNeighbors are only affected by the interior Extreme SuperHyperVertices. The common connections, more precise and more formal, the perfect unique connections inside the Extreme SuperHyperSet for any distinct types of Extreme SuperHyperVertices pose the Extreme R-SuperHyperConnectivities. Thus Extreme exterior SuperHyperVertices could be used only in one Extreme SuperHyperEdge and in Extreme SuperHyperRelation with the interior Extreme SuperHyperVertices in that Extreme SuperHyperEdge. In the embedded Extreme SuperHyperConnectivities, there's the usage of exterior Extreme SuperHyperVertices since they've more connections inside more than outside. Thus the title "exterior" is more relevant than the title "interior". One Extreme SuperHyperVertex has no connection, inside. Thus, the Extreme SuperHyperSet of the Extreme SuperHyperVertices with one SuperHyperElement has been ignored in the exploring to lead on the optimal case implying the Extreme R-SuperHyperConnectivities. The Extreme R-SuperHyperConnectivities with the exclusion of the exclusion of all Extreme SuperHyperVertices in one Extreme SuperHyperEdge and with other terms, the Extreme R-SuperHyperConnectivities with the inclusion of all Extreme SuperHyperVertices in one Extreme SuperHyperEdge, is an Extreme quasi-R-SuperHyperConnectivities. To sum them up, in a connected non-obvious Extreme SuperHyperGraph ESHG: (V, E). There's only one Extreme SuperHyperEdge  $E \in E_{ESHG:(V,E)}$  has only the maximum possibilities of the distinct interior Extreme SuperHyperVertices inside of any given Extreme quasi-R-SuperHyperConnectivities minus all Extreme SuperHypeNeighbor to some of them but not all of them. In other words, there's only an unique Extreme SuperHyperEdge  $E \in E_{ESHG:(V,E)}$  has only two distinct Extreme SuperHyperVertices in an Extreme quasi-R-SuperHyperConnectivities, minus all Extreme

SuperHypeNeighbor to some of them but not all of them.

The main definition of the Extreme R-SuperHyperConnectivities has two titles. an Extreme quasi-R-SuperHyperConnectivities and its corresponded quasi-maximum Extreme R-SuperHyperCardinality are two titles in the terms of quasi-R-styles. For any Extreme number, there's an Extreme quasi-R-SuperHyperConnectivities with that quasi-maximum Extreme SuperHyperCardinality in the terms of the embedded Neutrosophic SuperHyperGraph. If there's an embedded Neutrosophic SuperHyperGraph, then the Extreme quasi-SuperHyperNotions lead us to take the collection of all the Extreme quasi-R-SuperHyperConnectivities for all Extreme numbers less than its Extreme corresponded maximum number. The essence of the Extreme SuperHyperConnectivities ends up but this essence starts up in the terms of the Extreme quasi-R-SuperHyperConnectivities, again and more in the operations of collecting all the Extreme quasi-R-SuperHyperConnectivitiess acted on the all possible used formations of the Neutrosophic SuperHyperGraph to achieve one Extreme number. This Extreme number is

considered as the equivalence class for all corresponded quasi-R-SuperHyperConnectivitiess. Let  $z_{\text{Extreme Number}}$ ,  $S_{\text{Extreme SuperHyperSet}}$  and  $G_{\text{Extreme SuperHyperConnectivities}}$  be an Extreme number, an Extreme SuperHyperSet and an Extreme SuperHyperConnectivities. Then

$$\begin{split} &[z_{\text{Extreme Number}}]_{\text{Extreme Class}} = \{S_{\text{Extreme SuperHyperSet}} \mid \\ &S_{\text{Extreme SuperHyperSet}} = G_{\text{Extreme SuperHyperConnectivities}}, \\ &|S_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}} \\ &= z_{\text{Extreme Number}}\}. \end{split}$$

As its consequences, the formal definition of the Extreme SuperHyperConnectivities is re-formalized and redefined as follows.

 $G_{\text{Extreme SuperHyperConnectivities}} \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} = \bigcup_{z_{\text{Extreme Number}}} \{S_{\text{Extreme SuperHyperSet}} \mid S_{\text{Extreme SuperHyperSet}} = G_{\text{Extreme SuperHyperConnectivities}}, \\ |S_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}} = z_{\text{Extreme Number}} \}.$ 

To get more precise perceptions, the follow-up expressions propose another formal technical definition for the Extreme SuperHyperConnectivities.

 $G_{\text{Extreme SuperHyperConnectivities}} = \{S \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}] \text{Extreme Class} = \bigcup_{z_{\text{Extreme Number}}} \{S_{\text{Extreme SuperHyperSet}} | \\ S_{\text{Extreme SuperHyperSet}} = G_{\text{Extreme SuperHyperConnectivities}}, \\ |S_{\text{Extreme SuperHyperSet}}| \text{Extreme Cardinality} \\ = z_{\text{Extreme Number}} | \\ |S_{\text{Extreme SuperHyperSet}}| \text{Extreme Cardinality} \\ = \max_{[z_{\text{Extreme Number}}] \text{Extreme Cardinality}} \}.$ 

In more concise and more convenient ways, the modified definition for the Extreme SuperHyperConnectivities poses the upcoming expressions.

 $G_{\text{Extreme SuperHyperConnectivities}} = \{S \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} \mid |S_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}} = \max_{\substack{[z_{\text{Extreme Number}}]_{\text{Extreme Class}}} z_{\text{Extreme Number}} \}.$ 

To translate the statement to this mathematical literature, the formulae will be revised.

 $G_{\text{Extreme SuperHyperConnectivities}} = \{S \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}] \text{Extreme Class} \mid |S_{\text{Extreme SuperHyperSet}}| \text{Extreme Cardinality} = \max_{\substack{z_{\text{Extreme Number}} \in \text{Class}}} z_{\text{Extreme Number}} \text{Extreme Number} \\ = \max \{|E| \mid E \in E_{ESHG:(V,E)}\}\}.$ 

And then,

 $G_{\text{Extreme SuperHyperConnectivities}} = \{S \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} \mid |S_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}} = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}.$ 

To get more visions in the closer look-up, there's an overall overlook.

 $\begin{aligned} G_{\text{Extreme SuperHyperConnectivities}} &\in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} = \\ & \cup_{z_{\text{Extreme Number}}} \{S_{\text{Extreme SuperHyperSet}} \mid \\ S_{\text{Extreme SuperHyperSet}} &= G_{\text{Extreme SuperHyperConnectivities}}, \\ & |S_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}} \\ &= \max \{ |E| \mid E \in E_{ESHG:(V,E)} \} \}. \end{aligned}$ 

 $G_{\text{Extreme SuperHyperConnectivities}} = \{S \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} = \bigcup_{z_{\text{Extreme Number}}} \{S_{\text{Extreme SuperHyperSet}} \mid S_{\text{Extreme SuperHyperSet}} = G_{\text{Extreme SuperHyperConnectivities}}, \\ |S_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}} = z_{\text{Extreme Number}} \mid \\ |S_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}} = \max \{|E| \mid E \in E_{ESHG}; (V,E)\}\}.$ 

 $G_{\text{Extreme SuperHyperConnectivities}} =$ 

Henry Garrett  $\,\cdot\,$  Independent Researcher  $\,\cdot\,$  Department of Mathematics  $\,\cdot\,$  DrHenryGarrett@gmail.com  $\,\cdot\,$  Manhattan, NY, USA

 $\{S \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}] \text{Extreme Class} \mid |S_{\text{Extreme SuperHyperSet}}| \text{Extreme Cardinality} = \max_{\substack{[z_{\text{Extreme Number}}] \text{Extreme Class}}} z_{\text{Extreme Number}} = \max \{|E| \mid E \in E_{ESHG:(V,E)}\}\}.$ 

 $G_{\text{Extreme SuperHyperConnectivities}} = \{S \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} \mid |S_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}} = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}.$ 

Now, the extension of these types of approaches is up. Since the new term, "Extreme SuperHyperNeighborhood", could be redefined as the collection of the Extreme SuperHyperVertices such that any amount of its Extreme SuperHyperVertices are incident to an Extreme SuperHyperEdge. It's, literarily, another name for "Extreme Quasi-SuperHyperConnectivities" but, precisely, it's the generalization of "Extreme Quasi-SuperHyperConnectivities" in a Neutrosophic SuperHyperConnectivities" happens "Extreme SuperHyperConnectivities" in a Neutrosophic SuperHyperGraph as initial framework and background but "Extreme SuperHyperReighborhood" may not happens "Extreme SuperHyperConnectivities" in a Neutrosophic SuperHyperGraph as initial framework and preliminarily background since there are some ambiguities about the Extreme SuperHyperCardinality arise from it. To get orderly keywords, the terms, "Extreme SuperHyperNeighborhood", "Extreme Quasi-SuperHyperConnectivities", and "Extreme SuperHyperConnectivities" are up.

Thus, let  $z_{\text{Extreme Number}}$ ,  $N_{\text{Extreme SuperHyperNeighborhood}}$  and  $G_{\text{Extreme SuperHyperConnectivities}}$  be an Extreme number, an Extreme SuperHyperNeighborhood and an Extreme SuperHyperConnectivities and the new terms are up.

$$\begin{split} G_{\text{Extreme SuperHyperConnectivities}} &\in \cup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} = \\ &\cup_{z_{\text{Extreme Number}}} \{N_{\text{Extreme SuperHyperNeighborhood}} \mid \\ &|N_{\text{Extreme SuperHyperNeighborhood}}|_{\text{Extreme Cardinality}} \\ &= \max_{\substack{[z_{\text{Extreme Number}}]_{\text{Extreme Class}}} z_{\text{Extreme Number}} \}. \end{split}$$

 $G_{\text{Extreme SuperHyperConnectivities}} =$ 

 $\{N_{\text{Extreme SuperHyperNeighborhood}} \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} =$ 

 $\cup_{z_{\text{Extreme Number}}} \{ N_{\text{Extreme SuperHyperNeighborhood}} \}$ 

 $|N_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}}$ 

 $= z_{\text{Extreme Number}} \mid$ 

 $|N_{\text{Extreme SuperHyperNeighborhood}}|_{\text{Extreme Cardinality}}$ 

 $z \max_{[z_{\text{Extreme Number}}]_{\text{Extreme Class}}} z_{\text{Extreme Number}} \}.$ 

 $G_{\text{Extreme SuperHyperConnectivities}} =$ 

 $\{N_{\text{Extreme SuperHyperNeighborhood}} \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} \mid$ 

 $|N_{\text{Extreme SuperHyperNeighborhood}}|_{\text{Extreme Cardinality}}$ 

 $= \max_{\substack{[z_{\text{Extreme Number}}]_{\text{Extreme Class}}}} z_{\text{Extreme Number}} \}.$ 

 $G_{\text{Extreme SuperHyperConnectivities}} =$ 

 $\{N_{\text{Extreme SuperHyperNeighborhood}} \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} |$ 

 $|N_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}} = \max_{\substack{[z_{\text{Extreme Number}}]_{\text{Extreme Class}}} z_{\text{Extreme Number}} \}.$ 

And with go back to initial structure,

$$\begin{split} G_{\text{Extreme SuperHyperConnectivities}} &\in \cup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} = \\ &\cup_{z_{\text{Extreme Number}}} \{N_{\text{Extreme SuperHyperNeighborhood}} \mid \\ &|N_{\text{Extreme SuperHyperNeighborhood}}|_{\text{Extreme Cardinality}} \end{split}$$

 $= \max\left\{ |E| \mid E \in E_{ESHG:(V,E)} \right\} \}.$ 

 $G_{\text{Extreme SuperHyperConnectivities}} =$ 

 $\{N_{\text{Extreme SuperHyperNeighborhood}} \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} = \{N_{\text{Extreme Number}}\}$ 

 $\cup_{z_{\text{Extreme Number}}} \{ N_{\text{Extreme SuperHyperNeighborhood}} \mid$ 

 $|N_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}}$ 

 $= z_{\text{Extreme Number}} \mid$ 

 $|N_{\text{Extreme SuperHyperNeighborhood}}|_{\text{Extreme Cardinality}}$ 

 $= \max\left\{ |E| \mid E \in E_{ESHG:(V,E)} \right\} \}.$ 

 $G_{\text{Extreme SuperHyperConnectivities}} =$ 

 $\{N_{\text{Extreme SuperHyperNeighborhood}} \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}}$ 

 $|N_{\text{Extreme SuperHyperNeighborhood}}|_{\text{Extreme Cardinality}}$ 

 $= \max_{\substack{[z_{\text{Extreme Number}}]_{\text{Extreme Class}}}} z_{\text{Extreme Number}}$ 

 $= \max \{ |E| \mid E \in E_{ESHG:(V,E)} \} \}.$ 

$$\begin{split} G_{\text{Extreme SuperHyperConnectivities}} &= \\ \{N_{\text{Extreme SuperHyperNeighborhood}} \in \cup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} \mid \\ |N_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}} \\ &= \max \left\{ |E| \mid E \in E_{ESHG:(V,E)} \right\} \}. \end{split}$$

Thus, in a connected Neutrosophic SuperHyperGraph ESHG: (V, E). The all interior Extreme SuperHyperVertices belong to any Extreme quasi-R-SuperHyperConnectivities if for any of them, and any of other corresponded Extreme SuperHyperVertex, some interior Extreme SuperHyperVertices

Henry Garrett  $\,\cdot\,$  Independent Researcher  $\,\cdot\,$  Department of Mathematics  $\,\cdot\,$  DrHenryGarrett@gmail.com  $\,\cdot\,$  Manhattan, NY, USA

are mutually Extreme SuperHyperNeighbors with no Extreme exception at all minus all Extreme SuperHypeNeighbors to any amount of them.

To make sense with the precise words in the terms of "R-', the follow-up illustrations are coming up. The following Extreme SuperHyperSet of Extreme SuperHyperVertices is the simple Extreme type-SuperHyperSet of the Extreme R-SuperHyperConnectivities.

 $V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$ 

The Extreme SuperHyperSet of Extreme SuperHyperVertices,

 $V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$ 

Is the simple Extreme type-SuperHyperSet of the Extreme R-SuperHyperConnectivities. The Extreme SuperHyperSet of the Extreme SuperHyperVertices,

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG}; (V, E) \mid |E| = \max\{|E| \mid E \in E_{ESHG}; (V, E)\}}$$

Is an **Extreme R-SuperHyperConnectivities** C(ESHG) for an Neutrosophic SuperHyperGraph ESHG: (V, E) is an Extreme type-SuperHyperSet with the maximum Extreme cardinality of an Extreme SuperHyperSet S of Extreme SuperHyperVertices such that there's no an Extreme SuperHyperEdge amid some Extreme SuperHyperVertices instead of all given by **Extreme SuperHyperConnectivities** is related to the Extreme SuperHyperSet of the Extreme SuperHyperVertices,

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E \in \{E \in E_{ESHG}: (V,E) \mid |E| = \max\{|E| \mid E \in E_{ESHG}: (V,E)\}}\}$$

There's <u>not</u> only <u>one</u> Extreme SuperHyperVertex <u>inside</u> the intended Extreme SuperHyperSet. Thus the non-obvious Extreme SuperHyperConnectivities is up. The obvious simple Extreme type-SuperHyperSet called the Extreme SuperHyperConnectivities is an Extreme SuperHyperSet <u>includes</u> only <u>one</u> Extreme SuperHyperVertex. But the Extreme SuperHyperSet of Extreme SuperHyperVertices,

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$$

doesn't have less than two SuperHyperVertices <u>inside</u> the intended Extreme SuperHyperSet since they've come from at least so far an SuperHyperEdge. Thus the non-obvious simple Extreme type-SuperHyperSet of the Extreme R-SuperHyperConnectivities <u>is</u> up. To sum them up, the Extreme SuperHyperSet of Extreme SuperHyperVertices,

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

 $\underline{Is}$  the non-obvious simple Extreme type-SuperHyperSet of the Extreme R-SuperHyperConnectivities. Since the Extreme SuperHyperSet of the Extreme SuperHyperVertices,

$$(V \setminus V \setminus \{x, z\}) \cup \{xy\}$$

or

$$(V \setminus V \setminus \{x, z\}) \cup \{zy\}$$

Henry Garrett  $\,\cdot\,$  Independent Researcher  $\,\cdot\,$  Department of Mathematics  $\,\cdot\,$  DrHenryGarrett@gmail.com  $\,\cdot\,$  Manhattan, NY, USA

is an Extreme R-SuperHyperConnectivities C(ESHG) for an Neutrosophic SuperHyperGraph ESHG : (V, E) is the Extreme SuperHyperSet S of Extreme SuperHyperVertices such that there's no an Extreme SuperHyperEdge for some Extreme SuperHyperVertices instead of all given by that Extreme type-SuperHyperSet called the Extreme SuperHyperConnectivities <u>and</u> it's an Extreme <u>SuperHyperConnectivities</u>. Since it's the maximum Extreme cardinality of an Extreme SuperHyperSet S of Extreme SuperHyperVertices use that there's no an Extreme SuperHyperSet S of Extreme SuperHyperVertices instead of all given by that Extreme type-SuperHyperSet S of Extreme SuperHyperVertices instead of all given by that Extreme SuperHyperSet called the Extreme SuperHyperVertices instead of all given by that Extreme type-SuperHyperSet called the Extreme SuperHyperVertices. There isn't only less than two Extreme SuperHyperVertices instead the Extreme SuperHyperSet,

 $V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$ 

Thus the non-obvious Extreme R-SuperHyperConnectivities,

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

is up. The non-obvious simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities, not:

 $V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$ 

Is the Extreme SuperHyperSet, not:

$$V \setminus V \setminus \{a_E, b_E, c_E, \dots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

does includes only less than two SuperHyperVertices in a connected Extreme SuperHyperGraph ESHG: (V, E) but it's impossible in the case, they've corresponded to an SuperHyperEdge. It's interesting to mention that the only non-obvious simple Extreme type-SuperHyperSet called the

## "Extreme R-SuperHyperConnectivities"

amid those obvious non-obvious simple Extreme type-SuperHyperSets called the

## Extreme R-SuperHyperConnectivities,

is only and only

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

In a connected Neutrosophic SuperHyperGraph ESHG: (V, E) with a illustrated SuperHyperModeling. It's also, not only an Extreme free-triangle embedded SuperHyperModel and an Extreme on-triangle embedded SuperHyperModel but also it's an Extreme stable embedded SuperHyperModel. But all only non-obvious simple Extreme type-SuperHyperSets of the Extreme R-SuperHyperConnectivities amid those obvious simple Extreme type-SuperHyperSets of the Extreme SuperHyperConnectivities, are

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$$

Henry Garrett  $\,\cdot\,$  Independent Researcher  $\,\cdot\,$  Department of Mathematics  $\,\cdot\,$  DrHenryGarrett@gmail.com  $\,\cdot\,$  Manhattan, NY, USA

In a connected Neutrosophic SuperHyperGraph ESHG: (V, E). To sum them up, assume a connected loopless Neutrosophic SuperHyperGraph ESHG: (V, E). Then in the worst case, literally,

$$V \setminus V \setminus \{a_E, b_E, c_E, \dots\}_{E = \{E \in E_{ESHG}; (V, E) \mid |E| = \max\{|E| \mid E \in E_{ESHG}; (V, E)\}\}}$$

is an Extreme R-SuperHyperConnectivities. In other words, the least cardinality, the lower sharp bound for the cardinality, of an Extreme R-SuperHyperConnectivities is the cardinality of

 $V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$ 

To sum them up, in a connected Neutrosophic SuperHyperGraph ESHG: (V, E). The all interior Extreme SuperHyperVertices belong to any Extreme quasi-R-SuperHyperConnectivities if for any of them, and any of other corresponded Extreme SuperHyperVertex, some interior Extreme SuperHyperVertices are mutually Extreme SuperHyperNeighbors with no Extreme exception at all minus all Extreme SuperHypeNeighbors to any amount of them.

Assume a connected Extreme SuperHyperGraph ESHG: (V, E). Let an Extreme SuperHyperEdge  $ESHE: E \in E_{ESHG:(V,E)}$  has some Extreme SuperHyperVertices r. Consider all Extreme numbers of those Extreme SuperHyperVertices from that Extreme SuperHyperEdge excluding excluding more than r distinct Extreme SuperHyperVertices, exclude to any given Extreme SuperHyperSet of the Extreme SuperHyperVertices. Consider there's an Extreme R-SuperHyperConnectivities with the least cardinality, the lower sharp Extreme bound for Extreme cardinality. Assume a connected Neutrosophic SuperHyperGraph ESHG : (V, E). The Extreme SuperHyperSet of the Extreme SuperHyperVertices  $V_{ESHE} \setminus \{z\}$  is an Extreme SuperHyperSet S of the Extreme SuperHyperVertices such that there's an Extreme SuperHyperEdge to have some Extreme SuperHyperVertices uniquely but it isn't an Extreme R-SuperHyperConnectivities. Since it doesn't have the maximum Extreme cardinality of an Extreme SuperHyperSet S of Extreme SuperHyper-Vertices such that there's an Extreme SuperHyperEdge to have some SuperHyperVertices uniquely. The Extreme SuperHyperSet of the Extreme SuperHyperVertices  $V_{ESHE} \cup \{z\}$  is the maximum Extreme cardinality of an Extreme SuperHyperSet S of Extreme SuperHyperVertices but it isn't an Extreme R-SuperHyperConnectivities. Since it **doesn't do** the Extreme procedure such that such that there's an Extreme SuperHyperEdge to have some Extreme SuperHyperVertices uniquely [there are at least one Extreme SuperHyperVertex outside implying there's, sometimes in the connected Neutrosophic SuperHyperGraph ESHG: (V, E), an Extreme SuperHyperVertex, titled its Extreme SuperHyperNeighbor, to that Extreme SuperHyperVertex in the Extreme SuperHyperSet S so as Sdoesn't do "the Extreme procedure".]. There's only <u>one</u> Extreme SuperHyperVertex <u>outside</u> the intended Extreme SuperHyperSet,  $V_{ESHE} \cup \{z\}$ , in the terms of Extreme SuperHyperNeighborhood. Thus the obvious Extreme R-SuperHyperConnectivities,  $V_{ESHE}$  is up. The obvious simple Extreme type-SuperHyperSet of the Extreme R-SuperHyperConnectivities,  $V_{ESHE}$ , is an Extreme SuperHyperSet, V<sub>ESHE</sub>, includes only all Extreme SuperHyperVertices does forms any kind of Extreme pairs are titled Extreme SuperHyperNeighbors in a connected Neutrosophic SuperHyperGraph ESHG: (V, E). Since the Extreme SuperHyperSet of the Extreme SuperHyperVertices  $V_{ESHE}$ , is the **maximum Extreme SuperHyperCardinality** of an Extreme SuperHyperSet S of Extreme SuperHyperVertices <u>such that</u> there's an Extreme SuperHyperEdge to have some Extreme SuperHyperVertices uniquely. Thus, in a connected Neutrosophic SuperHyperGraph ESHG: (V, E). Any Extreme R-SuperHyperConnectivities only contains all interior Extreme SuperHyperVertices

and all exterior Extreme SuperHyperVertices from the unique Extreme SuperHyperEdge where there's any of them has all possible Extreme SuperHyperNeighbors in and there's all Extreme SuperHyperNeighborhoods in with no exception minus all Extreme SuperHyperNeighborhoods to some of them not all of them but everything is possible about Extreme SuperHyperNeighborhoods and Extreme SuperHyperNeighbors out.

The SuperHyperNotion, namely, SuperHyperConnectivities, is up. There's neither empty SuperHyperEdge nor loop SuperHyperEdge. The following Extreme SuperHyperSet of Extreme SuperHyperConnectivities] is the simple Extreme type-SuperHyperSet of the Extreme SuperHyperVertices], The Extreme SuperHyperSet of Extreme SuperHyperVertices],

$$\begin{split} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} \\ &= \{E_{2i-1}\}_{i=1}^{\min|P_{ESHG:(V,E)}|\text{Extreme Cardinality}}. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} \\ &= z^{\min|P_{ESHG:(V,E)}|\text{Extreme Cardinality}}. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivities} \\ &= \{V_i\}_{i=1}^{s}. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} \\ &= az^{s}. \end{split}$$

is the simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities. The Extreme SuperHyperSet of the Extreme SuperHyperEdges[SuperHyperVertices],

$$\begin{split} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} \\ &= \{E_{2i-1}\}_{i=1}^{\min|P_{ESHG:(V,E)}|_{Extreme Cardinality}}. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} \\ &= z^{\min|P_{ESHG:(V,E)}|_{Extreme Cardinality}}. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivities} \\ &= \{V_i\}_{i=1}^{s}. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} \\ &= az^{s}. \end{split}$$

Is an **Extreme SuperHyperConnectivities** C(ESHG) for an Neutrosophic SuperHyperGraph ESHG: (V, E) is an Extreme type-SuperHyperSet with the maximum Extreme cardinality of an Extreme SuperHyperSet S of Extreme SuperHyperEdges[SuperHyperVertices] such that there's no Extreme SuperHyperVertex of an Extreme SuperHyperEdge is common and there's an Extreme SuperHyperEdge for all Extreme SuperHyperVertices. There are <u>not</u> only <u>two</u> Extreme SuperHyperVertices inside the intended Extreme SuperHyperSet. Thus the non-obvious Extreme SuperHyperConnectivities is up. The obvious simple Extreme type-SuperHyperSet called the Extreme SuperHyperConnectivities is an Extreme SuperHyperSet includes only <u>two</u> Extreme SuperHyperVertices. But the Extreme SuperHyperSet of the Extreme SuperHyperVertices]

```
\begin{split} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} \\ &= \{E_{2i-1}\}_{i=1}^{\min|P_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}}. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} \\ &= z^{\min|P_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}}. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivities} \\ &= \{V_i\}_{i=1}^{s}. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} \\ &= az^{s}. \end{split}
```

Doesn't have less than three SuperHyperVertices <u>inside</u> the intended Extreme SuperHyperSet. Thus the non-obvious simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities <u>is</u> up. To sum them up, the Extreme SuperHyperSet of the Extreme SuperHyperEdges[SuperHyperVertices],

$$\begin{split} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} \\ &= \{E_{2i-1}\}_{i=1}^{\min|P_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}}. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} \\ &= z^{\min|P_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}}. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivities} \\ &= \{V_i\}_{i=1}^{s}. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} \\ &= az^{s}. \end{split}$$

 $\underline{Is}$  the non-obvious simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities. Since the Extreme SuperHyperSet of the Extreme SuperHyperEdges[SuperHyperVertices],

$$\begin{split} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} \\ &= \{E_{2i-1}\}_{i=1}^{\min|P_{ESHG:(V,E)}|_{Extreme Cardinality}}. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} \\ &= z^{\min|P_{ESHG:(V,E)}|_{Extreme Cardinality}}. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivities} \\ &= \{V_i\}_{i=1}^{s}. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} \\ &= az^{s}. \end{split}$$

Is an Extreme SuperHyperConnectivities C(ESHG) for an Neutrosophic SuperHyperGraph ESHG : (V, E) is the Extreme SuperHyperSet S of Extreme SuperHyperVertices such that there's no an Extreme SuperHyperEdge for some Extreme SuperHyperVertices given by that Extreme type-SuperHyperSet called the Extreme SuperHyperConnectivities <u>and</u> it's an Extreme <u>SuperHyperConnectivities</u>. Since it's <u>the maximum Extreme cardinality</u> of an Extreme SuperHyperSet S of Extreme SuperHyperVertices] such that there's no Extreme SuperHyperVertex of an Extreme SuperHyperVertices] such that there's an Extreme SuperHyperEdge for all Extreme SuperHyperVertices. There aren't only less than three Extreme SuperHyperVertices <u>inside</u> the intended Extreme SuperHyperSet,

$$\begin{split} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} \\ &= \{E_{2i-1}\}_{i=1}^{\min|P_{ESHG:(V,E)}|\text{Extreme Cardinality}}. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} \\ &= z^{\min|P_{ESHG:(V,E)}|\text{Extreme Cardinality}}. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivities} \\ &= \{V_i\}_{i=1}^{s}. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} \\ &= az^{s}. \end{split}$$

Thus the non-obvious Extreme SuperHyperConnectivities,

 $\begin{aligned} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} \\ &= \{E_{2i-1}\}_{i=1}^{\min|P_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}}. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} \end{aligned}$ 

 $= z^{\min |P_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}}.$   $\mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivities} = \{V_i\}_{i=1}^{s}.$  $\mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} = az^s.$ 

Is up. The obvious simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities, not:

 $\begin{aligned} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} \\ &= \{E_{2i-1}\}_{i=1}^{\min|P_{ESHG:(V,E)}|\text{Extreme Cardinality}}. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} \\ &= z^{\min|P_{ESHG:(V,E)}|\text{Extreme Cardinality}}. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivities} \\ &= \{V_i\}_{i=1}^{s}. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} \\ &= az^{s}. \end{aligned}$ 

Is the Extreme SuperHyperSet, not:

$$\begin{split} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} \\ &= \{E_{2i-1}\}_{i=1}^{\min|P_{ESHG:(V,E)}|_{Extreme Cardinality}}. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} \\ &= z^{\min|P_{ESHG:(V,E)}|_{Extreme Cardinality}}. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivities} \\ &= \{V_i\}_{i=1}^{s}. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} \\ &= az^{s}. \end{split}$$

Does includes only less than three SuperHyperVertices in a connected Extreme SuperHyperGraph ESHG: (V, E). It's interesting to mention that the only non-obvious simple Extreme type-SuperHyperSet called the

## "Extreme SuperHyperConnectivities"

amid those obvious non-obvious simple Extreme type-SuperHyperSets called the

## Extreme SuperHyperConnectivities,

is only and only

$$\begin{split} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} \\ &= \{E_{2i-1}\}_{i=1}^{\min|P_{ESHG:(V,E)}|\text{Extreme Cardinality}}. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} \\ &= z^{\min|P_{ESHG:(V,E)}|\text{Extreme Cardinality}}. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivities} \\ &= \{V_i\}_{i=1}^{s}. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} \\ &= az^{s}. \end{split}$$

In a connected Neutrosophic SuperHyperGraph ESHG : (V, E).

Henry Garrett  $\,\cdot\,$  Independent Researcher  $\,\cdot\,$  Department of Mathematics  $\,\cdot\,$  DrHenryGarrett@gmail.com  $\,\cdot\,$  Manhattan, NY, USA

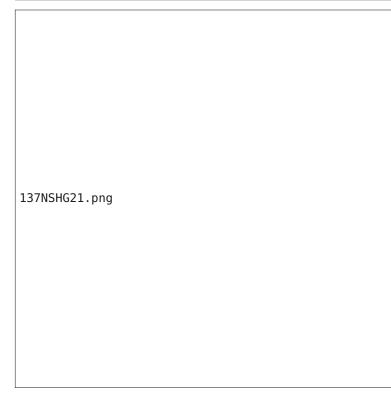


Figure 9.4: an Extreme SuperHyperBipartite Extreme Associated to the Extreme Notions of Extreme SuperHyperConnectivities in the Example (9.0.9)

**Example 9.0.9.** In the Extreme Figure (9.4), the connected Extreme SuperHyperBipartite ESHB: (V, E), is Extreme highlighted and Extreme featured. The obtained Extreme SuperHyperSet, by the Extreme Algorithm in previous Extreme result, of the Extreme SuperHyperVertices of the connected Extreme SuperHyperBipartite ESHB: (V, E), in the Extreme SuperHyperModel (9.4), is the Extreme SuperHyperConnectivities.

**Proposition 9.0.10.** Assume a connected Extreme SuperHyperMultipartite ESHM : (V, E). Then an Extreme R-SuperHyperConnectivities is an Extreme SuperHyperSet of the interior Extreme SuperHyperVertices with only no Extreme exception in the Extreme form of interior Extreme SuperHyperVertices from an Extreme SuperHyperPart and only no exception in the form of interior SuperHyperVertices from another SuperHyperPart titled "SuperHyperNeighbors" with neglecting and ignoring more than some of them aren't SuperHyperNeighbors to all. an Extreme R-SuperHyperConnectivities has the Extreme maximum number on all the Extreme summation on the Extreme cardinality of the all Extreme SuperHyperParts form some SuperHyperEdges minus those make Extreme SuperHypeNeighbors to some not all or not unique. Also,

 $C(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{E_{2i-1}\}_{i=1}^{\min |P_{ESHG:(V,E)}|_{Extreme Cardinality}}.$ 

 $\begin{aligned} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} \\ &= z^{\min|P_{ESHG:(V,E)}|_{Extreme Cardinality}}. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivities} = \{V_i\}_{i=1}^{s}. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} = az^s. \end{aligned}$ 

*Proof.* Assume a connected loopless Neutrosophic SuperHyperGraph ESHG : (V, E). The SuperHyperSet of the SuperHyperVertices  $V \setminus V \setminus \{z\}$  isn't a quasi-R-SuperHyperConnectivities since neither amount of Extreme SuperHyperEdges nor amount of SuperHyperVertices where amount refers to the Extreme number of SuperHyperVertices(-/SuperHyperEdges) more than one to form any kind of SuperHyperEdges or any number of SuperHyperEdges. Let us consider the Extreme SuperHyperSet

 $V \setminus V \setminus \{a_E, b_E, c_E, \dots, a_{E'}, b_{E'}, c_{E'}, \dots\}_{E, E' = \{E \in E_{ESHG}; (V, E) \mid |E| = \max\{|E| \mid E \in E_{ESHG}; (V, E)\}\}}$ 

This Extreme SuperHyperSet of the Extreme SuperHyperVertices has the eligibilities to propose property such that there's no Extreme SuperHyperVertex of an Extreme SuperHyperEdge is common and there's an Extreme SuperHyperEdge for all Extreme SuperHyperVertices but the maximum Extreme cardinality indicates that these Extreme type-SuperHyperSets couldn't give us the Extreme lower bound in the term of Extreme sharpness. In other words, the Extreme SuperHyperSet

$$V \setminus V \setminus \{a_E, b_E, c_E, \dots, a_{E'}, b_{E'}, c_{E'}, \dots\}_{E, E'} = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}$$

of the Extreme SuperHyperVertices implies at least on-quasi-triangle style is up but sometimes the Extreme SuperHyperSet

$$V \setminus V \setminus \{a_E, b_E, c_E, \dots, a_{E'}, b_{E'}, c_{E'}, \dots\}_{E, E'} = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}$$

of the Extreme SuperHyperVertices is free-quasi-triangle and it doesn't make a contradiction to the supposition on the connected loopless Neutrosophic SuperHyperGraph ESHG: (V, E). Thus the minimum case never happens in the generality of the connected loopless Neutrosophic SuperHyperGraphs. Thus if we assume in the worst case, literally,

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

Is a quasi-R-SuperHyperConnectivities. In other words, the least cardinality, the lower sharp bound for the cardinality, of a quasi-R-SuperHyperConnectivities is the cardinality of

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

Then we've lost some connected loopless Extreme SuperHyperClasses of the connected loopless Neutrosophic SuperHyperGraphs titled free-triangle, on-triangle, and their quasi-types but the SuperHyperStable is only up in this quasi-R-SuperHyperConnectivities. It's the contradiction to that fact on the generality. There are some counterexamples to deny this statement. One of them comes from the setting of the graph titled path and cycle as the counterexamples-classes or reversely direction star as the examples-classes, are well-known classes in that setting and they could be considered as the examples-classes and counterexamples-classes for the tight bound of

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

Let  $V \setminus V \setminus \{z\}$  in mind. There's no necessity on the SuperHyperEdge since we need at least two SuperHyperVertices to form a SuperHyperEdge. It doesn't withdraw the principles of the main definition since there's no condition to be satisfied but the condition is on the existence of the SuperHyperEdge instead of acting on the SuperHyperVertices. In other words, if there's a SuperHyperEdge, then the Extreme SuperHyperSet has the necessary condition for the intended definition to be applied. Thus the  $V \setminus V \setminus \{z\}$  is withdrawn not by the conditions of the main definition but by the necessity of the pre-condition on the usage of the main definition.

The Extreme structure of the Extreme R-SuperHyperConnectivities decorates the Extreme SuperHyperVertices don't have received any Extreme connections so as this Extreme style implies different versions of Extreme SuperHyperEdges with the maximum Extreme cardinality in the terms of Extreme SuperHyperVertices are spotlight. The lower Extreme bound is to have the maximum Extreme groups of Extreme SuperHyperVertices have perfect Extreme connections inside each of SuperHyperEdges and the outside of this Extreme SuperHyperSet doesn't matter but regarding the connectedness of the used Neutrosophic SuperHyperGraph arising from its Extreme properties taken from the fact that it's simple. If there's no more than one Extreme SuperHyperVertex in the targeted Extreme SuperHyperSet, then there's no Extreme connection. Furthermore, the Extreme existence of one Extreme SuperHyperVertex has no Extreme effect to talk about the Extreme R-SuperHyperConnectivities. Since at least two Extreme SuperHyperVertices involve to make a title in the Extreme background of the Neutrosophic SuperHyperGraph. The Neutrosophic SuperHyperGraph is obvious if it has no Extreme SuperHyperEdge but at least two Extreme SuperHyperVertices make the Extreme version of Extreme SuperHyperEdge. Thus in the Extreme setting of non-obvious Neutrosophic SuperHyperGraph, there are at least one Extreme SuperHyperEdge. It's necessary to mention that the word "Simple" is used as Extreme adjective for the initial Neutrosophic SuperHyperGraph, induces there's no Extreme appearance of the loop Extreme version of the Extreme SuperHyperEdge and this Neutrosophic SuperHyperGraph is said to be loopless. The Extreme adjective "loop" on the basic Extreme framework engages one Extreme SuperHyperVertex but it never happens in this Extreme setting. With these Extreme bases, on a Neutrosophic SuperHyperGraph, there's at least one Extreme SuperHyperEdge thus there's at least an Extreme R-SuperHyperConnectivities has the Extreme cardinality of an Extreme SuperHyperEdge. Thus, an Extreme R-SuperHyperConnectivities has the Extreme cardinality at least an Extreme SuperHyperEdge. Assume an Extreme SuperHyperSet  $V \setminus V \setminus \{z\}$ . This Extreme SuperHyperSet isn't an Extreme R-SuperHyperConnectivities since either the Neutrosophic SuperHyperGraph is an obvious Extreme SuperHyperModel thus it never happens since there's no Extreme usage of this Extreme framework and even more there's no Extreme connection inside or the Neutrosophic SuperHyperGraph isn't obvious and as its consequences, there's an Extreme contradiction with the term "Extreme R-SuperHyperConnectivities" since the maximum Extreme cardinality never happens for this Extreme style of the Extreme SuperHyperSet and beyond that there's no Extreme connection inside as mentioned in first Extreme case in the forms of drawback for this selected Extreme SuperHyperSet. Let

$$V \setminus V \setminus \{a_E, b_E, c_E, \dots, a_{E'}, b_{E'}, c_{E'}, \dots\}_{E, E' = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

Comes up. This Extreme case implies having the Extreme style of on-quasi-triangle Extreme style on the every Extreme elements of this Extreme SuperHyperSet. Precisely, the Extreme R-SuperHyperConnectivities is the Extreme SuperHyperSet of the Extreme SuperHyperVertices such that some Extreme amount of the Extreme SuperHyperVertices are on-quasi-triangle Extreme

style. The Extreme cardinality of the v SuperHypeSet

 $V \setminus V \setminus \{a_E, b_E, c_E, \dots, a_{E'}, b_{E'}, c_{E'}, \dots\}_{E, E'} = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}$ 

Is the maximum in comparison to the Extreme SuperHyperSet

 $V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$ 

But the lower Extreme bound is up. Thus the minimum Extreme cardinality of the maximum Extreme cardinality ends up the Extreme discussion. The first Extreme term refers to the Extreme setting of the Neutrosophic SuperHyperGraph but this key point is enough since there's an Extreme SuperHyperClass of a Neutrosophic SuperHyperGraph has no on-quasi-triangle Extreme style amid some amount of its Extreme SuperHyperVertices. This Extreme setting of the Extreme SuperHyperModel proposes an Extreme SuperHyperSet has only some amount Extreme SuperHyperVertices from one Extreme SuperHyperEdge such that there's no Extreme SuperHyperVertices. The Extreme cardinality of this Extreme SuperHyperSet is the maximum and the Extreme case is occurred in the minimum Extreme situation. To sum them up, the Extreme SuperHyperSet

 $V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$ 

Has the maximum Extreme cardinality such that

$$V \setminus V \setminus \{a_E, b_E, c_E, \dots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$$

Contains some Extreme SuperHyperVertices such that there's distinct-covers-order-amount Extreme SuperHyperEdges for amount of Extreme SuperHyperVertices taken from the Extreme SuperHyperSet

 $V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG}; (V,E) \mid |E| = \max\{|E| \mid E \in E_{ESHG}; (V,E)\}\}}$ 

It means that the Extreme SuperHyperSet of the Extreme SuperHyperVertices

 $V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$ 

Is an Extreme R-SuperHyperConnectivities for the Neutrosophic SuperHyperGraph as used Extreme background in the Extreme terms of worst Extreme case and the common theme of the lower Extreme bound occurred in the specific Extreme SuperHyperClasses of the Neutrosophic SuperHyperGraphs which are Extreme free-quasi-triangle.

Assume an Extreme SuperHyperEdge  $E \in E_{ESHG:(V,E)}$  has z Extreme number of the Extreme SuperHyperVertices. Then every Extreme SuperHyperVertex has at least no Extreme SuperHyperEdge with others in common. Thus those Extreme SuperHyperVertices have the eligibles to be contained in an Extreme R-SuperHyperConnectivities. Those Extreme SuperHyperVertices are potentially included in an Extreme style-R-SuperHyperConnectivities. Formally, consider

$$V \setminus (V \setminus \{a_E, b_E, c_E, \dots, z_E\}).$$

Are the Extreme SuperHyperVertices of an Extreme SuperHyperEdge  $E \in E_{ESHG;(V,E)}$ . Thus

$$Z_i \sim Z_j, \ i \neq j, \ i, j = 1, 2, \dots, z.$$

where the  $\sim$  isn't an equivalence relation but only the symmetric relation on the Extreme SuperHyperVertices of the Neutrosophic SuperHyperGraph. The formal definition is as follows.

$$Z_i \sim Z_j, i \neq j, i, j = 1, 2, \ldots, z$$

if and only if  $Z_i$  and  $Z_j$  are the Extreme SuperHyperVertices and there's only and only one Extreme SuperHyperEdge  $E \in E_{ESHG:(V,E)}$  between the Extreme SuperHyperVertices  $Z_i$  and  $Z_j$ . The other definition for the Extreme SuperHyperEdge  $E \in E_{ESHG:(V,E)}$  in the terms of Extreme R-SuperHyperConnectivities is

$$\{a_E, b_E, c_E, \ldots, z_E\}.$$

This definition coincides with the definition of the Extreme R-SuperHyperConnectivities but with slightly differences in the maximum Extreme cardinality amid those Extreme type-SuperHyperSets of the Extreme SuperHyperVertices. Thus the Extreme SuperHyperSet of the Extreme SuperHyperVertices,

$$\max |\{Z_1, Z_2, \dots, Z_z \mid Z_i \sim Z_j, i \neq j, i, j = 1, 2, \dots, z\}|_{\text{Extreme cardinality}},$$

and

$$V \setminus V \setminus \{a_E, b_E, c_E, \dots\}_{E=\{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

is formalized with mathematical literatures on the Extreme R-SuperHyperConnectivities. Let  $Z_i \stackrel{E}{\sim} Z_j$ , be defined as  $Z_i$  and  $Z_j$  are the Extreme SuperHyperVertices belong to the Extreme SuperHyperEdge  $E \in E_{ESHG:(V,E)}$ . Thus,

$$E = \{Z_1, Z_2, \dots, Z_z \mid Z_i \stackrel{E}{\sim} Z_j, \ i \neq j, \ i, j = 1, 2, \dots, z\}.$$

Or

$$\{a_E, o_E, c_E, \dots\}_{E=\{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

But with the slightly differences,

Extreme R-SuperHyperConnectivities = 
$$\{Z_1, Z_2, \dots, Z_z \mid \forall i \neq j, i, j = 1, 2, \dots, z, \exists E_x, Z_i \stackrel{E_x}{\sim} Z_j, \}.$$

Extreme R-SuperHyperConnectivities =

 $V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$ 

Thus  $E \in E_{ESHG:(V,E)}$  is an Extreme quasi-R-SuperHyperConnectivities where  $E \in E_{ESHG:(V,E)}$ is fixed that means  $E_x = E \in E_{ESHG:(V,E)}$ . for all Extreme intended SuperHyperVertices but in an Extreme SuperHyperConnectivities,  $E_x = E \in E_{ESHG:(V,E)}$  could be different and it's not unique. To sum them up, in a connected Extreme SuperHyperGraph ESHG:(V,E). If an Extreme

SuperHyperEdge  $E \in E_{ESHG:(V,E)}$  has z Extreme SuperHyperVertices, then the Extreme cardinality of the Extreme R-SuperHyperConnectivities is at least

$$V \setminus (V \setminus \{a_E, b_E, c_E, \dots, z_E\}).$$

It's straightforward that the Extreme cardinality of the Extreme R-SuperHyperConnectivities is at least the maximum Extreme number of Extreme SuperHyperVertices of the Extreme SuperHyperEdges with the maximum number of the Extreme SuperHyperEdges. In other words, the maximum number of the Extreme SuperHyperEdges contains the maximum Extreme number of Extreme SuperHyperVertices are renamed to Extreme SuperHyperConnectivities in some cases but the maximum number of the Extreme SuperHyperEdge with the maximum Extreme number of Extreme SuperHyperVertices, has the Extreme SuperHyperVertices are contained in an Extreme R-SuperHyperConnectivities.

The obvious SuperHyperGraph has no Extreme SuperHyperEdges. But the non-obvious Extreme SuperHyperModel is up. The quasi-SuperHyperModel addresses some issues about the Extreme optimal SuperHyperObject. It specially delivers some remarks on the Extreme SuperHyperSet of the Extreme SuperHyperVertices such that there's distinct amount of Extreme SuperHyperEdges for distinct amount of Extreme SuperHyperVertices up to all taken from that Extreme SuperHyperSet of the Extreme SuperHyperVertices but this Extreme SuperHyperSet of the Extreme SuperHyperVertices is either has the maximum Extreme SuperHyperCardinality or it doesn't have maximum Extreme SuperHyperCardinality. In a non-obvious SuperHyperModel, there's at least one Extreme SuperHyperEdge containing at least all Extreme SuperHyperVertices. Thus it forms an Extreme quasi-R-SuperHyperConnectivities where the Extreme completion of the Extreme incidence is up in that. Thus it's, literarily, an Extreme embedded R-SuperHyperConnectivities. The SuperHyperNotions of embedded SuperHyperSet and quasi-SuperHyperSet coincide. In the original setting, these types of SuperHyperSets only don't satisfy on the maximum SuperHyperCardinality. Thus the embedded setting is elected such that those SuperHyperSets have the maximum Extreme SuperHyperCardinality and they're Extreme SuperHyperOptimal. The less than two distinct types of Extreme SuperHyperVertices are included in the minimum Extreme style of the embedded Extreme R-SuperHyperConnectivities. The interior types of the Extreme SuperHyperVertices are deciders. Since the Extreme number of SuperHyperNeighbors are only affected by the interior Extreme SuperHyperVertices. The common connections, more precise and more formal, the perfect unique connections inside the Extreme SuperHyperSet for any distinct types of Extreme SuperHyperVertices pose the Extreme R-SuperHyperConnectivities. Thus Extreme exterior SuperHyperVertices could be used only in one Extreme SuperHyperEdge and in Extreme SuperHyperRelation with the interior Extreme SuperHyperVertices in that Extreme SuperHyperEdge. In the embedded Extreme SuperHyperConnectivities, there's the usage of exterior Extreme SuperHyperVertices since they've more connections inside more than outside. Thus the title "exterior" is more relevant than the title "interior". One Extreme SuperHyperVertex has no connection, inside. Thus, the Extreme SuperHyperSet of the Extreme SuperHyperVertices with one SuperHyperElement has been ignored in the exploring to lead on the optimal case implying the Extreme R-SuperHyperConnectivities. The Extreme R-SuperHyperConnectivities with the exclusion of the exclusion of all Extreme SuperHyperVertices in one Extreme SuperHyperEdge and with other terms, the Extreme R-SuperHyperConnectivities with the inclusion of all Extreme SuperHyperVertices in one Extreme SuperHyperEdge, is an Extreme quasi-R-SuperHyperConnectivities. To sum them up, in a connected non-obvious Extreme SuperHyperGraph ESHG: (V, E). There's only one Extreme SuperHyperEdge  $E \in E_{ESHG:(V,E)}$  has only the maximum possibilities of the distinct interior

Extreme SuperHyperVertices inside of any given Extreme quasi-R-SuperHyperConnectivities minus all Extreme SuperHypeNeighbor to some of them but not all of them. In other words, there's only an unique Extreme SuperHyperEdge  $E \in E_{ESHG:(V,E)}$  has only two distinct Extreme SuperHyperVertices in an Extreme quasi-R-SuperHyperConnectivities, minus all Extreme SuperHypeNeighbor to some of them but not all of them.

The main definition of the Extreme R-SuperHyperConnectivities has two titles. an Extreme quasi-R-SuperHyperConnectivities and its corresponded quasi-maximum Extreme R-SuperHyperCardinality are two titles in the terms of quasi-R-styles. For any Extreme number, there's an Extreme quasi-R-SuperHyperConnectivities with that quasi-maximum Extreme SuperHyperCardinality in the terms of the embedded Neutrosophic SuperHyperGraph. If there's an embedded Neutrosophic SuperHyperGraph, then the Extreme quasi-SuperHyperNotions lead us to take the collection of all the Extreme quasi-R-SuperHyperConnectivities for all Extreme numbers less than its Extreme corresponded maximum number. The essence of the Extreme SuperHyperConnectivities ends up but this essence starts up in the terms of the Extreme quasi-R-SuperHyperConnectivities, again and more in the operations of collecting all the Extreme quasi-R-SuperHyperConnectivitiess acted on the all possible used formations of the Neutrosophic SuperHyperGraph to achieve one Extreme number. This Extreme number is

considered as the equivalence class for all corresponded quasi-R-SuperHyperConnectivitiess. Let  $z_{\text{Extreme Number}}$ ,  $S_{\text{Extreme SuperHyperSet}}$  and  $G_{\text{Extreme SuperHyperConnectivities}}$  be an Extreme number, an Extreme SuperHyperSet and an Extreme SuperHyperConnectivities. Then

$$\begin{split} &[z_{\text{Extreme Number}}]_{\text{Extreme Class}} = \{S_{\text{Extreme SuperHyperSet}} \mid \\ &S_{\text{Extreme SuperHyperSet}} = G_{\text{Extreme SuperHyperConnectivities}}, \\ &|S_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}} \\ &= z_{\text{Extreme Number}}\}. \end{split}$$

As its consequences, the formal definition of the Extreme SuperHyperConnectivities is re-formalized and redefined as follows.

$$\begin{split} G_{\text{Extreme SuperHyperConnectivities}} &\in \cup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} = \\ \cup_{z_{\text{Extreme Number}}} \{S_{\text{Extreme SuperHyperSet}} \mid \\ S_{\text{Extreme SuperHyperSet}} &= G_{\text{Extreme SuperHyperConnectivities}}, \\ \mid S_{\text{Extreme SuperHyperSet}} \mid \\ \text{Extreme SuperHyperSet} \mid \\ z_{\text{Extreme Number}} \}. \end{split}$$

To get more precise perceptions, the follow-up expressions propose another formal technical definition for the Extreme SuperHyperConnectivities.

$$\begin{split} G_{\text{Extreme SuperHyperConnectivities}} &= \\ \{S \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} = \\ \bigcup_{z_{\text{Extreme Number}}} \{S_{\text{Extreme SuperHyperSet}} \mid \\ S_{\text{Extreme SuperHyperSet}} = G_{\text{Extreme SuperHyperConnectivities}}, \\ |S_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}} \\ &= z_{\text{Extreme Number}} \mid \\ |S_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}} \end{split}$$

Henry Garrett  $\,\cdot\,$  Independent Researcher  $\,\cdot\,$  Department of Mathematics  $\,\cdot\,$  DrHenryGarrett@gmail.com  $\,\cdot\,$  Manhattan, NY, USA

$$= \max_{[z_{\text{Extreme Number}}]_{\text{Extreme Class}}} z_{\text{Extreme Number}} \}.$$

In more concise and more convenient ways, the modified definition for the Extreme SuperHyperConnectivities poses the upcoming expressions.

 $G_{\text{Extreme SuperHyperConnectivities}} = \{S \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} \mid |S_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}} = \max_{\substack{[z_{\text{Extreme Number}}]_{\text{Extreme Class}}} z_{\text{Extreme Number}} \}.$ 

To translate the statement to this mathematical literature, the formulae will be revised.

 $G_{\text{Extreme SuperHyperConnectivities}} = \{S \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}] \text{Extreme Class} \mid |S_{\text{Extreme SuperHyperSet}}| \text{Extreme Cardinality} = \max_{\substack{z_{\text{Extreme Number}} \in \text{Class}}} z_{\text{Extreme Number}} \\ = \max \{|E| \mid E \in E_{ESHG:(V,E)}\}\}.$ 

And then,

 $G_{\text{Extreme SuperHyperConnectivities}} = \{S \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} \mid |S_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}} = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}.$ 

To get more visions in the closer look-up, there's an overall overlook.

 $G_{\text{Extreme SuperHyperConnectivities}} \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} = \bigcup_{z_{\text{Extreme Number}}} \{S_{\text{Extreme SuperHyperSet}} \mid S_{\text{Extreme SuperHyperSet}} = G_{\text{Extreme SuperHyperConnectivities}}, \\ |S_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}} = \max \{|E| \mid E \in E_{ESHG:(V,E)}\}\}.$ 

 $G_{\text{Extreme SuperHyperConnectivities}} = \{S \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} = \bigcup_{z_{\text{Extreme Number}}} \{S_{\text{Extreme SuperHyperSet}} | \\ S_{\text{Extreme SuperHyperSet}} = G_{\text{Extreme SuperHyperConnectivities}}, \\ |S_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}} = z_{\text{Extreme Number}} | \\ |S_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}} = \max \{|E| \mid E \in E_{ESHG;(V,E)}\}\}.$ 

 $G_{\text{Extreme SuperHyperConnectivities}} =$ 

 $\{S \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} \mid$ 

SExtreme SuperHyperSet Extreme Cardinality

 $= \max_{\substack{[z_{\text{Extreme Number}}]_{\text{Extreme Class}}}} z_{\text{Extreme Number}}$ 

 $= \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}.$ 

 $G_{\text{Extreme SuperHyperConnectivities}} = \{S \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}] \text{Extreme Class} \mid |S_{\text{Extreme SuperHyperSet}}| \text{Extreme Cardinality} = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}.$ 

Now, the extension of these types of approaches is up. Since the new term, "Extreme SuperHyperNeighborhood", could be redefined as the collection of the Extreme SuperHyperVertices such that any amount of its Extreme SuperHyperVertices are incident to an Extreme SuperHyperEdge. It's, literarily, another name for "Extreme Quasi-SuperHyperConnectivities" but, precisely, it's the generalization of "Extreme Quasi-SuperHyperConnectivities" in a Neutrosophic SuperHyperConnectivities" happens "Extreme SuperHyperConnectivities" in a Neutrosophic SuperHyperGraph as initial framework and background but "Extreme SuperHyperGraph as initial framework and background since there are some ambiguities about the Extreme SuperHyperCardinality arise from it. To get orderly keywords, the terms, "Extreme SuperHyperNeighborhood", "Extreme Quasi-SuperHyperConnectivities", and "Extreme SuperHyperConnectivities" are up.

Thus, let  $z_{\text{Extreme Number}}$ ,  $N_{\text{Extreme SuperHyperNeighborhood}}$  and  $G_{\text{Extreme SuperHyperConnectivities}}$  be an Extreme number, an Extreme SuperHyperNeighborhood and an Extreme SuperHyperConnectivities and the new terms are up.

 $G_{\text{Extreme SuperHyperConnectivities}} \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} =$ 

 $\cup_{z_{\text{Extreme Number}}} \{ N_{\text{Extreme SuperHyperNeighborhood}} \}$ 

 $|N_{\text{Extreme SuperHyperNeighborhood}}|_{\text{Extreme Cardinality}}$ 

 $= \max_{\substack{[z_{\text{Extreme Number}}]_{\text{Extreme Class}}}} z_{\text{Extreme Number}} \}.$ 

 $G_{\text{Extreme SuperHyperConnectivities}} =$ 

 $\{N_{\text{Extreme SuperHyperNeighborhood}} \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} =$ 

 $\cup_{z_{\text{Extreme Number}}} \{ N_{\text{Extreme SuperHyperNeighborhood}} \}$ 

N<sub>Extreme</sub> SuperHyperSet Extreme Cardinality

 $= z_{\text{Extreme Number}} \mid$ 

 $|N_{\text{Extreme SuperHyperNeighborhood}}|_{\text{Extreme Cardinality}}$ 

 $z \max_{[z_{\text{Extreme Number}}]_{\text{Extreme Class}}} z_{\text{Extreme Number}} \}.$ 

 $G_{\text{Extreme SuperHyperConnectivities}} =$ 

 $\{N_{\text{Extreme SuperHyperNeighborhood}} \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} |$ 

 $|N_{\text{Extreme SuperHyperNeighborhood}}|_{\text{Extreme Cardinality}}$ 

 $= \max_{\substack{[z_{\text{Extreme Number}}]_{\text{Extreme Class}}}} z_{\text{Extreme Number}} \}.$ 

 $G_{\text{Extreme SuperHyperConnectivities}} =$ 

 $\{N_{\text{Extreme SuperHyperNeighborhood}} \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} |$ 

 $|N_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}} = \max_{\substack{[z_{\text{Extreme Number}}]_{\text{Extreme Class}}} z_{\text{Extreme Number}} \}.$ 

And with go back to initial structure,

$$\begin{split} G_{\text{Extreme SuperHyperConnectivities}} &\in \cup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} = \\ &\cup_{z_{\text{Extreme Number}}} \{N_{\text{Extreme SuperHyperNeighborhood}} \mid \\ &|N_{\text{Extreme SuperHyperNeighborhood}}|_{\text{Extreme Cardinality}} \end{split}$$

 $= \max\left\{ |E| \mid E \in E_{ESHG:(V,E)} \right\} \}.$ 

 $G_{\text{Extreme SuperHyperConnectivities}} =$ 

 $\{N_{\text{Extreme SuperHyperNeighborhood}} \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} = \{N_{\text{Extreme Number}}\}$ 

 $\cup_{z_{\text{Extreme Number}}} \{ N_{\text{Extreme SuperHyperNeighborhood}} \mid$ 

 $|N_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}}$ 

 $= z_{\text{Extreme Number}} \mid$ 

 $|N_{\text{Extreme SuperHyperNeighborhood}}|_{\text{Extreme Cardinality}}$ 

 $= \max\left\{ |E| \mid E \in E_{ESHG:(V,E)} \right\} \}.$ 

 $G_{\text{Extreme SuperHyperConnectivities}} =$ 

 $\{N_{\text{Extreme SuperHyperNeighborhood}} \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}}$ 

 $|N_{\text{Extreme SuperHyperNeighborhood}}|_{\text{Extreme Cardinality}}$ 

 $= \max_{\substack{[z_{\text{Extreme Number}}]_{\text{Extreme Class}}}} z_{\text{Extreme Number}}$ 

 $= \max \{ |E| \mid E \in E_{ESHG:(V,E)} \} \}.$ 

$$\begin{split} G_{\text{Extreme SuperHyperConnectivities}} &= \\ \{N_{\text{Extreme SuperHyperNeighborhood}} \in \cup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} \mid \\ |N_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}} \\ &= \max \left\{ |E| \mid E \in E_{ESHG:(V,E)} \right\} \}. \end{split}$$

Thus, in a connected Neutrosophic SuperHyperGraph ESHG: (V, E). The all interior Extreme SuperHyperVertices belong to any Extreme quasi-R-SuperHyperConnectivities if for any of them, and any of other corresponded Extreme SuperHyperVertex, some interior Extreme SuperHyperVertices

are mutually Extreme SuperHyperNeighbors with no Extreme exception at all minus all Extreme SuperHypeNeighbors to any amount of them.

To make sense with the precise words in the terms of "R-', the follow-up illustrations are coming up. The following Extreme SuperHyperSet of Extreme SuperHyperVertices is the simple Extreme type-SuperHyperSet of the Extreme R-SuperHyperConnectivities.

 $V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$ 

The Extreme SuperHyperSet of Extreme SuperHyperVertices,

 $V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$ 

Is the simple Extreme type-SuperHyperSet of the Extreme R-SuperHyperConnectivities. The Extreme SuperHyperSet of the Extreme SuperHyperVertices,

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

Is an **Extreme R-SuperHyperConnectivities** C(ESHG) for an Neutrosophic SuperHyperGraph ESHG: (V, E) is an Extreme type-SuperHyperSet with the maximum Extreme cardinality of an Extreme SuperHyperSet S of Extreme SuperHyperVertices such that there's no an Extreme SuperHyperEdge amid some Extreme SuperHyperVertices instead of all given by **Extreme SuperHyperConnectivities** is related to the Extreme SuperHyperSet of the Extreme SuperHyperVertices,

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E \in \{E \in E_{ESHG}: (V,E) \mid |E| = \max\{|E| \mid E \in E_{ESHG}: (V,E)\}}\}$$

There's <u>not</u> only <u>one</u> Extreme SuperHyperVertex <u>inside</u> the intended Extreme SuperHyperSet. Thus the non-obvious Extreme SuperHyperConnectivities is up. The obvious simple Extreme type-SuperHyperSet called the Extreme SuperHyperConnectivities is an Extreme SuperHyperSet <u>includes</u> only <u>one</u> Extreme SuperHyperVertex. But the Extreme SuperHyperSet of Extreme SuperHyperVertices,

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$$

doesn't have less than two SuperHyperVertices <u>inside</u> the intended Extreme SuperHyperSet since they've come from at least so far an SuperHyperEdge. Thus the non-obvious simple Extreme type-SuperHyperSet of the Extreme R-SuperHyperConnectivities <u>is</u> up. To sum them up, the Extreme SuperHyperSet of Extreme SuperHyperVertices,

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

 $\underline{Is}$  the non-obvious simple Extreme type-SuperHyperSet of the Extreme R-SuperHyperConnectivities. Since the Extreme SuperHyperSet of the Extreme SuperHyperVertices,

$$(V \setminus V \setminus \{x, z\}) \cup \{xy\}$$

or

$$(V \setminus V \setminus \{x, z\}) \cup \{zy\}$$

Henry Garrett  $\,\cdot\,$  Independent Researcher  $\,\cdot\,$  Department of Mathematics  $\,\cdot\,$  DrHenryGarrett@gmail.com  $\,\cdot\,$  Manhattan, NY, USA

is an Extreme R-SuperHyperConnectivities C(ESHG) for an Neutrosophic SuperHyperGraph ESHG : (V, E) is the Extreme SuperHyperSet S of Extreme SuperHyperVertices such that there's no an Extreme SuperHyperEdge for some Extreme SuperHyperVertices instead of all given by that Extreme type-SuperHyperSet called the Extreme SuperHyperConnectivities <u>and</u> it's an Extreme <u>SuperHyperConnectivities</u>. Since it's the maximum Extreme cardinality of an Extreme SuperHyperSet S of Extreme SuperHyperVertices use that there's no an Extreme SuperHyperSet S of Extreme SuperHyperVertices instead of all given by that Extreme type-SuperHyperSet S of Extreme SuperHyperVertices instead of all given by that Extreme SuperHyperSet called the Extreme SuperHyperVertices instead of all given by that Extreme type-SuperHyperSet called the Extreme SuperHyperVertices. There isn't only less than two Extreme SuperHyperVertices instead the Extreme SuperHyperSet,

 $V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$ 

Thus the non-obvious Extreme R-SuperHyperConnectivities,

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

is up. The non-obvious simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities, not:

 $V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$ 

Is the Extreme SuperHyperSet, not:

$$V \setminus V \setminus \{a_E, b_E, c_E, \dots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

does includes only less than two SuperHyperVertices in a connected Extreme SuperHyperGraph ESHG: (V, E) but it's impossible in the case, they've corresponded to an SuperHyperEdge. It's interesting to mention that the only non-obvious simple Extreme type-SuperHyperSet called the

#### "Extreme R-SuperHyperConnectivities"

amid those obvious non-obvious simple Extreme type-SuperHyperSets called the

#### Extreme R-SuperHyperConnectivities,

is only and only

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

In a connected Neutrosophic SuperHyperGraph ESHG: (V, E) with a illustrated SuperHyperModeling. It's also, not only an Extreme free-triangle embedded SuperHyperModel and an Extreme on-triangle embedded SuperHyperModel but also it's an Extreme stable embedded SuperHyperModel. But all only non-obvious simple Extreme type-SuperHyperSets of the Extreme R-SuperHyperConnectivities amid those obvious simple Extreme type-SuperHyperSets of the Extreme SuperHyperConnectivities, are

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$$

In a connected Neutrosophic SuperHyperGraph ESHG: (V, E). To sum them up, assume a connected loopless Neutrosophic SuperHyperGraph ESHG: (V, E). Then in the worst case, literally,

$$V \setminus V \setminus \{a_E, b_E, c_E, \dots\}_{E = \{E \in E_{ESHG}; (V, E) \mid |E| = \max\{|E| \mid E \in E_{ESHG}; (V, E)\}\}}$$

is an Extreme R-SuperHyperConnectivities. In other words, the least cardinality, the lower sharp bound for the cardinality, of an Extreme R-SuperHyperConnectivities is the cardinality of

 $V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$ 

To sum them up, in a connected Neutrosophic SuperHyperGraph ESHG: (V, E). The all interior Extreme SuperHyperVertices belong to any Extreme quasi-R-SuperHyperConnectivities if for any of them, and any of other corresponded Extreme SuperHyperVertex, some interior Extreme SuperHyperVertices are mutually Extreme SuperHyperNeighbors with no Extreme exception at all minus all Extreme SuperHypeNeighbors to any amount of them.

Assume a connected Extreme SuperHyperGraph ESHG: (V, E). Let an Extreme SuperHyperEdge  $ESHE: E \in E_{ESHG:(V,E)}$  has some Extreme SuperHyperVertices r. Consider all Extreme numbers of those Extreme SuperHyperVertices from that Extreme SuperHyperEdge excluding excluding more than r distinct Extreme SuperHyperVertices, exclude to any given Extreme SuperHyperSet of the Extreme SuperHyperVertices. Consider there's an Extreme R-SuperHyperConnectivities with the least cardinality, the lower sharp Extreme bound for Extreme cardinality. Assume a connected Neutrosophic SuperHyperGraph ESHG: (V, E). The Extreme SuperHyperSet of the Extreme SuperHyperVertices  $V_{ESHE} \setminus \{z\}$  is an Extreme SuperHyperSet S of the Extreme SuperHyperVertices such that there's an Extreme SuperHyperEdge to have some Extreme SuperHyperVertices uniquely but it isn't an Extreme R-SuperHyperConnectivities. Since it doesn't have the maximum Extreme cardinality of an Extreme SuperHyperSet S of Extreme SuperHyper-Vertices such that there's an Extreme SuperHyperEdge to have some SuperHyperVertices uniquely. The Extreme SuperHyperSet of the Extreme SuperHyperVertices  $V_{ESHE} \cup \{z\}$  is the maximum Extreme cardinality of an Extreme SuperHyperSet S of Extreme SuperHyperVertices but it isn't an Extreme R-SuperHyperConnectivities. Since it **doesn't do** the Extreme procedure such that such that there's an Extreme SuperHyperEdge to have some Extreme SuperHyperVertices uniquely [there are at least one Extreme SuperHyperVertex outside implying there's, sometimes in the connected Neutrosophic SuperHyperGraph ESHG: (V, E), an Extreme SuperHyperVertex, titled its Extreme SuperHyperNeighbor, to that Extreme SuperHyperVertex in the Extreme SuperHyperSet S so as Sdoesn't do "the Extreme procedure".]. There's only <u>one</u> Extreme SuperHyperVertex <u>outside</u> the intended Extreme SuperHyperSet,  $V_{ESHE} \cup \{z\}$ , in the terms of Extreme SuperHyperNeighborhood. Thus the obvious Extreme R-SuperHyperConnectivities,  $V_{ESHE}$  is up. The obvious simple Extreme type-SuperHyperSet of the Extreme R-SuperHyperConnectivities,  $V_{ESHE}$ , is an Extreme SuperHyperSet, V<sub>ESHE</sub>, includes only all Extreme SuperHyperVertices does forms any kind of Extreme pairs are titled Extreme SuperHyperNeighbors in a connected Neutrosophic SuperHyperGraph ESHG: (V, E). Since the Extreme SuperHyperSet of the Extreme SuperHyperVertices  $V_{ESHE}$ , is the **maximum Extreme SuperHyperCardinality** of an Extreme SuperHyperSet S of Extreme SuperHyperVertices <u>such that</u> there's an Extreme SuperHyperEdge to have some Extreme SuperHyperVertices uniquely. Thus, in a connected Neutrosophic SuperHyperGraph ESHG: (V, E). Any Extreme R-SuperHyperConnectivities only contains all interior Extreme SuperHyperVertices

Henry Garrett · Independent Researcher · Department of Mathematics · DrHenryGarrett@gmail.com · Manhattan, NY, USA

and all exterior Extreme SuperHyperVertices from the unique Extreme SuperHyperEdge where there's any of them has all possible Extreme SuperHyperNeighbors in and there's all Extreme SuperHyperNeighborhoods in with no exception minus all Extreme SuperHyperNeighborhoods to some of them not all of them but everything is possible about Extreme SuperHyperNeighborhoods and Extreme SuperHyperNeighbors out.

The SuperHyperNotion, namely, SuperHyperConnectivities, is up. There's neither empty SuperHyperEdge nor loop SuperHyperEdge. The following Extreme SuperHyperSet of Extreme SuperHyperConnectivities] is the simple Extreme type-SuperHyperSet of the Extreme SuperHyperVertices], The Extreme SuperHyperSet of Extreme SuperHyperVertices],

$$\begin{split} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} \\ &= \{E_{2i-1}\}_{i=1}^{\min|P_{ESHG:(V,E)}|\text{Extreme Cardinality}}. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} \\ &= z^{\min|P_{ESHG:(V,E)}|\text{Extreme Cardinality}}. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivities} \\ &= \{V_i\}_{i=1}^{s}. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} \\ &= az^{s}. \end{split}$$

is the simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities. The Extreme SuperHyperSet of the Extreme SuperHyperEdges[SuperHyperVertices],

$$\begin{split} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} \\ &= \{E_{2i-1}\}_{i=1}^{\min|P_{ESHG:(V,E)}|_{Extreme Cardinality}}. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} \\ &= z^{\min|P_{ESHG:(V,E)}|_{Extreme Cardinality}}. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivities} \\ &= \{V_i\}_{i=1}^{s}. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} \\ &= az^{s}. \end{split}$$

Is an **Extreme SuperHyperConnectivities** C(ESHG) for an Neutrosophic SuperHyperGraph ESHG: (V, E) is an Extreme type-SuperHyperSet with the maximum Extreme cardinality of an Extreme SuperHyperSet S of Extreme SuperHyperEdges[SuperHyperVertices] such that there's no Extreme SuperHyperVertex of an Extreme SuperHyperEdge is common and there's an Extreme SuperHyperEdge for all Extreme SuperHyperVertices. There are <u>not</u> only <u>two</u> Extreme SuperHyperVertices inside the intended Extreme SuperHyperSet. Thus the non-obvious Extreme SuperHyperConnectivities is up. The obvious simple Extreme type-SuperHyperSet called the Extreme SuperHyperConnectivities is an Extreme SuperHyperSet includes only <u>two</u> Extreme SuperHyperVertices. But the Extreme SuperHyperSet of the Extreme SuperHyperVertices]

```
\begin{split} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} \\ &= \{E_{2i-1}\}_{i=1}^{\min|P_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} \\ &= z^{\min|P_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}}.\\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivities} \\ &= \{V_i\}_{i=1}^{s}.\\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} \\ &= az^{s}. \end{split}
```

Doesn't have less than three SuperHyperVertices <u>inside</u> the intended Extreme SuperHyperSet. Thus the non-obvious simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities <u>is</u> up. To sum them up, the Extreme SuperHyperSet of the Extreme SuperHyperEdges[SuperHyperVertices],

$$\begin{split} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} \\ &= \{E_{2i-1}\}_{i=1}^{\min|P_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}}. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} \\ &= z^{\min|P_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}}. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivities} \\ &= \{V_i\}_{i=1}^{s}. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} \\ &= az^{s}. \end{split}$$

 $\underline{Is}$  the non-obvious simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities. Since the Extreme SuperHyperSet of the Extreme SuperHyperEdges[SuperHyperVertices],

$$\begin{split} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} \\ &= \{E_{2i-1}\}_{i=1}^{\min|P_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}}. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} \\ &= z^{\min|P_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}}. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivities} \\ &= \{V_i\}_{i=1}^{s}. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} \\ &= az^{s}. \end{split}$$

Is an Extreme SuperHyperConnectivities C(ESHG) for an Neutrosophic SuperHyperGraph ESHG : (V, E) is the Extreme SuperHyperSet S of Extreme SuperHyperVertices such that there's no an Extreme SuperHyperEdge for some Extreme SuperHyperVertices given by that Extreme type-SuperHyperSet called the Extreme SuperHyperConnectivities <u>and</u> it's an Extreme <u>SuperHyperConnectivities</u>. Since it's <u>the maximum Extreme cardinality</u> of an Extreme SuperHyperSet S of Extreme SuperHyperVertices] such that there's no Extreme SuperHyperVertex of an Extreme SuperHyperVertices] such that there's an Extreme SuperHyperEdge for all Extreme SuperHyperVertices. There aren't only less than three Extreme SuperHyperVertices <u>inside</u> the intended Extreme SuperHyperSet,

$$\begin{split} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} \\ &= \{E_{2i-1}\}_{i=1}^{\min|P_{ESHG:(V,E)}|\text{Extreme Cardinality}}. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} \\ &= z^{\min|P_{ESHG:(V,E)}|\text{Extreme Cardinality}}. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivities} \\ &= \{V_i\}_{i=1}^{s}. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} \\ &= az^{s}. \end{split}$$

Thus the non-obvious Extreme SuperHyperConnectivities,

 $\begin{aligned} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} \\ &= \{E_{2i-1}\}_{i=1}^{\min|P_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} \end{aligned}$ 

 $= z^{\min |P_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}}.$   $\mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivities} = \{V_i\}_{i=1}^{s}.$  $\mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} = az^s.$ 

Is up. The obvious simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities, not:

 $\begin{aligned} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} \\ &= \{E_{2i-1}\}_{i=1}^{\min|P_{ESHG:(V,E)}|\text{Extreme Cardinality}}. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} \\ &= z^{\min|P_{ESHG:(V,E)}|\text{Extreme Cardinality}}. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivities} \\ &= \{V_i\}_{i=1}^{s}. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} \\ &= az^{s}. \end{aligned}$ 

Is the Extreme SuperHyperSet, not:

$$\begin{split} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} \\ &= \{E_{2i-1}\}_{i=1}^{\min|P_{ESHG:(V,E)}|_{Extreme Cardinality}}. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} \\ &= z^{\min|P_{ESHG:(V,E)}|_{Extreme Cardinality}}. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivities} \\ &= \{V_i\}_{i=1}^{s}. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} \\ &= az^{s}. \end{split}$$

Does includes only less than three SuperHyperVertices in a connected Extreme SuperHyperGraph ESHG: (V, E). It's interesting to mention that the only non-obvious simple Extreme type-SuperHyperSet called the

#### "Extreme SuperHyperConnectivities"

amid those obvious non-obvious simple Extreme type-SuperHyperSets called the

#### Extreme SuperHyperConnectivities,

is only and only

$$\begin{split} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} \\ &= \{E_{2i-1}\}_{i=1}^{\min|P_{ESHG:(V,E)}|\text{Extreme Cardinality}}. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} \\ &= z^{\min|P_{ESHG:(V,E)}|\text{Extreme Cardinality}}. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivities} \\ &= \{V_i\}_{i=1}^{s}. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} \\ &= az^{s}. \end{split}$$

In a connected Neutrosophic SuperHyperGraph ESHG : (V, E).

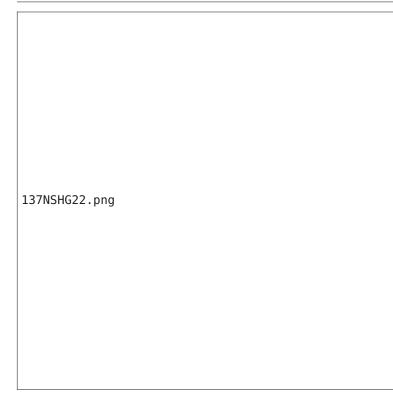


Figure 9.5: an Extreme SuperHyperMultipartite Associated to the Notions of Extreme SuperHyper-Connectivities in the Example (9.0.11)

**Example 9.0.11.** In the Figure (9.5), the connected Extreme SuperHyperMultipartite ESHM: (V, E), is highlighted and Extreme featured. The obtained Extreme SuperHyperSet, by the Algorithm in previous Extreme result, of the Extreme SuperHyperVertices of the connected Extreme SuperHyperMultipartite ESHM: (V, E), in the Extreme SuperHyperModel (9.5), is the Extreme SuperHyperConnectivities.

**Proposition 9.0.12.** Assume a connected Extreme SuperHyperWheel ESHW : (V, E). Then an Extreme R-SuperHyperConnectivities is an Extreme SuperHyperSet of the interior Extreme SuperHyperVertices, excluding the Extreme SuperHyperCenter, with only no exception in the form of interior Extreme SuperHyperVertices from same Extreme SuperHyperEdge with the exclusion on Extreme SuperHypeNeighbors to some of them and not all. an Extreme R-SuperHyperConnectivities has the Extreme maximum number on all the Extreme number of all the Extreme SuperHyperEdges don't have common Extreme SuperHyperNeighbors. Also,

$$\begin{split} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} \\ &= \{E_{2i-1}\}_{i=1}^{\lfloor \frac{|E_{ESHG:(V,E)}|_{Extreme Cardinality}}{2} \rfloor}. \\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} \end{split}$$

Henry Garrett · Independent Researcher · Department of Mathematics · DrHenryGarrett@gmail.com · Manhattan, NY, USA

 $= 2z^{\lfloor \frac{|E_{ESHG:(V,E)}|_{Extreme \ Cardinality}|}{2} \rfloor}.$   $\mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivities} = \{V_i\}_{i=1}^{s}, \{V_j\}_{j=1}^{t}.$   $\mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} = az^s + bz^t.$ 

*Proof.* Assume a connected loopless Neutrosophic SuperHyperGraph ESHG: (V, E). The SuperHyperSet of the SuperHyperVertices  $V \setminus V \setminus \{z\}$  isn't a quasi-R-SuperHyperConnectivities since neither amount of Extreme SuperHyperEdges nor amount of SuperHyperVertices where amount refers to the Extreme number of SuperHyperVertices(-/SuperHyperEdges) more than one to form any kind of SuperHyperEdges or any number of SuperHyperEdges. Let us consider the Extreme SuperHyperSet

 $V \setminus V \setminus \{a_E, b_E, c_E, \dots, a_{E'}, b_{E'}, c_{E'}, \dots\}_{E, E' = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$ 

This Extreme SuperHyperSet of the Extreme SuperHyperVertices has the eligibilities to propose property such that there's no Extreme SuperHyperVertex of an Extreme SuperHyperEdge is common and there's an Extreme SuperHyperEdge for all Extreme SuperHyperVertices but the maximum Extreme cardinality indicates that these Extreme type-SuperHyperSets couldn't give us the Extreme lower bound in the term of Extreme sharpness. In other words, the Extreme SuperHyperSet

$$V \setminus V \setminus \{a_E, b_E, c_E, \dots, a_{E'}, b_{E'}, c_{E'}, \dots\}_{E, E' = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

of the Extreme SuperHyperVertices implies at least on-quasi-triangle style is up but sometimes the Extreme SuperHyperSet

 $V \setminus V \setminus \{a_E, b_E, c_E, \dots, a_{E'}, b_{E'}, c_{E'}, \dots\}_{E, E' = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$ 

of the Extreme SuperHyperVertices is free-quasi-triangle and it doesn't make a contradiction to the supposition on the connected loopless Neutrosophic SuperHyperGraph ESHG: (V, E). Thus the minimum case never happens in the generality of the connected loopless Neutrosophic SuperHyperGraphs. Thus if we assume in the worst case, literally,

$$V \setminus V \setminus \{a_E, b_E, c_E, \dots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

Is a quasi-R-SuperHyperConnectivities. In other words, the least cardinality, the lower sharp bound for the cardinality, of a quasi-R-SuperHyperConnectivities is the cardinality of

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

Then we've lost some connected loopless Extreme SuperHyperClasses of the connected loopless Neutrosophic SuperHyperGraphs titled free-triangle, on-triangle, and their quasi-types but the SuperHyperStable is only up in this quasi-R-SuperHyperConnectivities. It's the contradiction to that fact on the generality. There are some counterexamples to deny this statement. One of them comes from the setting of the graph titled path and cycle as the counterexamples-classes or reversely direction star as the examples-classes, are well-known classes in that setting and they could be considered as the examples-classes and counterexamples-classes for the tight bound of

$$V \setminus V \setminus \{a_E, b_E, c_E, \dots\}_{E=\{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$$

Henry Garrett · Independent Researcher · Department of Mathematics · DrHenryGarrett@gmail.com · Manhattan, NY, USA

------

Let  $V \setminus V \setminus \{z\}$  in mind. There's no necessity on the SuperHyperEdge since we need at least two SuperHyperVertices to form a SuperHyperEdge. It doesn't withdraw the principles of the main definition since there's no condition to be satisfied but the condition is on the existence of the SuperHyperEdge instead of acting on the SuperHyperVertices. In other words, if there's a SuperHyperEdge, then the Extreme SuperHyperSet has the necessary condition for the intended definition to be applied. Thus the  $V \setminus V \setminus \{z\}$  is withdrawn not by the conditions of the main definition but by the necessity of the pre-condition on the usage of the main definition.

The Extreme structure of the Extreme R-SuperHyperConnectivities decorates the Extreme SuperHyperVertices don't have received any Extreme connections so as this Extreme style implies different versions of Extreme SuperHyperEdges with the maximum Extreme cardinality in the terms of Extreme SuperHyperVertices are spotlight. The lower Extreme bound is to have the maximum Extreme groups of Extreme SuperHyperVertices have perfect Extreme connections inside each of SuperHyperEdges and the outside of this Extreme SuperHyperSet doesn't matter but regarding the connectedness of the used Neutrosophic SuperHyperGraph arising from its Extreme properties taken from the fact that it's simple. If there's no more than one Extreme SuperHyperVertex in the targeted Extreme SuperHyperSet, then there's no Extreme connection. Furthermore, the Extreme existence of one Extreme SuperHyperVertex has no Extreme effect to talk about the Extreme R-SuperHyperConnectivities. Since at least two Extreme SuperHyperVertices involve to make a title in the Extreme background of the Neutrosophic SuperHyperGraph. The Neutrosophic SuperHyperGraph is obvious if it has no Extreme SuperHyperEdge but at least two Extreme SuperHyperVertices make the Extreme version of Extreme SuperHyperEdge. Thus in the Extreme setting of non-obvious Neutrosophic SuperHyperGraph, there are at least one Extreme SuperHyperEdge. It's necessary to mention that the word "Simple" is used as Extreme adjective for the initial Neutrosophic SuperHyperGraph, induces there's no Extreme appearance of the loop Extreme version of the Extreme SuperHyperEdge and this Neutrosophic SuperHyperGraph is said to be loopless. The Extreme adjective "loop" on the basic Extreme framework engages one Extreme SuperHyperVertex but it never happens in this Extreme setting. With these Extreme bases, on a Neutrosophic SuperHyperGraph, there's at least one Extreme SuperHyperEdge thus there's at least an Extreme R-SuperHyperConnectivities has the Extreme cardinality of an Extreme SuperHyperEdge. Thus, an Extreme R-SuperHyperConnectivities has the Extreme cardinality at least an Extreme SuperHyperEdge. Assume an Extreme SuperHyperSet  $V \setminus V \setminus \{z\}$ . This Extreme SuperHyperSet isn't an Extreme R-SuperHyperConnectivities since either the Neutrosophic SuperHyperGraph is an obvious Extreme SuperHyperModel thus it never happens since there's no Extreme usage of this Extreme framework and even more there's no Extreme connection inside or the Neutrosophic SuperHyperGraph isn't obvious and as its consequences, there's an Extreme contradiction with the term "Extreme R-SuperHyperConnectivities" since the maximum Extreme cardinality never happens for this Extreme style of the Extreme SuperHyperSet and beyond that there's no Extreme connection inside as mentioned in first Extreme case in the forms of drawback for this selected Extreme SuperHyperSet. Let

$$V \setminus V \setminus \{a_E, b_E, c_E, \dots, a_{E'}, b_{E'}, c_{E'}, \dots\}_{E, E' = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

Comes up. This Extreme case implies having the Extreme style of on-quasi-triangle Extreme style on the every Extreme elements of this Extreme SuperHyperSet. Precisely, the Extreme R-SuperHyperConnectivities is the Extreme SuperHyperSet of the Extreme SuperHyperVertices such that some Extreme amount of the Extreme SuperHyperVertices are on-quasi-triangle Extreme

style. The Extreme cardinality of the v SuperHypeSet

 $V \setminus V \setminus \{a_E, b_E, c_E, \dots, a_{E'}, b_{E'}, c_{E'}, \dots\}_{E, E'} = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}$ 

Is the maximum in comparison to the Extreme SuperHyperSet

 $V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$ 

But the lower Extreme bound is up. Thus the minimum Extreme cardinality of the maximum Extreme cardinality ends up the Extreme discussion. The first Extreme term refers to the Extreme setting of the Neutrosophic SuperHyperGraph but this key point is enough since there's an Extreme SuperHyperClass of a Neutrosophic SuperHyperGraph has no on-quasi-triangle Extreme style amid some amount of its Extreme SuperHyperVertices. This Extreme setting of the Extreme SuperHyperModel proposes an Extreme SuperHyperSet has only some amount Extreme SuperHyperVertices from one Extreme SuperHyperEdge such that there's no Extreme SuperHyperVertices. The Extreme cardinality of this Extreme SuperHyperSet is the maximum and the Extreme case is occurred in the minimum Extreme situation. To sum them up, the Extreme SuperHyperSet

 $V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$ 

Has the maximum Extreme cardinality such that

$$V \setminus V \setminus \{a_E, b_E, c_E, \dots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$$

Contains some Extreme SuperHyperVertices such that there's distinct-covers-order-amount Extreme SuperHyperEdges for amount of Extreme SuperHyperVertices taken from the Extreme SuperHyperSet

 $V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG}; (V,E) \mid |E| = \max\{|E| \mid E \in E_{ESHG}; (V,E)\}\}}$ 

It means that the Extreme SuperHyperSet of the Extreme SuperHyperVertices

 $V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$ 

Is an Extreme R-SuperHyperConnectivities for the Neutrosophic SuperHyperGraph as used Extreme background in the Extreme terms of worst Extreme case and the common theme of the lower Extreme bound occurred in the specific Extreme SuperHyperClasses of the Neutrosophic SuperHyperGraphs which are Extreme free-quasi-triangle.

Assume an Extreme SuperHyperEdge  $E \in E_{ESHG:(V,E)}$  has z Extreme number of the Extreme SuperHyperVertices. Then every Extreme SuperHyperVertex has at least no Extreme SuperHyperEdge with others in common. Thus those Extreme SuperHyperVertices have the eligibles to be contained in an Extreme R-SuperHyperConnectivities. Those Extreme SuperHyperVertices are potentially included in an Extreme style-R-SuperHyperConnectivities. Formally, consider

$$V \setminus (V \setminus \{a_E, b_E, c_E, \dots, z_E\}).$$

Are the Extreme SuperHyperVertices of an Extreme SuperHyperEdge  $E \in E_{ESHG;(V,E)}$ . Thus

$$Z_i \sim Z_j, \ i \neq j, \ i, j = 1, 2, \dots, z.$$

where the  $\sim$  isn't an equivalence relation but only the symmetric relation on the Extreme SuperHyperVertices of the Neutrosophic SuperHyperGraph. The formal definition is as follows.

$$Z_i \sim Z_j, i \neq j, i, j = 1, 2, \ldots, z$$

if and only if  $Z_i$  and  $Z_j$  are the Extreme SuperHyperVertices and there's only and only one Extreme SuperHyperEdge  $E \in E_{ESHG:(V,E)}$  between the Extreme SuperHyperVertices  $Z_i$  and  $Z_j$ . The other definition for the Extreme SuperHyperEdge  $E \in E_{ESHG:(V,E)}$  in the terms of Extreme R-SuperHyperConnectivities is

$$\{a_E, b_E, c_E, \ldots, z_E\}.$$

This definition coincides with the definition of the Extreme R-SuperHyperConnectivities but with slightly differences in the maximum Extreme cardinality amid those Extreme type-SuperHyperSets of the Extreme SuperHyperVertices. Thus the Extreme SuperHyperSet of the Extreme SuperHyperVertices,

$$\max |\{Z_1, Z_2, \dots, Z_z \mid Z_i \sim Z_j, i \neq j, i, j = 1, 2, \dots, z\}|_{\text{Extreme cardinality}},$$

and

$$V \setminus V \setminus \{a_E, b_E, c_E, \dots\}_{E=\{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

is formalized with mathematical literatures on the Extreme R-SuperHyperConnectivities. Let  $Z_i \stackrel{E}{\sim} Z_j$ , be defined as  $Z_i$  and  $Z_j$  are the Extreme SuperHyperVertices belong to the Extreme SuperHyperEdge  $E \in E_{ESHG:(V,E)}$ . Thus,

$$E = \{Z_1, Z_2, \dots, Z_z \mid Z_i \stackrel{E}{\sim} Z_j, \ i \neq j, \ i, j = 1, 2, \dots, z\}.$$

Or

$$\{a_E, o_E, c_E, \dots\}_{E=\{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

But with the slightly differences,

Extreme R-SuperHyperConnectivities = 
$$\{Z_1, Z_2, \dots, Z_z \mid \forall i \neq j, i, j = 1, 2, \dots, z, \exists E_x, Z_i \stackrel{E_x}{\sim} Z_j, \}.$$

Extreme R-SuperHyperConnectivities =

 $V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$ 

Thus  $E \in E_{ESHG:(V,E)}$  is an Extreme quasi-R-SuperHyperConnectivities where  $E \in E_{ESHG:(V,E)}$ is fixed that means  $E_x = E \in E_{ESHG:(V,E)}$ . for all Extreme intended SuperHyperVertices but in an Extreme SuperHyperConnectivities,  $E_x = E \in E_{ESHG:(V,E)}$  could be different and it's not unique. To sum them up, in a connected Extreme SuperHyperGraph ESHG:(V,E). If an Extreme

SuperHyperEdge  $E \in E_{ESHG:(V,E)}$  has z Extreme SuperHyperVertices, then the Extreme cardinality of the Extreme R-SuperHyperConnectivities is at least

$$V \setminus (V \setminus \{a_E, b_E, c_E, \dots, z_E\}).$$

It's straightforward that the Extreme cardinality of the Extreme R-SuperHyperConnectivities is at least the maximum Extreme number of Extreme SuperHyperVertices of the Extreme SuperHyperEdges with the maximum number of the Extreme SuperHyperEdges. In other words, the maximum number of the Extreme SuperHyperEdges contains the maximum Extreme number of Extreme SuperHyperVertices are renamed to Extreme SuperHyperConnectivities in some cases but the maximum number of the Extreme SuperHyperEdge with the maximum Extreme number of Extreme SuperHyperVertices, has the Extreme SuperHyperVertices are contained in an Extreme R-SuperHyperConnectivities.

The obvious SuperHyperGraph has no Extreme SuperHyperEdges. But the non-obvious Extreme SuperHyperModel is up. The quasi-SuperHyperModel addresses some issues about the Extreme optimal SuperHyperObject. It specially delivers some remarks on the Extreme SuperHyperSet of the Extreme SuperHyperVertices such that there's distinct amount of Extreme SuperHyperEdges for distinct amount of Extreme SuperHyperVertices up to all taken from that Extreme SuperHyperSet of the Extreme SuperHyperVertices but this Extreme SuperHyperSet of the Extreme SuperHyperVertices is either has the maximum Extreme SuperHyperCardinality or it doesn't have maximum Extreme SuperHyperCardinality. In a non-obvious SuperHyperModel, there's at least one Extreme SuperHyperEdge containing at least all Extreme SuperHyperVertices. Thus it forms an Extreme quasi-R-SuperHyperConnectivities where the Extreme completion of the Extreme incidence is up in that. Thus it's, literarily, an Extreme embedded R-SuperHyperConnectivities. The SuperHyperNotions of embedded SuperHyperSet and quasi-SuperHyperSet coincide. In the original setting, these types of SuperHyperSets only don't satisfy on the maximum SuperHyperCardinality. Thus the embedded setting is elected such that those SuperHyperSets have the maximum Extreme SuperHyperCardinality and they're Extreme SuperHyperOptimal. The less than two distinct types of Extreme SuperHyperVertices are included in the minimum Extreme style of the embedded Extreme R-SuperHyperConnectivities. The interior types of the Extreme SuperHyperVertices are deciders. Since the Extreme number of SuperHyperNeighbors are only affected by the interior Extreme SuperHyperVertices. The common connections, more precise and more formal, the perfect unique connections inside the Extreme SuperHyperSet for any distinct types of Extreme SuperHyperVertices pose the Extreme R-SuperHyperConnectivities. Thus Extreme exterior SuperHyperVertices could be used only in one Extreme SuperHyperEdge and in Extreme SuperHyperRelation with the interior Extreme SuperHyperVertices in that Extreme SuperHyperEdge. In the embedded Extreme SuperHyperConnectivities, there's the usage of exterior Extreme SuperHyperVertices since they've more connections inside more than outside. Thus the title "exterior" is more relevant than the title "interior". One Extreme SuperHyperVertex has no connection, inside. Thus, the Extreme SuperHyperSet of the Extreme SuperHyperVertices with one SuperHyperElement has been ignored in the exploring to lead on the optimal case implying the Extreme R-SuperHyperConnectivities. The Extreme R-SuperHyperConnectivities with the exclusion of the exclusion of all Extreme SuperHyperVertices in one Extreme SuperHyperEdge and with other terms, the Extreme R-SuperHyperConnectivities with the inclusion of all Extreme SuperHyperVertices in one Extreme SuperHyperEdge, is an Extreme quasi-R-SuperHyperConnectivities. To sum them up, in a connected non-obvious Extreme SuperHyperGraph ESHG: (V, E). There's only one Extreme SuperHyperEdge  $E \in E_{ESHG:(V,E)}$  has only the maximum possibilities of the distinct interior

Extreme SuperHyperVertices inside of any given Extreme quasi-R-SuperHyperConnectivities minus all Extreme SuperHypeNeighbor to some of them but not all of them. In other words, there's only an unique Extreme SuperHyperEdge  $E \in E_{ESHG:(V,E)}$  has only two distinct Extreme SuperHyperVertices in an Extreme quasi-R-SuperHyperConnectivities, minus all Extreme SuperHypeNeighbor to some of them but not all of them.

The main definition of the Extreme R-SuperHyperConnectivities has two titles. an Extreme quasi-R-SuperHyperConnectivities and its corresponded quasi-maximum Extreme R-SuperHyperCardinality are two titles in the terms of quasi-R-styles. For any Extreme number, there's an Extreme quasi-R-SuperHyperConnectivities with that quasi-maximum Extreme SuperHyperCardinality in the terms of the embedded Neutrosophic SuperHyperGraph. If there's an embedded Neutrosophic SuperHyperGraph, then the Extreme quasi-SuperHyperNotions lead us to take the collection of all the Extreme quasi-R-SuperHyperConnectivities for all Extreme numbers less than its Extreme corresponded maximum number. The essence of the Extreme SuperHyperConnectivities ends up but this essence starts up in the terms of the Extreme quasi-R-SuperHyperConnectivities, again and more in the operations of collecting all the Extreme quasi-R-SuperHyperConnectivitiess acted on the all possible used formations of the Neutrosophic SuperHyperGraph to achieve one Extreme number. This Extreme number is

considered as the equivalence class for all corresponded quasi-R-SuperHyperConnectivitiess. Let  $z_{\text{Extreme Number}}$ ,  $S_{\text{Extreme SuperHyperSet}}$  and  $G_{\text{Extreme SuperHyperConnectivities}}$  be an Extreme number, an Extreme SuperHyperSet and an Extreme SuperHyperConnectivities. Then

$$\begin{split} &[z_{\text{Extreme Number}}]_{\text{Extreme Class}} = \{S_{\text{Extreme SuperHyperSet}} \mid \\ &S_{\text{Extreme SuperHyperSet}} = G_{\text{Extreme SuperHyperConnectivities}}, \\ &|S_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}} \\ &= z_{\text{Extreme Number}}\}. \end{split}$$

As its consequences, the formal definition of the Extreme SuperHyperConnectivities is re-formalized and redefined as follows.

$$\begin{split} G_{\text{Extreme SuperHyperConnectivities}} &\in \cup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} = \\ \cup_{z_{\text{Extreme Number}}} \{S_{\text{Extreme SuperHyperSet}} \mid \\ S_{\text{Extreme SuperHyperSet}} &= G_{\text{Extreme SuperHyperConnectivities}}, \\ \mid S_{\text{Extreme SuperHyperSet}} \mid \\ \text{Extreme SuperHyperSet} \mid \\ z_{\text{Extreme Number}} \}. \end{split}$$

To get more precise perceptions, the follow-up expressions propose another formal technical definition for the Extreme SuperHyperConnectivities.

$$\begin{split} G_{\text{Extreme SuperHyperConnectivities}} &= \\ \{S \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} = \\ \bigcup_{z_{\text{Extreme Number}}} \{S_{\text{Extreme SuperHyperSet}} \mid \\ S_{\text{Extreme SuperHyperSet}} = G_{\text{Extreme SuperHyperConnectivities}}, \\ |S_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}} \\ &= z_{\text{Extreme Number}} \mid \\ |S_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}} \end{split}$$

Henry Garrett  $\,\cdot\,$  Independent Researcher  $\,\cdot\,$  Department of Mathematics  $\,\cdot\,$  DrHenryGarrett@gmail.com  $\,\cdot\,$  Manhattan, NY, USA

$$= \max_{[z_{\text{Extreme Number}}]_{\text{Extreme Class}}} z_{\text{Extreme Number}} \}.$$

In more concise and more convenient ways, the modified definition for the Extreme SuperHyperConnectivities poses the upcoming expressions.

 $G_{\text{Extreme SuperHyperConnectivities}} = \{S \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} \mid |S_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}} = \max_{\substack{[z_{\text{Extreme Number}}]_{\text{Extreme Class}}} z_{\text{Extreme Number}} \}.$ 

To translate the statement to this mathematical literature, the formulae will be revised.

 $G_{\text{Extreme SuperHyperConnectivities}} = \{S \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}] \text{Extreme Class} \mid |S_{\text{Extreme SuperHyperSet}}| \text{Extreme Cardinality} = \max_{\substack{z_{\text{Extreme Number}} \in \text{Class}}} z_{\text{Extreme Number}} \\ = \max \{|E| \mid E \in E_{ESHG:(V,E)}\}\}.$ 

And then,

 $G_{\text{Extreme SuperHyperConnectivities}} = \{S \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} \mid |S_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}} = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}.$ 

To get more visions in the closer look-up, there's an overall overlook.

 $G_{\text{Extreme SuperHyperConnectivities}} \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} = \bigcup_{z_{\text{Extreme Number}}} \{S_{\text{Extreme SuperHyperSet}} \mid S_{\text{Extreme SuperHyperSet}} = G_{\text{Extreme SuperHyperConnectivities}}, \\ |S_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}} = \max \{|E| \mid E \in E_{ESHG:(V,E)}\}\}.$ 

 $G_{\text{Extreme SuperHyperConnectivities}} = \{S \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} = \bigcup_{z_{\text{Extreme Number}}} \{S_{\text{Extreme SuperHyperSet}} | \\ S_{\text{Extreme SuperHyperSet}} = G_{\text{Extreme SuperHyperConnectivities}}, \\ |S_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}} = z_{\text{Extreme Number}} | \\ |S_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}} = \max \{|E| \mid E \in E_{ESHG;(V,E)}\}\}.$ 

 $G_{\text{Extreme SuperHyperConnectivities}} =$ 

 $\{S \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} \mid$ 

SExtreme SuperHyperSet Extreme Cardinality

 $= \max_{\substack{[z_{\text{Extreme Number}}]_{\text{Extreme Class}}}} z_{\text{Extreme Number}}$ 

 $= \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}.$ 

 $G_{\text{Extreme SuperHyperConnectivities}} = \{S \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}] \text{Extreme Class} \mid |S_{\text{Extreme SuperHyperSet}}| \text{Extreme Cardinality} = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}.$ 

Now, the extension of these types of approaches is up. Since the new term, "Extreme SuperHyperNeighborhood", could be redefined as the collection of the Extreme SuperHyperVertices such that any amount of its Extreme SuperHyperVertices are incident to an Extreme SuperHyperEdge. It's, literarily, another name for "Extreme Quasi-SuperHyperConnectivities" but, precisely, it's the generalization of "Extreme Quasi-SuperHyperConnectivities" in a Neutrosophic SuperHyperConnectivities" happens "Extreme SuperHyperConnectivities" in a Neutrosophic SuperHyperGraph as initial framework and background but "Extreme SuperHyperGraph as initial framework and background since there are some ambiguities about the Extreme SuperHyperCardinality arise from it. To get orderly keywords, the terms, "Extreme SuperHyperNeighborhood", "Extreme Quasi-SuperHyperConnectivities", and "Extreme SuperHyperConnectivities" are up.

Thus, let  $z_{\text{Extreme Number}}$ ,  $N_{\text{Extreme SuperHyperNeighborhood}}$  and  $G_{\text{Extreme SuperHyperConnectivities}}$  be an Extreme number, an Extreme SuperHyperNeighborhood and an Extreme SuperHyperConnectivities and the new terms are up.

 $G_{\text{Extreme SuperHyperConnectivities}} \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} =$ 

 $\cup_{z_{\text{Extreme Number}}} \{ N_{\text{Extreme SuperHyperNeighborhood}} \}$ 

 $|N_{\text{Extreme SuperHyperNeighborhood}}|_{\text{Extreme Cardinality}}$ 

 $= \max_{\substack{[z_{\text{Extreme Number}}]_{\text{Extreme Class}}}} z_{\text{Extreme Number}} \}.$ 

 $G_{\text{Extreme SuperHyperConnectivities}} =$ 

 $\{N_{\text{Extreme SuperHyperNeighborhood}} \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} =$ 

 $\cup_{z_{\text{Extreme Number}}} \{ N_{\text{Extreme SuperHyperNeighborhood}} \}$ 

N<sub>Extreme</sub> SuperHyperSet Extreme Cardinality

 $= z_{\text{Extreme Number}} \mid$ 

 $|N_{\text{Extreme SuperHyperNeighborhood}}|_{\text{Extreme Cardinality}}$ 

 $z \max_{[z_{\text{Extreme Number}}]_{\text{Extreme Class}}} z_{\text{Extreme Number}} \}.$ 

 $G_{\text{Extreme SuperHyperConnectivities}} =$ 

 $\{N_{\text{Extreme SuperHyperNeighborhood}} \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} |$ 

 $|N_{\text{Extreme SuperHyperNeighborhood}}|_{\text{Extreme Cardinality}}$ 

 $= \max_{\substack{[z_{\text{Extreme Number}}]_{\text{Extreme Class}}}} z_{\text{Extreme Number}} \}.$ 

 $G_{\text{Extreme SuperHyperConnectivities}} =$ 

 $\{N_{\text{Extreme SuperHyperNeighborhood}} \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} |$ 

 $|N_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}} = \max_{\substack{[z_{\text{Extreme Number}}]_{\text{Extreme Class}}} z_{\text{Extreme Number}} \}.$ 

And with go back to initial structure,

$$\begin{split} G_{\text{Extreme SuperHyperConnectivities}} &\in \cup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} = \\ &\cup_{z_{\text{Extreme Number}}} \{N_{\text{Extreme SuperHyperNeighborhood}} \mid \\ &|N_{\text{Extreme SuperHyperNeighborhood}}|_{\text{Extreme Cardinality}} \end{split}$$

 $= \max\left\{ |E| \mid E \in E_{ESHG:(V,E)} \right\} \}.$ 

 $G_{\text{Extreme SuperHyperConnectivities}} =$ 

 $\{N_{\text{Extreme SuperHyperNeighborhood}} \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} = \{N_{\text{Extreme Number}}\}$ 

 $\cup_{z_{\text{Extreme Number}}} \{ N_{\text{Extreme SuperHyperNeighborhood}} \mid$ 

 $|N_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}}$ 

 $= z_{\text{Extreme Number}} \mid$ 

 $|N_{\text{Extreme SuperHyperNeighborhood}}|_{\text{Extreme Cardinality}}$ 

 $= \max\left\{ |E| \mid E \in E_{ESHG:(V,E)} \right\} \}.$ 

 $G_{\text{Extreme SuperHyperConnectivities}} =$ 

 $\{N_{\text{Extreme SuperHyperNeighborhood}} \in \bigcup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}}$ 

 $|N_{\text{Extreme SuperHyperNeighborhood}}|_{\text{Extreme Cardinality}}$ 

 $= \max_{\substack{[z_{\text{Extreme Number}}]_{\text{Extreme Class}}}} z_{\text{Extreme Number}}$ 

 $= \max \{ |E| \mid E \in E_{ESHG:(V,E)} \} \}.$ 

$$\begin{split} G_{\text{Extreme SuperHyperConnectivities}} &= \\ \{N_{\text{Extreme SuperHyperNeighborhood}} \in \cup_{z_{\text{Extreme Number}}} [z_{\text{Extreme Number}}]_{\text{Extreme Class}} \mid \\ |N_{\text{Extreme SuperHyperSet}}|_{\text{Extreme Cardinality}} \\ &= \max \left\{ |E| \mid E \in E_{ESHG:(V,E)} \right\} \}. \end{split}$$

Thus, in a connected Neutrosophic SuperHyperGraph ESHG: (V, E). The all interior Extreme SuperHyperVertices belong to any Extreme quasi-R-SuperHyperConnectivities if for any of them, and any of other corresponded Extreme SuperHyperVertex, some interior Extreme SuperHyperVertices

are mutually Extreme SuperHyperNeighbors with no Extreme exception at all minus all Extreme SuperHypeNeighbors to any amount of them.

To make sense with the precise words in the terms of "R-', the follow-up illustrations are coming up. The following Extreme SuperHyperSet of Extreme SuperHyperVertices is the simple Extreme type-SuperHyperSet of the Extreme R-SuperHyperConnectivities.

 $V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$ 

The Extreme SuperHyperSet of Extreme SuperHyperVertices,

 $V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$ 

Is the simple Extreme type-SuperHyperSet of the Extreme R-SuperHyperConnectivities. The Extreme SuperHyperSet of the Extreme SuperHyperVertices,

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

Is an **Extreme R-SuperHyperConnectivities** C(ESHG) for an Neutrosophic SuperHyperGraph ESHG: (V, E) is an Extreme type-SuperHyperSet with the maximum Extreme cardinality of an Extreme SuperHyperSet S of Extreme SuperHyperVertices such that there's no an Extreme SuperHyperEdge amid some Extreme SuperHyperVertices instead of all given by **Extreme SuperHyperConnectivities** is related to the Extreme SuperHyperSet of the Extreme SuperHyperVertices,

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E \in \{E \in E_{ESHG}: (V,E) \mid |E| = \max\{|E| \mid E \in E_{ESHG}: (V,E)\}}\}$$

There's <u>not</u> only <u>one</u> Extreme SuperHyperVertex <u>inside</u> the intended Extreme SuperHyperSet. Thus the non-obvious Extreme SuperHyperConnectivities is up. The obvious simple Extreme type-SuperHyperSet called the Extreme SuperHyperConnectivities is an Extreme SuperHyperSet <u>includes</u> only <u>one</u> Extreme SuperHyperVertex. But the Extreme SuperHyperSet of Extreme SuperHyperVertices,

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$$

doesn't have less than two SuperHyperVertices <u>inside</u> the intended Extreme SuperHyperSet since they've come from at least so far an SuperHyperEdge. Thus the non-obvious simple Extreme type-SuperHyperSet of the Extreme R-SuperHyperConnectivities <u>is</u> up. To sum them up, the Extreme SuperHyperSet of Extreme SuperHyperVertices,

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

 $\underline{Is}$  the non-obvious simple Extreme type-SuperHyperSet of the Extreme R-SuperHyperConnectivities. Since the Extreme SuperHyperSet of the Extreme SuperHyperVertices,

$$(V \setminus V \setminus \{x, z\}) \cup \{xy\}$$

or

$$(V \setminus V \setminus \{x, z\}) \cup \{zy\}$$

Henry Garrett  $\cdot$  Independent Researcher  $\cdot$  Department of Mathematics  $\cdot$  DrHenryGarrett@gmail.com  $\cdot$  Manhattan, NY, USA

is an Extreme R-SuperHyperConnectivities C(ESHG) for an Neutrosophic SuperHyperGraph ESHG : (V, E) is the Extreme SuperHyperSet S of Extreme SuperHyperVertices such that there's no an Extreme SuperHyperEdge for some Extreme SuperHyperVertices instead of all given by that Extreme type-SuperHyperSet called the Extreme SuperHyperConnectivities <u>and</u> it's an Extreme <u>SuperHyperConnectivities</u>. Since it's the maximum Extreme cardinality of an Extreme SuperHyperSet S of Extreme SuperHyperVertices use that there's no an Extreme SuperHyperSet S of Extreme SuperHyperVertices instead of all given by that Extreme type-SuperHyperSet S of Extreme SuperHyperVertices instead of all given by that Extreme SuperHyperSet called the Extreme SuperHyperVertices instead of all given by that Extreme type-SuperHyperSet called the Extreme SuperHyperVertices. There isn't only less than two Extreme SuperHyperVertices instead the Extreme SuperHyperSet,

 $V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$ 

Thus the non-obvious Extreme R-SuperHyperConnectivities,

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

is up. The non-obvious simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities, not:

 $V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$ 

Is the Extreme SuperHyperSet, not:

$$V \setminus V \setminus \{a_E, b_E, c_E, \dots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

does includes only less than two SuperHyperVertices in a connected Extreme SuperHyperGraph ESHG: (V, E) but it's impossible in the case, they've corresponded to an SuperHyperEdge. It's interesting to mention that the only non-obvious simple Extreme type-SuperHyperSet called the

#### "Extreme R-SuperHyperConnectivities"

amid those obvious non-obvious simple Extreme type-SuperHyperSets called the

#### Extreme R-SuperHyperConnectivities,

is only and only

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}$$

In a connected Neutrosophic SuperHyperGraph ESHG: (V, E) with a illustrated SuperHyperModeling. It's also, not only an Extreme free-triangle embedded SuperHyperModel and an Extreme on-triangle embedded SuperHyperModel but also it's an Extreme stable embedded SuperHyperModel. But all only non-obvious simple Extreme type-SuperHyperSets of the Extreme R-SuperHyperConnectivities amid those obvious simple Extreme type-SuperHyperSets of the Extreme SuperHyperConnectivities, are

$$V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$$

In a connected Neutrosophic SuperHyperGraph ESHG: (V, E). To sum them up, assume a connected loopless Neutrosophic SuperHyperGraph ESHG: (V, E). Then in the worst case, literally,

$$V \setminus V \setminus \{a_E, b_E, c_E, \dots\}_{E = \{E \in E_{ESHG}; (V, E) \mid |E| = \max\{|E| \mid E \in E_{ESHG}; (V, E)\}\}}$$

is an Extreme R-SuperHyperConnectivities. In other words, the least cardinality, the lower sharp bound for the cardinality, of an Extreme R-SuperHyperConnectivities is the cardinality of

 $V \setminus V \setminus \{a_E, b_E, c_E, \ldots\}_{E = \{E \in E_{ESHG:(V,E)} \mid |E| = \max\{|E| \mid E \in E_{ESHG:(V,E)}\}\}}.$ 

To sum them up, in a connected Neutrosophic SuperHyperGraph ESHG: (V, E). The all interior Extreme SuperHyperVertices belong to any Extreme quasi-R-SuperHyperConnectivities if for any of them, and any of other corresponded Extreme SuperHyperVertex, some interior Extreme SuperHyperVertices are mutually Extreme SuperHyperNeighbors with no Extreme exception at all minus all Extreme SuperHypeNeighbors to any amount of them.

Assume a connected Extreme SuperHyperGraph ESHG: (V, E). Let an Extreme SuperHyperEdge  $ESHE: E \in E_{ESHG:(V,E)}$  has some Extreme SuperHyperVertices r. Consider all Extreme numbers of those Extreme SuperHyperVertices from that Extreme SuperHyperEdge excluding excluding more than r distinct Extreme SuperHyperVertices, exclude to any given Extreme SuperHyperSet of the Extreme SuperHyperVertices. Consider there's an Extreme R-SuperHyperConnectivities with the least cardinality, the lower sharp Extreme bound for Extreme cardinality. Assume a connected Neutrosophic SuperHyperGraph ESHG: (V, E). The Extreme SuperHyperSet of the Extreme SuperHyperVertices  $V_{ESHE} \setminus \{z\}$  is an Extreme SuperHyperSet S of the Extreme SuperHyperVertices such that there's an Extreme SuperHyperEdge to have some Extreme SuperHyperVertices uniquely but it isn't an Extreme R-SuperHyperConnectivities. Since it doesn't have the maximum Extreme cardinality of an Extreme SuperHyperSet S of Extreme SuperHyper-Vertices such that there's an Extreme SuperHyperEdge to have some SuperHyperVertices uniquely. The Extreme SuperHyperSet of the Extreme SuperHyperVertices  $V_{ESHE} \cup \{z\}$  is the maximum Extreme cardinality of an Extreme SuperHyperSet S of Extreme SuperHyperVertices but it isn't an Extreme R-SuperHyperConnectivities. Since it **doesn't do** the Extreme procedure such that such that there's an Extreme SuperHyperEdge to have some Extreme SuperHyperVertices uniquely [there are at least one Extreme SuperHyperVertex outside implying there's, sometimes in the connected Neutrosophic SuperHyperGraph ESHG: (V, E), an Extreme SuperHyperVertex, titled its Extreme SuperHyperNeighbor, to that Extreme SuperHyperVertex in the Extreme SuperHyperSet S so as Sdoesn't do "the Extreme procedure".]. There's only <u>one</u> Extreme SuperHyperVertex <u>outside</u> the intended Extreme SuperHyperSet,  $V_{ESHE} \cup \{z\}$ , in the terms of Extreme SuperHyperNeighborhood. Thus the obvious Extreme R-SuperHyperConnectivities,  $V_{ESHE}$  is up. The obvious simple Extreme type-SuperHyperSet of the Extreme R-SuperHyperConnectivities,  $V_{ESHE}$ , is an Extreme SuperHyperSet, V<sub>ESHE</sub>, includes only all Extreme SuperHyperVertices does forms any kind of Extreme pairs are titled Extreme SuperHyperNeighbors in a connected Neutrosophic SuperHyperGraph ESHG: (V, E). Since the Extreme SuperHyperSet of the Extreme SuperHyperVertices  $V_{ESHE}$ , is the **maximum Extreme SuperHyperCardinality** of an Extreme SuperHyperSet S of Extreme SuperHyperVertices <u>such that</u> there's an Extreme SuperHyperEdge to have some Extreme SuperHyperVertices uniquely. Thus, in a connected Neutrosophic SuperHyperGraph ESHG: (V, E). Any Extreme R-SuperHyperConnectivities only contains all interior Extreme SuperHyperVertices

Henry Garrett · Independent Researcher · Department of Mathematics · DrHenryGarrett@gmail.com · Manhattan, NY, USA

and all exterior Extreme SuperHyperVertices from the unique Extreme SuperHyperEdge where there's any of them has all possible Extreme SuperHyperNeighbors in and there's all Extreme SuperHyperNeighborhoods in with no exception minus all Extreme SuperHyperNeighbors to some of them not all of them but everything is possible about Extreme SuperHyperNeighborhoods and Extreme SuperHyperNeighbors out.

The SuperHyperNotion, namely, SuperHyperConnectivities, is up. There's neither empty SuperHyperEdge nor loop SuperHyperEdge. The following Extreme SuperHyperSet of Extreme SuperHyperConnectivities] is the simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities. The Extreme SuperHyperSet of Extreme SuperHyperConnectivities], SuperHyperConnectivities, Su

$$\begin{split} \mathcal{C}(NSHG) & \textit{ExtremeQuasi-SuperHyperConnectivities} \\ &= \{E_{2i-1}\}_{i=1}^{\lfloor \frac{|^{E}_{ESHG}:(V,E)| \text{Extreme Cardinality}|}{2} \rfloor}.\\ &\mathcal{C}(NSHG) & \textit{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} \\ &= 2z^{\lfloor \frac{|^{E}_{ESHG}:(V,E)| \text{Extreme Cardinality}|}{2} \rfloor}.\\ &\mathcal{C}(NSHG) & \textit{ExtremeR-Quasi-SuperHyperConnectivities} \\ &= \{V_i\}_{i=1}^{s}, \{V_j\}_{j=1}^{t}.\\ &\mathcal{C}(NSHG) & \textit{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} \\ &= az^{s} + bz^{t}. \end{split}$$

is the simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities. The Extreme SuperHyperSet of the Extreme SuperHyperEdges[SuperHyperVertices],

$$\begin{split} \mathcal{C}(NSHG) & \textit{ExtremeQuasi-SuperHyperConnectivities} \\ &= \{E_{2i-1}\}_{i=1}^{\lfloor \frac{|E_{ESHG}:(V,E)| \text{Extreme Cardinality}}{2} \rfloor}.\\ \mathcal{C}(NSHG) & \textit{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} \\ &= 2z^{\lfloor \frac{|E_{ESHG}:(V,E)| \text{Extreme Cardinality}}{2} \rfloor}.\\ \mathcal{C}(NSHG) & \textit{ExtremeR-Quasi-SuperHyperConnectivities} \\ &= \{V_i\}_{i=1}^{s}, \{V_j\}_{j=1}^{t}.\\ \mathcal{C}(NSHG) & \textit{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} \\ &= az^{s} + bz^{t}. \end{split}$$

Is an **Extreme SuperHyperConnectivities** C(ESHG) for an Neutrosophic SuperHyperGraph  $ESH\overline{G}: (V, E)$  is an Extreme type-SuperHyperSet with the maximum Extreme cardinality of an Extreme SuperHyperSet S of Extreme SuperHyperEdges[SuperHyperVertices] such that there's no Extreme SuperHyperVertex of an Extreme SuperHyperEdge is common and there's an Extreme SuperHyperEdge for all Extreme SuperHyperVertices. There are <u>not</u> only <u>two</u> Extreme SuperHyperVertices inside the intended Extreme SuperHyperSet. Thus the non-obvious Extreme SuperHyperConnectivities is up. The obvious simple Extreme type-SuperHyperSet called the Extreme SuperHyperConnectivities is an Extreme SuperHyperSet includes only two Extreme SuperHyperVertices. But the Extreme SuperHyperSet of the Extreme SuperHyperVertices]

$$\begin{split} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} \\ &= \{E_{2i-1}\}_{i=1}^{\lfloor \frac{|E_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}|}{2} \rfloor}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} \\ &= 2z^{\lfloor \frac{|E_{ESHG:(V,E)}|_{\text{Extreme Cardinality}}|}{2} \rfloor}. \end{split}$$

 $\mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivities} = \{V_i\}_{i=1}^s, \{V_j\}_{j=1}^t.$  $\mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} = az^s + bz^t.$ 

Doesn't have less than three SuperHyperVertices <u>inside</u> the intended Extreme SuperHyperSet. Thus the non-obvious simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities <u>is</u> up. To sum them up, the Extreme SuperHyperSet of the Extreme SuperHyperEdges[SuperHyperVertices],

$$\begin{split} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} \\ &= \{E_{2i-1}\}_{i=1}^{\lfloor \frac{|E_{ESHG}:(V,E)|Extreme Cardinality}{2} \rfloor}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} \\ &= 2z^{\lfloor \frac{|E_{ESHG}:(V,E)|Extreme Cardinality}{2} \rfloor}.\\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivities} = \{V_i\}_{i=1}^{s}, \{V_j\}_{j=1}^{t}.\\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} = az^s + bz^t. \end{split}$$

 $\underline{Is}$  the non-obvious simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities. Since the Extreme SuperHyperSet of the Extreme SuperHyperEdges[SuperHyperVertices],

$$\begin{split} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} \\ &= \{E_{2i-1}\}_{i=1}^{\lfloor \frac{|E_{ESHG:(V,E)}|_{Extreme Cardinality}|}{2} \rfloor}.\\ \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} \\ &= 2z^{\lfloor \frac{|E_{ESHG:(V,E)}|_{Extreme Cardinality}|}{2} \rfloor}.\\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivities} \\ &= \{V_i\}_{i=1}^{s}, \{V_j\}_{j=1}^{t}.\\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} \\ &= az^{s} + bz^{t}. \end{split}$$

Is an Extreme SuperHyperConnectivities C(ESHG) for an Neutrosophic SuperHyperGraph ESHG: (V, E) is the Extreme SuperHyperSet S of Extreme SuperHyperVertices such that there's no an Extreme SuperHyperEdge for some Extreme SuperHyperVertices given by that Extreme type-SuperHyperSet called the Extreme SuperHyperConnectivities <u>and</u> it's an Extreme <u>SuperHyperConnectivities</u>. Since it's <u>the maximum Extreme cardinality</u> of an Extreme SuperHyperSet S of Extreme SuperHyperVertices] such that there's no Extreme SuperHyperVertex of an Extreme SuperHyperVertices] such that there's no Extreme SuperHyperVertex of an Extreme SuperHyperVertices. There aren't only less than three Extreme SuperHyperVertices <u>inside</u> the intended Extreme SuperHyperSet,

$$\begin{split} \mathcal{C}(NSHG)_{Extreme} Quasi-SuperHyperConnectivities \\ &= \{E_{2i-1}\}_{i=1}^{\lfloor \frac{|^{E}_{ESHG:(V,E)}|_{Extreme \ Cardinality}|}{2} \rfloor. \\ \mathcal{C}(NSHG)_{Extreme} Quasi-SuperHyperConnectivitiesSuperHyperPolynomial \\ &= 2z^{\lfloor \frac{|^{E}_{ESHG:(V,E)}|_{Extreme \ Cardinality}|}{2} \rfloor}. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivities} = \{V_i\}_{i=1}^{s}, \{V_j\}_{j=1}^{t}. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} = az^s + bz^t. \end{split}$$

Thus the non-obvious Extreme SuperHyperConnectivities,

$$\begin{split} \mathcal{C}(NSHG)_{Extreme} Quasi-SuperHyperConnectivities \\ &= \{E_{2i-1}\}_{i=1}^{\lfloor \frac{|E_{ESHG}:(V,E)|Extreme Cardinality}{2} \rfloor}.\\ \mathcal{C}(NSHG)_{Extreme} Quasi-SuperHyperConnectivitiesSuperHyperPolynomial \\ &= 2z^{\lfloor \frac{|E_{ESHG}:(V,E)|Extreme Cardinality}{2} \rfloor}.\\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivities} = \{V_i\}_{i=1}^{s}, \{V_j\}_{j=1}^{t}.\\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} = az^s + bz^t. \end{split}$$

Is up. The obvious simple Extreme type-SuperHyperSet of the Extreme SuperHyperConnectivities, not:

$$\begin{split} \mathcal{C}(NSHG) & \textit{ExtremeQuasi-SuperHyperConnectivities} \\ &= \{E_{2i-1}\}_{i=1}^{\lfloor \frac{|E_{ESHG:(V,E)}|\text{Extreme Cardinality}|}{2} \rfloor}.\\ \mathcal{C}(NSHG) & \textit{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} \\ &= 2z^{\lfloor \frac{|E_{ESHG:(V,E)}|\text{Extreme Cardinality}|}{2} \rfloor}.\\ \mathcal{C}(NSHG) & \textit{ExtremeR-Quasi-SuperHyperConnectivities} \\ &= \{V_i\}_{i=1}^{s}, \{V_j\}_{j=1}^{t}.\\ \mathcal{C}(NSHG) & \textit{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} \\ &= az^{s} + bz^{t}. \end{split}$$

Is the Extreme SuperHyperSet, not:

$$\begin{split} \mathcal{C}(NSHG) & \textit{ExtremeQuasi-SuperHyperConnectivities} \\ &= \{E_{2i-1}\}_{i=1}^{\lfloor \frac{|E_{ESHG}:(V,E)| \text{Extreme Cardinality}}{2} \rfloor}.\\ \mathcal{C}(NSHG) & \textit{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} \\ &= 2z^{\lfloor \frac{|E_{ESHG}:(V,E)| \text{Extreme Cardinality}}{2} \rfloor}.\\ \mathcal{C}(NSHG) & \textit{ExtremeR-Quasi-SuperHyperConnectivities} = \{V_i\}_{i=1}^{s}, \{V_j\}_{j=1}^{t}.\\ \mathcal{C}(NSHG) & \textit{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} = az^s + bz^t. \end{split}$$

Does includes only less than three SuperHyperVertices in a connected Extreme SuperHyperGraph ESHG: (V, E). It's interesting to mention that the only non-obvious simple Extreme type-SuperHyperSet called the

#### "Extreme SuperHyperConnectivities"

amid those obvious [non-obvious] simple Extreme type-SuperHyperSets called the

### Extreme SuperHyperConnectivities,

is only and only

$$\mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivities} = \{E_{2i-1}\}_{i=1}^{\lfloor \frac{|E_{ESHG:(V,E)}|_{Extreme Cardinality}|}{2} \rfloor}.$$

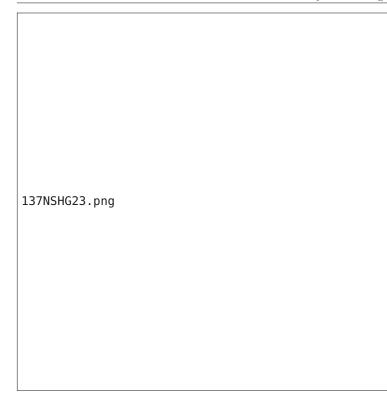


Figure 9.6: an Extreme SuperHyperWheel Extreme Associated to the Extreme Notions of Extreme SuperHyperConnectivities in the Extreme Example (9.0.13)

$$\begin{split} \mathcal{C}(NSHG)_{ExtremeQuasi-SuperHyperConnectivitiesSuperHyperPolynomial} \\ &= 2z^{\lfloor \frac{|^{E_{ESHG}:(V,E)}|_{Extreme Cardinality}}{2} \rfloor}. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivities} = \{V_i\}_{i=1}^{s}, \{V_j\}_{j=1}^{t}. \\ \mathcal{C}(NSHG)_{ExtremeR-Quasi-SuperHyperConnectivitiesSuperHyperPolynomial} = az^s + bz^t. \end{split}$$

In a connected Neutrosophic SuperHyperGraph ESHG : (V, E).

**Example 9.0.13.** In the Extreme Figure (9.6), the connected Extreme SuperHyperWheel NSHW: (V, E), is Extreme highlighted and featured. The obtained Extreme SuperHyperSet, by the Algorithm in previous result, of the Extreme SuperHyperVertices of the connected Extreme SuperHyperWheel ESHW: (V, E), in the Extreme SuperHyperModel (9.6), is the Extreme SuperHyperConnectivities.

# CHAPTER 10

# **General Extreme Results**

For the SuperHyperConnectivities, Extreme SuperHyperConnectivities, and the Extreme SuperHyperConnectivities, some general results are introduced.

*Remark* 10.0.1. Let remind that the Extreme SuperHyperConnectivities is "redefined" on the positions of the alphabets.

Corollary 10.0.2. Assume Extreme SuperHyperConnectivities. Then

Extreme SuperHyperConnectivities = {theSuperHyperConnectivitiesoftheSuperHyperVertices | max |SuperHyperOffensiveSuperHyper Clique|ExtremecardinalityamidthoseSuperHyperConnectivities.}

plus one Extreme SuperHypeNeighbor to one. Where  $\sigma_i$  is the unary operation on the SuperHyper-Vertices of the SuperHyperGraph to assign the determinacy, the indeterminacy and the neutrality, for i = 1, 2, 3, respectively.

**Corollary 10.0.3.** Assume a Neutrosophic SuperHyperGraph on the same identical letter of the alphabet. Then the notion of Extreme SuperHyperConnectivities and SuperHyperConnectivities coincide.

**Corollary 10.0.4.** Assume a Neutrosophic SuperHyperGraph on the same identical letter of the alphabet. Then a consecutive sequence of the SuperHyperVertices is an Extreme SuperHyperConnectivities if and only if it's a SuperHyperConnectivities.

**Corollary 10.0.5.** Assume a Neutrosophic SuperHyperGraph on the same identical letter of the alphabet. Then a consecutive sequence of the SuperHyperVertices is a strongest SuperHyperConnectivities if and only if it's a longest SuperHyperConnectivities.

**Corollary 10.0.6.** Assume SuperHyperClasses of a Neutrosophic SuperHyperGraph on the same identical letter of the alphabet. Then its Extreme SuperHyperConnectivities is its SuperHyperConnectivities and reversely.

**Corollary 10.0.7.** Assume an Extreme SuperHyperPath(-/SuperHyperConnectivities, SuperHyper-Star, SuperHyperBipartite, SuperHyperMultipartite, SuperHyperWheel) on the same identical letter of the alphabet. Then its Extreme SuperHyperConnectivities is its SuperHyperConnectivities and reversely. Henry Garrett $\,\cdot\,$ Independent Researcher $\,\cdot\,$ Department of Mathematics $\,\cdot\,$ Dr<br/>HenryGarrett@gmail.com $\,\cdot\,$ Manhattan, NY, USA

**Corollary 10.0.8.** Assume a Neutrosophic SuperHyperGraph. Then its Extreme SuperHyperConnectivities isn't well-defined if and only if its SuperHyperConnectivities isn't well-defined.

**Corollary 10.0.9.** Assume SuperHyperClasses of a Neutrosophic SuperHyperGraph. Then its Extreme SuperHyperConnectivities isn't well-defined if and only if its SuperHyperConnectivities isn't well-defined.

**Corollary 10.0.10.** Assume an Extreme SuperHyperPath(-/SuperHyperConnectivities, SuperHyper-Star, SuperHyperBipartite, SuperHyperMultipartite, SuperHyperWheel). Then its Extreme SuperHyperConnectivities isn't well-defined if and only if its SuperHyperConnectivities isn't well-defined.

**Corollary 10.0.11.** Assume a Neutrosophic SuperHyperGraph. Then its Extreme SuperHyperConnectivities is well-defined if and only if its SuperHyperConnectivities is well-defined.

**Corollary 10.0.12.** Assume SuperHyperClasses of a Neutrosophic SuperHyperGraph. Then its Extreme SuperHyperConnectivities is well-defined if and only if its SuperHyperConnectivities is well-defined.

**Corollary 10.0.13.** Assume an Extreme SuperHyperPath(-/SuperHyperConnectivities, SuperHyperStar, SuperHyperBipartite, SuperHyperMultipartite, SuperHyperWheel). Then its Extreme SuperHyperConnectivities is well-defined if and only if its SuperHyperConnectivities is well-defined.

**Proposition 10.0.14.** Let ESHG : (V, E) be a Neutrosophic SuperHyperGraph. Then V is

- (i): the dual SuperHyperDefensive SuperHyperConnectivities;
- (ii): the strong dual SuperHyperDefensive SuperHyperConnectivities;
- (*iii*): the connected dual SuperHyperDefensive SuperHyperConnectivities;
- (iv): the  $\delta$ -dual SuperHyperDefensive SuperHyperConnectivities;
- (v): the strong  $\delta$ -dual SuperHyperDefensive SuperHyperConnectivities;
- (vi): the connected  $\delta$ -dual SuperHyperDefensive SuperHyperConnectivities.

*Proof.* Suppose ESHG: (V, E) is a Neutrosophic SuperHyperGraph. Consider V. All SuperHyperMembers of V have at least one SuperHyperNeighbor inside the SuperHyperSet more than SuperHyperNeighbor out of SuperHyperSet. Thus,

(i). V is the dual SuperHyperDefensive SuperHyperConnectivities since the following statements are equivalent.

$$\begin{aligned} \forall a \in S, \ |N(a) \cap S| &> |N(a) \cap (V \setminus S)| \equiv \\ \forall a \in V, \ |N(a) \cap V| &> |N(a) \cap (V \setminus V)| \equiv \\ \forall a \in V, \ |N(a) \cap V| &> |N(a) \cap \emptyset| \equiv \\ \forall a \in V, \ |N(a) \cap V| &> |\emptyset| \equiv \\ \forall a \in V, \ |N(a) \cap V| &> 0 \equiv \\ \forall a \in V, \ \delta > 0. \end{aligned}$$

 $(ii).\ V$  is the strong dual SuperHyperDefensive SuperHyperConnectivities since the following statements are equivalent.

$$\begin{aligned} \forall a \in S, \ |N_s(a) \cap S| &> |N_s(a) \cap (V \setminus S)| \equiv \\ \forall a \in V, \ |N_s(a) \cap V| &> |N_s(a) \cap (V \setminus V)| \equiv \\ \forall a \in V, \ |N_s(a) \cap V| &> |N_s(a) \cap \emptyset| \equiv \\ \forall a \in V, \ |N_s(a) \cap V| &> |\emptyset| \equiv \\ \forall a \in V, \ |N_s(a) \cap V| &> 0 \equiv \\ \forall a \in V, \ \delta > 0. \end{aligned}$$

 $(iii).\ V$  is the connected dual SuperHyperDefensive SuperHyperConnectivities since the following statements are equivalent.

$$\begin{aligned} \forall a \in S, \ |N_c(a) \cap S| &> |N_c(a) \cap (V \setminus S)| \equiv \\ \forall a \in V, \ |N_c(a) \cap V| &> |N_c(a) \cap (V \setminus V)| \equiv \\ \forall a \in V, \ |N_c(a) \cap V| &> |N_c(a) \cap \emptyset| \equiv \\ \forall a \in V, \ |N_c(a) \cap V| &> |\emptyset| \equiv \\ \forall a \in V, \ |N_c(a) \cap V| &> 0 \equiv \\ \forall a \in V, \ \delta > 0. \end{aligned}$$

(iv).~V is the  $\delta$  -dual SuperHyperDefensive SuperHyperConnectivities since the following statements are equivalent.

$$\begin{aligned} \forall a \in S, \ |(N(a) \cap S) - (N(a) \cap (V \setminus S))| > \delta \equiv \\ \forall a \in V, \ |(N(a) \cap V) - (N(a) \cap (V \setminus V))| > \delta \equiv \\ \forall a \in V, \ |(N(a) \cap V) - (N(a) \cap (\emptyset))| > \delta \equiv \\ \forall a \in V, \ |(N(a) \cap V) - (\emptyset)| > \delta \equiv \\ \forall a \in V, \ |(N(a) \cap V)| > \delta. \end{aligned}$$

(v). V is the strong  $\delta$ -dual SuperHyperDefensive SuperHyperConnectivities since the following statements are equivalent.

$$\begin{split} \forall a \in S, \ |(N_s(a) \cap S) - (N_s(a) \cap (V \setminus S))| > \delta \equiv \\ \forall a \in V, \ |(N_s(a) \cap V) - (N_s(a) \cap (V \setminus V))| > \delta \equiv \\ \forall a \in V, \ |(N_s(a) \cap V) - (N_s(a) \cap (\emptyset))| > \delta \equiv \\ \forall a \in V, \ |(N_s(a) \cap V) - (\emptyset)| > \delta \equiv \\ \forall a \in V, \ |(N_s(a) \cap V)| > \delta. \end{split}$$

(vi). V is connected  $\delta$ -dual SuperHyperConnectivities since the following statements are equivalent.

$$\begin{aligned} \forall a \in S, \ \left| (N_c(a) \cap S) - (N_c(a) \cap (V \setminus S)) \right| > \delta \equiv \\ \forall a \in V, \ \left| (N_c(a) \cap V) - (N_c(a) \cap (V \setminus V)) \right| > \delta \equiv \\ \forall a \in V, \ \left| (N_c(a) \cap V) - (N_c(a) \cap (\emptyset)) \right| > \delta \equiv \\ \forall a \in V, \ \left| (N_c(a) \cap V) - (\emptyset) \right| > \delta \equiv \\ \forall a \in V, \ \left| (N_c(a) \cap V) - (\emptyset) \right| > \delta. \end{aligned}$$

**Proposition 10.0.15.** Let  $NTG: (V, E, \sigma, \mu)$  be a Neutrosophic SuperHyperGraph. Then  $\emptyset$  is

- (i): the SuperHyperDefensive SuperHyperConnectivities;
- (ii): the strong SuperHyperDefensive SuperHyperConnectivities;
- (iii): the connected defensive SuperHyperDefensive SuperHyperConnectivities;
- (iv): the  $\delta$ -SuperHyperDefensive SuperHyperConnectivities;
- (v): the strong  $\delta$ -SuperHyperDefensive SuperHyperConnectivities;
- (vi): the connected  $\delta$ -SuperHyperDefensive SuperHyperConnectivities.

*Proof.* Suppose ESHG: (V, E) is a Neutrosophic SuperHyperGraph. Consider  $\emptyset$ . All SuperHyper-Members of  $\emptyset$  have no SuperHyperNeighbor inside the SuperHyperSet less than SuperHyperNeighbor out of SuperHyperSet. Thus,

(i).  $\emptyset$  is the SuperHyperDefensive SuperHyperConnectivities since the following statements are equivalent.

 $\begin{aligned} \forall a \in S, \ |N(a) \cap S| < |N(a) \cap (V \setminus S)| &\equiv \\ \forall a \in \emptyset, \ |N(a) \cap \emptyset| < |N(a) \cap (V \setminus \emptyset)| &\equiv \\ \forall a \in \emptyset, \ |\emptyset| < |N(a) \cap (V \setminus \emptyset)| &\equiv \\ \forall a \in \emptyset, \ 0 < |N(a) \cap V| &\equiv \\ \forall a \in \emptyset, \ 0 < |N(a) \cap V| &\equiv \\ \forall a \in V, \ \delta > 0. \end{aligned}$ 

(*ii*).  $\emptyset$  is the strong SuperHyperDefensive SuperHyperConnectivities since the following statements are equivalent.

$$\begin{aligned} \forall a \in S, \ |N_s(a) \cap S| &< |N_s(a) \cap (V \setminus S)| \equiv \\ \forall a \in \emptyset, \ |N_s(a) \cap \emptyset| &< |N_s(a) \cap (V \setminus \emptyset)| \equiv \\ \forall a \in \emptyset, \ |\emptyset| &< |N_s(a) \cap (V \setminus \emptyset)| \equiv \\ \forall a \in \emptyset, \ 0 &< |N_s(a) \cap V| \equiv \\ \forall a \in \emptyset, \ 0 &< |N_s(a) \cap V| \equiv \\ \forall a \in V, \ \delta > 0. \end{aligned}$$

(*iii*).  $\emptyset$  is the connected SuperHyperDefensive SuperHyperConnectivities since the following statements are equivalent.

$$\begin{aligned} \forall a \in S, \ |N_c(a) \cap S| < |N_c(a) \cap (V \setminus S)| &\equiv \\ \forall a \in \emptyset, \ |N_c(a) \cap \emptyset| < |N_c(a) \cap (V \setminus \emptyset)| &\equiv \\ \forall a \in \emptyset, \ |\emptyset| < |N_c(a) \cap (V \setminus \emptyset)| &\equiv \\ \forall a \in \emptyset, \ 0 < |N_c(a) \cap V| &\equiv \\ \forall a \in \emptyset, \ 0 < |N_c(a) \cap V| &\equiv \end{aligned}$$

Henry Garrett · Independent Researcher · Department of Mathematics · DrHenryGarrett@gmail.com · Manhattan, NY, USA

$$\forall a \in V, \ \delta > 0.$$

(*iv*).  $\emptyset$  is the  $\delta$ -SuperHyperDefensive SuperHyperConnectivities since the following statements are equivalent.

$$\begin{aligned} \forall a \in S, \ |(N(a) \cap S) - (N(a) \cap (V \setminus S))| < \delta \equiv \\ \forall a \in \emptyset, \ |(N(a) \cap \emptyset) - (N(a) \cap (V \setminus \emptyset))| < \delta \equiv \\ \forall a \in \emptyset, \ |(N(a) \cap \emptyset) - (N(a) \cap (V))| < \delta \equiv \\ \forall a \in \emptyset, \ |\emptyset| < \delta \equiv \\ \forall a \in V, \ 0 < \delta. \end{aligned}$$

(v).  $\emptyset$  is the strong  $\delta$ -SuperHyperDefensive SuperHyperConnectivities since the following statements are equivalent.

$$\begin{aligned} \forall a \in S, \ |(N_s(a) \cap S) - (N_s(a) \cap (V \setminus S))| < \delta \equiv \\ \forall a \in \emptyset, \ |(N_s(a) \cap \emptyset) - (N_s(a) \cap (V \setminus \emptyset))| < \delta \equiv \\ \forall a \in \emptyset, \ |(N_s(a) \cap \emptyset) - (N_s(a) \cap (V))| < \delta \equiv \\ \forall a \in \emptyset, \ |\emptyset| < \delta \equiv \\ \forall a \in V, \ 0 < \delta. \end{aligned}$$

(vi).  $\emptyset$  is the connected  $\delta$ -SuperHyperDefensive SuperHyperConnectivities since the following statements are equivalent.

$$\begin{aligned} \forall a \in S, \ |(N_c(a) \cap S) - (N_c(a) \cap (V \setminus S))| < \delta \equiv \\ \forall a \in \emptyset, \ |(N_c(a) \cap \emptyset) - (N_c(a) \cap (V \setminus \emptyset))| < \delta \equiv \\ \forall a \in \emptyset, \ |(N_c(a) \cap \emptyset) - (N_c(a) \cap (V))| < \delta \equiv \\ \forall a \in \emptyset, \ |\emptyset| < \delta \equiv \\ \forall a \in V, \ 0 < \delta. \end{aligned}$$

**Proposition 10.0.16.** Let ESHG : (V, E) be a Neutrosophic SuperHyperGraph. Then an independent SuperHyperSet is

- (i): the SuperHyperDefensive SuperHyperConnectivities;
- (ii): the strong SuperHyperDefensive SuperHyperConnectivities;
- (iii): the connected SuperHyperDefensive SuperHyperConnectivities;
- (iv): the  $\delta$ -SuperHyperDefensive SuperHyperConnectivities;
- (v): the strong  $\delta$ -SuperHyperDefensive SuperHyperConnectivities;
- (vi): the connected  $\delta$ -SuperHyperDefensive SuperHyperConnectivities.

Henry Garrett · Independent Researcher · Department of Mathematics · DrHenryGarrett@gmail.com · Manhattan, NY, USA

*Proof.* Suppose ESHG: (V, E) is a Neutrosophic SuperHyperGraph. Consider S. All SuperHyper-Members of S have no SuperHyperNeighbor inside the SuperHyperSet less than SuperHyperNeighbor out of SuperHyperSet. Thus,

(i). An independent SuperHyperSet is the SuperHyperDefensive SuperHyperConnectivities since the following statements are equivalent.

$$\begin{aligned} \forall a \in S, \ |N(a) \cap S| < |N(a) \cap (V \setminus S)| &\equiv \\ \forall a \in S, \ |N(a) \cap S| < |N(a) \cap (V \setminus S)| &\equiv \\ \forall a \in S, \ |\emptyset| < |N(a) \cap (V \setminus S)| &\equiv \\ \forall a \in S, \ 0 < |N(a) \cap V| &\equiv \\ \forall a \in S, \ 0 < |N(a)| &\equiv \\ \forall a \in V, \ \delta > 0. \end{aligned}$$

(ii). An independent SuperHyperSet is the strong SuperHyperDefensive SuperHyperConnectivities since the following statements are equivalent.

$$\begin{aligned} \forall a \in S, \ |N_s(a) \cap S| < |N_s(a) \cap (V \setminus S)| \equiv \\ \forall a \in S, \ |N_s(a) \cap S| < |N_s(a) \cap (V \setminus S)| \equiv \\ \forall a \in S, \ |\emptyset| < |N_s(a) \cap (V \setminus S)| \equiv \\ \forall a \in S, \ 0 < |N_s(a) \cap V| \equiv \\ \forall a \in S, \ 0 < |N_s(a)| \equiv \\ \forall a \in V, \ \delta > 0. \end{aligned}$$

(*iii*). An independent SuperHyperSet is the connected SuperHyperDefensive SuperHyperConnectivities since the following statements are equivalent.

$$\begin{aligned} \forall a \in S, \ |N_c(a) \cap S| < |N_c(a) \cap (V \setminus S)| &\equiv \\ \forall a \in S, \ |N_c(a) \cap S| < |N_c(a) \cap (V \setminus S)| &\equiv \\ \forall a \in S, \ |\emptyset| < |N_c(a) \cap (V \setminus S)| &\equiv \\ \forall a \in S, \ 0 < |N_c(a) \cap V| &\equiv \\ \forall a \in S, \ 0 < |N_c(a)| &\equiv \\ \forall a \in V, \ \delta > 0. \end{aligned}$$

(*iv*). An independent SuperHyperSet is the  $\delta$ -SuperHyperDefensive SuperHyperConnectivities since the following statements are equivalent.

$$\begin{aligned} \forall a \in S, \ |(N(a) \cap S) - (N(a) \cap (V \setminus S))| < \delta \equiv \\ \forall a \in S, \ |(N(a) \cap S) - (N(a) \cap (V \setminus S))| < \delta \equiv \\ \forall a \in S, \ |(N(a) \cap S) - (N(a) \cap (V))| < \delta \equiv \\ \forall a \in S, \ |\emptyset| < \delta \equiv \\ \forall a \in V, \ 0 < \delta. \end{aligned}$$

(v). An independent SuperHyperSet is the strong  $\delta$ -SuperHyperDefensive SuperHyperConnectivities since the following statements are equivalent.

$$\forall a \in S, \ |(N_s(a) \cap S) - (N_s(a) \cap (V \setminus S))| < \delta \equiv$$

Henry Garrett $\,\cdot\,$ Independent Researcher $\,\cdot\,$ Department of Mathematics $\,\cdot\,$ Dr<br/>HenryGarrett@gmail.com $\,\cdot\,$ Manhattan, NY, USA

 $\begin{aligned} \forall a \in S, \ |(N_s(a) \cap S) - (N_s(a) \cap (V \setminus S))| < \delta \equiv \\ \forall a \in S, \ |(N_s(a) \cap S) - (N_s(a) \cap (V))| < \delta \equiv \\ \forall a \in S, \ |\emptyset| < \delta \equiv \\ \forall a \in V, \ 0 < \delta. \end{aligned}$ 

(vi). An independent SuperHyperSet is the connected  $\delta$ -SuperHyperDefensive SuperHyperConnectivities since the following statements are equivalent.

 $\begin{aligned} \forall a \in S, \ |(N_c(a) \cap S) - (N_c(a) \cap (V \setminus S))| < \delta \equiv \\ \forall a \in S, \ |(N_c(a) \cap S) - (N_c(a) \cap (V \setminus S))| < \delta \equiv \\ \forall a \in S, \ |(N_c(a) \cap S) - (N_c(a) \cap (V))| < \delta \equiv \\ \forall a \in S, \ |\emptyset| < \delta \equiv \\ \forall a \in V, \ 0 < \delta. \end{aligned}$ 

**Proposition 10.0.17.** Let ESHG: (V, E) be an Extreme SuperHyperUniform SuperHyperGraph which is a SuperHyperConnectivities/SuperHyperPath. Then V is a maximal

- (i): SuperHyperDefensive SuperHyperConnectivities;
- (*ii*): strong SuperHyperDefensive SuperHyperConnectivities;
- (iii): connected SuperHyperDefensive SuperHyperConnectivities;
- (iv):  $\mathcal{O}(ESHG)$ -SuperHyperDefensive SuperHyperConnectivities;
- (v): strong  $\mathcal{O}(ESHG)$ -SuperHyperDefensive SuperHyperConnectivities;
- (vi): connected  $\mathcal{O}(ESHG)$ -SuperHyperDefensive SuperHyperConnectivities;

Where the exterior SuperHyperVertices and the interior SuperHyperVertices coincide.

*Proof.* Suppose ESHG: (V, E) is a Neutrosophic SuperHyperGraph which is a SuperHyperUniform SuperHyperConnectivities/SuperHyperPath.

(i). Consider one segment is out of S which is SuperHyperDefensive SuperHyperConnectivities. This segment has 2t SuperHyperNeighbors in S, i.e, Suppose  $x_{i_{i=1,2,...,t}} \in V \setminus S$  such that  $y_{i_{i=1,2,...,t}}, z_{i_{i=1,2,...,t}} \in N(x_{i_{i=1,2,...,t}})$ . By it's the exterior SuperHyperVertices and the interior Super-HyperVertices coincide and it's SuperHyperUniform SuperHyperConnectivities,  $|N(x_{i_{i=1,2,...,t}})| =$ 

Henry Garrett · Independent Researcher · Department of Mathematics · DrHenryGarrett@gmail.com · Manhattan, NY, USA

 $|N(y_{i_{i=1,2,\ldots,t}})| = |N(z_{i_{i=1,2,\ldots,t}})| = 2t$ . Thus

$$\begin{aligned} \forall a \in S, \ |N(a) \cap S| < |N(a) \cap (V \setminus S)| &\equiv \\ \forall a \in S, \ |N(a) \cap S| < |N(a) \cap (V \setminus S)| &\equiv \\ \exists y_{i_{i=1,2,\dots,t}} \in V \setminus \{x_i\}_{i=1}^t, \ |N(y_{i_{i=1,2,\dots,t}}) \cap S| < \\ |N(y_{i_{i=1,2,\dots,t}}) \cap (V \setminus (V \setminus \{x_{i_{i=1,2,\dots,t}}\}))| &\equiv \\ \exists y_{i_{i=1,2,\dots,t}} \in V \setminus \{x_i\}_{i=1}^t, \ |N(y_{i_{i=1,2,\dots,t}}) \cap S| < \\ |N(y_{i_{i=1,2,\dots,t}}) \cap \{x_{i_{i=1,2,\dots,t}}\})| &\equiv \\ \exists y_{i_{i=1,2,\dots,t}} \in V \setminus \{x_i\}_{i=1}^t, \ |\{z_1, z_2, \dots, z_{t-1}\}| < \\ |\{x_1, x_2, \dots, x_{t-1}\})| &\equiv \\ \exists y \in S, \ t-1 < t-1. \end{aligned}$$

Thus it's contradiction. It implies every  $V \setminus \{x_{i_{i=1,2,...,t}}\}$  isn't SuperHyperDefensive SuperHyperConnectivities in a given SuperHyperUniform SuperHyperConnectivities.

Consider one segment, with two segments related to the SuperHyperLeaves as exceptions, is out of S which is SuperHyperDefensive SuperHyperConnectivities. This segment has 2t SuperHyperNeighbors in S, i.e., Suppose  $x_{i_{i=1,2,...,t}} \in V \setminus S$  such that  $y_{i_{i=1,2,...,t}}, z_{i_{i=1,2,...,t}} \in N(x_{i_{i=1,2,...,t}})$ . By it's the exterior SuperHyperVertices and the interior SuperHyperVertices coincide and it's SuperHyperUniform SuperHyperPath,  $|N(x_{i_{i=1,2,...,t}})| = |N(y_{i_{i=1,2,...,t}})| = |N(z_{i_{i=1,2,...,t}})| = 2t$ . Thus

$$\begin{aligned} \forall a \in S, \ |N(a) \cap S| < |N(a) \cap (V \setminus S)| &\equiv \\ \forall a \in S, \ |N(a) \cap S| < |N(a) \cap (V \setminus S)| &\equiv \\ \exists y_{i=1,2,\dots,t} \in V \setminus \{x_i\}_{i=1}^t, \ |N(y_{i=1,2,\dots,t}) \cap S| < \\ |N(y_{i=1,2,\dots,t}) \cap (V \setminus (V \setminus \{x_{i=1,2,\dots,t}\}))| &\equiv \\ \exists y_{i=1,2,\dots,t} \in V \setminus \{x_i\}_{i=1}^t, \ |N(y_{i=1,2,\dots,t}) \cap S| < \\ |N(y_{i=1,2,\dots,t}) \cap \{x_{i=1,2,\dots,t}\})| &\equiv \\ \exists y_{i=1,2,\dots,t} \in V \setminus \{x_i\}_{i=1}^t, \ |\{z_1, z_2, \dots, z_{t-1}\}| < \\ |\{x_1, x_2, \dots, x_{t-1}\})| &\equiv \\ \exists y \in S, \ t-1 < t-1. \end{aligned}$$

Thus it's contradiction. It implies every  $V \setminus \{x_{i_{i=1,2,...,t}}\}$  isn't SuperHyperDefensive SuperHyperConnectivities in a given SuperHyperUniform SuperHyperPath.

(ii), (iii) are obvious by (i).

(iv). By (i), |V| is maximal and it's a SuperHyperDefensive SuperHyperConnectivities. Thus it's |V|-SuperHyperDefensive SuperHyperConnectivities. (v), (vi) are obvious by (iv).

**Proposition 10.0.18.** Let ESHG : (V, E) be a Neutrosophic SuperHyperGraph which is a SuperHyperUniform SuperHyperWheel. Then V is a maximal

(*i*): dual SuperHyperDefensive SuperHyperConnectivities;

(ii): strong dual SuperHyperDefensive SuperHyperConnectivities;

(*iii*): connected dual SuperHyperDefensive SuperHyperConnectivities;

Henry Garrett  $\,\cdot\,$  Independent Researcher  $\,\cdot\,$  Department of Mathematics  $\,\cdot\,$  DrHenryGarrett@gmail.com  $\,\cdot\,$  Manhattan, NY, USA

- (iv):  $\mathcal{O}(ESHG)$ -dual SuperHyperDefensive SuperHyperConnectivities;
- (v): strong  $\mathcal{O}(ESHG)$ -dual SuperHyperDefensive SuperHyperConnectivities;
- (vi): connected  $\mathcal{O}(ESHG)$ -dual SuperHyperDefensive SuperHyperConnectivities;

Where the exterior SuperHyperVertices and the interior SuperHyperVertices coincide.

*Proof.* Suppose ESHG: (V, E) is an Extreme SuperHyperUniform SuperHyperGraph which is a SuperHyperWheel.

(i). Consider one segment is out of S which is SuperHyperDefensive SuperHyperConnectivities. This segment has 3t SuperHyperNeighbors in S, i.e., Suppose  $x_{i_{i=1,2,...,t}} \in V \setminus S$  such that  $y_{i_{i=1,2,...,t}}, z_{i_{i=1,2,...,t}}, s_{i_{i=1,2,...,t}} \in N(x_{i_{i=1,2,...,t}})$ . By it's the exterior SuperHyperVertices and the interior SuperHyperVertices coincide and it's SuperHyperUniform SuperHyperWheel,  $|N(x_{i_{i=1,2,...,t}})| = |N(y_{i_{i=1,2,...,t}})| = |N(z_{i_{i=1,2,...,t}})| = 3t$ . Thus

$$\begin{split} \forall a \in S, \ |N(a) \cap S| &< |N(a) \cap (V \setminus S)| \equiv \\ \forall a \in S, \ |N(a) \cap S| &< |N(a) \cap (V \setminus S)| \equiv \\ \exists y_{i_{i=1,2,\dots,t}}, s_{i_{i=1,2,\dots,t}} \in N(x_{i_{i=1,2,\dots,t}}) \in V \setminus \{x_i\}_{i=1}^t, \\ |N(y_{i_{i=1,2,\dots,t}}, s_{i_{i=1,2,\dots,t}} \in N(x_{i_{i=1,2,\dots,t}})) \cap S| < \\ |N(y_{i_{i=1,2,\dots,t}}, s_{i_{i=1,2,\dots,t}} \in N(x_{i_{i=1,2,\dots,t}})) \cap (V \setminus (V \setminus \{x_{i_{i=1,2,\dots,t}}\}))| \equiv \\ \exists y_{i_{i=1,2,\dots,t}}, s_{i_{i=1,2,\dots,t}} \in N(x_{i_{i=1,2,\dots,t}}) \cap V \setminus \{x_i\}_{i=1}^t, \\ |N(y_{i_{i=1,2,\dots,t}}, s_{i_{i=1,2,\dots,t}} \in N(x_{i_{i=1,2,\dots,t}})) \cap S| < \\ |N(y_{i_{i=1,2,\dots,t}}, s_{i_{i=1,2,\dots,t}} \in N(x_{i_{i=1,2,\dots,t}})) \cap \{x_{i_{i=1,2,\dots,t}}\})| \equiv \\ \exists y_{i_{i=1,2,\dots,t}}, s_{i_{i=1,2,\dots,t}} \in N(x_{i_{i=1,2,\dots,t}}) \in V \setminus \{x_i\}_{i=1}^t, \\ |\{z_1, z_2, \dots, z_{t-1}, z_1', z_2', \dots, z_t'\}| < |\{x_1, x_2, \dots, x_{t-1}\})| \equiv \\ \exists y \in S, \ 2t - 1 < t - 1. \end{split}$$

Thus it's contradiction. It implies every  $V \setminus \{x_{i_{i=1,2,...,t}}\}$  is SuperHyperDefensive SuperHyperConnectivities in a given SuperHyperUniform SuperHyperWheel. (*ii*), (*iii*) are obvious by (*i*).

(iv). By (i), |V| is maximal and it is a dual SuperHyperDefensive SuperHyperConnectivities. Thus it's a dual |V|-SuperHyperDefensive SuperHyperConnectivities. (v), (vi) are obvious by (iv).

**Proposition 10.0.19.** Let ESHG: (V, E) be an Extreme SuperHyperUniform SuperHyperGraph which is a SuperHyperConnectivities/SuperHyperPath. Then the number of

- (i): the SuperHyperConnectivities;
- (*ii*): the SuperHyperConnectivities;
- (iii): the connected SuperHyperConnectivities;
- (iv): the  $\mathcal{O}(ESHG)$ -SuperHyperConnectivities;
- (v): the strong  $\mathcal{O}(ESHG)$ -SuperHyperConnectivities;

Henry Garrett · Independent Researcher · Department of Mathematics · DrHenryGarrett@gmail.com · Manhattan, NY, USA

(vi): the connected  $\mathcal{O}(ESHG)$ -SuperHyperConnectivities.

is one and it's only V. Where the exterior SuperHyperVertices and the interior SuperHyperVertices coincide.

*Proof.* Suppose ESHG: (V, E) is a Neutrosophic SuperHyperGraph which is a SuperHyperUniform SuperHyperConnectivities/SuperHyperPath.

(i). Consider one segment is out of S which is SuperHyperDefensive SuperHyperConnectivities. This segment has 2t SuperHyperNeighbors in S, i.e, Suppose  $x_{i_{i=1,2,...,t}} \in V \setminus S$  such that  $y_{i_{i=1,2,...,t}}, z_{i_{i=1,2,...,t}} \in N(x_{i_{i=1,2,...,t}})$ . By it's the exterior SuperHyperVertices and the interior Super-HyperVertices coincide and it's SuperHyperUniform SuperHyperConnectivities,  $|N(x_{i_{i=1,2,...,t}})| = |N(y_{i_{i=1,2,...,t}})| = |N(z_{i_{i=1,2,...,t}})| = 2t$ . Thus

$$\begin{aligned} \forall a \in S, \ |N(a) \cap S| < |N(a) \cap (V \setminus S)| \equiv \\ \forall a \in S, \ |N(a) \cap S| < |N(a) \cap (V \setminus S)| \equiv \\ \exists y_{i_{i=1,2,\dots,t}} \in V \setminus \{x_i\}_{i=1}^t, \ |N(y_{i_{i=1,2,\dots,t}}) \cap S| < \\ |N(y_{i_{i=1,2,\dots,t}}) \cap (V \setminus (V \setminus \{x_{i_{i=1,2,\dots,t}}\}))| \equiv \\ \exists y_{i_{i=1,2,\dots,t}} \in V \setminus \{x_i\}_{i=1}^t, \ |N(y_{i_{i=1,2,\dots,t}}) \cap S| < \\ |N(y_{i_{i=1,2,\dots,t}}) \cap \{x_{i_{i=1,2,\dots,t}}\})| \equiv \\ \exists y_{i_{i=1,2,\dots,t}} \in V \setminus \{x_i\}_{i=1}^t, \ |\{z_1, z_2, \dots, z_{t-1}\}| < |\{x_1, x_2, \dots, x_{t-1}\})| \equiv \\ \exists y \in S, \ t-1 < t-1. \end{aligned}$$

Thus it's contradiction. It implies every  $V \setminus \{x_{i_{i=1,2,\dots,t}}\}$  isn't SuperHyperDefensive SuperHyperConnectivities in a given SuperHyperUniform SuperHyperConnectivities.

Consider one segment, with two segments related to the SuperHyperLeaves as exceptions, is out of S which is SuperHyperDefensive SuperHyperConnectivities. This segment has 2t SuperHyperNeighbors in S, i.e., Suppose  $x_{i_{i=1,2,...,t}} \in V \setminus S$  such that  $y_{i_{i=1,2,...,t}}, z_{i_{i=1,2,...,t}} \in N(x_{i_{i=1,2,...,t}})$ . By it's the exterior SuperHyperVertices and the interior SuperHyperVertices coincide and it's SuperHyperUniform SuperHyperPath,  $|N(x_{i_{i=1,2,...,t}})| = |N(y_{i_{i=1,2,...,t}})| = |N(z_{i_{i=1,2,...,t}})| = 2t$ . Thus

$$\begin{aligned} \forall a \in S, \ |N(a) \cap S| < |N(a) \cap (V \setminus S)| &\equiv \\ \forall a \in S, \ |N(a) \cap S| < |N(a) \cap (V \setminus S)| &\equiv \\ \exists y_{i_{i=1},2,\dots,t} \in V \setminus \{x_i\}_{i=1}^t, \ |N(y_{i_{i=1},2,\dots,t}) \cap S| < \\ |N(y_{i_{i=1},2,\dots,t}) \cap (V \setminus (V \setminus \{x_{i_{i=1},2,\dots,t}\}))| &\equiv \\ \exists y_{i_{i=1},2,\dots,t} \in V \setminus \{x_i\}_{i=1}^t, \ |N(y_{i_{i=1},2,\dots,t}) \cap S| < \\ |N(y_{i_{i=1},2,\dots,t}) \cap \{x_{i_{i=1},2,\dots,t}\})| &\equiv \\ \exists y_{i_{i=1},2,\dots,t} \in V \setminus \{x_i\}_{i=1}^t, \ |\{z_1,z_2,\dots,z_{t-1}\}| < \\ |\{x_1,x_2,\dots,x_{t-1}\})| &\equiv \\ \exists y \in S, \ t-1 < t-1. \end{aligned}$$

Thus it's contradiction. It implies every  $V \setminus \{x_{i_{i=1,2,...,t}}\}$  isn't SuperHyperDefensive SuperHyperConnectivities in a given SuperHyperUniform SuperHyperPath. (*ii*), (*iii*) are obvious by (*i*).

(iv). By (i), |V| is maximal and it's a SuperHyperDefensive SuperHyperConnectivities. Thus it's

|V|-SuperHyperDefensive SuperHyperConnectivities.

(v), (vi) are obvious by (iv).

**Proposition 10.0.20.** Let ESHG: (V, E) be an Extreme SuperHyperUniform SuperHyperGraph which is a SuperHyperWheel. Then the number of

- (i): the dual SuperHyperConnectivities;
- (ii): the dual SuperHyperConnectivities;
- (iii): the dual connected SuperHyperConnectivities;
- (iv): the dual  $\mathcal{O}(ESHG)$ -SuperHyperConnectivities;
- (v): the strong dual  $\mathcal{O}(ESHG)$ -SuperHyperConnectivities;
- (vi): the connected dual  $\mathcal{O}(ESHG)$ -SuperHyperConnectivities.

is one and it's only V. Where the exterior SuperHyperVertices and the interior SuperHyperVertices coincide.

*Proof.* Suppose ESHG: (V, E) is an Extreme SuperHyperUniform SuperHyperGraph which is a SuperHyperWheel.

(i). Consider one segment is out of S which is SuperHyperDefensive SuperHyperConnectivities. This segment has 3t SuperHyperNeighbors in S, i.e., Suppose  $x_{i_{i=1,2,...,t}} \in V \setminus S$  such that  $y_{i_{i=1,2,...,t}}, z_{i_{i=1,2,...,t}}, s_{i_{i=1,2,...,t}} \in N(x_{i_{i=1,2,...,t}})$ . By it's the exterior SuperHyperVertices and the interior SuperHyperVertices coincide and it's SuperHyperUniform SuperHyperWheel,  $|N(x_{i_{i=1,2,...,t}})| = |N(y_{i_{i=1,2,...,t}})| = |N(z_{i_{i=1,2,...,t}})| = 3t$ . Thus

$$\begin{aligned} \forall a \in S, \ |N(a) \cap S| < |N(a) \cap (V \setminus S)| &\equiv \\ \forall a \in S, \ |N(a) \cap S| < |N(a) \cap (V \setminus S)| &\equiv \\ \exists y_{i_{i=1},2,\dots,t}, s_{i_{i=1},2,\dots,t} \in N(x_{i_{i=1},2,\dots,t}) \in V \setminus \{x_i\}_{i=1}^t, \\ |N(y_{i_{i=1},2,\dots,t}, s_{i_{i=1},2,\dots,t} \in N(x_{i_{i=1},2,\dots,t})) \cap S| < \\ |N(y_{i_{i=1},2,\dots,t}, s_{i_{i=1},2,\dots,t} \in N(x_{i_{i=1},2,\dots,t})) \cap (V \setminus (V \setminus \{x_{i_{i=1},2,\dots,t}\}))| &\equiv \\ \exists y_{i_{i=1},2,\dots,t}, s_{i_{i=1},2,\dots,t} \in N(x_{i_{i=1},2,\dots,t}) \in V \setminus \{x_i\}_{i=1}^t, \\ |N(y_{i_{i=1},2,\dots,t}, s_{i_{i=1},2,\dots,t} \in N(x_{i_{i=1},2,\dots,t})) \cap S| < \\ |N(y_{i_{i=1},2,\dots,t}, s_{i_{i=1},2,\dots,t} \in N(x_{i_{i=1},2,\dots,t})) \cap \{x_{i_{i=1},2,\dots,t}\})| &\equiv \\ \exists y_{i_{i=1},2,\dots,t}, s_{i_{i=1},2,\dots,t} \in N(x_{i_{i=1},2,\dots,t}) \in V \setminus \{x_i\}_{i=1}^t, \\ |\{z_1, z_2, \dots, z_{t-1}, z_1', z_2', \dots, z_t'\}| < |\{x_1, x_2, \dots, x_{t-1}\})| &\equiv \\ \exists y \in S, \ 2t - 1 < t - 1. \end{aligned}$$

Thus it's contradiction. It implies every  $V \setminus \{x_{i_{i=1,2,...,i}}\}$  isn't a dual SuperHyperDefensive SuperHyperConnectivities in a given SuperHyperUniform SuperHyperWheel. (*ii*), (*iii*) are obvious by (*i*). (*iv*). By (*i*), |V| is maximal and it's a dual SuperHyperDefensive SuperHyperConnectivities. Thus it

(*iv*). By (i), |v| is maximal and it's a dual SuperHyperDefensive SuperHyperConnectivities. isn't an |V|-SuperHyperDefensive SuperHyperConnectivities. (v), (vi) are obvious by (iv).

Henry Garrett · Independent Researcher · Department of Mathematics · DrHenryGarrett@gmail.com · Manhattan, NY, USA

**Proposition 10.0.21.** Let ESHG: (V, E) be an Extreme SuperHyperUniform SuperHyperGraph which is a SuperHyperStar/SuperHyperComplete SuperHyperBipartite/SuperHyperComplete SuperHyperMultipartite. Then a SuperHyperSet contains [the SuperHyperCenter and] the half of multiplying r with the number of all the SuperHyperEdges plus one of all the SuperHyperVertices is a

- (i): dual SuperHyperDefensive SuperHyperConnectivities;
- (ii): strong dual SuperHyperDefensive SuperHyperConnectivities;
- (iii): connected dual SuperHyperDefensive SuperHyperConnectivities;
- $(iv): \frac{\mathcal{O}(ESHG)}{2} + 1$ -dual SuperHyperDefensive SuperHyperConnectivities;
- (v): strong  $\frac{\mathcal{O}(ESHG)}{2}$  + 1-dual SuperHyperDefensive SuperHyperConnectivities;
- (vi): connected  $\frac{\mathcal{O}(ESHG)}{2}$  + 1-dual SuperHyperDefensive SuperHyperConnectivities.

*Proof.* (i). Consider n half +1 SuperHyperVertices are in S which is SuperHyperDefensive SuperHyperConnectivities. A SuperHyperVertex has either  $\frac{n}{2}$  or one SuperHyperNeighbors in S. If the SuperHyperVertex is non-SuperHyperCenter, then

If the SuperHyperVertex is SuperHyperCenter, then

$$\forall a \in S, \ |N(a) \cap S| > |N(a) \cap (V \setminus S)| \equiv$$
  
 
$$\forall a \in S, \ \frac{n}{2} > \frac{n}{2} - 1.$$

Thus it's proved. It implies every S is a dual SuperHyperDefensive SuperHyperConnectivities in a given SuperHyperStar.

Consider n half +1 SuperHyperVertices are in S which is SuperHyperDefensive SuperHyperConnectivities. A SuperHyperVertex has at most  $\frac{n}{2}$  SuperHyperNeighbors in S.

$$\begin{aligned} \forall a \in S, \ \frac{n}{2} > |N(a) \cap S| > \frac{n}{2} - 1 > |N(a) \cap (V \setminus S)| \equiv \\ \forall a \in S, \ \frac{n}{2} > \frac{n}{2} - 1. \end{aligned}$$

Thus it's proved. It implies every S is a dual SuperHyperDefensive SuperHyperConnectivities in a given SuperHyperComplete SuperHyperBipartite which isn't a SuperHyperStar.

Consider n half +1 SuperHyperVertices are in S which is SuperHyperDefensive SuperHyperConnectivities and they're chosen from different SuperHyperParts, equally or almost equally as possible. A SuperHyperVertex has at most  $\frac{n}{2}$  SuperHyperNeighbors in S.

$$\begin{aligned} \forall a \in S, \ \frac{n}{2} > |N(a) \cap S| > \frac{n}{2} - 1 > |N(a) \cap (V \setminus S)| \equiv \\ \forall a \in S, \ \frac{n}{2} > \frac{n}{2} - 1. \end{aligned}$$

Thus it's proved. It implies every S is a dual SuperHyperDefensive SuperHyperConnectivities in a given SuperHyperComplete SuperHyperMultipartite which is neither a SuperHyperStar nor SuperHyperComplete SuperHyperBipartite.

(ii), (iii) are obvious by (i).

(iv). By (i),  $\{x_i\}_{i=1}^{\frac{\mathcal{O}(ESHG)}{2}+1}$  is a dual SuperHyperDefensive SuperHyperConnectivities. Thus it's  $\frac{\mathcal{O}(ESHG)}{2} + 1$ -dual SuperHyperDefensive SuperHyperConnectivities. (v), (vi) are obvious by (iv).

**Proposition 10.0.22.** Let ESHG: (V, E) be an Extreme SuperHyperUniform SuperHyperGraph which is a SuperHyperStar/SuperHyperComplete SuperHyperBipartite/SuperHyperComplete SuperHyperMultipartite. Then a SuperHyperSet contains the half of multiplying r with the number of all the SuperHyperEdges plus one of all the SuperHyperVertices in the biggest SuperHyperPart is a

- (i): SuperHyperDefensive SuperHyperConnectivities;
- (ii): strong SuperHyperDefensive SuperHyperConnectivities;
- (iii): connected SuperHyperDefensive SuperHyperConnectivities;
- (iv):  $\delta$ -SuperHyperDefensive SuperHyperConnectivities;
- (v): strong  $\delta$ -SuperHyperDefensive SuperHyperConnectivities;
- (vi): connected  $\delta$ -SuperHyperDefensive SuperHyperConnectivities.

*Proof.* (i). Consider the half of multiplying r with the number of all the SuperHyperEdges plus one of all the SuperHyperVertices in the biggest SuperHyperPart are in S which is SuperHyperDefensive SuperHyperConnectivities. A SuperHyperVertex has either n-1, 1 or zero SuperHyperNeighbors in S. If the SuperHyperVertex is in S, then

$$\forall a \in S, \ |N(a) \cap S| < |N(a) \cap (V \setminus S)| \equiv \\ \forall a \in S, \ 0 < 1.$$

Thus it's proved. It implies every S is a SuperHyperDefensive SuperHyperConnectivities in a given SuperHyperStar.

Consider the half of multiplying r with the number of all the SuperHyperEdges plus one of all the SuperHyperVertices in the biggest SuperHyperPart are in S which is SuperHyperDefensive SuperHyperConnectivities. A SuperHyperVertex has no SuperHyperNeighbor in S.

$$\forall a \in S, |N(a) \cap S| > |N(a) \cap (V \setminus S)| \equiv \\ \forall a \in S, 0 < \delta.$$

Thus it's proved. It implies every S is a SuperHyperDefensive SuperHyperConnectivities in a given SuperHyperComplete SuperHyperBipartite which isn't a SuperHyperStar.

Consider the half of multiplying r with the number of all the SuperHyperEdges plus one of all the SuperHyperVertices in the biggest SuperHyperPart are in S which is SuperHyperDefensive SuperHyperConnectivities. A SuperHyperVertex has no SuperHyperNeighbor in S.

$$\forall a \in S, \ |N(a) \cap S| > |N(a) \cap (V \setminus S)| \equiv \\ \forall a \in S, \ 0 < \delta.$$

Henry Garrett · Independent Researcher · Department of Mathematics · DrHenryGarrett@gmail.com · Manhattan, NY, USA

Thus it's proved. It implies every S is a SuperHyperDefensive SuperHyperConnectivities in a given SuperHyperComplete SuperHyperMultipartite which is neither a SuperHyperStar nor SuperHyperComplete SuperHyperBipartite.

(ii), (iii) are obvious by (i).

(*iv*). By (*i*), S is a SuperHyperDefensive SuperHyperConnectivities. Thus it's an  $\delta$ -SuperHyperDefensive SuperHyperConnectivities. (*v*), (*vi*) are obvious by (*iv*).

**Proposition 10.0.23.** Let ESHG: (V, E) be an Extreme SuperHyperUniform SuperHyperGraph which is a SuperHyperStar/SuperHyperComplete SuperHyperBipartite/SuperHyperComplete SuperHyperMultipartite. Then the number of

- (i): dual SuperHyperDefensive SuperHyperConnectivities;
- (ii): strong dual SuperHyperDefensive SuperHyperConnectivities;
- (iii): connected dual SuperHyperDefensive SuperHyperConnectivities;
- $(iv): \frac{\mathcal{O}(ESHG)}{2} + 1$ -dual SuperHyperDefensive SuperHyperConnectivities;
- $(v): \ strong \ \frac{\mathcal{O}(ESHG)}{2} + 1 dual \ SuperHyperDefensive \ SuperHyperConnectivities;$

(vi): connected  $\frac{\mathcal{O}(ESHG)}{2}$  + 1-dual SuperHyperDefensive SuperHyperConnectivities.

is one and it's only S, a SuperHyperSet contains [the SuperHyperCenter and] the half of multiplying r with the number of all the SuperHyperEdges plus one of all the SuperHyperVertices. Where the exterior SuperHyperVertices and the interior SuperHyperVertices coincide.

*Proof.* (i). Consider n half +1 SuperHyperVertices are in S which is SuperHyperDefensive SuperHyperConnectivities. A SuperHyperVertex has either  $\frac{n}{2}$  or one SuperHyperNeighbors in S. If the SuperHyperVertex is non-SuperHyperCenter, then

$$\forall a \in S, \ |N(a) \cap S| > |N(a) \cap (V \setminus S)| \equiv \\ \forall a \in S, \ 1 > 0.$$

If the SuperHyperVertex is SuperHyperCenter, then

Thus it's proved. It implies every S is a dual SuperHyperDefensive SuperHyperConnectivities in a given SuperHyperStar.

Consider *n* half +1 SuperHyperVertices are in *S* which is SuperHyperDefensive SuperHyperConnectivities. A SuperHyperVertex has at most  $\frac{n}{2}$  SuperHyperNeighbors in *S*.

$$\begin{aligned} \forall a \in S, \ \frac{n}{2} > |N(a) \cap S| > \frac{n}{2} - 1 > |N(a) \cap (V \setminus S)| \equiv \\ \forall a \in S, \ \frac{n}{2} > \frac{n}{2} - 1. \end{aligned}$$

Thus it's proved. It implies every S is a dual SuperHyperDefensive SuperHyperConnectivities in a given SuperHyperComplete SuperHyperBipartite which isn't a SuperHyperStar.

Consider n half +1 SuperHyperVertices are in S which is SuperHyperDefensive SuperHyperConnectivities and they're chosen from different SuperHyperParts, equally or almost equally as possible. A SuperHyperVertex has at most  $\frac{n}{2}$  SuperHyperNeighbors in S.

$$\forall a \in S, \ \frac{n}{2} > |N(a) \cap S| > \frac{n}{2} - 1 > |N(a) \cap (V \setminus S)| \equiv$$
  
 
$$\forall a \in S, \ \frac{n}{2} > \frac{n}{2} - 1.$$

Thus it's proved. It implies every S is a dual SuperHyperDefensive SuperHyperConnectivities in a given SuperHyperComplete SuperHyperMultipartite which is neither a SuperHyperStar nor SuperHyperComplete SuperHyperBipartite.

(ii), (iii) are obvious by (i).

(iv). By (i),  $\{x_i\}_{i=1}^{\frac{\mathcal{O}(ESHG)}{2}+1}$  is a dual SuperHyperDefensive SuperHyperConnectivities. Thus it's  $\frac{\mathcal{O}(ESHG)}{2} + 1$ -dual SuperHyperDefensive SuperHyperConnectivities. (v), (vi) are obvious by (iv).

**Proposition 10.0.24.** Let ESHG: (V, E) be a Neutrosophic SuperHyperGraph. The number of connected component is |V - S| if there's a SuperHyperSet which is a dual

- (i): SuperHyperDefensive SuperHyperConnectivities;
- (ii): strong SuperHyperDefensive SuperHyperConnectivities;
- (*iii*): connected SuperHyperDefensive SuperHyperConnectivities;
- (*iv*) : SuperHyperConnectivities;
- (v): strong 1-SuperHyperDefensive SuperHyperConnectivities;
- (vi): connected 1-SuperHyperDefensive SuperHyperConnectivities.

*Proof.* (i). Consider some SuperHyperVertices are out of S which is a dual SuperHyperDefensive SuperHyperConnectivities. These SuperHyperVertex-type have some SuperHyperNeighbors in S but no SuperHyperNeighbor out of S. Thus

$$\forall a \in S, \ |N(a) \cap S| > |N(a) \cap (V \setminus S)| \equiv \\ \forall a \in S, \ 1 > 0.$$

Thus it's proved. It implies every S is a dual SuperHyperDefensive SuperHyperConnectivities and number of connected component is |V - S|.

(ii), (iii) are obvious by (i).

(iv). By (i), S is a dual SuperHyperDefensive SuperHyperConnectivities. Thus it's a dual 1-SuperHyperDefensive SuperHyperConnectivities.

(v), (vi) are obvious by (iv).

**Proposition 10.0.25.** Let ESHG : (V, E) be a Neutrosophic SuperHyperGraph. Then the number is at most  $\mathcal{O}(ESHG)$  and the Extreme number is at most  $\mathcal{O}_n(ESHG)$ .

Henry Garrett · Independent Researcher · Department of Mathematics · DrHenryGarrett@gmail.com · Manhattan, NY, USA

*Proof.* Suppose ESHG: (V, E) is a Neutrosophic SuperHyperGraph. Consider V. All SuperHyperMembers of V have at least one SuperHyperNeighbor inside the SuperHyperSet more than SuperHyperNeighbor out of SuperHyperSet. Thus,

 ${\cal V}$  is a dual SuperHyperDefensive SuperHyperConnectivities since the following statements are equivalent.

$$\begin{aligned} \forall a \in S, \ |N(a) \cap S| &> |N(a) \cap (V \setminus S)| \equiv \\ \forall a \in V, \ |N(a) \cap V| &> |N(a) \cap (V \setminus V)| \equiv \\ \forall a \in V, \ |N(a) \cap V| &> |N(a) \cap \emptyset| \equiv \\ \forall a \in V, \ |N(a) \cap V| &> |\emptyset| \equiv \\ \forall a \in V, \ |N(a) \cap V| &> 0 \equiv \\ \forall a \in V, \ \delta > 0. \end{aligned}$$

 ${\cal V}$  is a dual SuperHyperDefensive SuperHyperConnectivities since the following statements are equivalent.

$$\begin{aligned} \forall a \in S, \ |N_s(a) \cap S| &> |N_s(a) \cap (V \setminus S)| \equiv \\ \forall a \in V, \ |N_s(a) \cap V| &> |N_s(a) \cap (V \setminus V)| \equiv \\ \forall a \in V, \ |N_s(a) \cap V| &> |N_s(a) \cap \emptyset| \equiv \\ \forall a \in V, \ |N_s(a) \cap V| &> |\emptyset| \equiv \\ \forall a \in V, \ |N_s(a) \cap V| &> 0 \equiv \\ \forall a \in V, \ \delta > 0. \end{aligned}$$

 ${\cal V}$  is connected a dual SuperHyperDefensive SuperHyperConnectivities since the following statements are equivalent.

$$\begin{aligned} \forall a \in S, \ |N_c(a) \cap S| &> |N_c(a) \cap (V \setminus S)| \equiv \\ \forall a \in V, \ |N_c(a) \cap V| &> |N_c(a) \cap (V \setminus V)| \equiv \\ \forall a \in V, \ |N_c(a) \cap V| &> |N_c(a) \cap \emptyset| \equiv \\ \forall a \in V, \ |N_c(a) \cap V| &> |\emptyset| \equiv \\ \forall a \in V, \ |N_c(a) \cap V| &> 0 \equiv \\ \forall a \in V, \ \delta > 0. \end{aligned}$$

V is a dual  $\delta\mbox{-SuperHyperDefensive SuperHyperConnectivities since the following statements are equivalent.$ 

$$\begin{aligned} \forall a \in S, \ |(N(a) \cap S) - (N(a) \cap (V \setminus S))| > \delta \equiv \\ \forall a \in V, \ |(N(a) \cap V) - (N(a) \cap (V \setminus V))| > \delta \equiv \\ \forall a \in V, \ |(N(a) \cap V) - (N(a) \cap (\emptyset))| > \delta \equiv \\ \forall a \in V, \ |(N(a) \cap V) - (\emptyset)| > \delta \equiv \\ \forall a \in V, \ |(N(a) \cap V)| > \delta. \end{aligned}$$

V is a dual strong  $\delta\mbox{-}SuperHyperDefensive SuperHyperConnectivities since the following statements are equivalent.$ 

$$\forall a \in S, \ |(N_s(a) \cap S) - (N_s(a) \cap (V \setminus S))| > \delta \equiv$$

Henry Garrett $\,\cdot\,$ Independent Researcher $\,\cdot\,$ Department of Mathematics $\,\cdot\,$ Dr<br/>HenryGarrett@gmail.com $\,\cdot\,$ Manhattan, NY, USA

 $\begin{aligned} \forall a \in V, \ |(N_s(a) \cap V) - (N_s(a) \cap (V \setminus V))| &> \delta \equiv \\ \forall a \in V, \ |(N_s(a) \cap V) - (N_s(a) \cap (\emptyset))| &> \delta \equiv \\ \forall a \in V, \ |(N_s(a) \cap V) - (\emptyset)| &> \delta \equiv \\ \forall a \in V, \ |(N_s(a) \cap V)| &> \delta. \end{aligned}$ 

V is a dual connected  $\delta\textsc{-SuperHyperDefensive}$  SuperHyperConnectivities since the following statements are equivalent.

$$\begin{split} \forall a \in S, \ |(N_c(a) \cap S) - (N_c(a) \cap (V \setminus S))| > \delta \equiv \\ \forall a \in V, \ |(N_c(a) \cap V) - (N_c(a) \cap (V \setminus V))| > \delta \equiv \\ \forall a \in V, \ |(N_c(a) \cap V) - (N_c(a) \cap (\emptyset))| > \delta \equiv \\ \forall a \in V, \ |(N_c(a) \cap V) - (\emptyset)| > \delta \equiv \\ \forall a \in V, \ |(N_c(a) \cap V)| > \delta. \end{split}$$

Thus V is a dual SuperHyperDefensive SuperHyperConnectivities and V is the biggest SuperHyperSet in ESHG : (V, E). Then the number is at most  $\mathcal{O}(ESHG : (V, E))$  and the Extreme number is

at most  $\mathcal{O}_n(ESHG: (V, E)).$ 

**Proposition 10.0.26.** Let ESHG: (V, E) be a Neutrosophic SuperHyperGraph which is SuperHyperComplete. The number is  $\frac{\mathcal{O}(ESHG:(V,E))}{2} + 1 \text{ and the Extreme number is}$   $\min \Sigma_{v \in \{v_1, v_2, \cdots, v_t\}_{t>}} \underbrace{\mathcal{O}(ESHG:(V,E))}_{2} \subseteq V \sigma(v), \text{ in the setting of dual}$ 

- (i): SuperHyperDefensive SuperHyperConnectivities;
- (*ii*): strong SuperHyperDefensive SuperHyperConnectivities;
- (iii): connected SuperHyperDefensive SuperHyperConnectivities;
- $(iv): \left(\frac{\mathcal{O}(ESHG:(V,E))}{2}+1\right)$ -SuperHyperDefensive SuperHyperConnectivities;
- (v): strong  $\left(\frac{\mathcal{O}(ESHG:(V,E))}{2}+1\right)$ -SuperHyperDefensive SuperHyperConnectivities;
- (vi): connected  $\left(\frac{\mathcal{O}(ESHG:(V,E))}{2}+1\right)$ -SuperHyperDefensive SuperHyperConnectivities.

*Proof.* (i). Consider n half -1 SuperHyperVertices are out of S which is a dual SuperHyperDefensive SuperHyperConnectivities. A SuperHyperVertex has n half SuperHyperNeighbors in S.

$$\forall a \in S, \ |N(a) \cap S| > |N(a) \cap (V \setminus S)| \equiv$$
  
 
$$\forall a \in S, \ \frac{n}{2} > \frac{n}{2} - 1.$$

Thus it's proved. It implies every S is a dual SuperHyperDefensive SuperHyperConnectivities in a given SuperHyperComplete SuperHyperGraph. Thus the number is  $\frac{\mathcal{O}(ESHG:(V,E))}{2} + 1$  and the Extreme number is

 $\min \Sigma_{v \in \{v_1, v_2, \cdots, v_t\}_{t > \frac{\mathcal{O}(ESHG:(V, E))}{2} \subseteq V} \sigma(v), \text{ in the setting of a dual SuperHyperDefensive SuperHyperConnectivities.}$ 

(*ii*). Consider n half -1 SuperHyperVertices are out of S which is a dual SuperHyperDefensive SuperHyperConnectivities. A SuperHyperVertex has n half SuperHyperNeighbors in S.

$$\forall a \in S, \ |N(a) \cap S| > |N(a) \cap (V \setminus S)| \equiv$$
  
 
$$\forall a \in S, \ \frac{n}{2} > \frac{n}{2} - 1.$$

Thus it's proved. It implies every S is a dual strong SuperHyperDefensive SuperHyperConnectivities in a given SuperHyperComplete SuperHyperGraph. Thus the number is  $\frac{\mathcal{O}(ESHG:(V,E))}{2} + 1$  and the Extreme number is

 $\min \Sigma_{v \in \{v_1, v_2, \cdots, v_t\}_{t>\mathcal{O}(ESH_G: (V, E))} \subseteq V} \sigma(v), \text{ in the setting of a dual strong SuperHyperDefensive SuperHyperConnectivities.}}$ 

(*iii*). Consider n half -1 SuperHyperVertices are out of S which is a dual SuperHyperDefensive SuperHyperConnectivities. A SuperHyperVertex has n half SuperHyperNeighbors in S.

$$\forall a \in S, \ |N(a) \cap S| > |N(a) \cap (V \setminus S)| \equiv \\ \forall a \in S, \ \frac{n}{2} > \frac{n}{2} - 1.$$

Thus it's proved. It implies every S is a dual connected SuperHyperDefensive SuperHyperConnectivities in a given SuperHyperComplete SuperHyperGraph. Thus the number is

 $\frac{\mathcal{O}(ESHG:(V,E))}{2} + 1 \text{ and the Extreme number is}$  $\min \sum_{v \in \{v_1, v_2, \cdots, v_t\}_{t>}} \underbrace{\mathcal{O}(ESHG:(V,E))}_{2} \subseteq V \sigma(v), \text{ in the setting of a dual connected SuperHyperDefensive}$ SuperHyperConnectivities.

(iv). Consider n half -1 SuperHyperVertices are out of S which is a dual SuperHyperDefensive SuperHyperConnectivities. A SuperHyperVertex has n half SuperHyperNeighbors in S.

Thus it's proved. It implies every S is a dual  $\left(\frac{\mathcal{O}(ESHG:(V,E))}{2}+1\right)$ -SuperHyperDefensive SuperHyperComplete SuperHyperGraph. Thus the number is  $\frac{\mathcal{O}(ESHG:(V,E))}{2}+1$  and the Extreme number is

$$\min \Sigma_{v \in \{v_1, v_2, \cdots, v_t\}_{t>\frac{\mathcal{O}(ESHG:(V,E))}{2} \subseteq V} \sigma(v), \text{ in the setting of a dual } \left(\frac{\mathcal{O}(ESHG:(V,E))}{2} + 1\right) - SuperHyperDefensive SuperHyperConnectivities}$$

(v). Consider n half -1 SuperHyperVertices are out of S which is a dual SuperHyperDefensive SuperHyperConnectivities. A SuperHyperVertex has n half SuperHyperNeighbors in S.

$$\forall a \in S, \ |N(a) \cap S| > |N(a) \cap (V \setminus S)| \equiv \\ \forall a \in S, \ \frac{n}{2} > \frac{n}{2} - 1.$$

Thus it's proved. It implies every S is a dual strong  $\left(\frac{\mathcal{O}(ESHG:(V,E))}{2} + 1\right)$ -SuperHyperDefensive SuperHyperConnectivities in a given SuperHyperComplete SuperHyperGraph. Thus the number is  $\frac{\mathcal{O}(ESHG:(V,E))}{2} + 1$  and the Extreme number is

 $\min \Sigma_{v \in \{v_1, v_2, \cdots, v_t\}_{t > \frac{\mathcal{O}(ESHG:(V,E))}{2} \subseteq V} \sigma(v), \text{ in the setting of a dual strong } \left(\frac{\mathcal{O}(ESHG:(V,E))}{2} + 1\right) - \text{SuperHyperDefensive SuperHyperConnectivities.}$ 

Henry Garrett  $\,\cdot\,$  Independent Researcher  $\,\cdot\,$  Department of Mathematics  $\,\cdot\,$  DrHenryGarrett@gmail.com  $\,\cdot\,$  Manhattan, NY, USA

(vi). Consider n half -1 SuperHyperVertices are out of S which is a dual SuperHyperDefensive SuperHyperConnectivities. A SuperHyperVertex has n half SuperHyperNeighbors in S.

Thus it's proved. It implies every S is a dual connected  $\left(\frac{\mathcal{O}(ESHG:(V,E))}{2}+1\right)$ -SuperHyperDefensive SuperHyperConnectivities in a given SuperHyperComplete SuperHyperGraph. Thus the number is  $\frac{\mathcal{O}(ESHG:(V,E))}{2}+1$  and the Extreme number is

 $\min \Sigma_{v \in \{v_1, v_2, \cdots, v_t\}_{t > \frac{\mathcal{O}(ESHG:(V,E))}{2} \subseteq V} \sigma(v), \text{ in the setting of a dual connected } \left(\frac{\mathcal{O}(ESHG:(V,E))}{2} + 1\right) - \text{SuperHyperDefensive SuperHyperConnectivities.}$ 

**Proposition 10.0.27.** Let ESHG: (V, E) be a Neutrosophic SuperHyperGraph which is  $\emptyset$ . The number is

0 and the Extreme number is

0, for an independent SuperHyperSet in the setting of dual

- (i): SuperHyperDefensive SuperHyperConnectivities;
- (ii): strong SuperHyperDefensive SuperHyperConnectivities;
- (iii): connected SuperHyperDefensive SuperHyperConnectivities;
- (iv): 0-SuperHyperDefensive SuperHyperConnectivities;
- (v): strong 0-SuperHyperDefensive SuperHyperConnectivities;
- (vi): connected 0-SuperHyperDefensive SuperHyperConnectivities.

*Proof.* Suppose ESHG: (V, E) is a Neutrosophic SuperHyperGraph. Consider  $\emptyset$ . All SuperHyper-Members of  $\emptyset$  have no SuperHyperNeighbor inside the SuperHyperSet less than SuperHyperNeighbor out of SuperHyperSet. Thus,

(i).  $\emptyset$  is a dual SuperHyperDefensive SuperHyperConnectivities since the following statements are equivalent.

 $\begin{aligned} \forall a \in S, \ |N(a) \cap S| < |N(a) \cap (V \setminus S)| &\equiv \\ \forall a \in \emptyset, \ |N(a) \cap \emptyset| < |N(a) \cap (V \setminus \emptyset)| &\equiv \\ \forall a \in \emptyset, \ |\emptyset| < |N(a) \cap (V \setminus \emptyset)| &\equiv \\ \forall a \in \emptyset, \ 0 < |N(a) \cap V| &\equiv \\ \forall a \in \emptyset, \ 0 < |N(a) \cap V| &\equiv \\ \forall a \in V, \ \delta > 0. \end{aligned}$ 

The number is

0 and the Extreme number is

0, for an independent SuperHyperSet in the setting of a dual SuperHyperDefensive SuperHyperConnectivities.

Henry Garrett · Independent Researcher · Department of Mathematics · DrHenryGarrett@gmail.com · Manhattan, NY, USA

(ii).  $\emptyset$  is a dual strong SuperHyperDefensive SuperHyperConnectivities since the following statements are equivalent.

$$\begin{aligned} \forall a \in S, \ |N_s(a) \cap S| &< |N_s(a) \cap (V \setminus S)| \equiv \\ \forall a \in \emptyset, \ |N_s(a) \cap \emptyset| &< |N_s(a) \cap (V \setminus \emptyset)| \equiv \\ \forall a \in \emptyset, \ |\emptyset| &< |N_s(a) \cap (V \setminus \emptyset)| \equiv \\ \forall a \in \emptyset, \ 0 &< |N_s(a) \cap V| \equiv \\ \forall a \in \emptyset, \ 0 &< |N_s(a) \cap V| \equiv \\ \forall a \in V, \ \delta > 0. \end{aligned}$$

The number is

0 and the Extreme number is

0, for an independent SuperHyperSet in the setting of a dual strong SuperHyperDefensive SuperHyperConnectivities.

(iii).  $\emptyset$  is a dual connected SuperHyperDefensive SuperHyperConnectivities since the following statements are equivalent.

$$\begin{aligned} \forall a \in S, \ |N_c(a) \cap S| &< |N_c(a) \cap (V \setminus S)| \equiv \\ \forall a \in \emptyset, \ |N_c(a) \cap \emptyset| &< |N_c(a) \cap (V \setminus \emptyset)| \equiv \\ \forall a \in \emptyset, \ |\emptyset| &< |N_c(a) \cap (V \setminus \emptyset)| \equiv \\ \forall a \in \emptyset, \ 0 &< |N_c(a) \cap V| \equiv \\ \forall a \in \emptyset, \ 0 &< |N_c(a) \cap V| \equiv \\ \forall a \in V, \ \delta > 0. \end{aligned}$$

The number is

0 and the Extreme number is

0, for an independent SuperHyperSet in the setting of a dual connected SuperHyperDefensive SuperHyperConnectivities.

(iv).  $\emptyset$  is a dual SuperHyperDefensive SuperHyperConnectivities since the following statements are equivalent.

$$\begin{aligned} \forall a \in S, \ |(N(a) \cap S) - (N(a) \cap (V \setminus S))| &< \delta \equiv \\ \forall a \in \emptyset, \ |(N(a) \cap \emptyset) - (N(a) \cap (V \setminus \emptyset))| &< \delta \equiv \\ \forall a \in \emptyset, \ |(N(a) \cap \emptyset) - (N(a) \cap (V))| &< \delta \equiv \\ \forall a \in \emptyset, \ |\emptyset| &< \delta \equiv \\ \forall a \in V, \ 0 &< \delta. \end{aligned}$$

The number is

0 and the Extreme number is

0, for an independent SuperHyperSet in the setting of a dual 0-SuperHyperDefensive SuperHyper-Connectivities.

(v).  $\emptyset$  is a dual strong 0-SuperHyperDefensive SuperHyperConnectivities since the following statements are equivalent.

$$\forall a \in S, \ |(N_s(a) \cap S) - (N_s(a) \cap (V \setminus S))| < \delta \equiv$$

Henry Garrett $\,\cdot\,$ Independent Researcher $\,\cdot\,$ Department of Mathematics $\,\cdot\,$ Dr<br/>HenryGarrett@gmail.com $\,\cdot\,$ Manhattan, NY, USA

 $\begin{aligned} \forall a \in \emptyset, \ |(N_s(a) \cap \emptyset) - (N_s(a) \cap (V \setminus \emptyset))| < \delta \equiv \\ \forall a \in \emptyset, \ |(N_s(a) \cap \emptyset) - (N_s(a) \cap (V))| < \delta \equiv \\ \forall a \in \emptyset, \ |\emptyset| < \delta \equiv \\ \forall a \in V, \ 0 < \delta. \end{aligned}$ 

The number is

0 and the Extreme number is

0, for an independent SuperHyperSet in the setting of a dual strong 0-SuperHyperDefensive SuperHyperConnectivities.

(vi).  $\emptyset$  is a dual connected SuperHyperDefensive SuperHyperConnectivities since the following statements are equivalent.

$$\begin{aligned} \forall a \in S, \ |(N_c(a) \cap S) - (N_c(a) \cap (V \setminus S))| < \delta \equiv \\ \forall a \in \emptyset, \ |(N_c(a) \cap \emptyset) - (N_c(a) \cap (V \setminus \emptyset))| < \delta \equiv \\ \forall a \in \emptyset, \ |(N_c(a) \cap \emptyset) - (N_c(a) \cap (V))| < \delta \equiv \\ \forall a \in \emptyset, \ |\emptyset| < \delta \equiv \\ \forall a \in V, \ 0 < \delta. \end{aligned}$$

The number is

0 and the Extreme number is

0, for an independent SuperHyperSet in the setting of a dual connected 0-offensive SuperHyperDefensive SuperHyperConnectivities.

**Proposition 10.0.28.** Let ESHG : (V, E) be a Neutrosophic SuperHyperGraph which is SuperHyperComplete. Then there's no independent SuperHyperSet.

**Proposition 10.0.29.** Let ESHG : (V, E) be a Neutrosophic SuperHyperGraph which is SuperHyperConnectivities/SuperHyperPath/SuperHyperWheel. The number is  $\mathcal{O}(ESHG : (V, E))$  and the Extreme number is  $\mathcal{O}_n(ESHG : (V, E))$ , in the setting of a dual

- (i): SuperHyperDefensive SuperHyperConnectivities;
- (ii): strong SuperHyperDefensive SuperHyperConnectivities;
- (*iii*) : connected SuperHyperDefensive SuperHyperConnectivities;
- (iv):  $\mathcal{O}(ESHG: (V, E))$ -SuperHyperDefensive SuperHyperConnectivities;
- (v): strong  $\mathcal{O}(ESHG: (V, E))$ -SuperHyperDefensive SuperHyperConnectivities;
- (vi): connected  $\mathcal{O}(ESHG: (V, E))$ -SuperHyperDefensive SuperHyperConnectivities.

*Proof.* Suppose ESHG: (V, E) is a Neutrosophic SuperHyperGraph which is SuperHyperConnectivities/SuperHyperPath/SuperHyperWheel.

(i). Consider one SuperHyperVertex is out of S which is a dual SuperHyperDefensive SuperHyperConnectivities. This SuperHyperVertex has one SuperHyperNeighbor in S, i.e., suppose  $x \in V \setminus S$ 

such that  $y, z \in N(x)$ . By it's SuperHyperConnectivities, |N(x)| = |N(y)| = |N(z)| = 2. Thus

$$\begin{aligned} \forall a \in S, \ |N(a) \cap S| &< |N(a) \cap (V \setminus S)| \equiv \\ \forall a \in S, \ |N(a) \cap S| &< |N(a) \cap (V \setminus S)| \equiv \\ \exists y \in V \setminus \{x\}, \ |N(y) \cap S| &< |N(y) \cap (V \setminus (V \setminus \{x\}))| \equiv \\ \exists y \in V \setminus \{x\}, \ |N(y) \cap S| &< |N(y) \cap \{x\})| \equiv \\ \exists y \in V \setminus \{x\}, \ |\{z\}| &< |\{x\})| \equiv \\ \exists y \in S, \ 1 < 1. \end{aligned}$$

Thus it's contradiction. It implies every  $V \setminus \{x\}$  isn't a dual SuperHyperDefensive SuperHyperConnectivities in a given SuperHyperConnectivities.

Consider one SuperHyperVertex is out of S which is a dual SuperHyperDefensive SuperHyperConnectivities. This SuperHyperVertex has one SuperHyperNeighbor in S, i.e., Suppose  $x \in V \setminus S$  such that  $y, z \in N(x)$ . By it's SuperHyperPath, |N(x)| = |N(y)| = |N(z)| = 2. Thus

$$\begin{aligned} \forall a \in S, \ |N(a) \cap S| < |N(a) \cap (V \setminus S)| \equiv \\ \forall a \in S, \ |N(a) \cap S| < |N(a) \cap (V \setminus S)| \equiv \\ \exists y \in V \setminus \{x\}, \ |N(y) \cap S| < |N(y) \cap (V \setminus (V \setminus \{x\}))| \equiv \\ \exists y \in V \setminus \{x\}, \ |N(y) \cap S| < |N(y) \cap \{x\})| \equiv \\ \exists y \in V \setminus \{x\}, \ |\{z\}| < |\{x\})| \equiv \\ \exists y \in S, \ 1 < 1. \end{aligned}$$

Thus it's contradiction. It implies every  $V \setminus \{x\}$  isn't a dual SuperHyperDefensive SuperHyperConnectivities in a given SuperHyperPath.

Consider one SuperHyperVertex is out of S which is a dual SuperHyperDefensive SuperHyperConnectivities. This SuperHyperVertex has one SuperHyperNeighbor in S, i.e., Suppose  $x \in V \setminus S$  such that  $y, z \in N(x)$ . By it's SuperHyperWheel, |N(x)| = |N(y)| = |N(z)| = 2. Thus

$$\begin{aligned} \forall a \in S, \ |N(a) \cap S| < |N(a) \cap (V \setminus S)| \equiv \\ \forall a \in S, \ |N(a) \cap S| < |N(a) \cap (V \setminus S)| \equiv \\ \exists y \in V \setminus \{x\}, \ |N(y) \cap S| < |N(y) \cap (V \setminus (V \setminus \{x\}))| \equiv \\ \exists y \in V \setminus \{x\}, \ |N(y) \cap S| < |N(y) \cap \{x\})| \equiv \\ \exists y \in V \setminus \{x\}, \ |\{z\}| < |\{x\})| \equiv \\ \exists y \in S, \ 1 < 1. \end{aligned}$$

Thus it's contradiction. It implies every  $V \setminus \{x\}$  isn't a dual SuperHyperDefensive SuperHyperConnectivities in a given SuperHyperWheel.

(ii), (iii) are obvious by (i).

(iv). By (i), V is maximal and it's a dual SuperHyperDefensive SuperHyperConnectivities. Thus it's a dual  $\mathcal{O}(ESHG : (V, E))$ -SuperHyperDefensive SuperHyperConnectivities.

(v), (vi) are obvious by (iv).

Thus the number is

 $\mathcal{O}(ESHG: (V, E))$  and the Extreme number is

 $\mathcal{O}_n(ESHG: (V, E))$ , in the setting of all types of a dual SuperHyperDefensive SuperHyperConnectivities.

**Proposition 10.0.30.** Let ESHG: (V, E) be a Neutrosophic SuperHyperGraph which is SuperHyperStar/complete SuperHyperBipartite/complete SuperHyperMultiPartite. The number is  $\frac{\mathcal{O}(ESHG:(V,E))}{\min \sum_{k=1}^{2}} + 1 \text{ and the Extreme number is}$ 

 $\min \Sigma_{v \in \{v_1, v_2, \cdots, v_t\}_{t > \frac{\mathcal{O}(ESHG:(V,E))}{2} \subseteq V} \sigma(v), \text{ in the setting of a dual}$ 

- (i): SuperHyperDefensive SuperHyperConnectivities;
- (ii): strong SuperHyperDefensive SuperHyperConnectivities;
- (iii): connected SuperHyperDefensive SuperHyperConnectivities;
- $(iv): \left(\frac{\mathcal{O}(ESHG:(V,E))}{2}+1\right)$ -SuperHyperDefensive SuperHyperConnectivities;
- (v): strong  $\left(\frac{\mathcal{O}(ESHG:(V,E))}{2}+1\right)$ -SuperHyperDefensive SuperHyperConnectivities;
- (vi): connected  $\left(\frac{\mathcal{O}(ESHG:(V,E))}{2}+1\right)$ -SuperHyperDefensive SuperHyperConnectivities.

*Proof.* (i). Consider n half +1 SuperHyperVertices are in S which is SuperHyperDefensive SuperHyperConnectivities. A SuperHyperVertex has at most n half SuperHyperNeighbors in S. If the SuperHyperVertex is the non-SuperHyperCenter, then

If the SuperHyperVertex is the SuperHyperCenter, then

Thus it's proved. It implies every S is a dual SuperHyperDefensive SuperHyperConnectivities in a given SuperHyperStar.

Consider n half +1 SuperHyperVertices are in S which is a dual SuperHyperDefensive SuperHyper-Connectivities.

$$\forall a \in S, \ |N(a) \cap S| > |N(a) \cap (V \setminus S)| \equiv \\ \forall a \in S, \ \frac{\delta}{2} > n - \frac{\delta}{2}.$$

Thus it's proved. It implies every S is a dual SuperHyperDefensive SuperHyperConnectivities in a given complete SuperHyperBipartite which isn't a SuperHyperStar.

Consider n half +1 SuperHyperVertices are in S which is a dual SuperHyperDefensive SuperHyper-Connectivities and they are chosen from different SuperHyperParts, equally or almost equally as possible. A SuperHyperVertex in S has  $\delta$  half SuperHyperNeighbors in S.

$$\forall a \in S, \ |N(a) \cap S| > |N(a) \cap (V \setminus S)| \equiv$$
  
 
$$\forall a \in S, \ \frac{\delta}{2} > n - \frac{\delta}{2}.$$

Thus it's proved. It implies every S is a dual SuperHyperDefensive SuperHyperConnectivities in a given complete SuperHyperMultipartite which is neither a SuperHyperStar nor complete SuperHyperBipartite.

(ii), (iii) are obvious by (i).

(iv). By (i),  $\{x_i\}_{i=1}^{\underline{\mathcal{O}}(ESH\tilde{G}:(\tilde{V},E))} + 1$  is maximal and it's a dual SuperHyperDefensive SuperHyperConnectivities. Thus it's a dual  $\frac{\mathcal{O}(ESHG:(V,E))}{2} + 1$ -SuperHyperDefensive SuperHyperConnectivities. (v), (vi) are obvious by (iv).

Thus the number is

 $\frac{\mathcal{O}(ESHG:(V,E))}{2} + 1$  and the Extreme number is

 $\min \Sigma_{v \in \{v_1, v_2, \cdots, v_t\}_{t > \frac{\mathcal{O}(ESHG:(V,E))}{2} \subseteq V} \sigma(v), \text{ in the setting of all dual SuperHyperConnectivities.}$ 

**Proposition 10.0.31.** Let NSHF : (V, E) be a SuperHyperFamily of the ESHGs : (V, E)Neutrosophic SuperHyperGraphs which are from one-type SuperHyperClass which the result is obtained for the individuals. Then the results also hold for the SuperHyperFamily NSHF : (V, E) of these specific SuperHyperClasses of the Neutrosophic SuperHyperGraphs.

*Proof.* There are neither SuperHyperConditions nor SuperHyperRestrictions on the SuperHyperVertices. Thus the SuperHyperResults on individuals, ESHGs : (V, E), are extended to the SuperHyperResults on SuperHyperFamily, NSHF : (V, E).

**Proposition 10.0.32.** Let ESHG : (V, E) be a strong Neutrosophic SuperHyperGraph. If S is a dual SuperHyperDefensive SuperHyperConnectivities, then  $\forall v \in V \setminus S$ ,  $\exists x \in S$  such that

- (i)  $v \in N_s(x);$
- (*ii*)  $vx \in E$ .

*Proof.* (i). Suppose ESHG : (V, E) is a strong Neutrosophic SuperHyperGraph. Consider  $v \in V \setminus S$ . Since S is a dual SuperHyperDefensive SuperHyperConnectivities,

 $\begin{aligned} \forall z \in V \setminus S, \ |N_s(z) \cap S| &> |N_s(z) \cap (V \setminus S)| \\ v \in V \setminus S, \ |N_s(v) \cap S| &> |N_s(v) \cap (V \setminus S)| \\ v \in V \setminus S, \exists x \in S, \ v \in N_s(x). \end{aligned}$ 

(*ii*). Suppose ESHG: (V, E) is a strong Neutrosophic SuperHyperGraph. Consider  $v \in V \setminus S$ . Since S is a dual SuperHyperDefensive SuperHyperConnectivities,

 $\begin{aligned} \forall z \in V \setminus S, \ |N_s(z) \cap S| &> |N_s(z) \cap (V \setminus S)| \\ v \in V \setminus S, \ |N_s(v) \cap S| &> |N_s(v) \cap (V \setminus S)| \\ v \in V \setminus S, \exists x \in S : \ v \in N_s(x) \\ v \in V \setminus S, \exists x \in S : vx \in E, \ \mu(vx) = \sigma(v) \wedge \sigma(x). \\ v \in V \setminus S, \exists x \in S : vx \in E. \end{aligned}$ 

Henry Garrett  $\,\cdot\,$  Independent Researcher  $\,\cdot\,$  Department of Mathematics  $\,\cdot\,$  DrHenryGarrett@gmail.com  $\,\cdot\,$  Manhattan, NY, USA

**Proposition 10.0.33.** Let ESHG: (V, E) be a strong Neutrosophic SuperHyperGraph. If S is a dual SuperHyperDefensive SuperHyperConnectivities, then

- (i) S is SuperHyperDominating set;
- (ii) there's  $S \subseteq S'$  such that |S'| is SuperHyperChromatic number.

*Proof.* (i). Suppose ESHG : (V, E) is a strong Neutrosophic SuperHyperGraph. Consider  $v \in V \setminus S$ . Since S is a dual SuperHyperDefensive SuperHyperConnectivities, either

$$\begin{aligned} \forall z \in V \setminus S, \ |N_s(z) \cap S| &> |N_s(z) \cap (V \setminus S)| \\ v \in V \setminus S, \ |N_s(v) \cap S| &> |N_s(v) \cap (V \setminus S)| \\ v \in V \setminus S, \exists x \in S, \ v \in N_s(x) \end{aligned}$$

or

$$\begin{aligned} \forall z \in V \setminus S, \ |N_s(z) \cap S| &> |N_s(z) \cap (V \setminus S)| \\ v \in V \setminus S, \ |N_s(v) \cap S| &> |N_s(v) \cap (V \setminus S)| \\ v \in V \setminus S, \exists x \in S : \ v \in N_s(x) \\ v \in V \setminus S, \exists x \in S : vx \in E, \ \mu(vx) = \sigma(v) \wedge \sigma(x) \\ v \in V \setminus S, \exists x \in S : vx \in E. \end{aligned}$$

It implies S is SuperHyperDominating SuperHyperSet.

(*ii*). Suppose ESHG: (V, E) is a strong Neutrosophic SuperHyperGraph. Consider  $v \in V \setminus S$ . Since S is a dual SuperHyperDefensive SuperHyperConnectivities, either

$$\begin{aligned} \forall z \in V \setminus S, \ |N_s(z) \cap S| &> |N_s(z) \cap (V \setminus S)| \\ v \in V \setminus S, \ |N_s(v) \cap S| &> |N_s(v) \cap (V \setminus S)| \\ v \in V \setminus S, \exists x \in S, \ v \in N_s(x) \end{aligned}$$

or

$$\begin{aligned} \forall z \in V \setminus S, \ |N_s(z) \cap S| &> |N_s(z) \cap (V \setminus S)| \\ v \in V \setminus S, \ |N_s(v) \cap S| &> |N_s(v) \cap (V \setminus S)| \\ v \in V \setminus S, \exists x \in S : \ v \in N_s(x) \\ v \in V \setminus S, \exists x \in S : vx \in E, \ \mu(vx) = \sigma(v) \wedge \sigma(x) \\ v \in V \setminus S, \exists x \in S : vx \in E. \end{aligned}$$

Thus every SuperHyperVertex  $v \in V \setminus S$ , has at least one SuperHyperNeighbor in S. The only case is about the relation amid SuperHyperVertices in S in the terms of SuperHyperNeighbors. It implies there's  $S \subseteq S'$  such that |S'| is SuperHyperChromatic number.

**Proposition 10.0.34.** Let ESHG: (V, E) be a strong Neutrosophic SuperHyperGraph. Then

- (i)  $\Gamma \leq \mathcal{O}$ ;
- (*ii*)  $\Gamma_s \leq \mathcal{O}_n$ .

*Proof.* (i). Suppose ESHG: (V, E) is a strong Neutrosophic SuperHyperGraph. Let S = V.

 $\begin{aligned} \forall z \in V \setminus S, \ |N_s(z) \cap S| &> |N_s(z) \cap (V \setminus S)| \\ v \in V \setminus V, \ |N_s(v) \cap V| &> |N_s(v) \cap (V \setminus V)| \\ v \in \emptyset, \ |N_s(v) \cap V| &> |N_s(v) \cap \emptyset| \\ v \in \emptyset, \ |N_s(v) \cap V| &> |\emptyset| \\ v \in \emptyset, \ |N_s(v) \cap V| &> 0 \end{aligned}$ 

It implies V is a dual SuperHyperDefensive SuperHyperConnectivities. For all SuperHyperSets of SuperHyperVertices S,  $S \subseteq V$ . Thus for all SuperHyperSets of SuperHyperVertices S,  $|S| \leq |V|$ . It implies for all SuperHyperSets of SuperHyperVertices S,  $|S| \leq \mathcal{O}$ . So for all SuperHyperSets of SuperHyperVertices S,  $\Gamma \leq \mathcal{O}$ .

(*ii*). Suppose ESHG: (V, E) is a strong Neutrosophic SuperHyperGraph. Let S = V.

$$\begin{aligned} \forall z \in V \setminus S, \ |N_s(z) \cap S| &> |N_s(z) \cap (V \setminus S)| \\ v \in V \setminus V, \ |N_s(v) \cap V| &> |N_s(v) \cap (V \setminus V)| \\ v \in \emptyset, \ |N_s(v) \cap V| &> |N_s(v) \cap \emptyset| \\ v \in \emptyset, \ |N_s(v) \cap V| &> |\emptyset| \\ v \in \emptyset, \ |N_s(v) \cap V| &> 0 \end{aligned}$$

It implies V is a dual SuperHyperDefensive SuperHyperConnectivities. For all SuperHyperSets of Extreme SuperHyperVertices S,  $S \subseteq V$ . Thus for all SuperHyperSets of Extreme SuperHyperVertices S,  $\Sigma_{s\in S} \Sigma_{i=1}^3 \sigma_i(s) \leq \Sigma_{v\in V} \Sigma_{i=1}^3 \sigma_i(v)$ . It implies for all SuperHyperSets of Extreme SuperHyperVertices S,  $\Sigma_{s\in S} \Sigma_{i=1}^3 \sigma_i(s) \leq \mathcal{O}_n$ . So for all SuperHyperSets of Extreme SuperHyperVertices S,  $\Gamma_s \leq \mathcal{O}_n$ .

**Proposition 10.0.35.** Let ESHG : (V, E) be a strong Neutrosophic SuperHyperGraph which is connected. Then

- (i)  $\Gamma \leq \mathcal{O} 1;$
- (*ii*)  $\Gamma_s \leq \mathcal{O}_n \sum_{i=1}^3 \sigma_i(x).$

*Proof.* (i). Suppose ESHG : (V, E) is a strong Neutrosophic SuperHyperGraph. Let  $S = V - \{x\}$  where x is arbitrary and  $x \in V$ .

$$\begin{aligned} \forall z \in V \setminus S, \ |N_s(z) \cap S| &> |N_s(z) \cap (V \setminus S)| \\ v \in V \setminus V - \{x\}, \ |N_s(v) \cap (V - \{x\})| &> |N_s(v) \cap (V \setminus (V - \{x\}))| \\ |N_s(x) \cap (V - \{x\})| &> |N_s(x) \cap \{x\}| \\ |N_s(x) \cap (V - \{x\})| &> |\emptyset| \\ |N_s(x) \cap (V - \{x\})| &> 0 \end{aligned}$$

It implies  $V - \{x\}$  is a dual SuperHyperDefensive SuperHyperConnectivities. For all SuperHyperSets of SuperHyperVertices  $S \neq V$ ,  $S \subseteq V - \{x\}$ . Thus for all SuperHyperSets of SuperHyperVertices  $S \neq V$ ,  $|S| \leq |V - \{x\}|$ . It implies for all SuperHyperSets of SuperHyperVertices  $S \neq V$ ,  $|S| \leq \mathcal{O} - 1$ . So for all SuperHyperSets of SuperHyperVertices S,  $\Gamma \leq \mathcal{O} - 1$ .

Henry Garrett $\,\cdot\,$ Independent Researcher $\,\cdot\,$ Department of Mathematics $\,\cdot\,$ Dr<br/>HenryGarrett@gmail.com $\,\cdot\,$ Manhattan, NY, USA

(*ii*). Suppose ESHG : (V, E) is a strong Neutrosophic SuperHyperGraph. Let  $S = V - \{x\}$  where x is arbitrary and  $x \in V$ .

$$\begin{aligned} \forall z \in V \setminus S, \ |N_s(z) \cap S| &> |N_s(z) \cap (V \setminus S)| \\ v \in V \setminus V - \{x\}, \ |N_s(v) \cap (V - \{x\})| &> |N_s(v) \cap (V \setminus (V - \{x\}))| \\ |N_s(x) \cap (V - \{x\})| &> |N_s(x) \cap \{x\}| \\ |N_s(x) \cap (V - \{x\})| &> |\emptyset| \\ |N_s(x) \cap (V - \{x\})| &> 0 \end{aligned}$$

It implies  $V - \{x\}$  is a dual SuperHyperDefensive SuperHyperConnectivities. For all SuperHyperSets of Extreme SuperHyperVertices  $S \neq V$ ,  $S \subseteq V - \{x\}$ . Thus for all SuperHyperSets of Extreme SuperHyperVertices  $S \neq V$ ,  $\Sigma_{s \in S} \Sigma_{i=1}^3 \sigma_i(s) \leq \Sigma_{v \in V - \{x\}} \Sigma_{i=1}^3 \sigma_i(v)$ . It implies for all SuperHyperSets of Extreme SuperHyperVertices  $S \neq V$ ,  $\Sigma_{s \in S} \Sigma_{i=1}^3 \sigma_i(s) \leq \mathcal{O}_n - \Sigma_{i=1}^3 \sigma_i(x)$ . So for all SuperHyperSets of Extreme SuperHyperVertices S,  $\Gamma_s \leq \mathcal{O}_n - \Sigma_{i=1}^3 \sigma_i(x)$ .

**Proposition 10.0.36.** Let ESHG: (V, E) be an odd SuperHyperPath. Then

- (i) the SuperHyperSet  $S = \{v_2, v_4, \cdots, v_{n-1}\}$  is a dual SuperHyperDefensive SuperHyperConnectivities;
- (ii)  $\Gamma = \lfloor \frac{n}{2} \rfloor + 1$  and corresponded SuperHyperSet is  $S = \{v_2, v_4, \cdots, v_{n-1}\};$

 $(iii) \ \Gamma_s = \min\{\Sigma_{s \in S = \{v_2, v_4, \cdots, v_{n-1}\}} \Sigma_{i=1}^3 \sigma_i(s), \Sigma_{s \in S = \{v_1, v_3, \cdots, v_{n-1}\}} \Sigma_{i=1}^3 \sigma_i(s)\};$ 

(iv) the SuperHyperSets  $S_1 = \{v_2, v_4, \cdots, v_{n-1}\}$  and  $S_2 = \{v_1, v_3, \cdots, v_{n-1}\}$  are only a dual SuperHyperConnectivities.

*Proof.* (i). Suppose ESHG : (V, E) is an odd SuperHyperPath. Let  $S = \{v_2, v_4, \cdots, v_{n-1}\}$  where for all  $v_i, v_j \in \{v_2, v_4, \cdots, v_{n-1}\}, v_i v_j \notin E$  and  $v_i, v_j \in V$ .

$$v \in \{v_1, v_3, \cdots, v_n\}, \ |N_s(v) \cap \{v_2, v_4, \cdots, v_{n-1}\}| = 2 > 0 = |N_s(v) \cap \{v_1, v_3, \cdots, v_n\}| \forall z \in V \setminus S, \ |N_s(z) \cap S| = 2 > 0 = |N_s(z) \cap (V \setminus S)| \\ \forall z \in V \setminus S, \ |N_s(z) \cap S| > |N_s(z) \cap (V \setminus S)| \\ v \in V \setminus \{v_2, v_4, \cdots, v_{n-1}\}, \ |N_s(v) \cap \{v_2, v_4, \cdots, v_{n-1}\}| > |N_s(v) \cap (V \setminus \{v_2, v_4, \cdots, v_{n-1}\})|$$

It implies  $S = \{v_2, v_4, \dots, v_{n-1}\}$  is a dual SuperHyperDefensive SuperHyperConnectivities. If  $S = \{v_2, v_4, \dots, v_{n-1}\} - \{v_i\}$  where  $v_i \in \{v_2, v_4, \dots, v_{n-1}\}$ , then

$$\exists v_{i+1} \in V \setminus S, \ |N_s(z) \cap S| = 1 = 1 = |N_s(z) \cap (V \setminus S)| \\ \exists v_{i+1} \in V \setminus S, \ |N_s(z) \cap S| = 1 \neq 1 = |N_s(z) \cap (V \setminus S)| \\ \exists v_{i+1} \in V \setminus S, \ |N_s(z) \cap S| \neq |N_s(z) \cap (V \setminus S)|.$$

So  $\{v_2, v_4, \dots, v_{n-1}\} - \{v_i\}$  where  $v_i \in \{v_2, v_4, \dots, v_{n-1}\}$  isn't a dual SuperHyperDefensive Super-HyperConnectivities. It induces  $S = \{v_2, v_4, \dots, v_{n-1}\}$  is a dual SuperHyperDefensive SuperHyper-Connectivities.

## (ii) and (iii) are trivial.

(iv). By (i),  $S_1 = \{v_2, v_4, \dots, v_{n-1}\}$  is a dual SuperHyperDefensive SuperHyperConnectivities. Thus it's enough to show that  $S_2 = \{v_1, v_3, \dots, v_{n-1}\}$  is a dual SuperHyperDefensive SuperHyperConnectivities. Suppose ESHG : (V, E) is an odd SuperHyperPath. Let  $S = \{v_1, v_3, \dots, v_{n-1}\}$  where for all  $v_i, v_j \in \{v_1, v_3, \dots, v_{n-1}\}$ ,  $v_i v_j \notin E$  and  $v_i, v_j \in V$ .

$$\begin{aligned} v \in \{v_2, v_4, \cdots, v_n\}, & |N_s(v) \cap \{v_1, v_3, \cdots, v_{n-1}\}| = 2 > \\ 0 = |N_s(v) \cap \{v_2, v_4, \cdots, v_n\} | \forall z \in V \setminus S, & |N_s(z) \cap S| = 2 > 0 = |N_s(z) \cap (V \setminus S) \\ \forall z \in V \setminus S, & |N_s(z) \cap S| > |N_s(z) \cap (V \setminus S)| \\ v \in V \setminus \{v_1, v_3, \cdots, v_{n-1}\}, & |N_s(v) \cap \{v_1, v_3, \cdots, v_{n-1}\}| > \\ |N_s(v) \cap (V \setminus \{v_1, v_3, \cdots, v_{n-1}\})| \end{aligned}$$

It implies  $S = \{v_1, v_3, \dots, v_{n-1}\}$  is a dual SuperHyperDefensive SuperHyperConnectivities. If  $S = \{v_1, v_3, \dots, v_{n-1}\} - \{v_i\}$  where  $v_i \in \{v_1, v_3, \dots, v_{n-1}\}$ , then

$$\exists v_{i+1} \in V \setminus S, \ |N_s(z) \cap S| = 1 = 1 = |N_s(z) \cap (V \setminus S)|$$
  
$$\exists v_{i+1} \in V \setminus S, \ |N_s(z) \cap S| = 1 \neq 1 = |N_s(z) \cap (V \setminus S)|$$
  
$$\exists v_{i+1} \in V \setminus S, \ |N_s(z) \cap S| \neq |N_s(z) \cap (V \setminus S)|.$$

So  $\{v_1, v_3, \dots, v_{n-1}\} - \{v_i\}$  where  $v_i \in \{v_1, v_3, \dots, v_{n-1}\}$  isn't a dual SuperHyperDefensive SuperHyperConnectivities. It induces  $S = \{v_1, v_3, \dots, v_{n-1}\}$  is a dual SuperHyperDefensive SuperHyperConnectivities.

**Proposition 10.0.37.** Let ESHG: (V, E) be an even SuperHyperPath. Then

- (i) the set  $S = \{v_2, v_4, \dots, v_n\}$  is a dual SuperHyperDefensive SuperHyperConnectivities;
- (ii)  $\Gamma = \lfloor \frac{n}{2} \rfloor$  and corresponded SuperHyperSets are  $\{v_2, v_4, \cdots, v_n\}$  and  $\{v_1, v_3, \cdots, v_{n-1}\}$ ;
- (*iii*)  $\Gamma_s = \min\{\sum_{s \in S = \{v_2, v_4, \dots, v_n\}} \sum_{i=1}^3 \sigma_i(s), \sum_{s \in S = \{v_1, v_3, \dots, v_{n-1}\}} \sum_{i=1}^3 \sigma_i(s)\};$
- (iv) the SuperHyperSets  $S_1 = \{v_2, v_4, \cdots . v_n\}$  and  $S_2 = \{v_1, v_3, \cdots . v_{n-1}\}$  are only dual SuperHyperConnectivities.

*Proof.* (i). Suppose ESHG : (V, E) is an even SuperHyperPath. Let  $S = \{v_2, v_4, \dots, v_n\}$  where for all  $v_i, v_j \in \{v_2, v_4, \dots, v_n\}$ ,  $v_i v_j \notin E$  and  $v_i, v_j \in V$ .

$$\begin{aligned} v &\in \{v_1, v_3, \cdots, v_{n-1}\}, \ |N_s(v) \cap \{v_2, v_4, \cdots, v_n\}| = 2 > \\ 0 &= |N_s(v) \cap \{v_1, v_3, \cdots, v_{n-1}\}| \forall z \in V \setminus S, \ |N_s(z) \cap S| = 2 > \\ 0 &= |N_s(z) \cap (V \setminus S)| \\ \forall z \in V \setminus S, \ |N_s(z) \cap S| > |N_s(z) \cap (V \setminus S)| \\ v \in V \setminus \{v_2, v_4, \cdots, v_n\}, \ |N_s(v) \cap \{v_2, v_4, \cdots, v_n\}| > |N_s(v) \cap (V \setminus \{v_2, v_4, \cdots, v_n\})| \end{aligned}$$

It implies  $S = \{v_2, v_4, \dots, v_n\}$  is a dual SuperHyperDefensive SuperHyperConnectivities. If  $S = \{v_2, v_4, \dots, v_n\} - \{v_i\}$  where  $v_i \in \{v_2, v_4, \dots, v_n\}$ , then

$$\exists v_{i+1} \in V \setminus S, \ |N_s(z) \cap S| = 1 = 1 = |N_s(z) \cap (V \setminus S)|$$

 $\exists v_{i+1} \in V \setminus S, \ |N_s(z) \cap S| = 1 \neq 1 = |N_s(z) \cap (V \setminus S)|$  $\exists v_{i+1} \in V \setminus S, \ |N_s(z) \cap S| \neq |N_s(z) \cap (V \setminus S)|.$ 

So  $\{v_2, v_4, \dots, v_n\} - \{v_i\}$  where  $v_i \in \{v_2, v_4, \dots, v_n\}$  isn't a dual SuperHyperDefensive SuperHyperConnectivities. It induces  $S = \{v_2, v_4, \dots, v_n\}$  is a dual SuperHyperDefensive SuperHyperConnectivities.

(ii) and (iii) are trivial.

(iv). By (i),  $S_1 = \{v_2, v_4, \dots, v_n\}$  is a dual SuperHyperDefensive SuperHyperConnectivities. Thus it's enough to show that  $S_2 = \{v_1, v_3, \dots, v_{n-1}\}$  is a dual SuperHyperDefensive SuperHyperConnectivities. Suppose ESHG : (V, E) is an even SuperHyperPath. Let  $S = \{v_1, v_3, \dots, v_{n-1}\}$  where for all  $v_i, v_j \in \{v_1, v_3, \dots, v_{n-1}\}$ ,  $v_i v_j \notin E$  and  $v_i, v_j \in V$ .

$$\begin{split} & v \in \{v_2, v_4, \cdots, v_n\}, \ |N_s(v) \cap \{v_1, v_3, \cdots , v_{n-1}\}| = 2 > \\ & 0 = |N_s(v) \cap \{v_2, v_4, \cdots , v_n\} |\forall z \in V \setminus S, \ |N_s(z) \cap S| = 2 > 0 = |N_s(z) \cap (V \setminus S)| \\ & \forall z \in V \setminus S, \ |N_s(z) \cap S| > |N_s(z) \cap (V \setminus S)| \\ & v \in V \setminus \{v_1, v_3, \cdots , v_{n-1}\}, \ |N_s(v) \cap \{v_1, v_3, \cdots , v_{n-1}\}| > \\ & |N_s(v) \cap (V \setminus \{v_1, v_3, \cdots , v_{n-1}\})| \end{split}$$

It implies  $S = \{v_1, v_3, \dots, v_{n-1}\}$  is a dual SuperHyperDefensive SuperHyperConnectivities. If  $S = \{v_1, v_3, \dots, v_{n-1}\} - \{v_i\}$  where  $v_i \in \{v_1, v_3, \dots, v_{n-1}\}$ , then

$$\begin{aligned} \exists v_{i+1} \in V \setminus S, \ |N_s(z) \cap S| &= 1 = 1 = |N_s(z) \cap (V \setminus S)| \\ \exists v_{i+1} \in V \setminus S, \ |N_s(z) \cap S| &= 1 \neq 1 = |N_s(z) \cap (V \setminus S)| \\ \exists v_{i+1} \in V \setminus S, \ |N_s(z) \cap S| \neq |N_s(z) \cap (V \setminus S)|. \end{aligned}$$

So  $\{v_1, v_3, \dots, v_{n-1}\} - \{v_i\}$  where  $v_i \in \{v_1, v_3, \dots, v_{n-1}\}$  isn't a dual SuperHyperDefensive SuperHyperConnectivities. It induces  $S = \{v_1, v_3, \dots, v_{n-1}\}$  is a dual SuperHyperDefensive SuperHyperConnectivities.

**Proposition 10.0.38.** Let ESHG: (V, E) be an even SuperHyperConnectivities. Then

- (i) the SuperHyperSet  $S = \{v_2, v_4, \cdots, v_n\}$  is a dual SuperHyperDefensive SuperHyperConnectivities;
- (ii)  $\Gamma = \lfloor \frac{n}{2} \rfloor$  and corresponded SuperHyperSets are  $\{v_2, v_4, \cdots, v_n\}$  and  $\{v_1, v_3, \cdots, v_{n-1}\}$ ;
- (*iii*)  $\Gamma_s = \min\{\Sigma_{s \in S = \{v_2, v_4, \dots, v_n\}} \sigma(s), \Sigma_{s \in S = \{v_1, v_3, \dots, v_{n-1}\}} \sigma(s)\};$
- (iv) the SuperHyperSets  $S_1 = \{v_2, v_4, \cdots, v_n\}$  and  $S_2 = \{v_1, v_3, \cdots, v_{n-1}\}$  are only dual SuperHyperConnectivities.

*Proof.* (i). Suppose ESHG: (V, E) is an even SuperHyperConnectivities. Let  $S = \{v_2, v_4, \cdots, v_n\}$ 

where for all  $v_i, v_j \in \{v_2, v_4, \cdots, v_n\}, v_i v_j \notin E$  and  $v_i, v_j \in V$ .

$$\begin{split} v &\in \{v_1, v_3, \cdots, v_{n-1}\}, \ |N_s(v) \cap \{v_2, v_4, \cdots, v_n\}| = 2 > \\ 0 &= |N_s(v) \cap \{v_1, v_3, \cdots, v_{n-1}\} |\forall z \in V \setminus S, \ |N_s(z) \cap S| = 2 > \\ 0 &= |N_s(z) \cap (V \setminus S)| \\ \forall z \in V \setminus S, \ |N_s(z) \cap S| > |N_s(z) \cap (V \setminus S)| \\ v \in V \setminus \{v_2, v_4, \cdots, v_n\}, \ |N_s(v) \cap \{v_2, v_4, \cdots, v_n\}| > \\ |N_s(v) \cap (V \setminus \{v_2, v_4, \cdots, v_n\})| \end{split}$$

It implies  $S = \{v_2, v_4, \dots, v_n\}$  is a dual SuperHyperDefensive SuperHyperConnectivities. If  $S = \{v_2, v_4, \dots, v_n\} - \{v_i\}$  where  $v_i \in \{v_2, v_4, \dots, v_n\}$ , then

$$\exists v_{i+1} \in V \setminus S, \ |N_s(z) \cap S| = 1 = 1 = |N_s(z) \cap (V \setminus S)|$$
  
$$\exists v_{i+1} \in V \setminus S, \ |N_s(z) \cap S| = 1 \neq 1 = |N_s(z) \cap (V \setminus S)|$$
  
$$\exists v_{i+1} \in V \setminus S, \ |N_s(z) \cap S| \neq |N_s(z) \cap (V \setminus S)|.$$

So  $\{v_2, v_4, \dots, v_n\} - \{v_i\}$  where  $v_i \in \{v_2, v_4, \dots, v_n\}$  isn't a dual SuperHyperDefensive SuperHyperConnectivities. It induces  $S = \{v_2, v_4, \dots, v_n\}$  is a dual SuperHyperDefensive SuperHyperConnectivities.

(ii) and (iii) are trivial.

(iv). By (i),  $S_1 = \{v_2, v_4, \dots, v_n\}$  is a dual SuperHyperDefensive SuperHyperConnectivities. Thus it's enough to show that  $S_2 = \{v_1, v_3, \dots, v_{n-1}\}$  is a dual SuperHyperDefensive SuperHyperConnectivities. Suppose ESHG : (V, E) is an even SuperHyperConnectivities. Let  $S = \{v_1, v_3, \dots, v_{n-1}\}$  where for all  $v_i, v_j \in \{v_1, v_3, \dots, v_{n-1}\}$ ,  $v_i v_j \notin E$  and  $v_i, v_j \in V$ .

$$\begin{aligned} v \in \{v_2, v_4, \cdots, v_n\}, \ |N_s(v) \cap \{v_1, v_3, \cdots, v_{n-1}\}| &= 2 > \\ 0 = |N_s(v) \cap \{v_2, v_4, \cdots, v_n\} | \forall z \in V \setminus S, \ |N_s(z) \cap S| &= 2 > 0 = |N_s(z) \cap (V \setminus S) \\ \forall z \in V \setminus S, \ |N_s(z) \cap S| > |N_s(z) \cap (V \setminus S)| \\ v \in V \setminus \{v_1, v_3, \cdots, v_{n-1}\}, \ |N_s(v) \cap \{v_1, v_3, \cdots, v_{n-1}\}| > \\ |N_s(v) \cap (V \setminus \{v_1, v_3, \cdots, v_{n-1}\})| \end{aligned}$$

It implies  $S = \{v_1, v_3, \dots, v_{n-1}\}$  is a dual SuperHyperDefensive SuperHyperConnectivities. If  $S = \{v_1, v_3, \dots, v_{n-1}\} - \{v_i\}$  where  $v_i \in \{v_1, v_3, \dots, v_{n-1}\}$ , then

$$\exists v_{i+1} \in V \setminus S, \ |N_s(z) \cap S| = 1 = 1 = |N_s(z) \cap (V \setminus S)| \exists v_{i+1} \in V \setminus S, \ |N_s(z) \cap S| = 1 \neq 1 = |N_s(z) \cap (V \setminus S)| \exists v_{i+1} \in V \setminus S, \ |N_s(z) \cap S| \neq |N_s(z) \cap (V \setminus S)|.$$

So  $\{v_1, v_3, \dots, v_{n-1}\} - \{v_i\}$  where  $v_i \in \{v_1, v_3, \dots, v_{n-1}\}$  isn't a dual SuperHyperDefensive SuperHyperConnectivities. It induces  $S = \{v_1, v_3, \dots, v_{n-1}\}$  is a dual SuperHyperDefensive SuperHyperConnectivities.

**Proposition 10.0.39.** Let ESHG: (V, E) be an odd SuperHyperConnectivities. Then

(i) the SuperHyperSet  $S = \{v_2, v_4, \cdots, v_{n-1}\}$  is a dual SuperHyperDefensive SuperHyperConnectivities;

- (ii)  $\Gamma = \lfloor \frac{n}{2} \rfloor + 1$  and corresponded SuperHyperSet is  $S = \{v_2, v_4, \cdots, v_{n-1}\};$
- (*iii*)  $\Gamma_s = \min\{\Sigma_{s \in S = \{v_2, v_4, \dots, v_{n-1}\}} \Sigma_{i=1}^3 \sigma_i(s), \Sigma_{s \in S = \{v_1, v_3, \dots, v_{n-1}\}} \Sigma_{i=1}^3 \sigma_i(s)\};$
- (iv) the SuperHyperSets  $S_1 = \{v_2, v_4, \cdots, v_{n-1}\}$  and  $S_2 = \{v_1, v_3, \cdots, v_{n-1}\}$  are only dual SuperHyperConnectivities.

*Proof.* (i). Suppose ESHG : (V, E) is an odd SuperHyperConnectivities. Let  $S = \{v_2, v_4, \cdots, v_{n-1}\}$  where for all  $v_i, v_j \in \{v_2, v_4, \cdots, v_{n-1}\}, v_i v_j \notin E$  and  $v_i, v_j \in V$ .

$$\begin{split} v &\in \{v_1, v_3, \cdots, v_n\}, \ |N_s(v) \cap \{v_2, v_4, \cdots, v_{n-1}\}| = 2 > \\ 0 &= |N_s(v) \cap \{v_1, v_3, \cdots, v_n\}| \forall z \in V \setminus S, \ |N_s(z) \cap S| = 2 > 0 = |N_s(z) \cap (V \setminus S)| \\ \forall z \in V \setminus S, \ |N_s(z) \cap S| > |N_s(z) \cap (V \setminus S)| \\ v \in V \setminus \{v_2, v_4, \cdots, v_{n-1}\}, \ |N_s(v) \cap \{v_2, v_4, \cdots, v_{n-1}\}| > \\ |N_s(v) \cap (V \setminus \{v_2, v_4, \cdots, v_{n-1}\})| \end{split}$$

It implies  $S = \{v_2, v_4, \dots, v_{n-1}\}$  is a dual SuperHyperDefensive SuperHyperConnectivities. If  $S = \{v_2, v_4, \dots, v_{n-1}\} - \{v_i\}$  where  $v_i \in \{v_2, v_4, \dots, v_{n-1}\}$ , then

$$\exists v_{i+1} \in V \setminus S, \ |N_s(z) \cap S| = 1 = 1 = |N_s(z) \cap (V \setminus S)|$$
  
$$\exists v_{i+1} \in V \setminus S, \ |N_s(z) \cap S| = 1 \neq 1 = |N_s(z) \cap (V \setminus S)|$$
  
$$\exists v_{i+1} \in V \setminus S, \ |N_s(z) \cap S| \neq |N_s(z) \cap (V \setminus S)|.$$

So  $\{v_2, v_4, \dots, v_{n-1}\} - \{v_i\}$  where  $v_i \in \{v_2, v_4, \dots, v_{n-1}\}$  isn't a dual SuperHyperDefensive Super-HyperConnectivities. It induces  $S = \{v_2, v_4, \dots, v_{n-1}\}$  is a dual SuperHyperDefensive SuperHyper-Connectivities.

(ii) and (iii) are trivial.

(*iv*). By (*i*),  $S_1 = \{v_2, v_4, \dots, v_{n-1}\}$  is a dual SuperHyperDefensive SuperHyperConnectivities. Thus it's enough to show that  $S_2 = \{v_1, v_3, \dots, v_{n-1}\}$  is a dual SuperHyperDefensive SuperHyperConnectivities. Suppose ESHG : (V, E) is an odd SuperHyperConnectivities. Let  $S = \{v_1, v_3, \dots, v_{n-1}\}$  where for all  $v_i, v_j \in \{v_1, v_3, \dots, v_{n-1}\}$ ,  $v_i v_j \notin E$  and  $v_i, v_j \in V$ .

$$\begin{aligned} v \in \{v_2, v_4, \cdots, v_n\}, \ |N_s(v) \cap \{v_1, v_3, \cdots, v_{n-1}\}| &= 2 > \\ 0 = |N_s(v) \cap \{v_2, v_4, \cdots, v_n\} |\forall z \in V \setminus S, \ |N_s(z) \cap S| &= 2 > 0 = |N_s(z) \cap (V \setminus S)| \\ \forall z \in V \setminus S, \ |N_s(z) \cap S| &> |N_s(z) \cap (V \setminus S)| \\ v \in V \setminus \{v_1, v_3, \cdots, v_{n-1}\}, \ |N_s(v) \cap \{v_1, v_3, \cdots, v_{n-1}\}| > \\ |N_s(v) \cap (V \setminus \{v_1, v_3, \cdots, v_{n-1}\})| \end{aligned}$$

It implies  $S = \{v_1, v_3, \dots, v_{n-1}\}$  is a dual SuperHyperDefensive SuperHyperConnectivities. If  $S = \{v_1, v_3, \dots, v_{n-1}\} - \{v_i\}$  where  $v_i \in \{v_1, v_3, \dots, v_{n-1}\}$ , then

$$\begin{aligned} \exists v_{i+1} \in V \setminus S, \ |N_s(z) \cap S| &= 1 = 1 = |N_s(z) \cap (V \setminus S)| \\ \exists v_{i+1} \in V \setminus S, \ |N_s(z) \cap S| &= 1 \neq 1 = |N_s(z) \cap (V \setminus S)| \\ \exists v_{i+1} \in V \setminus S, \ |N_s(z) \cap S| \neq |N_s(z) \cap (V \setminus S)|. \end{aligned}$$

So  $\{v_1, v_3, \dots, v_{n-1}\} - \{v_i\}$  where  $v_i \in \{v_1, v_3, \dots, v_{n-1}\}$  isn't a dual SuperHyperDefensive SuperHyperConnectivities. It induces  $S = \{v_1, v_3, \dots, v_{n-1}\}$  is a dual SuperHyperDefensive SuperHyperConnectivities.

**Proposition 10.0.40.** Let ESHG: (V, E) be SuperHyperStar. Then

- (i) the SuperHyperSet  $S = \{c\}$  is a dual maximal SuperHyperConnectivities;
- (*ii*)  $\Gamma = 1$ ;
- (*iii*)  $\Gamma_s = \sum_{i=1}^3 \sigma_i(c);$
- (iv) the SuperHyperSets  $S = \{c\}$  and  $S \subset S'$  are only dual SuperHyperConnectivities.

*Proof.* (i). Suppose ESHG : (V, E) is a SuperHyperStar.

$$\begin{aligned} \forall v \in V \setminus \{c\}, & |N_s(v) \cap \{c\}| = 1 > \\ 0 = |N_s(v) \cap (V \setminus \{c\})| \forall z \in V \setminus S, & |N_s(z) \cap S| = 1 > \\ 0 = |N_s(z) \cap (V \setminus S)| \\ \forall z \in V \setminus S, & |N_s(z) \cap S| > |N_s(z) \cap (V \setminus S)| \\ v \in V \setminus \{c\}, & |N_s(v) \cap \{c\}| > |N_s(v) \cap (V \setminus \{c\})| \end{aligned}$$

It implies  $S = \{c\}$  is a dual SuperHyperDefensive SuperHyperConnectivities. If  $S = \{c\} - \{c\} = \emptyset$ , then

 $\begin{aligned} \exists v \in V \setminus S, \ |N_s(z) \cap S| &= 0 = 0 = |N_s(z) \cap (V \setminus S)| \\ \exists v \in V \setminus S, \ |N_s(z) \cap S| &= 0 \neq 0 = |N_s(z) \cap (V \setminus S)| \\ \exists v \in V \setminus S, \ |N_s(z) \cap S| \neq |N_s(z) \cap (V \setminus S)|. \end{aligned}$ 

So  $S = \{c\} - \{c\} = \emptyset$  isn't a dual SuperHyperDefensive SuperHyperConnectivities. It induces  $S = \{c\}$  is a dual SuperHyperDefensive SuperHyperConnectivities. (*ii*) and (*iii*) are trivial.

(*iv*). By (*i*),  $S = \{c\}$  is a dual SuperHyperDefensive SuperHyperConnectivities. Thus it's enough to show that  $S \subseteq S'$  is a dual SuperHyperDefensive SuperHyperConnectivities. Suppose ESHG: (V, E) is a SuperHyperStar. Let  $S \subseteq S'$ .

$$\begin{aligned} \forall v \in V \setminus \{c\}, \ |N_s(v) \cap \{c\}| &= 1 > \\ 0 = |N_s(v) \cap (V \setminus \{c\})| \forall z \in V \setminus S', \ |N_s(z) \cap S'| = 1 > \\ 0 = |N_s(z) \cap (V \setminus S')| \\ \forall z \in V \setminus S', \ |N_s(z) \cap S'| > |N_s(z) \cap (V \setminus S')| \end{aligned}$$

It implies  $S' \subseteq S$  is a dual SuperHyperDefensive SuperHyperConnectivities.

**Proposition 10.0.41.** Let ESHG: (V, E) be SuperHyperWheel. Then

- (i) the SuperHyperSet  $S = \{v_1, v_3\} \cup \{v_6, v_9 \cdots, v_{i+6}, \cdots, v_n\}_{i=1}^{6+3(i-1) \le n}$  is a dual maximal SuperHyperDefensive SuperHyperConnectivities;
- (*ii*)  $\Gamma = |\{v_1, v_3\} \cup \{v_6, v_9 \cdots, v_{i+6}, \cdots, v_n\}_{i=1}^{6+3(i-1) \le n}|;$
- (*iii*)  $\Gamma_s = \sum_{\{v_1, v_3\} \cup \{v_6, v_9 \cdots, v_{i+6}, \cdots, v_n\}_{i=1}^{6+3(i-1) \le n} \sum_{i=1}^3 \sigma_i(s);$

(iv) the SuperHyperSet  $\{v_1, v_3\} \cup \{v_6, v_9 \cdots, v_{i+6}, \cdots, v_n\}_{i=1}^{6+3(i-1) \leq n}$  is only a dual maximal SuperHyperDefensive SuperHyperConnectivities.

*Proof.* (i). Suppose ESHG: (V, E) is a SuperHyperWheel. Let  $S = \{v_1, v_3\} \cup \{v_6, v_9 \cdots, v_{i+6}, \cdots, v_n\}_{i=1}^{6+3(i-1) \leq n}$ . There are either

$$\forall z \in V \setminus S, \ |N_s(z) \cap S| = 2 > 1 = |N_s(z) \cap (V \setminus S)|$$
  
 
$$\forall z \in V \setminus S, \ |N_s(z) \cap S| > |N_s(z) \cap (V \setminus S)|$$

or

$$\forall z \in V \setminus S, \ |N_s(z) \cap S| = 3 > 0 = |N_s(z) \cap (V \setminus S)|$$
  
 
$$\forall z \in V \setminus S, \ |N_s(z) \cap S| > |N_s(z) \cap (V \setminus S)|$$

It implies  $S = \{v_1, v_3\} \cup \{v_6, v_9 \cdots, v_{i+6}, \cdots, v_n\}_{i=1}^{6+3(i-1) \le n}$  is a dual SuperHyperDefensive SuperHyperConnectivities. If  $S' = \{v_1, v_3\} \cup \{v_6, v_9 \cdots, v_{i+6}, \cdots, v_n\}_{i=1}^{6+3(i-1) \le n} - \{z\}$  where  $z \in S = \{v_1, v_3\} \cup \{v_6, v_9 \cdots, v_{i+6}, \cdots, v_n\}_{i=1}^{6+3(i-1) \le n}$ , then There are either

$$\begin{aligned} \forall z \in V \setminus S', \ |N_s(z) \cap S'| &= 1 < 2 = |N_s(z) \cap (V \setminus S')| \\ \forall z \in V \setminus S', \ |N_s(z) \cap S'| < |N_s(z) \cap (V \setminus S')| \\ \forall z \in V \setminus S', \ |N_s(z) \cap S'| \neq |N_s(z) \cap (V \setminus S')| \end{aligned}$$

or

$$\begin{aligned} \forall z \in V \setminus S', \ |N_s(z) \cap S'| &= 1 = 1 = |N_s(z) \cap (V \setminus S')| \\ \forall z \in V \setminus S', \ |N_s(z) \cap S'| &= |N_s(z) \cap (V \setminus S')| \\ \forall z \in V \setminus S', \ |N_s(z) \cap S'| \neq |N_s(z) \cap (V \setminus S')| \end{aligned}$$

So  $S' = \{v_1, v_3\} \cup \{v_6, v_9 \cdots, v_{i+6}, \cdots, v_n\}_{i=1}^{6+3(i-1) \le n} - \{z\}$  where  $z \in S = \{v_1, v_3\} \cup \{v_6, v_9 \cdots, v_{i+6}, \cdots, v_n\}_{i=1}^{6+3(i-1) \le n}$  is n't a dual SuperHyperDefensive SuperHyperConnectivities. It induces  $S = \{v_1, v_3\} \cup \{v_6, v_9 \cdots, v_{i+6}, \cdots, v_n\}_{i=1}^{6+3(i-1) \le n}$  is a dual maximal SuperHyperDefensive SuperHyperConnectivities. (*ii*), (*iii*) and (*iv*) are obvious.

## **Proposition 10.0.42.** Let ESHG : (V, E) be an odd SuperHyperComplete. Then

- (i) the SuperHyperSet  $S = \{v_i\}_{i=1}^{\lfloor \frac{n}{2} \rfloor + 1}$  is a dual SuperHyperDefensive SuperHyperConnectivities;
- (*ii*)  $\Gamma = \lfloor \frac{n}{2} \rfloor + 1;$

(*iii*) 
$$\Gamma_s = \min\{\Sigma_{s\in S}\Sigma_{i=1}^3\sigma_i(s)\}_{S=\{v_i\}_{i=1}^{\lfloor\frac{n}{2}\rfloor+1}};$$

(iv) the SuperHyperSet  $S = \{v_i\}_{i=1}^{\lfloor \frac{n}{2} \rfloor + 1}$  is only a dual SuperHyperDefensive SuperHyperConnectivities.

*Proof.* (i). Suppose ESHG: (V, E) is an odd SuperHyperComplete. Let  $S = \{v_i\}_{i=1}^{\lfloor \frac{n}{2} \rfloor + 1}$ . Thus

$$\forall z \in V \setminus S, \ |N_s(z) \cap S| = \lfloor \frac{n}{2} \rfloor + 1 > \lfloor \frac{n}{2} \rfloor - 1 = |N_s(z) \cap (V \setminus S)|$$
  
$$\forall z \in V \setminus S, \ |N_s(z) \cap S| > |N_s(z) \cap (V \setminus S)|$$

It implies  $S = \{v_i\}_{i=1}^{\lfloor \frac{n}{2} \rfloor + 1}$  is a dual SuperHyperDefensive SuperHyperConnectivities. If  $S' = \{v_i\}_{i=1}^{\lfloor \frac{n}{2} \rfloor + 1} - \{z\}$  where  $z \in S = \{v_i\}_{i=1}^{\lfloor \frac{n}{2} \rfloor + 1}$ , then

$$\forall z \in V \setminus S, \ |N_s(z) \cap S| = \lfloor \frac{n}{2} \rfloor = \lfloor \frac{n}{2} \rfloor = |N_s(z) \cap (V \setminus S)|$$
  
$$\forall z \in V \setminus S, \ |N_s(z) \cap S| \neq |N_s(z) \cap (V \setminus S)|$$

So  $S' = \{v_i\}_{i=1}^{\lfloor \frac{n}{2} \rfloor + 1} - \{z\}$  where  $z \in S = \{v_i\}_{i=1}^{\lfloor \frac{n}{2} \rfloor + 1}$  isn't a dual SuperHyperDefensive SuperHyperConnectivities. It induces  $S = \{v_i\}_{i=1}^{\lfloor \frac{n}{2} \rfloor + 1}$  is a dual SuperHyperDefensive SuperHyperConnectivities. (ii), (iii) and (iv) are obvious

**Proposition 10.0.43.** Let ESHG: (V, E) be an even SuperHyperComplete. Then

(i) the SuperHyperSet  $S = \{v_i\}_{i=1}^{\lfloor \frac{n}{2} \rfloor}$  is a dual SuperHyperDefensive SuperHyperConnectivities;

(*ii*) 
$$\Gamma = \lfloor \frac{n}{2} \rfloor$$

- (*iii*)  $\Gamma_s = \min\{\Sigma_{s\in S}\Sigma_{i=1}^3\sigma_i(s)\}_{S=\{v_i\}_{i=1}^{\lfloor \frac{n}{2} \rfloor}}$
- (iv) the SuperHyperSet  $S = \{v_i\}_{i=1}^{\lfloor \frac{n}{2} \rfloor}$  is only a dual maximal SuperHyperDefensive SuperHyperConnectivities.

*Proof.* (i). Suppose ESHG: (V, E) is an even SuperHyperComplete. Let  $S = \{v_i\}_{i=1}^{\lfloor \frac{n}{2} \rfloor}$ . Thus

$$\forall z \in V \setminus S, \ |N_s(z) \cap S| = \lfloor \frac{n}{2} \rfloor > \lfloor \frac{n}{2} \rfloor - 1 = |N_s(z) \cap (V \setminus S)|$$
  
$$\forall z \in V \setminus S, \ |N_s(z) \cap S| > |N_s(z) \cap (V \setminus S)|.$$

It implies  $S = \{v_i\}_{i=1}^{\lfloor \frac{n}{2} \rfloor}$  is a dual SuperHyperDefensive SuperHyperConnectivities. If  $S' = \{v_i\}_{i=1}^{\lfloor \frac{n}{2} \rfloor} - \{z\}$  where  $z \in S = \{v_i\}_{i=1}^{\lfloor \frac{n}{2} \rfloor}$ , then

$$\forall z \in V \setminus S, \ |N_s(z) \cap S| = \lfloor \frac{n}{2} \rfloor - 1 < \lfloor \frac{n}{2} \rfloor + 1 = |N_s(z) \cap (V \setminus S)|$$
  
$$\forall z \in V \setminus S, \ |N_s(z) \cap S| \neq |N_s(z) \cap (V \setminus S)|.$$

So  $S' = \{v_i\}_{i=1}^{\lfloor \frac{n}{2} \rfloor} - \{z\}$  where  $z \in S = \{v_i\}_{i=1}^{\lfloor \frac{n}{2} \rfloor}$  isn't a dual SuperHyperDefensive SuperHyperConnectivities. It induces  $S = \{v_i\}_{i=1}^{\lfloor \frac{n}{2} \rfloor}$  is a dual maximal SuperHyperDefensive SuperHyperConnectivities. 

(ii), (iii) and (iv) are obvious.

**Proposition 10.0.44.** Let  $\mathcal{NSHF}: (V, E)$  be a m-SuperHyperFamily of Extreme SuperHyperStars with common Extreme SuperHyperVertex SuperHyperSet. Then

- (i) the SuperHyperSet  $S = \{c_1, c_2, \cdots, c_m\}$  is a dual SuperHyperDefensive SuperHyperConnectivities for NSHF;
- (*ii*)  $\Gamma = m \text{ for } \mathcal{NSHF} : (V, E);$
- (*iii*)  $\Gamma_s = \sum_{i=1}^m \sum_{j=1}^3 \sigma_j(c_i)$  for  $\mathcal{NSHF}: (V, E);$
- (iv) the SuperHyperSets  $S = \{c_1, c_2, \cdots, c_m\}$  and  $S \subset S'$  are only dual SuperHyperConnectivities for  $\mathcal{NSHF} : (V, E)$ .

*Proof.* (i). Suppose ESHG : (V, E) is a SuperHyperStar.

 $\begin{aligned} \forall v \in V \setminus \{c\}, \ |N_s(v) \cap \{c\}| &= 1 > \\ 0 &= |N_s(v) \cap (V \setminus \{c\})| \forall z \in V \setminus S, \ |N_s(z) \cap S| = 1 > \\ 0 &= |N_s(z) \cap (V \setminus S)| \\ \forall z \in V \setminus S, \ |N_s(z) \cap S| > |N_s(z) \cap (V \setminus S)| \\ v \in V \setminus \{c\}, \ |N_s(v) \cap \{c\}| > |N_s(v) \cap (V \setminus \{c\})| \end{aligned}$ 

It implies  $S = \{c_1, c_2, \dots, c_m\}$  is a dual SuperHyperDefensive SuperHyperConnectivities for  $\mathcal{NSHF}: (V, E)$ . If  $S = \{c\} - \{c\} = \emptyset$ , then

 $\begin{aligned} \exists v \in V \setminus S, \ |N_s(z) \cap S| &= 0 = 0 = |N_s(z) \cap (V \setminus S)| \\ \exists v \in V \setminus S, \ |N_s(z) \cap S| &= 0 \neq 0 = |N_s(z) \cap (V \setminus S)| \\ \exists v \in V \setminus S, \ |N_s(z) \cap S| \neq |N_s(z) \cap (V \setminus S)|. \end{aligned}$ 

So  $S = \{c\} - \{c\} = \emptyset$  isn't a dual SuperHyperDefensive SuperHyperConnectivities for  $\mathcal{NSHF}$ : (V, E). It induces  $S = \{c_1, c_2, \cdots, c_m\}$  is a dual maximal SuperHyperDefensive SuperHyperConnectivities for  $\mathcal{NSHF}$ : (V, E).

(ii) and (iii) are trivial.

(*iv*). By (*i*),  $S = \{c_1, c_2, \dots, c_m\}$  is a dual SuperHyperDefensive SuperHyperConnectivities for  $\mathcal{NSHF}$  : (*V*, *E*). Thus it's enough to show that  $S \subseteq S'$  is a dual SuperHyperDefensive SuperHyperConnectivities for  $\mathcal{NSHF}$  : (*V*, *E*). Suppose *ESHG* : (*V*, *E*) is a SuperHyperStar. Let  $S \subseteq S'$ .

$$\forall v \in V \setminus \{c\}, \ |N_s(v) \cap \{c\}| = 1 > \\ 0 = |N_s(v) \cap (V \setminus \{c\})| \forall z \in V \setminus S', \ |N_s(z) \cap S'| = 1 > \\ 0 = |N_s(z) \cap (V \setminus S')| \\ \forall z \in V \setminus S', \ |N_s(z) \cap S'| > |N_s(z) \cap (V \setminus S')|$$

It implies  $S' \subseteq S$  is a dual SuperHyperDefensive SuperHyperConnectivities for  $\mathcal{NSHF}$ : (V, E).

**Proposition 10.0.45.** Let NSHF: (V, E) be an m-SuperHyperFamily of odd SuperHyperComplete SuperHyperGraphs with common Extreme SuperHyperVertex SuperHyperSet. Then

- (i) the SuperHyperSet  $S = \{v_i\}_{i=1}^{\lfloor \frac{n}{2} \rfloor + 1}$  is a dual maximal SuperHyperDefensive SuperHyperConnectivities for  $\mathcal{NSHF}$ ;
- (*ii*)  $\Gamma = \lfloor \frac{n}{2} \rfloor + 1$  for  $\mathcal{NSHF} : (V, E);$

Henry Garrett · Independent Researcher · Department of Mathematics · DrHenryGarrett@gmail.com · Manhattan, NY, USA

- (*iii*)  $\Gamma_s = \min\{\Sigma_{s\in S}\Sigma_{i=1}^3\sigma_i(s)\}_{\substack{S=\{v_i\}_{i=1}^{\lfloor\frac{n}{2}\rfloor+1}}}$  for  $\mathcal{NSHF}: (V, E);$
- (iv) the SuperHyperSets  $S = \{v_i\}_{i=1}^{\lfloor \frac{n}{2} \rfloor + 1}$  are only a dual maximal SuperHyperConnectivities for  $\mathcal{NSHF}: (V, E).$

*Proof.* (i). Suppose ESHG: (V, E) is odd SuperHyperComplete. Let  $S = \{v_i\}_{i=1}^{\lfloor \frac{n}{2} \rfloor + 1}$ . Thus

$$\forall z \in V \setminus S, \ |N_s(z) \cap S| = \lfloor \frac{n}{2} \rfloor + 1 > \lfloor \frac{n}{2} \rfloor - 1 = |N_s(z) \cap (V \setminus S)|$$
  
$$\forall z \in V \setminus S, \ |N_s(z) \cap S| > |N_s(z) \cap (V \setminus S)|$$

It implies  $S = \{v_i\}_{i=1}^{\lfloor \frac{n}{2} \rfloor + 1}$  is a dual SuperHyperDefensive SuperHyperConnectivities for  $\mathcal{NSHF}$ : (V, E). If  $S' = \{v_i\}_{i=1}^{\lfloor \frac{n}{2} \rfloor + 1} - \{z\}$  where  $z \in S = \{v_i\}_{i=1}^{\lfloor \frac{n}{2} \rfloor + 1}$ , then

$$\forall z \in V \setminus S, \ |N_s(z) \cap S| = \lfloor \frac{n}{2} \rfloor = \lfloor \frac{n}{2} \rfloor = |N_s(z) \cap (V \setminus S)|$$
  
 
$$\forall z \in V \setminus S, \ |N_s(z) \cap S| \neq |N_s(z) \cap (V \setminus S)|$$

So  $S' = \{v_i\}_{i=1}^{\lfloor \frac{n}{2} \rfloor + 1} - \{z\}$  where  $z \in S = \{v_i\}_{i=1}^{\lfloor \frac{n}{2} \rfloor + 1}$  isn't a dual SuperHyperDefensive SuperHyperConnectivities for  $\mathcal{NSHF}$ : (V, E). It induces  $S = \{v_i\}_{i=1}^{\lfloor \frac{n}{2} \rfloor + 1}$  is a dual maximal SuperHyperDefensive SuperHyperConnectivities for  $\mathcal{NSHF}$ : (V, E). (*ii*), (*iii*) and (*iv*) are obvious.

**Proposition 10.0.46.** Let  $\mathcal{NSHF}$ : (V, E) be a m-SuperHyperFamily of even SuperHyperComplete SuperHyperGraphs with common Extreme SuperHyperVertex SuperHyperSet. Then

- (i) the SuperHyperSet  $S = \{v_i\}_{i=1}^{\lfloor \frac{n}{2} \rfloor}$  is a dual SuperHyperDefensive SuperHyperConnectivities for  $\mathcal{NSHF}: (V, E);$
- (*ii*)  $\Gamma = \lfloor \frac{n}{2} \rfloor$  for  $\mathcal{NSHF} : (V, E);$

(*iii*) 
$$\Gamma_s = \min\{\sum_{s \in S} \sum_{i=1}^3 \sigma_i(s)\}_{\substack{S = \{v_i\}_{i=1}^{\lfloor \frac{n}{2} \rfloor}} \text{ for } \mathcal{NSHF} : (V, E);$$

(iv) the SuperHyperSets  $S = \{v_i\}_{i=1}^{\lfloor \frac{n}{2} \rfloor}$  are only dual maximal SuperHyperConnectivities for  $\mathcal{NSHF}: (V, E)$ .

*Proof.* (i). Suppose ESHG: (V, E) is even SuperHyperComplete. Let  $S = \{v_i\}_{i=1}^{\lfloor \frac{n}{2} \rfloor}$ . Thus

$$\forall z \in V \setminus S, \ |N_s(z) \cap S| = \lfloor \frac{n}{2} \rfloor > \lfloor \frac{n}{2} \rfloor - 1 = |N_s(z) \cap (V \setminus S)|$$
  
$$\forall z \in V \setminus S, \ |N_s(z) \cap S| > |N_s(z) \cap (V \setminus S)|.$$

It implies  $S = \{v_i\}_{i=1}^{\lfloor \frac{n}{2} \rfloor}$  is a dual SuperHyperDefensive SuperHyperConnectivities for  $\mathcal{NSHF}$ : (V, E). If  $S' = \{v_i\}_{i=1}^{\lfloor \frac{n}{2} \rfloor} - \{z\}$  where  $z \in S = \{v_i\}_{i=1}^{\lfloor \frac{n}{2} \rfloor}$ , then

$$\forall z \in V \setminus S, \ |N_s(z) \cap S| = \lfloor \frac{n}{2} \rfloor - 1 < \lfloor \frac{n}{2} \rfloor + 1 = |N_s(z) \cap (V \setminus S)|$$
  
 
$$\forall z \in V \setminus S, \ |N_s(z) \cap S| \neq |N_s(z) \cap (V \setminus S)|.$$

So  $S' = \{v_i\}_{i=1}^{\lfloor \frac{n}{2} \rfloor} - \{z\}$  where  $z \in S = \{v_i\}_{i=1}^{\lfloor \frac{n}{2} \rfloor}$  isn't a dual SuperHyperDefensive SuperHyperConnectivities for  $\mathcal{NSHF}$ : (V, E). It induces  $S = \{v_i\}_{i=1}^{\lfloor \frac{n}{2} \rfloor}$  is a dual maximal SuperHyperDefensive SuperHyperConnectivities for  $\mathcal{NSHF}$ : (V, E). (*ii*), (*iii*) and (*iv*) are obvious.

**Proposition 10.0.47.** Let ESHG : (V, E) be a strong Neutrosophic SuperHyperGraph. Then following statements hold;

- (i) if  $s \ge t$  and a SuperHyperSet S of SuperHyperVertices is an t-SuperHyperDefensive SuperHyperConnectivities, then S is an s-SuperHyperDefensive SuperHyperConnectivities;
- (ii) if  $s \leq t$  and a SuperHyperSet S of SuperHyperVertices is a dual t-SuperHyperDefensive SuperHyperConnectivities, then S is a dual s-SuperHyperDefensive SuperHyperConnectivities.

*Proof.* (i). Suppose ESHG: (V, E) is a strong Neutrosophic SuperHyperGraph. Consider a SuperHyperSet S of SuperHyperVertices is an t-SuperHyperDefensive SuperHyperConnectivities. Then

$$\begin{aligned} \forall t \in S, \ |N_s(t) \cap S| - |N_s(t) \cap (V \setminus S)| < t; \\ \forall t \in S, \ |N_s(t) \cap S| - |N_s(t) \cap (V \setminus S)| < t \le s; \\ \forall t \in S, \ |N_s(t) \cap S| - |N_s(t) \cap (V \setminus S)| < s. \end{aligned}$$

Thus S is an s-SuperHyperDefensive SuperHyperConnectivities.

(ii). Suppose ESHG : (V, E) is a strong Neutrosophic SuperHyperGraph. Consider a SuperHyperSet S of SuperHyperVertices is a dual t-SuperHyperDefensive SuperHyperConnectivities. Then

 $\begin{aligned} \forall t \in V \setminus S, \ |N_s(t) \cap S| - |N_s(t) \cap (V \setminus S)| > t; \\ \forall t \in V \setminus S, \ |N_s(t) \cap S| - |N_s(t) \cap (V \setminus S)| > t \ge s; \\ \forall t \in V \setminus S, \ |N_s(t) \cap S| - |N_s(t) \cap (V \setminus S)| > s. \end{aligned}$ 

Thus S is a dual s-SuperHyperDefensive SuperHyperConnectivities.

**Proposition 10.0.48.** Let ESHG : (V, E) be a strong Neutrosophic SuperHyperGraph. Then following statements hold;

- (i) if  $s \ge t + 2$  and a SuperHyperSet S of SuperHyperVertices is an t-SuperHyperDefensive SuperHyperConnectivities, then S is an s-SuperHyperPowerful SuperHyperConnectivities;
- (ii) if  $s \leq t$  and a SuperHyperSet S of SuperHyperVertices is a dual t-SuperHyperDefensive SuperHyperConnectivities, then S is a dual s-SuperHyperPowerful SuperHyperConnectivities.

*Proof.* (i). Suppose ESHG: (V, E) is a strong Neutrosophic SuperHyperGraph. Consider a SuperHyperSet S of SuperHyperVertices is an t-SuperHyperDefensive SuperHyperConnectivities. Then

$$\begin{aligned} \forall t \in S, \ |N_s(t) \cap S| - |N_s(t) \cap (V \setminus S)| &< t; \\ \forall t \in S, \ |N_s(t) \cap S| - |N_s(t) \cap (V \setminus S)| &< t \le t + 2 \le s; \\ \forall t \in S, \ |N_s(t) \cap S| - |N_s(t) \cap (V \setminus S)| &< s. \end{aligned}$$

Thus S is an (t + 2)-SuperHyperDefensive SuperHyperConnectivities. By S is an s-SuperHyperDefensive SuperHyperConnectivities and S is a dual (s + 2)-SuperHyperDefensive SuperHyperConnectivities, S is an s-SuperHyperPowerful SuperHyperConnectivities. (*ii*). Suppose ESHG: (V, E) is a strong Neutrosophic SuperHyperGraph. Consider a SuperHyperSet S of SuperHyperVertices is a dual t-SuperHyperDefensive SuperHyperConnectivities. Then

$$\begin{aligned} \forall t \in V \setminus S, \ |N_s(t) \cap S| - |N_s(t) \cap (V \setminus S)| > t; \\ \forall t \in V \setminus S, \ |N_s(t) \cap S| - |N_s(t) \cap (V \setminus S)| > t \ge s > s - 2; \\ \forall t \in V \setminus S, \ |N_s(t) \cap S| - |N_s(t) \cap (V \setminus S)| > s - 2. \end{aligned}$$

Thus S is an (s - 2)-SuperHyperDefensive SuperHyperConnectivities. By S is an (s - 2)-SuperHyperDefensive SuperHyperConnectivities and S is a dual s-SuperHyperDefensive SuperHyperConnectivities, S is an s-SuperHyperPowerful SuperHyperConnectivities.

**Proposition 10.0.49.** Let ESHG : (V, E) be a[an] [r-]SuperHyperUniform-strong-Neutrosophic SuperHyperGraph. Then following statements hold;

- (i) if  $\forall a \in S$ ,  $|N_s(a) \cap S| < \lfloor \frac{r}{2} \rfloor + 1$ , then ESHG : (V, E) is an 2-SuperHyperDefensive SuperHyperConnectivities;
- (ii) if  $\forall a \in V \setminus S$ ,  $|N_s(a) \cap S| > \lfloor \frac{r}{2} \rfloor + 1$ , then ESHG : (V, E) is a dual 2-SuperHyperDefensive SuperHyperConnectivities;
- (iii) if  $\forall a \in S$ ,  $|N_s(a) \cap V \setminus S| = 0$ , then ESHG : (V, E) is an r-SuperHyperDefensive SuperHyperConnectivities;
- (iv) if  $\forall a \in V \setminus S$ ,  $|N_s(a) \cap V \setminus S| = 0$ , then ESHG : (V, E) is a dual r-SuperHyperDefensive SuperHyperConnectivities.

*Proof.* (i). Suppose ESHG: (V, E) is a [an] [r-]SuperHyperUniform-strong-Neutrosophic SuperHyperGraph. Then

$$\begin{aligned} \forall t \in S, \ |N_s(t) \cap S| - |N_s(t) \cap (V \setminus S)| &< \lfloor \frac{r}{2} \rfloor + 1 - (\lfloor \frac{r}{2} \rfloor - 1); \\ \forall t \in S, \ |N_s(t) \cap S| - |N_s(t) \cap (V \setminus S)| &< \lfloor \frac{r}{2} \rfloor + 1 - (\lfloor \frac{r}{2} \rfloor - 1) < 2; \\ \forall t \in S, \ |N_s(t) \cap S| - |N_s(t) \cap (V \setminus S)| < 2. \end{aligned}$$

Thus S is an 2-SuperHyperDefensive SuperHyperConnectivities. (ii). Suppose ESHG: (V, E) is a[an] [r-]SuperHyperUniform-strong-Neutrosophic SuperHyperGraph. Then

$$\begin{aligned} \forall t \in V \setminus S, \ |N_s(t) \cap S| - |N_s(t) \cap (V \setminus S)| &> \lfloor \frac{r}{2} \rfloor + 1 - (\lfloor \frac{r}{2} \rfloor - 1); \\ \forall t \in V \setminus S, \ |N_s(t) \cap S| - |N_s(t) \cap (V \setminus S)| &> \lfloor \frac{r}{2} \rfloor + 1 - (\lfloor \frac{r}{2} \rfloor - 1) > 2; \\ \forall t \in V \setminus S, \ |N_s(t) \cap S| - |N_s(t) \cap (V \setminus S)| > 2. \end{aligned}$$

Thus S is a dual 2-SuperHyperDefensive SuperHyperConnectivities. (iii). Suppose ESHG: (V, E) is a [an] [r-]SuperHyperUniform-strong-Neutrosophic SuperHyperGraph. Then

$$\forall t \in S, |N_s(t) \cap S| - |N_s(t) \cap (V \setminus S)| < r - 0;$$

$$\begin{aligned} \forall t \in S, \ |N_s(t) \cap S| - |N_s(t) \cap (V \setminus S)| < r - 0 = r; \\ \forall t \in S, \ |N_s(t) \cap S| - |N_s(t) \cap (V \setminus S)| < r. \end{aligned}$$

Thus S is an r-SuperHyperDefensive SuperHyperConnectivities. (iv). Suppose ESHG:(V,E) is a [an] [r-]SuperHyperUniform-strong-Neutrosophic SuperHyperGraph. Then

 $\begin{aligned} \forall t \in V \setminus S, \ |N_s(t) \cap S| - |N_s(t) \cap (V \setminus S)| > r - 0; \\ \forall t \in V \setminus S, \ |N_s(t) \cap S| - |N_s(t) \cap (V \setminus S)| > r - 0 = r; \\ \forall t \in V \setminus S, \ |N_s(t) \cap S| - |N_s(t) \cap (V \setminus S)| > r. \end{aligned}$ 

Thus S is a dual r-SuperHyperDefensive SuperHyperConnectivities.

**Proposition 10.0.50.** Let ESHG : (V, E) is a [an] [r-]SuperHyperUniform-strong-Neutrosophic SuperHyperGraph. Then following statements hold;

- (i)  $\forall a \in S$ ,  $|N_s(a) \cap S| < \lfloor \frac{r}{2} \rfloor + 1$  if ESHG : (V, E) is an 2-SuperHyperDefensive SuperHyperConnectivities;
- (ii)  $\forall a \in V \setminus S$ ,  $|N_s(a) \cap S| > \lfloor \frac{r}{2} \rfloor + 1$  if ESHG : (V, E) is a dual 2-SuperHyperDefensive SuperHyperConnectivities;
- (iii)  $\forall a \in S, |N_s(a) \cap V \setminus S| = 0$  if ESHG : (V, E) is an r-SuperHyperDefensive SuperHyperConnectivities;
- (iv)  $\forall a \in V \setminus S$ ,  $|N_s(a) \cap V \setminus S| = 0$  if ESHG : (V, E) is a dual r-SuperHyperDefensive SuperHyperConnectivities.

*Proof.* (i). Suppose ESHG: (V, E) is a [an] [r-]SuperHyperUniform-strong-Neutrosophic SuperHyperGraph. Then

$$\begin{aligned} \forall t \in S, \ |N_s(t) \cap S| - |N_s(t) \cap (V \setminus S)| &< 2; \\ \forall t \in S, \ |N_s(t) \cap S| - |N_s(t) \cap (V \setminus S)| &< 2 = \lfloor \frac{r}{2} \rfloor + 1 - (\lfloor \frac{r}{2} \rfloor - 1); \\ \forall t \in S, \ |N_s(t) \cap S| - |N_s(t) \cap (V \setminus S)| &< \lfloor \frac{r}{2} \rfloor + 1 - (\lfloor \frac{r}{2} \rfloor - 1); \\ \forall t \in S, \ |N_s(t) \cap S| &= \lfloor \frac{r}{2} \rfloor + 1, \ |N_s(t) \cap (V \setminus S)| = \lfloor \frac{r}{2} \rfloor - 1. \end{aligned}$$

(ii). Suppose ESHG : (V, E) is a[an] [r-]SuperHyperUniform-strong-Neutrosophic SuperHyperGraph and a dual 2-SuperHyperDefensive SuperHyperConnectivities. Then

$$\begin{aligned} \forall t \in V \setminus S, \ |N_s(t) \cap S| - |N_s(t) \cap (V \setminus S)| &> 2; \\ \forall t \in V \setminus S, \ |N_s(t) \cap S| - |N_s(t) \cap (V \setminus S)| &> 2 = \lfloor \frac{r}{2} \rfloor + 1 - (\lfloor \frac{r}{2} \rfloor - 1); \\ \forall t \in V \setminus S, \ |N_s(t) \cap S| - |N_s(t) \cap (V \setminus S)| &> \lfloor \frac{r}{2} \rfloor + 1 - (\lfloor \frac{r}{2} \rfloor - 1); \\ \forall t \in V \setminus S, \ |N_s(t) \cap S| &= \lfloor \frac{r}{2} \rfloor + 1, \ |N_s(t) \cap (V \setminus S) = \lfloor \frac{r}{2} \rfloor - 1. \end{aligned}$$

(iii). Suppose ESHG : (V, E) is a [an] [r-]SuperHyperUniform-strong-Neutrosophic SuperHyperGraph and an r-SuperHyperDefensive SuperHyperConnectivities.

 $\begin{aligned} \forall t \in S, \ |N_s(t) \cap S| - |N_s(t) \cap (V \setminus S)| < r; \\ \forall t \in S, \ |N_s(t) \cap S| - |N_s(t) \cap (V \setminus S)| < r = r - 0; \\ \forall t \in S, \ |N_s(t) \cap S| - |N_s(t) \cap (V \setminus S)| < r - 0; \\ \forall t \in S, \ |N_s(t) \cap S| = r, \ |N_s(t) \cap (V \setminus S)| = 0. \end{aligned}$ 

(iv). Suppose ESHG : (V, E) is a [an] [r-]SuperHyperUniform-strong-Neutrosophic SuperHyperGraph and a dual r-SuperHyperDefensive SuperHyperConnectivities. Then

 $\begin{aligned} \forall t \in V \setminus S, \ |N_s(t) \cap S| - |N_s(t) \cap (V \setminus S)| > r; \\ \forall t \in V \setminus S, \ |N_s(t) \cap S| - |N_s(t) \cap (V \setminus S)| > r = r - 0; \\ \forall t \in V \setminus S, \ |N_s(t) \cap S| - |N_s(t) \cap (V \setminus S)| > r - 0; \\ \forall t \in V \setminus S, \ |N_s(t) \cap S| = r, \ |N_s(t) \cap (V \setminus S)| = 0. \end{aligned}$ 

**Proposition 10.0.51.** Let ESHG : (V, E) is a[an] [r-]SuperHyperUniform-strong-Neutrosophic SuperHyperGraph which is a SuperHyperComplete. Then following statements hold;

- (i)  $\forall a \in S$ ,  $|N_s(a) \cap S| < \lfloor \frac{\mathcal{O}-1}{2} \rfloor + 1$  if ESHG : (V, E) is an 2-SuperHyperDefensive SuperHyperConnectivities;
- (ii)  $\forall a \in V \setminus S$ ,  $|N_s(a) \cap S| > \lfloor \frac{\mathcal{O}-1}{2} \rfloor + 1$  if ESHG : (V, E) is a dual 2-SuperHyperDefensive SuperHyperConnectivities;
- (iii)  $\forall a \in S$ ,  $|N_s(a) \cap V \setminus S| = 0$  if ESHG : (V, E) is an  $(\mathcal{O} 1)$ -SuperHyperDefensive SuperHyperConnectivities;
- (iv)  $\forall a \in V \setminus S$ ,  $|N_s(a) \cap V \setminus S| = 0$  if ESHG : (V, E) is a dual  $(\mathcal{O} 1)$ -SuperHyperDefensive SuperHyperConnectivities.

*Proof.* (i). Suppose ESHG: (V, E) is a [an] [r-]SuperHyperUniform-strong-Neutrosophic SuperHyperGraph and an 2- SuperHyperDefensive SuperHyperConnectivities. Then

$$\begin{aligned} \forall t \in S, \ |N_s(t) \cap S| - |N_s(t) \cap (V \setminus S)| &< 2; \\ \forall t \in S, \ |N_s(t) \cap S| - |N_s(t) \cap (V \setminus S)| &< 2 = \lfloor \frac{\mathcal{O} - 1}{2} \rfloor + 1 - (\lfloor \frac{\mathcal{O} - 1}{2} \rfloor - 1); \\ \forall t \in S, \ |N_s(t) \cap S| - |N_s(t) \cap (V \setminus S)| &< \lfloor \frac{\mathcal{O} - 1}{2} \rfloor + 1 - (\lfloor \frac{\mathcal{O} - 1}{2} \rfloor - 1); \\ \forall t \in S, \ |N_s(t) \cap S| &= \lfloor \frac{\mathcal{O} - 1}{2} \rfloor + 1, \ |N_s(t) \cap (V \setminus S)| = \lfloor \frac{\mathcal{O} - 1}{2} \rfloor - 1. \end{aligned}$$

(ii). Suppose ESHG: (V, E) is a[an] [r-]SuperHyperUniform-strong-Neutrosophic SuperHyperGraph and a dual 2-SuperHyperDefensive SuperHyperConnectivities. Then

$$\forall t \in V \setminus S, \ |N_s(t) \cap S| - |N_s(t) \cap (V \setminus S)| > 2;$$

$$\begin{aligned} \forall t \in V \setminus S, \ |N_s(t) \cap S| - |N_s(t) \cap (V \setminus S)| &> 2 = \lfloor \frac{\mathcal{O} - 1}{2} \rfloor + 1 - (\lfloor \frac{\mathcal{O} - 1}{2} \rfloor - 1); \\ \forall t \in V \setminus S, \ |N_s(t) \cap S| - |N_s(t) \cap (V \setminus S)| &> \lfloor \frac{\mathcal{O} - 1}{2} \rfloor + 1 - (\lfloor \frac{\mathcal{O} - 1}{2} \rfloor - 1); \\ \forall t \in V \setminus S, \ |N_s(t) \cap S| &= \lfloor \frac{\mathcal{O} - 1}{2} \rfloor + 1, \ |N_s(t) \cap (V \setminus S) = \lfloor \frac{\mathcal{O} - 1}{2} \rfloor - 1. \end{aligned}$$

(*iii*). Suppose ESHG: (V, E) is a[an] [r-]SuperHyperUniform-strong-Neutrosophic SuperHyperGraph and an  $(\mathcal{O} - 1)$ -SuperHyperDefensive SuperHyperConnectivities.

$$\begin{aligned} \forall t \in S, \ |N_s(t) \cap S| - |N_s(t) \cap (V \setminus S)| &< \mathcal{O} - 1; \\ \forall t \in S, \ |N_s(t) \cap S| - |N_s(t) \cap (V \setminus S)| &< \mathcal{O} - 1 = \mathcal{O} - 1 - 0; \\ \forall t \in S, \ |N_s(t) \cap S| - |N_s(t) \cap (V \setminus S)| &< \mathcal{O} - 1 - 0; \\ \forall t \in S, \ |N_s(t) \cap S| = \mathcal{O} - 1, \ |N_s(t) \cap (V \setminus S)| = 0. \end{aligned}$$

(iv). Suppose ESHG:(V,E) is a [an] [r-]SuperHyperUniform-strong-Neutrosophic SuperHyperGraph and a dual r-SuperHyperDefensive SuperHyperConnectivities. Then

$$\begin{aligned} \forall t \in V \setminus S, \ |N_s(t) \cap S| - |N_s(t) \cap (V \setminus S)| &> \mathcal{O} - 1; \\ \forall t \in V \setminus S, \ |N_s(t) \cap S| - |N_s(t) \cap (V \setminus S)| &> \mathcal{O} - 1 = \mathcal{O} - 1 - 0; \\ \forall t \in V \setminus S, \ |N_s(t) \cap S| - |N_s(t) \cap (V \setminus S)| &> \mathcal{O} - 1 - 0; \\ \forall t \in V \setminus S, \ |N_s(t) \cap S| = \mathcal{O} - 1, \ |N_s(t) \cap (V \setminus S)| = 0. \end{aligned}$$

**Proposition 10.0.52.** Let ESHG : (V, E) is a[an] [r-]SuperHyperUniform-strong-Neutrosophic SuperHyperGraph which is a SuperHyperComplete. Then following statements hold;

- (i) if  $\forall a \in S$ ,  $|N_s(a) \cap S| < \lfloor \frac{\mathcal{O}-1}{2} \rfloor + 1$ , then ESHG : (V, E) is an 2-SuperHyperDefensive SuperHyperConnectivities;
- (ii) if  $\forall a \in V \setminus S$ ,  $|N_s(a) \cap S| > \lfloor \frac{\mathcal{O}-1}{2} \rfloor + 1$ , then ESHG: (V, E) is a dual 2-SuperHyperDefensive SuperHyperConnectivities;
- (iii) if  $\forall a \in S$ ,  $|N_s(a) \cap V \setminus S| = 0$ , then ESHG : (V, E) is  $(\mathcal{O} 1)$ -SuperHyperDefensive SuperHyperConnectivities;
- (iv) if  $\forall a \in V \setminus S$ ,  $|N_s(a) \cap V \setminus S| = 0$ , then ESHG : (V, E) is a dual  $(\mathcal{O}-1)$ -SuperHyperDefensive SuperHyperConnectivities.

*Proof.* (i). Suppose ESHG: (V, E) is a [an] [r-]SuperHyperUniform-strong-Neutrosophic SuperHyperGraph which is a SuperHyperComplete. Then

$$\begin{aligned} \forall t \in S, \ |N_s(t) \cap S| - |N_s(t) \cap (V \setminus S)| &< \lfloor \frac{\mathcal{O} - 1}{2} \rfloor + 1 - (\lfloor \frac{\mathcal{O} - 1}{2} \rfloor - 1); \\ \forall t \in S, \ |N_s(t) \cap S| - |N_s(t) \cap (V \setminus S)| &< \lfloor \frac{\mathcal{O} - 1}{2} \rfloor + 1 - (\lfloor \frac{\mathcal{O} - 1}{2} \rfloor - 1) < 2; \\ \forall t \in S, \ |N_s(t) \cap S| - |N_s(t) \cap (V \setminus S)| < 2. \end{aligned}$$

Henry Garrett · Independent Researcher · Department of Mathematics · DrHenryGarrett@gmail.com · Manhattan, NY, USA

Thus S is an 2-SuperHyperDefensive SuperHyperConnectivities.

(ii). Suppose ESHG : (V, E) is a [an] [r-]SuperHyperUniform-strong-Neutrosophic SuperHyperGraph which is a SuperHyperComplete. Then

$$\begin{aligned} \forall t \in V \setminus S, \ |N_s(t) \cap S| - |N_s(t) \cap (V \setminus S)| &> \lfloor \frac{\mathcal{O} - 1}{2} \rfloor + 1 - (\lfloor \frac{\mathcal{O} - 1}{2} \rfloor - 1); \\ \forall t \in V \setminus S, \ |N_s(t) \cap S| - |N_s(t) \cap (V \setminus S)| &> \lfloor \frac{\mathcal{O} - 1}{2} \rfloor + 1 - (\lfloor \frac{\mathcal{O} - 1}{2} \rfloor - 1) > 2; \\ \forall t \in V \setminus S, \ |N_s(t) \cap S| - |N_s(t) \cap (V \setminus S)| > 2. \end{aligned}$$

Thus S is a dual 2-SuperHyperDefensive SuperHyperConnectivities. (*iii*). Suppose ESHG: (V, E) is a[an] [r-]SuperHyperUniform-strong-Neutrosophic SuperHyperGraph which is a SuperHyperComplete. Then

$$\begin{aligned} \forall t \in S, \ |N_s(t) \cap S| - |N_s(t) \cap (V \setminus S)| &< \mathcal{O} - 1 - 0; \\ \forall t \in S, \ |N_s(t) \cap S| - |N_s(t) \cap (V \setminus S)| &< \mathcal{O} - 1 - 0 = \mathcal{O} - 1; \\ \forall t \in S, \ |N_s(t) \cap S| - |N_s(t) \cap (V \setminus S)| &< \mathcal{O} - 1. \end{aligned}$$

Thus S is an  $(\mathcal{O}-1)$ -SuperHyperDefensive SuperHyperConnectivities. (*iv*). Suppose ESHG: (V, E) is a[an] [r-]SuperHyperUniform-strong-Neutrosophic SuperHyperGraph which is a SuperHyperComplete. Then

$$\begin{aligned} \forall t \in V \setminus S, \ |N_s(t) \cap S| - |N_s(t) \cap (V \setminus S)| &> \mathcal{O} - 1 - 0; \\ \forall t \in V \setminus S, \ |N_s(t) \cap S| - |N_s(t) \cap (V \setminus S)| &> \mathcal{O} - 1 - 0 = \mathcal{O} - 1; \\ \forall t \in V \setminus S, \ |N_s(t) \cap S| - |N_s(t) \cap (V \setminus S)| &> \mathcal{O} - 1. \end{aligned}$$

Thus S is a dual  $(\mathcal{O} - 1)$ -SuperHyperDefensive SuperHyperConnectivities.

**Proposition 10.0.53.** Let ESHG : (V, E) is a [an] [r-]SuperHyperUniform-strong-Neutrosophic SuperHyperGraph which is SuperHyperConnectivities. Then following statements hold;

- (i)  $\forall a \in S, |N_s(a) \cap S| < 2$  if ESHG : (V, E)) is an 2-SuperHyperDefensive SuperHyperConnectivities;
- (ii)  $\forall a \in V \setminus S$ ,  $|N_s(a) \cap S| > 2$  if ESHG : (V, E) is a dual 2-SuperHyperDefensive SuperHyperConnectivities;
- (iii)  $\forall a \in S, |N_s(a) \cap V \setminus S| = 0$  if ESHG : (V, E) is an 2-SuperHyperDefensive SuperHyperConnectivities;
- (iv)  $\forall a \in V \setminus S$ ,  $|N_s(a) \cap V \setminus S| = 0$  if ESHG : (V, E) is a dual 2-SuperHyperDefensive SuperHyperConnectivities.

*Proof.* (i). Suppose ESHG: (V, E) is a[an] [r-]SuperHyperUniform-strong-Neutrosophic SuperHyperGraph and S is an 2-SuperHyperDefensive SuperHyperConnectivities. Then

$$\begin{aligned} \forall t \in S, \ |N_s(t) \cap S| - |N_s(t) \cap (V \setminus S)| &< 2; \\ \forall t \in S, \ |N_s(t) \cap S| - |N_s(t) \cap (V \setminus S)| &< 2 = 2 - 0; \end{aligned}$$

Henry Garrett · Independent Researcher · Department of Mathematics · DrHenryGarrett@gmail.com · Manhattan, NY, USA

 $\forall t \in S, |N_s(t) \cap S| - |N_s(t) \cap (V \setminus S)| < 2; \\ \forall t \in S, |N_s(t) \cap S| < 2, |N_s(t) \cap (V \setminus S)| = 0.$ 

(ii). Suppose ESHG : (V, E) is a[an] [r-]SuperHyperUniform-strong-Neutrosophic SuperHyperGraph and S is a dual 2-SuperHyperDefensive SuperHyperConnectivities. Then

$$\begin{aligned} \forall t \in V \setminus S, \ |N_s(t) \cap S| - |N_s(t) \cap (V \setminus S)| &> 2; \\ \forall t \in V \setminus S, \ |N_s(t) \cap S| - |N_s(t) \cap (V \setminus S)| &> 2 = 2 - 0; \\ \forall t \in V \setminus S, \ |N_s(t) \cap S| - |N_s(t) \cap (V \setminus S)| &> 2; \\ \forall t \in V \setminus S, \ |N_s(t) \cap S| &> 2, \ |N_s(t) \cap (V \setminus S)| &= 0. \end{aligned}$$

(iii). Suppose ESHG : (V, E) is a [an] [r-]SuperHyperUniform-strong-Neutrosophic SuperHyperGraph and S is an 2-SuperHyperDefensive SuperHyperConnectivities.

$$\begin{aligned} \forall t \in S, \ |N_s(t) \cap S| - |N_s(t) \cap (V \setminus S)| &< 2; \\ \forall t \in S, \ |N_s(t) \cap S| - |N_s(t) \cap (V \setminus S)| &< 2 = 2 - 0; \\ \forall t \in S, \ |N_s(t) \cap S| - |N_s(t) \cap (V \setminus S)| &< 2 - 0; \\ \forall t \in S, \ |N_s(t) \cap S| &< 2, \ |N_s(t) \cap (V \setminus S)| = 0. \end{aligned}$$

(iv). Suppose ESHG : (V, E) is a [an] [r-]SuperHyperUniform-strong-Neutrosophic SuperHyperGraph and S is a dual r-SuperHyperDefensive SuperHyperConnectivities. Then

$$\begin{aligned} \forall t \in V \setminus S, \ |N_s(t) \cap S| - |N_s(t) \cap (V \setminus S)| &> 2; \\ \forall t \in V \setminus S, \ |N_s(t) \cap S| - |N_s(t) \cap (V \setminus S)| &> 2 = 2 - 0; \\ \forall t \in V \setminus S, \ |N_s(t) \cap S| - |N_s(t) \cap (V \setminus S)| &> 2 - 0; \\ \forall t \in V \setminus S, \ |N_s(t) \cap S| &> 2, \ |N_s(t) \cap (V \setminus S)| &= 0. \end{aligned}$$

**Proposition 10.0.54.** Let ESHG : (V, E) is a [an] [r-]SuperHyperUniform-strong-Neutrosophic SuperHyperGraph which is SuperHyperConnectivities. Then following statements hold;

- (i) if  $\forall a \in S$ ,  $|N_s(a) \cap S| < 2$ , then ESHG : (V, E) is an 2-SuperHyperDefensive SuperHyperConnectivities;
- (ii) if  $\forall a \in V \setminus S$ ,  $|N_s(a) \cap S| > 2$ , then ESHG : (V, E) is a dual 2-SuperHyperDefensive SuperHyperConnectivities;
- (iii) if  $\forall a \in S$ ,  $|N_s(a) \cap V \setminus S| = 0$ , then ESHG : (V, E) is an 2-SuperHyperDefensive SuperHyperConnectivities;
- (iv) if  $\forall a \in V \setminus S$ ,  $|N_s(a) \cap V \setminus S| = 0$ , then ESHG : (V, E) is a dual 2-SuperHyperDefensive SuperHyperConnectivities.

*Proof.* (i). Suppose ESHG: (V, E) is a [an] [r-]SuperHyperUniform-strong-Neutrosophic SuperHyperGraph which is SuperHyperConnectivities. Then

$$\begin{aligned} \forall t \in S, \ |N_s(t) \cap S| - |N_s(t) \cap (V \setminus S)| &< 2 - 0; \\ \forall t \in S, \ |N_s(t) \cap S| - |N_s(t) \cap (V \setminus S)| &< 2 - 0 = 2; \\ \forall t \in S, \ |N_s(t) \cap S| - |N_s(t) \cap (V \setminus S)| &< 2. \end{aligned}$$

Thus S is an 2-SuperHyperDefensive SuperHyperConnectivities. (ii). Suppose ESHG: (V, E) is a[an] [r-]SuperHyperUniform-strong-Neutrosophic SuperHyperGraph which is SuperHyperConnectivities. Then

$$\begin{aligned} \forall t \in V \setminus S, \ |N_s(t) \cap S| - |N_s(t) \cap (V \setminus S)| &> 2 - 0; \\ \forall t \in V \setminus S, \ |N_s(t) \cap S| - |N_s(t) \cap (V \setminus S)| &> 2 - 0 = 2; \\ \forall t \in V \setminus S, \ |N_s(t) \cap S| - |N_s(t) \cap (V \setminus S)| &> 2. \end{aligned}$$

Thus S is a dual 2-SuperHyperDefensive SuperHyperConnectivities. (*iii*). Suppose ESHG: (V, E) is a [an] [r-]SuperHyperUniform-strong-Neutrosophic SuperHyperGraph which is SuperHyperConnectivities. Then

$$\begin{aligned} \forall t \in S, \ |N_s(t) \cap S| - |N_s(t) \cap (V \setminus S)| &< 2 - 0; \\ \forall t \in S, \ |N_s(t) \cap S| - |N_s(t) \cap (V \setminus S)| &< 2 - 0 = 2; \\ \forall t \in S, \ |N_s(t) \cap S| - |N_s(t) \cap (V \setminus S)| &< 2. \end{aligned}$$

Thus S is an 2-SuperHyperDefensive SuperHyperConnectivities. (iv). Suppose ESHG: (V, E) is a [an] [r-]SuperHyperUniform-strong-Neutrosophic SuperHyperGraph which is SuperHyperConnectivities. Then

$$\begin{aligned} \forall t \in V \setminus S, \ |N_s(t) \cap S| - |N_s(t) \cap (V \setminus S)| &> 2 - 0; \\ \forall t \in V \setminus S, \ |N_s(t) \cap S| - |N_s(t) \cap (V \setminus S)| &> 2 - 0 = 2; \\ \forall t \in V \setminus S, \ |N_s(t) \cap S| - |N_s(t) \cap (V \setminus S)| &> 2. \end{aligned}$$

Thus S is a dual 2-SuperHyperDefensive SuperHyperConnectivities.

#### CHAPTER 11

## Extreme Applications in Cancer's Extreme Recognition

The cancer is the Extreme disease but the Extreme model is going to figure out what's going on this Extreme phenomenon. The special Extreme case of this Extreme disease is considered and as the consequences of the model, some parameters are used. The cells are under attack of this disease but the moves of the cancer in the special region are the matter of mind. The Extreme recognition of the cancer could help to find some Extreme treatments for this Extreme disease. In the following, some Extreme steps are Extreme devised on this disease.

- **Step 1. (Extreme Definition)** The Extreme recognition of the cancer in the long-term Extreme function.
- **Step 2. (Extreme Issue)** The specific region has been assigned by the Extreme model [it's called Neutrosophic SuperHyperGraph] and the long Extreme cycle of the move from the cancer is identified by this research. Sometimes the move of the cancer hasn't be easily identified since there are some determinacy, indeterminacy and neutrality about the moves and the effects of the cancer on that region; this event leads us to choose another model [it's said to be Neutrosophic SuperHyperGraph] to have convenient perception on what's happened and what's done.
- **Step 3. (Extreme Model)** There are some specific Extreme models, which are well-known and they've got the names, and some general Extreme models. The moves and the Extreme traces of the cancer on the complex tracks and between complicated groups of cells could be fantasized by an Extreme SuperHyperPath(-/SuperHyperConnectivities, SuperHyperStar, SuperHyperBipartite, SuperHyperMultipartite, SuperHyperWheel). The aim is to find either the Extreme SuperHyperConnectivities or the Extreme SuperHyperConnectivities in those Extreme Extreme SuperHyperModels.

### CHAPTER 12

## Case 1: The Initial Extreme Steps Toward Extreme SuperHyperBipartite as Extreme SuperHyperModel

**Step 4. (Extreme Solution)** In the Extreme Figure (12.1), the Extreme SuperHyperBipartite is Extreme highlighted and Extreme featured.

By using the Extreme Figure (12.1) and the Table (12.1), the Extreme SuperHyperBipartite is obtained.

The obtained Extreme SuperHyperSet, by the Extreme Algorithm in previous Extreme result,

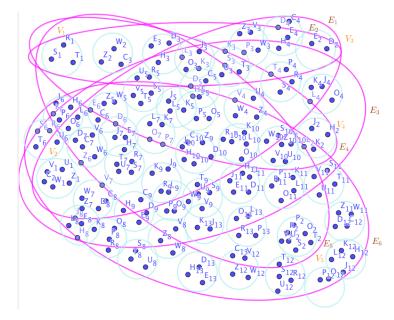


Figure 12.1: an Extreme SuperHyperBipartite Associated to the Notions of Extreme SuperHyper-Connectivities

Table 12.1: The Values of Vertices, SuperVertices, Edges, HyperEdges, and SuperHyperEdges Belong to The Extreme SuperHyperBipartite

| The Values of The Vertices                                     | The Number of Position in Alphabet  |  |  |
|----------------------------------------------------------------|-------------------------------------|--|--|
| The Values of The SuperVertices The maximum Values of Its Vert |                                     |  |  |
| The Values of The Edges                                        | The maximum Values of Its Vertices  |  |  |
| The Values of The HyperEdges                                   | The maximum Values of Its Vertices  |  |  |
| The Values of The SuperHyperEdges                              | The maximum Values of Its Endpoints |  |  |

of the Extreme SuperHyperVertices of the connected Extreme SuperHyperBipartite ESHB: (V, E), in the Extreme SuperHyperModel (12.1), is the Extreme SuperHyperConnectivities.

#### CHAPTER 13

## Case 2: The Increasing Extreme Steps Toward Extreme SuperHyperMultipartite as Extreme SuperHyperModel

**Step 4. (Extreme Solution)** In the Extreme Figure (13.1), the Extreme SuperHyperMultipartite is Extreme highlighted and Extreme featured.

By using the Extreme Figure (13.1) and the Table (13.1), the Extreme SuperHyperMultipartite is obtained.

The obtained Extreme SuperHyperSet, by the Extreme Algorithm in previous result, of the Extreme SuperHyperVertices of the connected Extreme SuperHyperMultipartite ESHM: (V, E), in the Extreme SuperHyperModel (13.1), is the Extreme SuperHyperConnectivities.

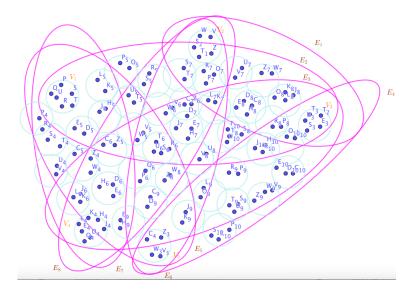


Figure 13.1: an Extreme SuperHyperMultipartite Associated to the Notions of Extreme SuperHyperConnectivities

Table 13.1: The Values of Vertices, SuperVertices, Edges, HyperEdges, and SuperHyperEdges Belong to The Extreme SuperHyperMultipartite

| The Values of The Vertices The Number of Position in Alph |                                     |  |
|-----------------------------------------------------------|-------------------------------------|--|
| The Values of The SuperVertices                           | The maximum Values of Its Vertices  |  |
| The Values of The Edges                                   | The maximum Values of Its Vertices  |  |
| The Values of The HyperEdges                              | The maximum Values of Its Vertices  |  |
| The Values of The SuperHyperEdges                         | The maximum Values of Its Endpoints |  |

Henry Garrett · Independent Researcher · Department of Mathematics · Dr<br/>HenryGarrett@gmail.com · Manhattan, NY, USA

#### CHAPTER 14

## **Open Problems**

In what follows, some "problems" and some "questions" are proposed.

The SuperHyperConnectivities and the Extreme SuperHyperConnectivities are defined on a realworld application, titled "Cancer's Recognitions".

**Question 14.0.1.** Which the else SuperHyperModels could be defined based on Cancer's recognitions?

**Question 14.0.2.** Are there some SuperHyperNotions related to SuperHyperConnectivities and the Extreme SuperHyperConnectivities?

**Question 14.0.3.** Are there some Algorithms to be defined on the SuperHyperModels to compute them?

**Question 14.0.4.** Which the SuperHyperNotions are related to beyond the SuperHyperConnectivities and the Extreme SuperHyperConnectivities?

**Problem 14.0.5.** The SuperHyperConnectivities and the Extreme SuperHyperConnectivities do a SuperHyperModel for the Cancer's recognitions and they're based on SuperHyperConnectivities, are there else?

**Problem 14.0.6.** Which the fundamental SuperHyperNumbers are related to these SuperHyperNumbers types-results?

**Problem 14.0.7.** What's the independent research based on Cancer's recognitions concerning the multiple types of SuperHyperNotions?

#### CHAPTER 15

## **Conclusion and Closing Remarks**

In this section, concluding remarks and closing remarks are represented. The drawbacks of this research are illustrated. Some benefits and some advantages of this research are highlighted. This research uses some approaches to make Neutrosophic SuperHyperGraphs more understandable. In this endeavor, two SuperHyperNotions are defined on the SuperHyperConnectivities. For that sake in the second definition, the main definition of the Neutrosophic SuperHyperGraph is redefined on the position of the alphabets. Based on the new definition for the Neutrosophic SuperHyperGraph, the new SuperHyperNotion, Extreme SuperHyperConnectivities, finds the convenient background to implement some results based on that. Some SuperHyperClasses and some Extreme SuperHyperClasses are the cases of this research on the modeling of the regions where are under the attacks of the cancer to recognize this disease as it's mentioned on the title "Cancer's Recognitions". To formalize the instances on the SuperHyperNotion, SuperHyperConnectivities, the new SuperHyperClasses and SuperHyperClasses, are introduced. Some general results are gathered in the section on the SuperHyperConnectivities and the Extreme SuperHyperConnectivities. The clarifications, instances and literature reviews have taken the whole way through. In this research, the literature reviews have fulfilled the lines containing the notions and the results. The SuperHyperGraph and Neutrosophic SuperHyperGraph are the SuperHyperModels on the "Cancer's Recognitions" and both bases are the background of this research. Sometimes the cancer has been happened on the region, full of cells, groups of cells and embedded styles. In this segment, the SuperHyperModel proposes some SuperHyperNotions based on the connectivities of the moves of the cancer in the longest and strongest styles with the formation of the design and the architecture are formally called "SuperHyperConnectivities" in the themes of jargons and buzzwords. The prefix "SuperHyper" refers to the theme of the embedded styles to figure out the background for the SuperHyperNotions. In the Table (15.1), some limitations and advantages of this research are pointed out.

Table 15.1: A Brief Overview about Advantages and Limitations of this Research

| Advantages                                 | Limitations                |  |  |
|--------------------------------------------|----------------------------|--|--|
| 1. Redefining Neutrosophic SuperHyperGraph | 1. General Results         |  |  |
| 2. SuperHyperConnectivities                |                            |  |  |
| 3. Extreme SuperHyperConnectivities        | 2. Other SuperHyperNumbers |  |  |
| 4. Modeling of Cancer's Recognitions       |                            |  |  |
| 5. SuperHyperClasses                       | 3. SuperHyperFamilies      |  |  |

## **Bibliography**

- Henry Garrett, "Properties of SuperHyperGraph and Neutrosophic SuperHyper-Graph", Neutrosophic Sets and Systems 49 (2022) 531-561 (doi: 10.5281/zenodo.6456413). (http://fs.unm.edu/NSS/NeutrosophicSuperHyperGraph34.pdf). (https://digitalrepository.unm.edu/nss\_journal/vol49/iss1/34).
- [2] Henry Garrett, "Neutrosophic Co-degree and Neutrosophic Degree alongside Chromatic Numbers in the Setting of Some Classes Related to Neutrosophic Hypergraphs", J Curr Trends Comp Sci Res 1(1) (2022) 06-14.
- Henry Garrett, "Super Hyper Dominating and Super Hyper Resolving on Neutrosophic Super Hyper Graphs and Their Directions in Game Theory and Neutrosophic Super Hyper Classes", J Math Techniques Comput Math 1(3) (2022) 242-263.
- Garrett, Henry. "0039 / Closing Numbers and Super-Closing Numbers as (Dual)Resolving and (Dual)Coloring alongside (Dual)Dominating in (Neutrosophic)n-SuperHyperGraph." CERN European Organization for Nuclear Research - Zenodo, Nov. 2022. CERN European Organization for Nuclear Research, https://doi.org/10.5281/zenodo.6319942. https://oa.mg/work/10.5281/zenodo.6319942
- [5] Garrett, Henry. "0049 / (Failed)1-Zero-Forcing Number in Neutrosophic Graphs." CERN European Organization for Nuclear Research - Zenodo, Feb. 2022. CERN European Organization for Nuclear Research, https://doi.org/10.13140/rg.2.2.35241.26724. https://oa.mg/work/10.13140/rg.2.2.35241.26724
- [6] Henry Garrett, "Extreme SuperHyperClique as the Firm Scheme of Confrontation under Cancer's Recognition as the Model in The Setting of (Neutrosophic) SuperHyperGraphs", Preprints 2023, 2023010308 (doi: 10.20944/preprints202301.0308.v1).
- [7] Henry Garrett, "Uncertainty On The Act And Effect Of Cancer Alongside The Foggy Positions Of Cells Toward Neutrosophic Failed SuperHyperClique inside Neutrosophic Super-HyperGraphs Titled Cancer's Recognition", Preprints 2023, 2023010282 (doi: 10.20944/preprints202301.0282.v1).
- [8] Henry Garrett, "Neutrosophic Version Of Separates Groups Of Cells In Cancer's Recognition On Neutrosophic SuperHyperGraphs", Preprints 2023, 2023010267 (doi: 10.20944/preprints202301.0267.v1).

- [9] Henry Garrett, "The Shift Paradigm To Classify Separately The Cells and Affected Cells Toward The Totality Under Cancer's Recognition By New Multiple Definitions On the Sets Polynomials Alongside Numbers In The (Neutrosophic) SuperHyperMatching Theory Based on SuperHyperGraph and Neutrosophic SuperHyperGraph", Preprints 2023, 2023010265 (doi: 10.20944/preprints202301.0265.v1).
- [10] Henry Garrett, "Breaking the Continuity and Uniformity of Cancer In The Worst Case of Full Connections With Extreme Failed SuperHyperClique In Cancer's Recognition Applied in (Neutrosophic) SuperHyperGraphs", Preprints 2023, 2023010262, (doi: 10.20944/preprints202301.0262.v1).
- [11] Henry Garrett, "Neutrosophic Failed SuperHyperStable as the Survivors on the Cancer's Neutrosophic Recognition Based on Uncertainty to All Modes in Neutrosophic SuperHyperGraphs", Preprints 2023, 2023010240 (doi: 10.20944/preprints202301.0240.v1).
- [12] Henry Garrett, "Extremism of the Attacked Body Under the Cancer's Circumstances Where Cancer's Recognition Titled (Neutrosophic) SuperHyperGraphs", Preprints 2023, 2023010224, (doi: 10.20944/preprints202301.0224.v1).
- [13] Henry Garrett, "(Neutrosophic) 1-Failed SuperHyperForcing in Cancer's Recognitions And (Neutrosophic) SuperHyperGraphs", Preprints 2023, 2023010105 (doi: 10.20944/preprints202301.0105.v1).
- [14] Henry Garrett, "Neutrosophic Messy-Style SuperHyperGraphs To Form Neutrosophic Super-HyperStable To Act on Cancer's Neutrosophic Recognitions In Special ViewPoints", Preprints 2023, 2023010088 (doi: 10.20944/preprints202301.0088.v1).
- [15] Henry Garrett, "Neutrosophic 1-Failed SuperHyperForcing in the SuperHyperFunction To Use Neutrosophic SuperHyperGraphs on Cancer's Neutrosophic Recognition And Beyond", Preprints 2023, 2023010044
- [16] Henry Garrett, "(Neutrosophic) SuperHyperStable on Cancer's Recognition by Well- SuperHyperModelled (Neutrosophic) SuperHyperGraphs", Preprints 2023, 2023010043 (doi: 10.20944/preprints202301.0043.v1).
- [17] Henry Garrett, "Basic Notions on (Neutrosophic) SuperHyperForcing And (Neutrosophic) SuperHyperModeling in Cancer's Recognitions And (Neutrosophic) SuperHyperGraphs", Preprints 2023, 2023010105 (doi: 10.20944/preprints202301.0105.v1).
- [18] Henry Garrett, "Neutrosophic Messy-Style SuperHyperGraphs To Form Neutrosophic Super-HyperStable To Act on Cancer's Neutrosophic Recognitions In Special ViewPoints", Preprints 2023, 2023010088 (doi: 10.20944/preprints202301.0088.v1).
- [19] Henry Garrett, "(Neutrosophic) SuperHyperModeling of Cancer's Recognitions Featuring (Neutrosophic) SuperHyperDefensive SuperHyperAlliances", Preprints 2022, 2022120549 (doi: 10.20944/preprints202212.0549.v1).
- [20] Henry Garrett, "(Neutrosophic) SuperHyperAlliances With SuperHyperDefensive and Super-HyperOffensive Type-SuperHyperSet On (Neutrosophic) SuperHyperGraph With (Neutrosophic) SuperHyperModeling of Cancer's Recognitions And Related (Neutrosophic) SuperHyperClasses", Preprints 2022, 2022120540 (doi: 10.20944/preprints202212.0540.v1).

- [21] Henry Garrett, "SuperHyperGirth on SuperHyperGraph and Neutrosophic SuperHyperGraph With SuperHyperModeling of Cancer's Recognitions", Preprints 2022, 2022120500 (doi: 10.20944/preprints202212.0500.v1).
- [22] Henry Garrett, "Some SuperHyperDegrees and Co-SuperHyperDegrees on Neutrosophic SuperHyperGraphs and SuperHyperGraphs Alongside Applications in Cancer's Treatments", Preprints 2022, 2022120324 (doi: 10.20944/preprints202212.0324.v1).
- [23] Henry Garrett, "SuperHyperDominating and SuperHyperResolving on Neutrosophic Super-HyperGraphs And Their Directions in Game Theory and Neutrosophic SuperHyperClasses", Preprints 2022, 2022110576 (doi: 10.20944/preprints202211.0576.v1).
- [24] Henry Garrett, "SuperHyperMatching By (R-)Definitions And Polynomials To Monitor Cancer's Recognition In Neutrosophic SuperHyperGraphs", ResearchGate 2023, (doi: 10.13140/RG.2.2.35061.65767).
- [25] Henry Garrett, "The Focus on The Partitions Obtained By Parallel Moves In The Cancer's Extreme Recognition With Different Types of Extreme SuperHyperMatching Set and Polynomial on (Neutrosophic) SuperHyperGraphs", ResearchGate 2023, (doi: 10.13140/RG.2.2.18494.15680).
- [26] Henry Garrett, "Extreme Failed SuperHyperClique Decides the Failures on the Cancer's Recognition in the Perfect Connections of Cancer's Attacks By SuperHyperModels Named (Neutrosophic) SuperHyperGraphs", ResearchGate 2023, (doi: 10.13140/RG.2.2.32530.73922).
- [27] Henry Garrett, "Indeterminacy On The All Possible Connections of Cells In Front of Cancer's Attacks In The Terms of Neutrosophic Failed SuperHyperClique on Cancer's Recognition called Neutrosophic SuperHyperGraphs", ResearchGate 2023, (doi: 10.13140/RG.2.2.15897.70243).
- [28] Henry Garrett, "Perfect Directions Toward Idealism in Cancer's Neutrosophic Recognition Forwarding Neutrosophic SuperHyperClique on Neutrosophic SuperHyperGraphs", ResearchGate 2023, (doi: 10.13140/RG.2.2.30092.80004).
- [29] Henry Garrett, "Demonstrating Complete Connections in Every Embedded Regions and Sub-Regions in the Terms of Cancer's Recognition and (Neutrosophic) SuperHyperGraphs With (Neutrosophic) SuperHyperClique", ResearchGate 2023, (doi: 10.13140/RG.2.2.23172.19849).
- [30] Henry Garrett, "Different Neutrosophic Types of Neutrosophic Regions titled neutrosophic Failed SuperHyperStable in Cancer's Neutrosophic Recognition modeled in the Form of Neutrosophic SuperHyperGraphs", ResearchGate 2023, (doi: 10.13140/RG.2.2.17385.36968).
- [31] Henry Garrett, "Using the Tool As (Neutrosophic) Failed SuperHyperStable To SuperHyper-Model Cancer's Recognition Titled (Neutrosophic) SuperHyperGraphs", ResearchGate 2023, (doi: 10.13140/RG.2.2.28945.92007).
- [32] Henry Garrett, "Neutrosophic Messy-Style SuperHyperGraphs To Form Neutrosophic SuperHyperStable To Act on Cancer's Neutrosophic Recognitions In Special ViewPoints", ResearchGate 2023, (doi: 10.13140/RG.2.2.11447.80803).
- [33] Henry Garrett, "(Neutrosophic) SuperHyperStable on Cancer's Recognition by Well-SuperHyperModelled (Neutrosophic) SuperHyperGraphs", ResearchGate 2023, (doi: 10.13140/RG.2.2.35774.77123).

- [34] Henry Garrett, "Neutrosophic 1-Failed SuperHyperForcing in the SuperHyperFunction To Use Neutrosophic SuperHyperGraphs on Cancer's Neutrosophic Recognition And Beyond", ResearchGate 2022, (doi: 10.13140/RG.2.2.36141.77287).
- [35] Henry Garrett, "(Neutrosophic) 1-Failed SuperHyperForcing in Cancer's Recognitions And (Neutrosophic) SuperHyperGraphs", ResearchGate 2022, (doi: 10.13140/RG.2.2.29430.88642).
- [36] Henry Garrett, "Basic Notions on (Neutrosophic) SuperHyperForcing And (Neutrosophic) SuperHyperModeling in Cancer's Recognitions And (Neutrosophic) SuperHyperGraphs", ResearchGate 2022, (doi: 10.13140/RG.2.2.11369.16487).
- [37] Henry Garrett, "Basic Neutrosophic Notions Concerning SuperHyperDominating and Neutrosophic SuperHyperResolving in SuperHyperGraph", ResearchGate 2022 (doi: 10.13140/RG.2.2.29173.86244).
- [38] Henry Garrett, "Initial Material of Neutrosophic Preliminaries to Study Some Neutrosophic Notions Based on Neutrosophic SuperHyperEdge (NSHE) in Neutrosophic SuperHyperGraph (NSHG)", ResearchGate 2022 (doi: 10.13140/RG.2.2.25385.88160).
- [39] Henry Garrett, (2022). "Beyond Neutrosophic Graphs", Ohio: E-publishing: Educational Publisher 1091 West 1st Ave Grandview Heights, Ohio 43212 United States. ISBN: 979-1-59973-725-6 (http://fs.unm.edu/BeyondNeutrosophicGraphs.pdf).
- [40] Henry Garrett, (2022). "Neutrosophic Duality", Florida: GLOBAL KNOWLEDGE Publishing House 848 Brickell Ave Ste 950 Miami, Florida 33131 United States. ISBN: 978-1-59973-743-0 (http://fs.unm.edu/NeutrosophicDuality.pdf).

## CHAPTER 16

## "SuperHyperGraph-Based Books": | Featured Tweets

"SuperHyperGraph-Based Books": | Featured Tweets

#### Project

#### ResearchGate

# Neutrosophic SuperHyperGraphs and SuperHyperGraphs

Henry Garrett

Goal: The aim of this project is to contribute some research articles and some research books in that subject. Finding tools and notions to define in this structure to make this structure more understandable. Clarifications are presented in oversimplified ways. There are well-defined efforts to get more sensible results.

Sometimes, I post one part of book at my website. After that, I put that link in this project. Some research articles and some research books are excerpt from these posts.

Instance updates are on my accounts, simultaneously [Website, Scribd, Twitter, Amazon, Academia, LinkedIn, Twitter, ResearchGate.].

I've listed my accounts below.

-My website [Covering all my contributions containing articles and books as free access to download with PDF extension and more]: <u>https://drhenrygarrett.wordpress.com</u>

-Amazon [Some of my all books, here]: https://www.amzn.com/author/drhenrygarrett

-Twitter: @DrHenryGarrett (www.twitter.com/DrHenryGarrett)

-ResearchGate: https://www.researchgate.net/profile/Henry-Garrett-2

-Academia: https://independent.academia.edu/drhenrygarrett/

-Scribd: https://www.scribd.com/user/596815491/Henry-Garrett

-Scholar: https://scholar.google.com/citations?hl=en&user=SUjFCmcAAAAJ& view\_op=list\_works&sortby=pubdate

-LinkedIn: https://www.linkedin.com/in/drhenrygarrett/

Figure 16.1: "SuperHyperGraph-Based Books": | Featured Tweets

| Project                                                                                                                                                                                                                  | Descent Octo                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
|                                                                                                                                                                                                                          | ResearchGate                                                                     |
| Neutrosophic SuperHyperGrap                                                                                                                                                                                              | ns and                                                                           |
| SuperHyperGraphs                                                                                                                                                                                                         |                                                                                  |
| የ Henry Garrett                                                                                                                                                                                                          |                                                                                  |
| Goal: The aim of this project is to contribute some<br>books in that subject. Finding tools and notions to<br>structure more understandable. Clarifications are j<br>are well-defined efforts to get more sensible resul | define in this structure to make this<br>presented in oversimplified ways. There |
| Sometimes, I post one part of book at my website.<br>Some research articles and some research books                                                                                                                      |                                                                                  |
| Instance updates are on my accounts, simultaneou<br>Academia, LinkedIn, Twitter, ResearchGate.].                                                                                                                         | usly [Website, Scribd, Twitter, Amazon,                                          |
| I've listed my accounts below.<br>-My website [Covering all my contributions contai<br>download with PDF extension and more]: <u>https://d</u>                                                                           |                                                                                  |
| -Amazon [Some of my all books, here]: https://ww                                                                                                                                                                         | w.amzn.com/author/drhenrygarrett                                                 |
| -Twitter: @DrHenryGarrett ( <u>www.twitter.com/DrHe</u>                                                                                                                                                                  | enryGarrett)                                                                     |
| -ResearchGate: https://www.researchgate.net/pro                                                                                                                                                                          | file/Henry-Garrett-2                                                             |
| -Academia: https://independent.academia.edu/drh                                                                                                                                                                          | nenrygarrett/                                                                    |
| -Scribd: https://www.scribd.com/user/596815491/                                                                                                                                                                          | Henry-Garrett                                                                    |
| :22 AM · Jan 3, 2023 from Manhattan, N                                                                                                                                                                                   | Y (i)                                                                            |

Figure 16.2: "SuperHyperGraph-Based Books": | Featured Tweets

| Dr. Henry Garrett<br>@DrHenryGarrett · Follow<br>"Book #69: SuperHyperMatching"<br>Paperback – January 16, 2023<br>Authored by Dr. Henry Garrett @DrHenryGarrett<br>amazon.com/dp/BOBSDPXX1P via @amazon<br>—<br>ASIN : BOBSDPXX1P | y |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Print length : 582 pages<br>ISBN-13 : 9798373872683                                                                                                                                                                                |   |
| #PublishingDay #Publish                                                                                                                                                                                                            |   |
| <section-header></section-header>                                                                                                                                                                                                  |   |
| amazon.com<br>SuperHyperMatching<br>In this research book, there are two research chapters "Extre<br>SuperHyperMatching" and "Neutrosophic SuperHyperMatch                                                                         |   |
| 2:41 PM · Jan 16, 2023 from Manhattan, NY                                                                                                                                                                                          | Ū |
| 🛡 🔍 Reply 🖉 Copy link                                                                                                                                                                                                              |   |
| Read more on Twitter                                                                                                                                                                                                               |   |

Figure 16.3: "SuperHyperGraph-Based Books": | Featured Tweets #69

| Dr. Henry Garrett<br>@DrHenryGarrett · Follow<br>"Book #69: SuperHyperMatching"<br>Hardcover – January 16, 2023<br>Authored by Dr. Henry Garrett @DrHenryG<br>amazon.com/dp/BOBSDC1L66 via @amaz<br>—<br>ASIN : BOBSDC1L66<br>Print length : 548 pages<br>ISBN-13 : 9798373875424                                                                                                                                                                                                                                                                                                                                                                              |            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| #PublishingDay #Publish                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |
| IAAA of Mathematics     IIAAA of Mathematics     IIAAA of Mathematics     IIAAA of Mathematics     IIIAAA of Mathematics     IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII |            |
| amazon.com<br>SuperHyperMatching<br>In this research book, there are two research chap<br>SuperHyperMatching" and "Neutrosophic SuperHy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |
| 2:42 PM · Jan 16, 2023 from Manhattan, NY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u>(</u> ) |
| Read more on Twitter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |

Figure 16.4: "SuperHyperGraph-Based Books": | Featured Tweets#69

|                                                                                                                                      | arrett<br>arrett · Follow<br>berHyperMatching″                                                                                        | <b>y</b> |  |
|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------|--|
| amazon.com/dp/B0BSDPXX1P<br>amazon.com/dp/B0BSDC1L66<br>9798373872683<br>9798373875424<br>CC BY-NC-ND 4.0<br>582p.<br>548p.<br>638p. |                                                                                                                                       |          |  |
| @Scribd: -                                                                                                                           | e: researchgate.net/publication/36<br>G: zenodo.org/record/7539484                                                                    |          |  |
|                                                                                                                                      | academia.edu<br>SuperHyperMatching<br>Posted by Dr. Henry Garrett January, 2023 Post<br>in 0069  SuperHyperMatching Tags: Application |          |  |
|                                                                                                                                      | 023 from Manhattan, NY                                                                                                                | 0        |  |
| Reply                                                                                                                                | Copy link                                                                                                                             |          |  |
|                                                                                                                                      | Read more on Twitter                                                                                                                  |          |  |

Figure 16.5: "SuperHyperGraph-Based Books": | Featured Tweets #69



Figure 16.6: "SuperHyperGraph-Based Books": | Featured Tweets#68

| Dr. Henry Garrett       Image: Constraint of the second seco |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ASIN : B0BRYZTK24<br>Print length : 460 pages<br>ISBN-13 : 9798373277273                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| #PublishingDay #Publish                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| amazon.com<br>Failed SuperHyperClique<br>In this research book, there are two research chapters "Extreme Failed<br>SuperHyperClique" and "Neutrosophic Failed SuperHyperClique"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3:12 AM · Jan 11, 2023 from Manhattan, NY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

Figure 16.7: "SuperHyperGraph-Based Books": | Featured Tweets #68



Figure 16.8: "SuperHyperGraph-Based Books": | Featured Tweets#68

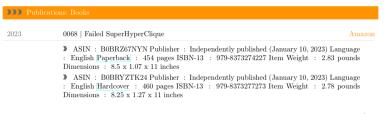


Figure 16.9: "SuperHyperGraph-Based Books": | Featured Tweets #68

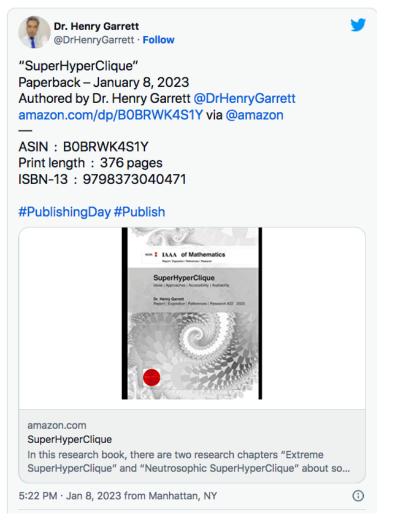


Figure 16.10: "SuperHyperGraph-Based Books": | Featured Tweets #67

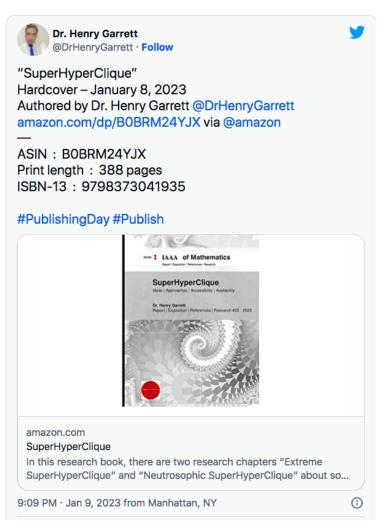


Figure 16.11: "SuperHyperGraph-Based Books": | Featured Tweets#67

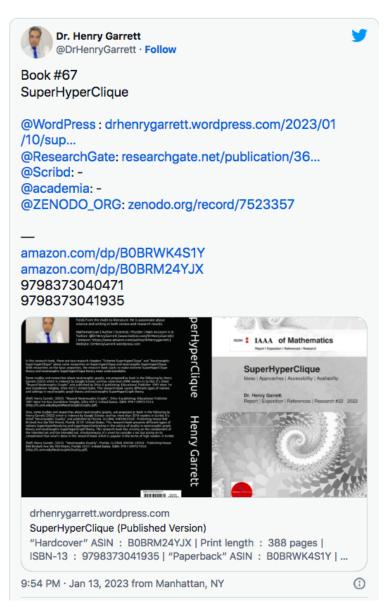


Figure 16.12: "SuperHyperGraph-Based Books": | Featured Tweets#67

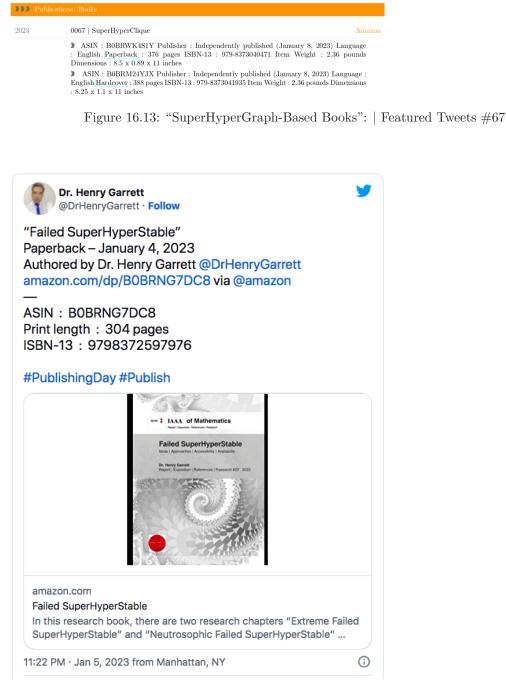


Figure 16.14: "SuperHyperGraph-Based Books": | Featured Tweets #66

| Dr. Henry Garrett     Image: Constraint of the second |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| "Failed SuperHyperStable"<br>Hardcover – January 4, 2023<br>Authored by Dr. Henry Garrett @DrHenryGarrett<br>amazon.com/dp/B0BRLVN39L via @amazon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ASIN : B0BRLVN39L<br>Print length : 306 pages<br>ISBN-13 : 9798372599765                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| #PublishingDay #Publish                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| NOW I LAAA of Mathematics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Failed SuperHyperStable<br>toms / approxims / Accounting / Analabity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Dr. Henry Garrett<br>Report Exposition   Retenances   Research #22 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| amazon.com<br>Failed SuperHyperStable<br>In this research book, there are two research chapters "Extreme Failed<br>SuperHyperStable" and "Neutrosophic Failed SuperHyperStable"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 6:32 AM · Jan 5, 2023 from Manhattan, NY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

Figure 16.15: "SuperHyperGraph-Based Books": | Featured Tweets#66

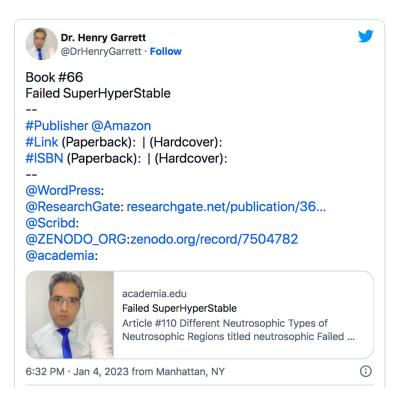


Figure 16.16: "SuperHyperGraph-Based Books": | Featured Tweets #66

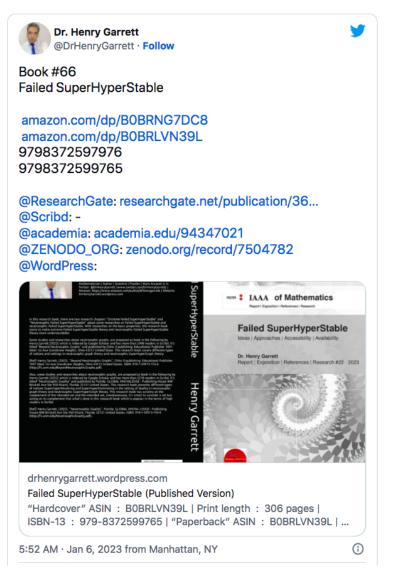


Figure 16.17: "SuperHyperGraph-Based Books": | Featured Tweets#66

| <b>DDD</b> Publ | ications: Books                                                                                                                                                                                       |          |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 2023            | 0066   Failed SuperHyperStable                                                                                                                                                                        | Amazon   |
|                 | ▶ ASIN : B0BRNG7DC8 Publisher : Independently published (January 4, 2023) Lan<br>: English Paperback : 304 pages ISBN-13 : 979-8372597976 Item Weight : 1.93 p<br>Dimensions : 8.5 x 0.72 x 11 inches |          |
|                 | ASIN : B0BRLVN39L Publisher : Independently published (January 4, 2023) Lan<br>: English Hardcover : 306 pages ISBN-13 : 979-8372599765 Item Weight : 1.89 p<br>Dimensions : 8.25 x 0.91 x 11 inches  |          |
|                 | Figure 16.18: "SuperHyperGraph-Based Book                                                                                                                                                             | ks":   1 |



Figure 16.19: "SuperHyperGraph-Based Books": | Featured Tweets#65

| "SuperHyperSt<br>Paperback – Ja<br>Authored by Dr. | arrett · Follow<br>able"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>Y</b> |
|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| ASIN : BOBRD<br>Print length : 2<br>ISBN-13 : 979  | 94 pages<br>8372248519                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |
| #PublishingDay                                     | / #Publish                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |
|                                                    | Now : IAAA of Mathematics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |
|                                                    | Experimentation         Experimentation |          |
|                                                    | e<br>ook, there are two research chapters "Extreme<br>e" and "Neutrosophic SuperHyperStable" about                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | t so     |
| 9:22 AM · Jan 3, 20                                | 023 from Manhattan, NY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ()       |

Figure 16.20: "SuperHyperGraph-Based Books": | Featured Tweets#65

| Dr. Henry Garrett<br>@DrHenryGarrett · Follow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>¥</b>        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| "SuperHyperStable"<br>Paperback – January 2, 2023<br>Authored by Dr. Henry Garrett<br>amazon.com/dp/B0BRDG5Z4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | @DrHenryGarrett |
| ASIN : B0BRDG5Z4Y<br>Print length : 294 pages<br>ISBN-13 : 9798372248519                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |
| #PublishingDay #Publish                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |
| Also, some studier and makinkes albeit reduringship, gusite, are proposed to beits in the Minimite Ib menor<br>German (2002) which is chosen by Google forbular and loss more than bit in the statement in Solid Al-<br>are and all statements of the statement of the statement and the statement of the statement<br>was attement. Shall, shall all another the statement and the statement and the statement<br>between approximate and the statement of the statement and the statement and the statement<br>between approximate and the statement and the statement and the statement and the statement<br>between approximate and the statement and the statement and the statement and the statement<br>between approximate and the statement and the statement and the statement and the statement<br>between approximate and the statement and the statement and the statement and the statement and the<br>statement approximate and the statement and the statement and the statement and the statement<br>and the statement and the statement<br>and the statement and the statement and the statement and the statement and the statement<br>and the statement and the statement and the statement and the statement and the statement<br>and the statement and the statement<br>and the statement and the statement<br>and the statement and the statement<br>and the statement and the statem |                 |
| 9:22 AM · Jan 3, 2023 from Manhatta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | an, NY 🤅        |

Figure 16.21: "SuperHyperGraph-Based Books": | Featured Tweets#65

| Dr. Henry Garrett                                                                 | <b>Y</b> |
|-----------------------------------------------------------------------------------|----------|
| @DrHenryGarrett · Follow                                                          | -        |
| "SuperHyperStable"                                                                |          |
| Hardcover – January 2, 2023                                                       |          |
| Authored by Dr. Henry Garrett @DrHenryGarrett                                     |          |
| amazon.com/dp/B0BRJPG56M via @amazon                                              |          |
| <br>ASIN : B0BRJPG56M                                                             |          |
| Print length : 290 pages                                                          |          |
| ISBN-13 : 9798372252011                                                           |          |
|                                                                                   |          |
| #PublishingDay #Publish                                                           |          |
|                                                                                   |          |
| INCOME LAAA of Mathematics                                                        |          |
| SuperHyperStable                                                                  |          |
| Idees   Approaches   Accessibility   Availability                                 |          |
| Dr. Henry Garretti<br>Report (Esposition (References   Research #22 2023          |          |
|                                                                                   |          |
|                                                                                   |          |
|                                                                                   |          |
|                                                                                   |          |
|                                                                                   |          |
| amazon.com                                                                        |          |
| SuperHyperStable<br>In this research book, there are two research chapters "Extre | -        |
| SuperHyperStable" and "Neutrosophic SuperHyperStable" and                         |          |
| 6:52 AM · Jan 3, 2023 from Manhattan, NY                                          | ()       |
| 🛡 🔍 Reply 🖉 Copy link                                                             |          |
|                                                                                   |          |

Figure 16.22: "SuperHyperGraph-Based Books": | Featured Tweets#65

| Dr. Henry Garrett<br>@Dr.HenryGarrett · Follow<br>"SuperHyperStable"<br>Hardcover – January 2, 2023<br>Authored by Dr. Henry Garrett<br>amazon.com/dp/B0BRJPG56<br>ASIN : B0BRJPG56M<br>Print length : 290 pages<br>ISBN-13 : 9798372252011 | tt @DrHenryGarrett                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| #PublishingDay #Publish                                                                                                                                                                                                                     |                                                        |
| <text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text>                                                                                                          | <page-header><page-header></page-header></page-header> |
| 🛡 🔍 Reply 🖉 Copy link                                                                                                                                                                                                                       |                                                        |
| Read more                                                                                                                                                                                                                                   | re on Twitter                                          |

Figure 16.23: "SuperHyperGraph-Based Books": | Featured Tweets#65

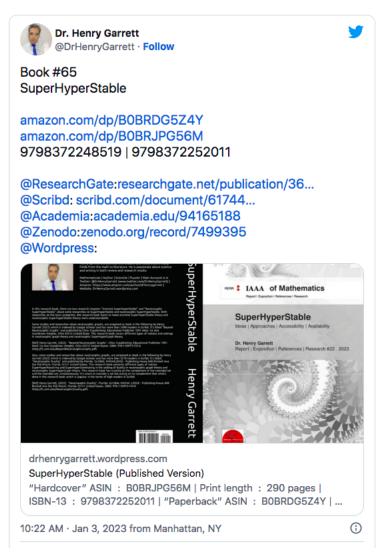


Figure 16.24: "SuperHyperGraph-Based Books": | Featured Tweets #65

| Dr. Henry Garrett<br>@DrHenryGarrett · Follow                                                                                                                                         | <b>y</b>            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| #64<br>Failed SuperHyperForcing                                                                                                                                                       |                     |
| amazon.com/dp/B0BRH5B4QM<br>/dp/B0BRGX4DBJ 9798372123                                                                                                                                 | -                   |
| <ul> <li>@ResearchGate:researchgate.n</li> <li>@Scribd:scribd.com/document/</li> <li>@Academia:academia.edu/940</li> <li>@Zenodo:zenodo.org/record/74</li> <li>@Wordpress:</li> </ul> | 61724<br>69071      |
| <text><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></text>                                       | RGX4DBJ   ISBN-13 : |
| 8:22 AM · Jan 3, 2023 from Manhattan,                                                                                                                                                 | NY Ū                |

Figure 16.25: "SuperHyperGraph-Based Books": | Featured Tweets#64

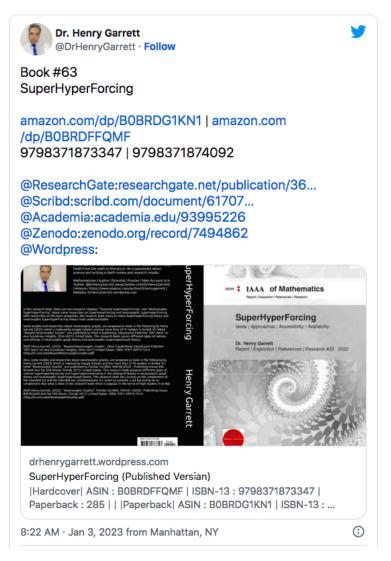


Figure 16.26: "SuperHyperGraph-Based Books": | Featured Tweets#63

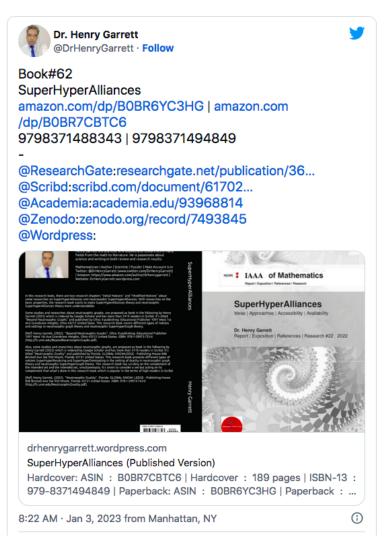


Figure 16.27: "SuperHyperGraph-Based Books": | Featured Tweets#62

| Dr. Henry Garrett<br>@DrHenryGarrett · Follow                                                                                                                                           | <b>¥</b>                                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| #61 SuperHyperGraphs                                                                                                                                                                    |                                                                            |
| -<br>amazon.com/dp/B0BR1NHY4Z<br>/dp/B0BQXTHTXY<br>9798371090133   9798371093                                                                                                           |                                                                            |
| <ul> <li>@ResearchGate: researchgate.r</li> <li>@Scribd: scribd.com/document,</li> <li>@Academia:academia.edu/936</li> <li>@Zenodo:zenodo.org/record/74</li> <li>@Wordpress:</li> </ul> | /61702<br>05376/Super                                                      |
| <image/> <image/> <image/> <image/> <text><text><text><text><text></text></text></text></text></text>                                                                                   | <image/> <text><text><text><text><text></text></text></text></text></text> |
| drhenrygarrett.wordpress.com<br>SuperHyperGraphs (Published Version<br>Hardcover: ASIN : B0BQXTHTXY   Ha<br>979-8371093240   Paperback: ASIN :                                          | rdcover : 117 pages   ISBN-13 :                                            |
| 8:22 AM · Jan 3, 2023 from Manhattan,                                                                                                                                                   | NY Ĵ                                                                       |

Figure 16.28: "SuperHyperGraph-Based Books": | Featured Tweets #61

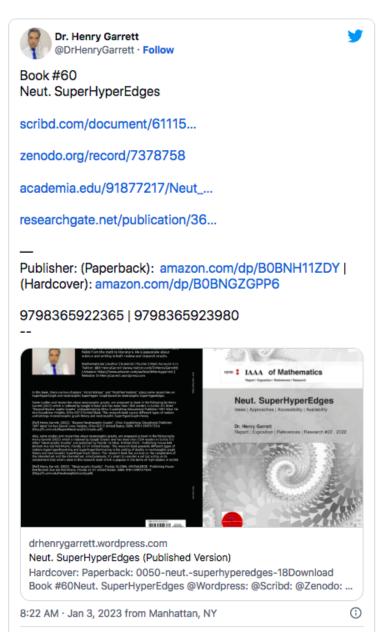


Figure 16.29: "SuperHyperGraph-Based Books": | Featured Tweets#60

## CHAPTER 17

# CV

 $Henry\ Garrett \cdot Independent\ Researcher \cdot Department\ of\ Mathematics \cdot Dr Henry Garrett@gmail.com \cdot Manhattan,\ NY,\ USA$ 

# Henry Garrett CV

| Status:        | Known As Henry Garrett With Highly Productive Style.                                                                                                                                                                                                                                                                                |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fields:        | Combinatorics, Algebraic Structures, Algebraic Hyperstructures, Fuzzy<br>Logic                                                                                                                                                                                                                                                      |
| Prefers:       | Graph Theory, Domination, Metric Dimension, Neutrosophic Graph<br>Theory, Neutrosophic Domination, Lattice Theory, Groups and<br>Hypergroups                                                                                                                                                                                        |
| Activities:    | Traveling, Painting, Writing, Reading books and Papers                                                                                                                                                                                                                                                                              |
| >>> Profession | nal Experiences                                                                                                                                                                                                                                                                                                                     |
| 2017 - Present | Continuous Member AN                                                                                                                                                                                                                                                                                                                |
|                | <ul> <li>I tried to show them that Science is not only interesting, it's beautiful and exciting.</li> <li>Participating in the academic space of the largest mathematical Society gave me valuable experiences. The use of Bulletin and Notice of the American Mathematical Society is another benefit of this presence.</li> </ul> |
| 2017 - 2019    | Continuous Member EM                                                                                                                                                                                                                                                                                                                |
|                | <ul><li>The use Newsletter of the European Mathematical Society is benefit of this membership.</li><li>I am interested in giving a small, though small, effect on math epidemic progress</li></ul>                                                                                                                                  |
| Awards a       | nd Achievements                                                                                                                                                                                                                                                                                                                     |
| Sep 2022       | Award: Selected as an Editorial Board Member to JMTCM JMTC                                                                                                                                                                                                                                                                          |
|                | Award: Selected as an Editorial Board Member to Journal of Mathematical Techniques and Computational Mathematics(JMTCM)                                                                                                                                                                                                             |
|                | Journal of Mathematical Techniques and Computational Mathematics(JMTCM)                                                                                                                                                                                                                                                             |
| Jun 2022       | Award: Selected as an Editorial Board Member to JCTCSR         JCTCSR                                                                                                                                                                                                                                                               |
|                | <ul> <li>Award: Selected as an Editorial Board Member to Journal of Current Trends in Computer<br/>Science Research(JCTCSR)</li> <li>Journal of Current Trends in Computer Science Research(JCTCSR)</li> </ul>                                                                                                                      |
| Jan 23, 2022   | Award: Diploma By Neutrosophic Science International Association Neutrosophic Science Internation                                                                                                                                                                                                                                   |
|                | <ul><li>Award: Distinguished Achievements</li><li>Honorary Memebrship</li></ul>                                                                                                                                                                                                                                                     |
| DDD Journal F  | leferee                                                                                                                                                                                                                                                                                                                             |
| Sep 2022       | Editorial Board Member to JMTCM JMTC                                                                                                                                                                                                                                                                                                |
|                | <ul> <li>Editorial Board Member to Journal of Mathematical Techniques and Computational<br/>Mathematics(JMTCM)</li> <li>Journal of Mathematical Techniques and Computational Mathematics(JMTCM)</li> </ul>                                                                                                                          |
| Jun 2022       | Editorial Board Member to JCTCSR JCTCS                                                                                                                                                                                                                                                                                              |
|                | <ul> <li>Editorial Board Member to Journal of Current Trends in Computer Science<br/>Research(JCTCSR)</li> <li>Journal of Current Trends in Computer Science Research(JCTCSR)</li> </ul>                                                                                                                                            |

| Public | eations: Articles                                                                                                                                                                                                                                                                                                                                                                      |              |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| 2023   | 0126   Extreme SuperHyperClique as the Firm Scheme of Confrontation under Cancer's Recognition                                                                                                                                                                                                                                                                                         | Manuscript   |
|        | <ul> <li><sup>as the Model in The Setting of (Neutrosophic) SuperHyperGraphs</sup></li> <li>Henry Garrett, "Extreme SuperHyperClique as the Firm Scheme of Confror<br/>Cancer's Recognition as the Model in The Setting of (Neutrosophic) SuperH<br/>Preprints 2023, 2023010308 (doi: 10.20944/preprints202301.0308.v1).</li> </ul>                                                    |              |
|        | ▶ Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn                                                                                                                                                                                                                                                                                                               |              |
| 2023   | 0125   Uncertainty On The Act And Effect Of Cancer Alongside The Foggy Positions Of Cells<br>Toward Neutrosophic Failed SuperHyperClique inside Neutrosophic SuperHyperGraphs Titled Cancer's                                                                                                                                                                                          | Manuscript   |
|        | <ul> <li>Becognition</li> <li>Henry Garrett, "Uncertainty On The Act And Effect Of Cancer Alongsid<br/>Positions Of Cells Toward Neutrosophic Failed SuperHyperClique inside<br/>SuperHyperGraphs Titled Cancer's Recognition", Preprints 2023, 2023<br/>10.20944/preprints202301.0282.v1).</li> <li>Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn</li> </ul> | Neutrosophic |
| 2023   | 0124   Neutrosophic Version Of Separates Groups Of Cells In Cancer's Recognition On Neutrosophic                                                                                                                                                                                                                                                                                       | Manuscript   |
| 2020   | SuperHyperGraphs                                                                                                                                                                                                                                                                                                                                                                       |              |
|        | Henry Garrett, "Neutrosophic Version Of Separates Groups Of Cells<br>Recognition On Neutrosophic SuperHyperGraphs", Preprints 2023, 2023<br>10.20944/preprints202301.0267.v1).).                                                                                                                                                                                                       |              |
|        | $\blacktriangleright$ Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn                                                                                                                                                                                                                                                                                           |              |
| 2023   | 0123   The Shift Paradigm To Classify Separately The Cells and Affected Cells Toward The Totality                                                                                                                                                                                                                                                                                      | Manuscrip    |
|        | Under Cancer's Recognition By New Multiple Definitions On the Sets Polynomials Alongside Numbers                                                                                                                                                                                                                                                                                       |              |
|        | In The (Neutrosophic) SuperHyperMatching Theory Based on SuperHyperGraph and Neutrosophic<br>SuperHyperGraph<br>Henry Garrett, "The Shift Paradigm To Classify Separately The Cells and A                                                                                                                                                                                              |              |
|        | <ul> <li>Toward The Totality Under Cancer's Recognition By New Multiple Definitions<br/>Polynomials Alongside Numbers In The (Neutrosophic) SuperHyperMatching T<br/>on SuperHyperGraph and Neutrosophic SuperHyperGraph", Preprints 2023, 202<br/>10.20944/preprints202301.0265.v1).</li> <li>Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn</li> </ul>       | Theory Based |
|        |                                                                                                                                                                                                                                                                                                                                                                                        |              |
| 2023   | 0122   Breaking the Continuity and Uniformity of Cancer In The Worst Case of Full<br>Connections With Extreme Failed SuperHyperClique In Cancer's Recognition Applied in (Neutrosophic)                                                                                                                                                                                                | Manuscrip    |
|        | <ul> <li><sup>SuperHyperGraphs</sup></li> <li><sup>Menry</sup> Garrett, "Breaking the Continuity and Uniformity of Cane<br/>Worst Case of Full Connections With Extreme Failed SuperHyperClique<br/>Recognition Applied in (Neutrosophic) SuperHyperGraphs", Preprints 2023, 202<br/>10.20944/preprints202301.0262.v1).</li> </ul>                                                     | In Cancer's  |
|        | ▶ Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn                                                                                                                                                                                                                                                                                                               |              |
| 2023   | 0121   Neutrosophic Failed SuperHyperStable as the Survivors on the Cancer's Neutrosophic                                                                                                                                                                                                                                                                                              | Manuscrip    |
|        | <ul> <li>Recognition Based on Uncertainty to All Modes in Neutrosophic SuperHyperGraphs</li> <li>Henry Garrett, "Neutrosophic Failed SuperHyperStable as the Survi<br/>Cancer's Neutrosophic Recognition Based on Uncertainty to All Modes in<br/>SuperHyperGraphs", Preprints 2023, 2023010240 (doi: 10.20944/preprints202301</li> </ul>                                              | Neutrosophic |
|        | $\blacktriangleright$ Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn                                                                                                                                                                                                                                                                                           |              |
| 2023   | 0120   Extremism of the Attacked Body Under the Cancer's Circumstances Where Cancer's                                                                                                                                                                                                                                                                                                  | Manuscrip    |
|        | <ul> <li>Becognition Titled (Neutrosophic) SuperHyperGraphs</li> <li>Henry Garrett, "Extremism of the Attacked Body Under the Cancer's Circums<br/>Cancer's Recognition Titled (Neutrosophic) SuperHyperGraphs", Preprints 2023<br/>(doi: 10.20944/preprints202301.0224.v1).</li> </ul>                                                                                                |              |
|        | ▶ Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn                                                                                                                                                                                                                                                                                                               |              |
| 2023   | 0119   SuperHyperMatching By (R-)Definitions And Polynomials To Monitor Cancer's Recognition                                                                                                                                                                                                                                                                                           | Manuscript   |
|        | <ul> <li><sup>In Neutrosophic SuperHyperGraphs</sup></li> <li>Henry Garrett, "SuperHyperMatching By (R-)Definitions And Polynomials<br/>Cancer's Recognition In Neutrosophic SuperHyperGraphs", ResearchGat<br/>10.13140/RG.2.2.35061.65767).</li> </ul>                                                                                                                               |              |
|        | > Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn                                                                                                                                                                                                                                                                                                               |              |

 $Henry\ Garrett\ \cdot\ Independent\ Researcher\ \cdot\ Department\ of\ Mathematics\ \cdot\ DrHenryGarrett@gmail.com\ \cdot\ Manhattan,\ NY,\ USA$ 

| 2023 | 0118   The Focus on The Partitions Obtained By Parallel Moves In The Cancer's Extreme Recognition                                                                                                                                                                                                                                                                                              | Manuscrip   |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|      | With Different Types of Extreme SuperHyperMatching Set and Polynomial on (Neutrosophic)                                                                                                                                                                                                                                                                                                        |             |
|      | <sup>SuperHyperGraphs</sup> , "Garrett,"The Focus on The Partitions Obtained By Parallel Mc<br>Cancer's Extreme Recognition With Different Types of Extreme SuperHy<br>Set and Polynomial on (Neutrosophic) SuperHyperGraphs", ResearchGate<br>10.13140/RG.2.2.18494.15680).                                                                                                                   | perMatching |
|      | Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn                                                                                                                                                                                                                                                                                                                         |             |
| 2023 | 0117   Indeterminacy On The All Possible Connections of Cells In Front of Cancer's Attacks In The Terms of Neutrosophic Failed SuperHyperClique on Cancer's Recognition called Neutrosophic                                                                                                                                                                                                    | Manuscrip   |
|      | <ul> <li><sup>SuperHyperGraphs</sup></li> <li><sup>Mempy Garrett, "Extreme Failed SuperHyperClique Decides the Failures on Recognition in the Perfect Connections of Cancer's Attacks By SuperHyperMe (Neutrosophic) SuperHyperGraphs", ResearchGate 2023, (doi: 10.13140/RG.2.2.1]</sup></li> <li><sup>Mailable</sup> At Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn</li> </ul> | odels Named |
| 2023 | 0116   Extreme Failed SuperHyperClique Decides the Failures on the Cancer's Recognition                                                                                                                                                                                                                                                                                                        | Manuscrip   |
| 2023 | UIIU Extreme Failed SuperHyperClique Decides the Failures on the Cancer's Recognition<br>in the Perfect Connections of Cancer's Attacks By SuperHyperModels Named (Neutrosophic)                                                                                                                                                                                                               | Manuscrip   |
|      | SuperHyperGraphs<br>Henry Garrett, Extreme Failed SuperHyperClique Decides the Failures on<br>Recognition in the Perfect Connections of Cancer's Attacks By SuperHyperMo<br>(Neutrosophic) SuperHyperGraphs", ResearchGate 2023, (doi: 10.13140/RG.2.2.3)                                                                                                                                      | odels Named |
|      | $\blacktriangleright$ Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn                                                                                                                                                                                                                                                                                                   |             |
| 2023 | 0115   (Neutrosophic) 1-Failed SuperHyperForcing in Cancer's Recognitions And (Neutrosophic)                                                                                                                                                                                                                                                                                                   | Manuscrip   |
|      | <sup>SuperHyperGraphs</sup><br>Henry Garrett, "(Neutrosophic) 1-Failed SuperHyperForcing in<br>Recognitions And (Neutrosophic) SuperHyperGraphs", Preprints 2023, 20230<br>10.20944/preprints202301.0105.v1).                                                                                                                                                                                  |             |
|      | > Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn                                                                                                                                                                                                                                                                                                                       |             |
| 2023 | 0114   Perfect Directions Toward Idealism in Cancer's Neutrosophic Recognition Forwarding                                                                                                                                                                                                                                                                                                      | Manuscrip   |
|      | <ul> <li>Neutrosophic SuperHyperClique on Neutrosophic SuperHyperGraphs</li> <li>Henry Garrett, "Perfect Directions Toward Idealism in Cancer's Neutrosophic<br/>Forwarding Neutrosophic SuperHyperClique on Neutrosophic SuperHy<br/>ResearchGate 2023, (doi: 10.13140/RG.2.2.30092.80004).</li> </ul>                                                                                        | -           |
|      | Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn                                                                                                                                                                                                                                                                                                                         |             |
| 2023 | 0113   Demonstrating Complete Connections in Every Embedded Regions and Sub-Regions in the Terms of Cancer's Recognition and (Neutrosophic) SuperHyperGraphs With (Neutrosophic)                                                                                                                                                                                                               | Manuscrip   |
|      | <sup>SuperHyperClique</sup><br>Henry Garrett, "Demonstrating Complete Connections in Every Embedded Regions in the Terms of Cancer's Recognition and (Neutrosophic) SuperHyperClique", ResearchGate 2023, (doi: 10.13140/RG.2.2.2)                                                                                                                                                             | Graphs With |
|      | $\ensuremath{\mathbbmath$\mathbbms$}$ Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn                                                                                                                                                                                                                                                                                   |             |
| 2023 | 0112   Basic Notions on (Neutrosophic) SuperHyperForcing And (Neutrosophic) SuperHyperModeling                                                                                                                                                                                                                                                                                                 | Manuscrip   |
|      | <ul> <li>In Cancer's Recognitions And (Neutrosophic) SuperHyperGraphs</li> <li>Henry Garrett, "Basic Notions on (Neutrosophic) SuperHyperForcing And (N<br/>SuperHyperModeling in Cancer's Recognitions And (Neutrosophic) SuperHyperprints 2023, 2023010105 (doi: 10.20944/preprints202301.0105.v1).</li> </ul>                                                                               | · /         |
|      | ${\ensuremath{\mathbb P}}$ Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn                                                                                                                                                                                                                                                                                              |             |
| 2023 | 01111   Neutrosophic Messy-Style SuperHyperGraphs To Form Neutrosophic SuperHyperStable To                                                                                                                                                                                                                                                                                                     | Manuscrip   |
|      | <ul> <li>Act on Cancer's Neutrosophic Recognitions In Special ViewPoints</li> <li>Henry Garrett, "Neutrosophic Messy-Style SuperHyperGraphs To Form I SuperHyperStable To Act on Cancer's Neutrosophic Recognitions In Special Preprints 2023, 2023010088 (doi: 10.20944/preprints202301.0088.v1).</li> </ul>                                                                                  | -           |
|      | Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn                                                                                                                                                                                                                                                                                                                         |             |
| 2023 | 0110   Different Neutrosophic Types of Neutrosophic Regions titled neutrosophic Failed SuperHyperStable in Cancer's Neutrosophic Recognition modeled in the Form of Neutrosophic                                                                                                                                                                                                               | Manuscrip   |

Henry Garrett, "Different Neutrosophic Types of Neutrosophic Regions titled neutrosophic Failed SuperHyperStable in Cancer's Neutrosophic Recognition modeled in the Form of Neutrosophic SuperHyperGraphs", ResearchGate 2023, (doi: 10.13140/RG.2.2.17385.36968). > Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn 2022  $0109~\mid$  0039  $\mid$  Closing Numbers and Super-Closing Numbers as (Dual)Resolving and (Dual)Coloring alongside (Dual)Dominating in (Neutrosophic)n-SuperHyperGraph Garrett, Henry. "0039 | Closing Numbers and Super-Closing Numbers as (Dual)Resolving and (Dual)Coloring alongside (Dual)Dominating in (Neutrosophic)n-SuperHyperGraph." CERN European Organization for Nuclear Research - Zenodo, Nov. 2022. CERN European Organization for Nuclear Research, https://doi.org/10.5281/zenodo.6319942. https://oa.mg/work/10.5281/zenodo.6319942 > Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn 2022 0108 | 0049 | (Failed)1-Zero-Forcing Number in Neutrosophic Graphs Garrett, Henry. "0049 | (Failed)1-Zero-Forcing Number in Neutrosophic Graphs." CERN European Organization for Nuclear Research - Zenodo, Feb. 2022. CERN European  $\label{eq:organization} {\rm Organization\ for\ Nuclear\ Research,\ https://doi.org/10.13140/rg.2.2.35241.26724.}$ https://oa.mg/work/10.13140/rg.2.2.35241.26724 > Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn 2023  $0107\ |$  Neutrosophic 1-Failed SuperHyperForcing in the SuperHyperFunction To Use Neutrosophic Henry Garrett, "Neutrosophic 1-Failed SuperHyperForcing in the SuperHyperFunction To Use Neutrosophic SuperHyperGraphs on Cancer's Neutrosophic Recognition And Beyond", Preprints 2023, 2023010044 > Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn 2023 0106 | (Neutrosophic) SuperHyperStable on Cancer's Recognition by Well-SuperHyperModelled trosophic) SuperHyperGraphs Henry Garrett, "(Neutrosophic) SuperHyperStable on Cancer's Recognition by Well-SuperHyperModelled (Neutrosophic) SuperHyperGraphs", Preprints 2023, 2023010043 (doi: 10.20944/preprints202301.0043.v1). ▶ Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn 2022 Article 0105 | Super Hyper Dominating and Super Hyper Resolving on Neutrosophic Super Hyper Graphs and Their Directions in Game Theory and Neutrosophic Super Hyper Classes
 Henry Garrett, "Super Hyper Dominating and Super Hyper Resolving on Neutrosophic Super Hyper Graphs and Their Directions in Game Theory and Neutrosophic Super Hyper Classes", J Math Techniques Comput Math 1(3) (2022) 242-263. > Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn 2023  $0104~\mid$  Using the Tool As (Neutrosophic) Failed SuperHyperStable To SuperHyperModel Cancer's Henry Garrett, "Using the Tool As (Neutrosophic) Failed SuperHyperStable To Recogn SuperHyperModel Cancer's Recognition Titled (Neutrosophic) SuperHyperGraphs", ResearchGate 2023, (doi: 10.13140/RG.2.2.28945.92007). Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn 2023  $0103~\mid$  Neutrosophic Messy-Style SuperHyperGraphs To Form Neutrosophic SuperHyperStable To on Cancer's Neutrosophic Recognitions In Special ViewPoints Henry Garrett, "Neutrosophic Messy-Style SuperHyperGraphs To Form Neutrosophic SuperHyperStable To Act on Cancer's Neutrosophic Recognitions In Special ViewPoints", ResearchGate 2023, (doi: 10.13140/RG.2.2.11447.80803). > Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn 2023 0102  $\mid$  (Neutrosophic) SuperHyperStable on Cancer's Recognition by Well-SuperHyperModelled <sup>ssophic)</sup> SuperHyperGraphs Henry Garrett, "(Neutrosophic) SuperHyperStable on Cancer's Recognition by Well-SuperHyperModelled (Neutrosophic) SuperHyperGraphs", ResearchGate 2023, (doi:

Henry Garrett · Independent Researcher · Department of Mathematics · DrHenryGarrett@gmail.com · Manhattan, NY, USA

> Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn

10.13140/RG.2.2.35774.77123).

| 2022 | 0101   Neutrosophic 1-Failed SuperHyperForcing in the SuperHyperFunction To Use Neutrosophic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Manuscrip                    |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
|      | SuperHyperGraphs on Cancer's Neutronophic Recognition And Beyond<br>Henry Garrett, "Neutrosophic 1-Failed SuperHyperForcing in the SuperHyperFunction<br>Use Neutrosophic SuperHyperGraphs on Cancer's Neutrosophic Recognition And Beyon<br>ResearchGate 2022, (doi: 10.13140/RG.2.2.36141.77287).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |
|      | > Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |
| 2022 | 0100 $\mid$ (Neutrosophic) 1-Failed SuperHyperForcing in Cancer's Recognitions And (Neutrosophic)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Manuscrip                    |
|      | <ul> <li><sup>SuperHyperGraphs</sup></li> <li>Henry Garrett, "(Neutrosophic) 1-Failed SuperHyperForcing in Cancer's Recognition (Neutrosophic) SuperHyperGraphs", ResearchGate 2022, (doi: 10.13140/RG.2.2.2)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |
|      | Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                              |
| 2022 | $0099 \mid \texttt{Basic Notions on (Neutrosophic) SuperHyperForcing And (Neutrosophic) SuperHyperModeling}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Manuscrip                    |
|      | <ul> <li><sup>in Cancer's Recognitions And (Neutrosophic) SuperHyperGraphs</sup></li> <li>Henry Garrett, "Basic Notions on (Neutrosophic) SuperHyperForcing And (N<br/>SuperHyperModeling in Cancer's Recognitions And (Neutrosophic) SuperHy<br/>ResearchGate 2022, (doi: 10.13140/RG.2.2.11369.16487).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - /                          |
|      | Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                              |
| 2022 | 0098 $\mid$ (Neutrosophic) SuperHyperModeling of Cancer's Recognitions Featuring (Neutrosophic)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Manuscrip                    |
|      | <ul> <li><sup>SuperHyperDefensive SuperHyperAlliances</sup></li> <li><sup>Henry Garrett, "(Neutrosophic) SuperHyperModeling of Cancer's Recognitio<br/>(Neutrosophic) SuperHyperDefensive SuperHyperAlliances", Preprints 2022, 2022<br/>10.20944/preprints202212.0549.v1).</sup></li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                              |
|      | $\ensuremath{\mathbb{P}}$ Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              |
| 2022 | 0098   (Neutrosophic) SuperHyperModeling of Cancer's Recognitions Featuring (Neutrosophic)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Manuscrip                    |
|      | <ul> <li><sup>SuperHyperDefensive SuperHyperAlliances</sup></li> <li>Henry Garrett, "(Neutrosophic) SuperHyperModeling of Cancer's<br/>Featuring (Neutrosophic) SuperHyperDefensive SuperHyperAlliances", Researc<br/>(doi: 10.13140/RG.2.2.19380.94084).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                            |
|      | $\blacktriangleright$ Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                              |
| 2022 | 0097   (Neutrosophic) SuperHyperAlliances With SuperHyperDefensive and SuperHyperOffensive Type-SuperHyperSt On (Neutrosophic) SuperHyperGraph With (Neutrosophic) SuperHyperModeling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Manuscrip                    |
|      | <ul> <li><sup>af Cancer's Recognitions And Related (Neutrosophic) SuperHyperClasses</sup></li> <li><sup>b</sup> Henry Garrett, "(Neutrosophic) SuperHyperClasses</li> <li>SuperHyperOffensive Type-SuperHyperSet On (Neutrosophic) SuperHyperO(Neutrosophic) SuperHyperModeling of Cancer's Recognitions And Related (N SuperHyperClasses", Preprints 2022, 2022120540 (doi: 10.20944/preprints202212.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Fraph With<br>eutrosophic)   |
|      | > Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |
| 2022 | 0097   (Neutrosophic) SuperHyperAlliances With SuperHyperDefensive and SuperHyperOffensive Type-SuperHyperSt On (Neutrosophic) SuperHyperGraph With (Neutrosophic) SuperHyperModeling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Manuscrip                    |
|      | <ul> <li><sup>6</sup> Cancer's Recognitions And Related (Neutrosophic) SuperHyperClasses</li> <li><sup>9</sup> Henry Garrett, "(Neutrosophic) SuperHyperClasses</li> <li><sup>10</sup> SuperHyperOffensive Type-SuperHyperSet On (Neutrosophic) SuperHyperSet On (Neutrosophic) Su</li></ul> | Graph With                   |
| 2022 | 0096   SuperHyperGirth on SuperHyperGraph and Neutrosophic SuperHyperGraph With                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Manuscrip                    |
|      | SuperHyperModeling of Cancer's Recognitions<br>Henry Garrett, "SuperHyperGirth on SuperHyperGraph and I<br>SuperHyperGraph With SuperHyperModeling of Cancer's Recognitions", Pre<br>2022120500 (doi: 10.20944/preprints202212.0500.v1).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Neutrosophic<br>prints 2022, |
|      | ▶ Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |
| 2022 | 0096   SuperHyperGirth on SuperHyperGraph and Neutrosophic SuperHyperGraph With                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Manuscrip                    |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Neutrosophic<br>ResearchGate |
|      | <ul> <li>Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                              |

|              | 0095 Some SuperHyperDegrees and Co-SuperHyperDegrees on Neutrosophic SuperHyperGraphs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Manuscript                                                                                                                                                |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
|              | <ul> <li>and SuperHyperGraphs Alongside Applications in Cancer's Treatments</li> <li>Henry Garrett, "Some SuperHyperDegrees and Co-SuperHyperDegrees on<br/>SuperHyperGraphs and SuperHyperGraphs Alongside Applications in Cancer's<br/>Preprints 2022, 2022120324 (doi: 10.20944/preprints202212.0324.v1).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                         |
|              | > Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                           |
| 2022         | 0095   Some SuperHyperDegrees and Co-SuperHyperDegrees on Neutrosophic SuperHyperGraphs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Manuscript                                                                                                                                                |
|              | <ul> <li>And SuperHyperGraphs Alongside Applications in Cancer's Treatments</li> <li>Henry Garrett, "Some SuperHyperDegrees and Co-SuperHyperDegrees on<br/>SuperHyperGraphs And SuperHyperGraphs Alongside Applications in Cancer's<br/>ResearchGate 2022 (doi: 10.13140/RG.2.2.23123.04641).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                           |
|              | Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                           |
| 2022         | 0094 $ $ SuperHyperDominating and SuperHyperResolving on Neutrosophic SuperHyperGraphs And                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Manuscript                                                                                                                                                |
|              | Their Directions in Game Theory and Neutrosophic SuperHyperClasses<br>Henry Garrett, "SuperHyperDominating and SuperHyperResolving on<br>SuperHyperGraphs And Their Directions in Game Theory and<br>SuperHyperClasses", Preprints 2022, 2022110576 (doi: 10.20944/preprints202211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Neutrosophic                                                                                                                                              |
|              | Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                           |
| 2022         | 0094   SuperHyperDominating and SuperHyperResolving on Neutrosophic SuperHyperGraphs And                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Manuscript                                                                                                                                                |
|              | Their Directions in Game Theory and Neutrosophic SuperHyperClasses<br>Henry Garrett, "SuperHyperDominating and SuperHyperResolving on<br>SuperHyperGraphs And Their Directions in Game Theory and<br>SuperHyperClasses", ResearchGate 2022 (doi: 10.13140/RG.2.2.23324.56966).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Neutrosophic<br>Neutrosophic                                                                                                                              |
|              | Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                           |
| 2022         | 0093   Neutrosophic Co-degree and Neutrosophic Degree alongside Chromatic Numbers in the Setting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Article                                                                                                                                                   |
|              | <ul> <li>Henry Garrett, "Neutrosophic Co-degree and Neutrosophic Degree alongsic<br/>Numbers in the Setting of Some Classes Related to Neutrosophic Hypergraphs", .<br/>Comp Sci Res 1(1) (2022) 06-14.</li> <li>PDF,Abstract,Issue.</li> <li>Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                           |
| 2022         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                           |
|              | 0092 Recognition of the Pattern for Vertices to Make Dimension by Resolving in some Classes of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Manuscript                                                                                                                                                |
|              | 0092   Recognition of the Pattern for Vertices to Make Dimension by Resolving in some Classes of<br>Neutrosophic Graphs<br>▶ Henry Garrett, "Recognition of the Pattern for Vertices to Make<br>by Resolving in some Classes of Neutrosophic Graphs", ResearchGate<br>10.13140/RG.2.2.27281.51046).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | e Dimension                                                                                                                                               |
|              | Neutrosophic Graphs<br>Henry Garrett, "Recognition of the Pattern for Vertices to Mak<br>by Resolving in some Classes of Neutrosophic Graphs", ResearchGate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                           |
| 2022         | <ul> <li>Neutrosophic Graphs</li> <li>Henry Garrett, "Recognition of the Pattern for Vertices to Mak<br/>by Resolving in some Classes of Neutrosophic Graphs", ResearchGate<br/>10.13140/RG.2.2.27281.51046).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e Dimension<br>e 2022 (doi:                                                                                                                               |
| 2022         | <ul> <li>Neutrosophic Graphs</li> <li>Henry Garrett, "Recognition of the Pattern for Vertices to Mak<br/>by Resolving in some Classes of Neutrosophic Graphs", ResearchGate<br/>10.13140/RG.2.2.27281.51046).</li> <li>Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn<br/>0091   Regularity of Every Element to Function in the Type of Domination in Neutrosophic Graphs</li> <li>Henry Garrett, "Regularity of Every Element to Function in the Type of I<br/>Neutrosophic Graphs", ResearchGate 2022 (doi: 10.13140/RG.2.2.22861.10727).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | e Dimension<br>e 2022 (doi:<br>Manuscript                                                                                                                 |
| 2022         | <ul> <li>Neutrosophic Graphs</li> <li>Henry Garrett, "Recognition of the Pattern for Vertices to Mak<br/>by Resolving in some Classes of Neutrosophic Graphs", ResearchGate<br/>10.13140/RG.2.2.27281.51046).</li> <li>Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn</li> <li>0091   Regularity of Every Element to Function in the Type of Domination in Neutrosophic Graphs</li> <li>Henry Garrett, "Regularity of Every Element to Function in the Type of I</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | e Dimension<br>e 2022 (doi:<br>Manuscript                                                                                                                 |
|              | <ul> <li>Neutrosophic Graphs</li> <li>Henry Garrett, "Recognition of the Pattern for Vertices to Mak<br/>by Resolving in some Classes of Neutrosophic Graphs", ResearchGate<br/>10.13140/RG.2.2.27281.51046).</li> <li>Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn<br/>0091   Regularity of Every Element to Function in the Type of Domination in Neutrosophic Graphs</li> <li>Henry Garrett, "Regularity of Every Element to Function in the Type of I<br/>Neutrosophic Graphs", ResearchGate 2022 (doi: 10.13140/RG.2.2.22861.10727).</li> <li>Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn<br/>0090   Initial Material of Neutrosophic Preliminaries to Study Some Neutrosophic Notions Based on</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | e Dimension<br>2022 (doi:<br><u>Manuscrip</u><br>Domination in                                                                                            |
| 2022<br>2022 | <ul> <li>Neutrosophic Graphs</li> <li>Henry Garrett, "Recognition of the Pattern for Vertices to Mak<br/>by Resolving in some Classes of Neutrosophic Graphs", ResearchGate<br/>10.13140/RG.2.2.27281.51046).</li> <li>Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn<br/>0091   Regularity of Every Element to Function in the Type of Domination in Neutrosophic Graphs</li> <li>Henry Garrett, "Regularity of Every Element to Function in the Type of I<br/>Neutrosophic Graphs", ResearchGate 2022 (doi: 10.13140/RG.2.2.22861.10727).</li> <li>Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | e Dimension<br>2022 (doi:<br><u>Manuscript</u><br>Domination in<br><u>Manuscript</u><br>Neutrosophic                                                      |
|              | <ul> <li>Neutrosophic Graphs</li> <li>Henry Garrett, "Recognition of the Pattern for Vertices to Mak<br/>by Resolving in some Classes of Neutrosophic Graphs", ResearchGate<br/>10.13140/RG.2.2.27281.51046).</li> <li>Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn<br/>0091   Regularity of Every Element to Function in the Type of Domination in Neutrosophic Graphs</li> <li>Henry Garrett, "Regularity of Every Element to Function in the Type of I<br/>Neutrosophic Graphs", ResearchGate 2022 (doi: 10.13140/RG.2.2.22861.10727).</li> <li>Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn<br/>0090   Initial Material of Neutrosophic Preliminaries to Study Some Neutrosophic Notions Based on<br/>Neutrosophic SuperHyperEdge (NSHE) in Neutrosophic SuperHyperGraph (NSHG)</li> <li>Henry Garrett, "Initial Material of Neutrosophic SuperHyperGraph (NSHG)</li> <li>Henry Garrett, "Initial Material of Neutrosophic SuperHyperEdge (NSHE) in Neutro</li></ul> | e Dimension<br>2022 (doi:<br><u>Manuscript</u><br>Domination in<br><u>Manuscript</u><br>Neutrosophic                                                      |
| 2022         | <ul> <li>Neutrosophic Graphs</li> <li>Henry Garrett, "Recognition of the Pattern for Vertices to Mak<br/>by Resolving in some Classes of Neutrosophic Graphs", ResearchGate<br/>10.13140/RG.2.2.27281.51046).</li> <li>Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn<br/>0091   Regularity of Every Element to Function in the Type of Domination in Neutrosophic Graphs</li> <li>Henry Garrett, "Regularity of Every Element to Function in the Type of I<br/>Neutrosophic Graphs", ResearchGate 2022 (doi: 10.13140/RG.2.2.22861.10727).</li> <li>Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn<br/>0090   Initial Material of Neutrosophic Preliminaries to Study Some Neutrosophic Notions Based on<br/>Neutrosophic SuperHyperEdge (NSHE) in Neutrosophic SuperHyperGraph (NSHG)</li> <li>Henry Garrett, "Initial Material of Neutrosophic SuperHyperEdge (NSHE) in Neutrosophic Super<br/>Notions Based on Neutrosophic SuperHyperEdge (NSHE) in Neutrosophic Super<br/>(NSHG)", ResearchGate 2022 (doi: 10.13140/RG.2.2.25385.88160).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e Dimension<br>2022 (doi:<br><u>Manuscript</u><br>Domination in<br><u>Manuscript</u><br>Neutrosophic                                                      |
| 2022         | <ul> <li>Neutrosophic Graphs</li> <li>Henry Garrett, "Recognition of the Pattern for Vertices to Mak<br/>by Resolving in some Classes of Neutrosophic Graphs", ResearchGate<br/>10.13140/RG.2.2.27281.51046).</li> <li>Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn<br/>0091   Regularity of Every Element to Function in the Type of Domination in Neutrosophic Graphs</li> <li>Henry Garrett, "Regularity of Every Element to Function in the Type of Domination in Neutrosophic Graphs", ResearchGate 2022 (doi: 10.13140/RG.2.2.22861.10727).</li> <li>Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn<br/>0090   Initial Material of Neutrosophic Preliminaries to Study Some Neutrosophic Notions Based on<br/>Neutrosophic SuperHyperEdge (NSHE) in Neutrosophic SuperHyperGraph (NSHG)</li> <li>Henry Garrett, "Initial Material of Neutrosophic SuperHyperEdge (NSHE) in Neutrosophic Super<br/>(NSHG)", ResearchGate 2022 (doi: 10.13140/RG.2.2.25385.88160).</li> <li>Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn<br/>0089   Basic Neutrosophic Notions Concerning Neutrosophic SuperHyperDominating and<br/>Neutrosophic SuperHyperResolving in Neutrosophic SuperHyperDominating and<br/>Neutrosophic SuperHyperResolving in Neutrosophic SuperHyperDominating and<br/>Neutrosophic SuperHyperResolving in Neutrosophic SuperHyperResolving in<br/>Jenry Garrett, "Basic Neutrosophic SuperHyperGraph</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e Dimension<br>2022 (doi:<br><u>Manuscrip</u><br>Domination in<br><u>Manuscrip</u><br>Neutrosophic<br>erHyperGraph                                        |
|              | <ul> <li>Neutrosophic Graphs</li> <li>Henry Garrett, "Recognition of the Pattern for Vertices to Mak<br/>by Resolving in some Classes of Neutrosophic Graphs", ResearchGate<br/>10.13140/RG.2.2.27281.51046).</li> <li>Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn<br/>0091   Regularity of Every Element to Function in the Type of Domination in Neutrosophic Graphs</li> <li>Henry Garrett, "Regularity of Every Element to Function in the Type of Domination in Neutrosophic Graphs", ResearchGate 2022 (doi: 10.13140/RG.2.2.22861.10727).</li> <li>Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn<br/>0090   Initial Material of Neutrosophic Preliminaries to Study Some Neutrosophic Notions Based on<br/>Neutrosophic SuperHyperEdge (NSHE) in Neutrosophic SuperHyperGraph (NSHG)</li> <li>Henry Garrett, "Initial Material of Neutrosophic SuperHyperEdge (NSHE) in Neutrosophic Super<br/>(NSHG)", ResearchGate 2022 (doi: 10.13140/RG.2.2.25385.88160).</li> <li>Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn<br/>0089   Basic Neutrosophic Notions Concerning Neutrosophic SuperHyperDominating and<br/>Neutrosophic SuperHyperResolving in Neutrosophic SuperHyperDominating and<br/>Neutrosophic SuperHyperResolving in Neutrosophic SuperHyperComplic<br/>Notions Concerning<br/>UperHyperDominating and Neutrosophic Notions Concerning SuperHyperResolving in</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e Dimension<br>2022 (doi:<br><u>Manuscript</u><br>Domination in<br><u>Manuscript</u><br>Neutrosophic<br>erHyperGraph<br><u>Manuscript</u><br>Neutrosophic |

|      | <ul> <li>Henry Garrett, "Seeking Empty Subgraphs To Determine Different Measuremen<br/>Classes of Neutrosophic Graphs", ResearchGate 2022 (doi: 10.13140/RG.2.2.30448.</li> <li>Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn</li> </ul> |             |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|      |                                                                                                                                                                                                                                                                   |             |
| 2022 | 0087   Impacts of Isolated Vertices To Cover Other Vertices in Neutrosophic Graphs                                                                                                                                                                                | Manuscrip   |
|      | <ul> <li>Henry Garrett, "Impacts of Isolated Vertices To Cover Other Vertices in Net Graphs", ResearchGate 2022 (doi: 10.13140/RG.2.2.16185.44647).</li> <li>Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn</li> </ul>                    | eutrosophic |
| 2022 | 0086   Perfect Locating of All Vertices in Some Classes of Neutrosophic Graphs                                                                                                                                                                                    | Manuscript  |
|      | ▶ Henry Garrett, "Perfect Locating of All Vertices in Some Classes of Neutrosophi<br>ResearchGate 2022 (doi: 10.13140/RG.2.2.23971.12326).                                                                                                                        | c Graphs",  |
|      | $\ensuremath{{}^{\scriptstyle \ensuremath{\mathbb{R}}}}$ Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn                                                                                                                                   |             |
| 2022 | 0085   Complete Connections Between Vertices in Neutrosophic Graphs                                                                                                                                                                                               | Manuscript  |
|      | <ul> <li>Henry Garrett, "Complete Connections Between Vertices in Neutrosophic ResearchGate 2022 (doi: 10.13140/RG.2.2.28860.10885).</li> <li>Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn</li> </ul>                                   | e Graphs",  |
| 2022 | 0084   Unique Distance Differentiation By Collection of Vertices in Neutrosophic Graphs                                                                                                                                                                           | Manuscript  |
|      | Henry Garrett, "Unique Distance Differentiation By Collection of Vertices in Ne<br>Graphs", ResearchGate 2022 (doi: 10.13140/RG.2.2.17692.77449).                                                                                                                 |             |
|      | > Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn                                                                                                                                                                                          |             |
| 2022 | 0083   Single Connection Amid Vertices From Two Given Sets Partitioning Vertex Set in Some Classes                                                                                                                                                                | Manuscrip   |
|      | <ul> <li>Vertex Set in Some Classes of Neutrosophic Graphs", ResearchGate 2 10.13140/RG.2.2.32189.33764).</li> <li>Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn</li> </ul>                                                              | 2022 (doi:  |
| 2022 | 0082   Separate Joint-Sets Representing Separate Numbers Where Classes of Neutrosophic Graphs                                                                                                                                                                     | Manuscrip   |
|      | and Applications are Cases of Study<br>▶ Henry Garrett, "Separate Joint-Sets Representing Separate Numbers Whe<br>of Neutrosophic Graphs and Applications are Cases of Study", ResearchGate<br>10.13140/RG.2.2.22666.95686).                                      |             |
|      | $\ensuremath{{}^{\scriptstyle }}$ Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn                                                                                                                                                          |             |
| 2022 | 0081   Repetitive Joint-Sets Featuring Multiple Numbers For Neutrosophic Graphs                                                                                                                                                                                   | Manuscrip   |
|      | <ul> <li>Henry Garrett, "Repetitive Joint-Sets Featuring Multiple Numbers For Ne Graphs", ResearchGate 2022 (doi: 10.13140/RG.2.2.15113.93283).</li> <li>Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn</li> </ul>                        | eutrosophic |
| 0000 |                                                                                                                                                                                                                                                                   |             |
| 2022 | 0080   Dual-Resolving Numbers Excerpt from Some Classes of Neutrosophic Graphs With Some Applications Henry Garrett, "Dual-Resolving Numbers Excerpt from Some Classes of Ne                                                                                      | *           |
|      | Graphs With Some Applications", ResearchGate 2022 (doi: 10.13140/RG.2.2.14971<br>Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn                                                                                                           | .39200).    |
| 2022 | 0079   Dual-Dominating Numbers in Neutrosophic Setting and Crisp Setting Obtained From Classes                                                                                                                                                                    | Manuscrip   |
|      | <ul> <li><sup>of Neutrosophic Graphs</sup></li> <li><sup>b</sup> Henry Garrett, "Dual-Dominating Numbers in Neutrosophic Setting Setting Obtained From Classes of Neutrosophic Graphs", ResearchGate 210.13140/RG.2.2.19925.91361).</li> </ul>                    |             |
|      | $\ensuremath{{}^{\scriptstyle \ensuremath{\mathbb{R}}}}$ Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn                                                                                                                                   |             |
| 2022 | 0078 $\mid$ Neutrosophic Path-Coloring Numbers BasedOn Endpoints In Neutrosophic Graphs                                                                                                                                                                           | Manuscrip   |
|      |                                                                                                                                                                                                                                                                   |             |

 $Henry\ Garrett \cdot Independent\ Researcher \cdot Department\ of\ Mathematics \cdot \frac{DrHenryGarrett@gmail.com}{OrHenryGarrett@gmail.com} \cdot Manhattan,\ NY,\ USA$ 

|                | Henry Garrett, "Neutrosophic Path-Coloring Numbers BasedOn Endpoints In Neu<br>Graphs", ResearchGate 2022 (doi: 10.13140/RG.2.2.27990.11845).                                                                                                                                               | ıtrosophic |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
|                | Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn                                                                                                                                                                                                                      |            |
| 2022           | 0077   Neutrosophic Dominating Path-Coloring Numbers in New Visions of Classes of Neutrosophic                                                                                                                                                                                              | Manuscrip  |
|                | <ul> <li>Graphs</li> <li>Henry Garrett, "Neutrosophic Dominating Path-Coloring Numbers in New Visions of Neutrosophic Graphs", ResearchGate 2022 (doi: 10.13140/RG.2.2.32151.65445).</li> <li>Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn</li> </ul>             | of Classes |
| 2022           | 0076   Path Coloring Numbers of Neutrosophic Graphs Based on Shared Edges and Neutrosophic                                                                                                                                                                                                  | Manuscrip  |
|                | Cardinality of Edges With Some Applications from Real-World Problems<br>Henry Garrett, "Path Coloring Numbers of Neutrosophic Graphs Based on Sha<br>and Neutrosophic Cardinality of Edges With Some Applications from Real-World I<br>ResearchGate 2022 (doi: 10.13140/RG.22.30105.70244). | 0          |
|                | Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn                                                                                                                                                                                                                      |            |
| 2022           | 0075 $\mid$ Neutrosophic Collapsed Numbers in the Viewpoint of Neutrosophic Graphs                                                                                                                                                                                                          | Manuscrip  |
|                | Henry Garrett, "Neutrosophic Collapsed Numbers in the Viewpoint of Neutrosophi ResearchGate 2022 (doi: 10.13140/RG.2.2.27962.67520).                                                                                                                                                        | c Graphs", |
|                | Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn                                                                                                                                                                                                                      |            |
| 2022           | 0074   Bulky Numbers of Classes of Neutrosophic Graphs Based on Neutrosophic Edges                                                                                                                                                                                                          | Manuscrip  |
|                | Henry Garrett, "Bulky Numbers of Classes of Neutrosophic Graphs Based on Neu-Edges", ResearchGate 2022 (doi: 10.13140/RG.2.2.24204.18564).                                                                                                                                                  | utrosophic |
|                | Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn                                                                                                                                                                                                                      |            |
| 2022           | $0073 \mid \textsc{Dense}$ Numbers and Minimal Dense Sets of Neutrosophic Graphs                                                                                                                                                                                                            | Manuscrip  |
|                | ▶ Henry Garrett, "Dense Numbers and Minimal Dense Sets of Neutrosophic ResearchGate 2022 (doi: 10.13140/RG.2.2.28044.59527).                                                                                                                                                                | Graphs",   |
|                | Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn                                                                                                                                                                                                                      |            |
| 2022           | 0072   Connectivities of Neutrosophic Graphs in the terms of Crisp Cycles                                                                                                                                                                                                                   | Manuscrip  |
|                | $\blacktriangleright$ Henry Garrett, "Connectivities of Neutrosophic Graphs in the terms of Cris ResearchGate 2022 (doi: 10.13140/RG.2.2.31917.77281).                                                                                                                                      | p Cycles", |
|                | Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn                                                                                                                                                                                                                      |            |
| 2022           | 0071   Strong Paths Defining Connectivities in Neutrosophic Graphs                                                                                                                                                                                                                          | Manuscrip  |
|                | Henry Garrett, "Strong Paths Defining Connectivities in Neutrosophic ResearchGate 2022 (doi: 10.13140/RG.2.2.17311.43682).                                                                                                                                                                  | Graphs",   |
|                | Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn                                                                                                                                                                                                                      |            |
| 2022           | 0070   Finding Longest Weakest Paths assigning numbers to some Classes of Neutrosophic Graphs                                                                                                                                                                                               | Manuscrip  |
|                | <ul> <li>Henry Garrett, "Finding Longest Weakest Paths assigning numbers to some<br/>Neutrosophic Graphs", ResearchGate 2022 (doi: 10.13140/RG.2.2.35579.59689).</li> <li>Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn</li> </ul>                                 | Classes of |
| Amii 19, 9099  | 0000                                                                                                                                                                                                                                                                                        | Antial     |
| April 12, 2022 |                                                                                                                                                                                                                                                                                             | Articl     |
|                | Henry Garrett, "Properties of SuperHyperGraph and Net<br>SuperHyperGraph", Neutrosophic Sets and Systems 49 (2022) 531-5<br>10.5281/zenodo.6456413). (http://fs.unm.edu/NSS/NeutrosophicSuperHyperGrap<br>(https://digitalrepository.unm.edu/nss_journal/vol49/iss1/34).                    |            |
|                | Available at NSS, NSS Gallery, UNM Digital Repository, Twitter, ResearchGat<br>Academia, Zenodo, LinkedIn                                                                                                                                                                                   | e, Scribd, |
| 2022           | 0068   Relations and Notions amid Hamiltonicity and Eulerian Notions in Some Classes of Neutrosophic Graphs                                                                                                                                                                                 | Manuscrip  |
|                |                                                                                                                                                                                                                                                                                             |            |

| 2022<br>2022 | <ul> <li>Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn</li> <li>0067   Eulerian Results In Neutrosophic Graphs With Applications</li> <li>Henry Garrett, "Eulerian Results In Neutrosophic Graphs With Applic ResearchGate 2022 (doi: 10.13140/RG.2.2.34203.34089).</li> <li>Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn</li> <li>0066   Finding Hamiltonian Neutrosophic Cycles in Classes of Neutrosophic Graphs</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Manuscrip<br>- ations", |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
|              | <ul> <li>Henry Garrett, "Eulerian Results In Neutrosophic Graphs With Applic ResearchGate 2022 (doi: 10.13140/RG.2.2.34203.34089).</li> <li>Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn</li> <li>0066   Finding Hamiltonian Neutrosophic Cycles in Classes of Neutrosophic Graphs</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                       |
| 2022         | ResearchGate 2022 (doi: 10.13140/RG.2.2.34203.34089).<br>Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn<br>0066   Finding Hamiltonian Neutrosophic Cycles in Classes of Neutrosophic Graphs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - ations",              |
| 2022         | 0066   Finding Hamiltonian Neutrosophic Cycles in Classes of Neutrosophic Graphs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         |
| 2022         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Manuscrip               |
|              | <ul> <li>Henry Garrett, "Finding Hamiltonian Neutrosophic Cycles in Classes of Neu<br/>Graphs", ResearchGate 2022 (doi: 10.13140/RG.2.2.29071.87200).</li> <li>Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ıtrosophic              |
| 2022         | 0065   Extending Sets Type-Results in Neutrosophic Graphs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Manuscrip               |
| 2022         | <ul> <li>Henry Garrett, "Extending Sets Type-Results in Neutrosophic Graphs", Research</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · · · ·               |
|              | <ul><li>(doi: 10.13140/RG.2.2.13317.01767).</li><li>Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |
| 0000         | 0004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |
| 2022         | 0064 Some Polynomials Related to Numbers in Classes of (Strong) Neutrosophic Graphs Henry Garrett, "Some Polynomials Related to Numbers in Classes of (Strong) Neutronals Related to Numbers      | Manuscrip               |
|              | <ul> <li>Graphs", ResearchGate 2022 (doi: 10.13140/RG.2.2.36280.83204).</li> <li>Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | trosopnic               |
| 2022         | 0063   Finding Shortest Sequences of Consecutive Vertices in Neutrosophic Graphs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Manuscrip               |
| 2022         | <ul> <li>Henry Garrett, "Finding Shortest Sequences of Consecutive Vertices in Neutrosophic Graphs</li> <li>Henry Garrett, "Finding Shortest Sequences of Consecutive Vertices in Neutrosophic Consecutive Vertices in Neutrosoph</li></ul> | -                       |
|              | <ul> <li>Graphs", ResearchGate 2022 (doi: 10.13140/RG.2.2.22924.59526).</li> <li>Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | trosophic               |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         |
| 2022         | 0062   Neutrosophic Girth Based On Crisp Cycle in Neutrosophic Graphs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Manuscrip               |
|              | Henry Garrett, "Neutrosophic Girth Based On Crisp Cycle in Neutrosophic<br>ResearchGate 2022 (doi: 10.13140/RG.2.2.14011.69923).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Graphs",                |
|              | Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         |
| 2022         | 0061   e-Matching Number and e-Matching Polynomials in Neutrosophic Graphs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Manuscrip               |
|              | $\blacktriangleright$ Henry Garrett, "e-Matching Number and e-Matching Polynomials in Neutrosophic ResearchGate 2022 (doi: 10.13140/RG.2.2.32516.60805).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | c Graphs",              |
|              | Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         |
| 2022         | 0060   Matching Polynomials in Neutrosophic Graphs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Manuscrip               |
|              | Henry Garrett, "Matching Polynomials in Neutrosophic Graphs", ResearchGate 10.13140/RG.2.2.33630.72002).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2022 (doi:              |
|              | ▶ Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         |
| 2022         | 0059   Some Results in Classes Of Neutrosophic Graphs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Manuscrip               |
|              | Henry Garrett, "Some Results in Classes Of Neutrosophic Graphs", Prepr<br>2022030248 (doi: 10.20944/preprints202203.0248.v1).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ints 2022,              |
|              | ▶ Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         |
| 2022         | 0058   Matching Number in Neutrosophic Graphs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Manuscrip               |
|              | Henry Garrett, "Matching Number in Neutrosophic Graphs", ResearchGate 10.13140/RG.2.2.18609.86882).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2022 (doi:              |
|              | Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         |

| Oct 2018 2022 2022 2022 2022 2022 2022 | 0056   The Effects of Mathematics on Computer Sciences       Cd         M. Nikfar, "The Effects of Mathematics on Computer Sciences", Second on the Education and Applications of Mathematics, Kermanshah, in (https://en.civilica.com/doc/824659).       Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn         0055   (Failed) 1-clique Number in Neutrosophic Graphs       Henry Garrett, "(Failed) 1-Clique Number in Neutrosophic Graphs", Research (doi: 10.13140/RG.2.2.14241.89449).         Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn       0054   Failed Clique Number in Neutrosophic Graphs", Research (doi: 10.13140/RG.2.2.36039.16800).         Henry Garrett, "Failed Clique Number in Neutrosophic Graphs", ResearchGate, Scribd, Academia, Zenodo, LinkedIn       0053   Clique Number in Neutrosophic Graphs         Henry Garrett, "Failed Clique Number in Neutrosophic Graphs", ResearchGate, Scribd, Academia, Zenodo, LinkedIn       0053   Clique Number in Neutrosophic Graphs         Henry Garrett, "Clique Number in Neutrosophic Graphs", ResearchGate, Scribd, Academia, Zenodo, LinkedIn       0053   Clique Number in Neutrosophic Graphs         Henry Garrett, "Clique Number in Neutrosophic Graphs", ResearchGate, Scribd, Academia, Zenodo, LinkedIn       0053   Clique Number in Neutrosophic Graphs         Henry Garrett, "Clique Number in Neutrosophic Graphs", ResearchGate, Scribd, Academia, Zenodo, LinkedIn       0052   (Failed) 1-independent Number in Neutrosophic Graphs | Iran, 2018<br>Manuscrip<br>hGate 2022<br>Manuscrip<br>e 2022 (doi:<br>Manuscrip<br>2022 (doi: |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| 2022<br>2022<br>2022                   | <ul> <li>on the Education and Applications of Mathematics, Kermanshah, E (https://en.civilica.com/doc/824659).</li> <li>Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn 0055   (Failed) 1-clique Number in Neutrosophic Graphs</li> <li>Henry Garrett, "(Failed) 1-Clique Number in Neutrosophic Graphs", Research (doi: 10.13140/RG.2.2.14241.89449).</li> <li>Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn 0054   Failed Clique Number in Neutrosophic Graphs</li> <li>Henry Garrett, "Failed Clique Number in Neutrosophic Graphs", ResearchGate 10.13140/RG.2.2.36039.16800).</li> <li>Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn 0053   Clique Number in Neutrosophic Graphs</li> <li>Henry Garrett, "Clique Number in Neutrosophic Graphs", ResearchGate 10.13140/RG.2.2.28338.68800).</li> <li>Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn 0053   Clique Number in Neutrosophic Graphs</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Iran, 2018<br>Manuscrip<br>hGate 2022<br>Manuscrip<br>e 2022 (doi:<br>Manuscrip<br>2022 (doi: |
| 2022<br>2022<br>2022                   | <ul> <li>Henry Garrett, "(Failed) 1-Clique Number in Neutrosophic Graphs", Research (doi: 10.13140/RG.2.2.14241.89449).</li> <li>Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn 0054   Failed Clique Number in Neutrosophic Graphs</li> <li>Henry Garrett, "Failed Clique Number in Neutrosophic Graphs", ResearchGate 10.13140/RG.2.2.36039.16800).</li> <li>Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn 0053   Clique Number in Neutrosophic Graphs</li> <li>Henry Garrett, "Clique Number in Neutrosophic Graphs", ResearchGate 10.13140/RG.2.2.38338.68800).</li> <li>Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn 0053   Clique Number in Neutrosophic Graphs</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | hGate 2022<br>Manuscrip<br>e 2022 (doi:<br>Manuscrip<br>2022 (doi:<br>Manuscrip               |
| 2022<br>2022                           | <ul> <li>(doi: 10.13140/RG.2.2.14241.89449).</li> <li>Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn</li> <li>0054   Failed Clique Number in Neutrosophic Graphs</li> <li>Henry Garrett, "Failed Clique Number in Neutrosophic Graphs", ResearchGate 10.13140/RG.2.2.36039.16800).</li> <li>Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn</li> <li>0053   Clique Number in Neutrosophic Graphs</li> <li>Henry Garrett, "Clique Number in Neutrosophic Graphs", ResearchGate 10.13140/RG.2.2.28338.68800).</li> <li>Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Manuscrip<br>e 2022 (doi:<br>Manuscrip<br>2022 (doi:<br>Manuscrip                             |
| 2022<br>2022                           | <ul> <li>0054   Failed Clique Number in Neutrosophic Graphs</li> <li>Henry Garrett, "Failed Clique Number in Neutrosophic Graphs", ResearchGatt 10.13140/RG.2.2.36039.16800).</li> <li>Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn</li> <li>0053   Clique Number in Neutrosophic Graphs</li> <li>Henry Garrett, "Clique Number in Neutrosophic Graphs", ResearchGate 10.13140/RG.2.2.28338.68800).</li> <li>Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A danuscrip<br>2022 (doi:<br>2022 (doi:<br>Manuscrip                                          |
| 2022<br>2022                           | <ul> <li>Henry Garrett, "Failed Clique Number in Neutrosophic Graphs", ResearchGate 10.13140/RG.2.2.36039.16800).</li> <li>Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn 0053   Clique Number in Neutrosophic Graphs</li> <li>Henry Garrett, "Clique Number in Neutrosophic Graphs", ResearchGate 10.13140/RG.2.2.28338.68800).</li> <li>Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn 0.13140/RG.2.2.28338.68800).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A danuscrip<br>2022 (doi:<br>2022 (doi:<br>Manuscrip                                          |
| 2022                                   | <ul> <li>10.13140/RG.2.2.36039.16800).</li> <li>Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn</li> <li>0053   Clique Number in Neutrosophic Graphs</li> <li>Henry Garrett, "Clique Number in Neutrosophic Graphs", ResearchGate</li> <li>10.13140/RG.2.2.28338.68800).</li> <li>Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Manuscrip<br>2022 (doi:<br>Manuscrip                                                          |
| 2022                                   | <ul> <li>0053   Clique Number in Neutrosophic Graphs</li> <li>Henry Garrett, "Clique Number in Neutrosophic Graphs", ResearchGate 10.13140/RG.2.2.28338.68800).</li> <li>Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2022 (doi:<br>Manuscrip                                                                       |
| 2022                                   | <ul> <li>Henry Garrett, "Clique Number in Neutrosophic Graphs", ResearchGate 10.13140/RG.2.2.28338.68800).</li> <li>Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2022 (doi:<br>Manuscrip                                                                       |
|                                        | <ul> <li>10.13140/RG.2.2.28338.68800).</li> <li>Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Manuscrip                                                                                     |
|                                        | 0052   (Failed) 1-independent Number in Neutrosophic Graphs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                               |
| 2022                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                               |
| 2022                                   | Henry Garrett, "(Failed) 1-Independent Number in Neutrosophic Graphs", Re<br>2022 (doi: 10.13140/RG.2.2.30593.12643).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | esearchGate                                                                                   |
| 2022                                   | Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                               |
|                                        | 0051   Failed Independent Number in Neutrosophic Graphs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Manuscrip                                                                                     |
|                                        | Henry Garrett, "Failed Independent Number in Neutrosophic Graphs", Prep<br>2022020334 (doi: 10.20944/preprints202202.0334.v2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | prints 2022,                                                                                  |
|                                        | Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                               |
| 2022                                   | 0051   Failed Independent Number in Neutrosophic Graphs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Manuscrip                                                                                     |
|                                        | <ul> <li>Henry Garrett, "Failed Independent Number in Neutrosophic Graphs", Researce<br/>(doi: 10.13140/RG.2.2.31196.05768).</li> <li>Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | hGate 2022                                                                                    |
|                                        | Walable at Twitter, Researcheate, Scribt, Readelina, Zenoto, Elincoln                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                               |
| 2022                                   | 0050   Independent Set in Neutrosophic Graphs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Manuscrip                                                                                     |
|                                        | <ul> <li>Henry Garrett, "Independent Set in Neutrosophic Graphs", Preprints 2022, 2022(10.20944/preprints202202.0334.v1).</li> <li>Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 020334 (doi:                                                                                  |
|                                        | - Induste at Twitter, researcheater, seriod, readenna, zenodo, Einkeum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                               |
| 2022                                   | 0050   Independent Set in Neutrosophic Graphs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Manuscrip                                                                                     |
|                                        | <ul> <li>Henry Garrett, "Independent Set in Neutrosophic Graphs", ResearchGate 10.13140/RG.2.2.17472.81925).</li> <li>Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2022 (doi:                                                                                    |
| 2022                                   | , , , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                               |

|      | Henry Garrett, "(Failed)1-Zero-Forcing Number in Neutrosophic Graphs", Rev<br>2022 (doi: 10.13140/RG.2.2.35241.26724).                                                                                                           | searchGate   |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|      | Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn                                                                                                                                                           |              |
| 2022 | 0048   Failed Zero-Forcing Number in Neutrosophic Graphs                                                                                                                                                                         | Manuscrip    |
|      | <ul> <li>Henry Garrett, "Failed Zero-Forcing Number in Neutrosophic Graphs", Prep 2022020343 (doi: 10.20944/preprints202202.0343.v1).</li> <li>Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn</li> </ul> | rints 2022,  |
| 2022 | 0048   Failed Zero-Forcing Number in Neutrosophic Graphs                                                                                                                                                                         | Manuscrip    |
|      | Henry Garrett, "Failed Zero-Forcing Number in Neutrosophic Graphs", Research<br>(doi: 10.13140/RG.2.2.24873.47209).                                                                                                              | nGate 2022   |
|      | > Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn                                                                                                                                                         |              |
| 2022 | 0047   Zero Forcing Number in Neutrosophic Graphs                                                                                                                                                                                | Manuscrip    |
|      | <ul> <li>Henry Garrett, "Zero Forcing Number in Neutrosophic Graphs", ResearchGate 10.13140/RG.2.2.32265.93286).</li> <li>Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn</li> </ul>                      | 2022 (doi:   |
|      |                                                                                                                                                                                                                                  |              |
| 2022 | 0046   Quasi-Number in Neutrosophic Graphs                                                                                                                                                                                       | Manuscrip    |
|      | Henry Garrett, "Quasi-Number in Neutrosophic Graphs", ResearchGate<br>10.13140/RG.2.2.18470.60488).                                                                                                                              | 2022 (doi:   |
|      | > Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn                                                                                                                                                         |              |
| 2022 | 0045   Quasi-Degree in Neutrosophic Graphs                                                                                                                                                                                       | Manuscrip    |
|      | <ul> <li>Henry Garrett, "Quasi-Degree in Neutrosophic Graphs", Preprints 2022, 20220: 10.20944/preprints202202.0100.v1).</li> <li>Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn</li> </ul>              | 20100 (doi:  |
| 2022 | 0045   Quasi-Degree in Neutrosophic Graphs                                                                                                                                                                                       | Manuscrip    |
| 2022 | <ul> <li>Henry Garrett, "Quasi-Degree in ResearchGate 2022 (doi: 10.13140/RG.2.2.2546</li> </ul>                                                                                                                                 |              |
|      | <ul> <li>Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn</li> </ul>                                                                                                                                       | 0.01527).    |
| 2022 | 0044   Co-Neighborhood in Neutrosophic Graphs                                                                                                                                                                                    | Manuscrip    |
|      | $\blacktriangleright$ Henry Garrett, "Co-Neighborhood in Neutrosophic Graphs", ResearchGate 10.13140/RG.2.2.17687.44964).                                                                                                        | 2022 (doi:   |
|      | > Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn                                                                                                                                                         |              |
| 2022 | 0043   Global Powerful Alliance in Strong Neutrosophic Graphs                                                                                                                                                                    | Manuscrip    |
|      | Henry Garrett, "Global Powerful Alliance in Strong Neutrosophic Graphs", Prep<br>2022010429 (doi: 10.20944/preprints202201.0429.v1).                                                                                             | orints 2022, |
|      | > Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn                                                                                                                                                         |              |
| 2022 | 0043   Global Powerful Alliance in Strong Neutrosophic Graphs                                                                                                                                                                    | Manuscrip    |
|      | Henry Garrett, "Global Powerful Alliance in Strong Neutrosophic Graphs", Rez 2022 (doi: 10.13140/RG.2.2.31784.24322).                                                                                                            | searchGate   |
|      | > Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn                                                                                                                                                         |              |
| 2022 | 0042   Global Offensive Alliance in Strong Neutrosophic Graphs                                                                                                                                                                   | Manuscrip    |
|      | Henry Garrett, "Global Offensive Alliance in Strong Neutrosophic Graphs", Prep 2022010429 (doi: 10.20944/preprints202201.0429.v1).                                                                                               | orints 2022, |
|      | $\blacktriangleright$ Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn                                                                                                                                     |              |

 $Henry\ Garrett \cdot Independent\ Researcher \cdot Department\ of\ Mathematics \cdot \frac{DrHenryGarrett@gmail.com}{OrHenryGarrett@gmail.com} \cdot Manhattan,\ NY,\ USA$ 

| 2022 | 0042   Global Offensive Alliance in Strong Neutrosophic Graphs                                                                                                                                                                                                                                            | Manuscrip   |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|      | Henry Garrett, "Global Offensive Alliance in Strong Neutrosophic Graphs", Res 2022 (doi: 10.13140/RG.2.2.26541.20961).                                                                                                                                                                                    | searchGate  |
|      | $\hfill >$ Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn                                                                                                                                                                                                                         |             |
| 2022 | 0041   Three Types of Neutrosophic Alliances based on Connectedness and (Strong) Edges                                                                                                                                                                                                                    | Manuscrip   |
|      | <ul> <li>Henry Garrett, "Three Types of Neutrosophic Alliances based on Connectedness ar<br/>Edges", Preprints 2022, 2022010239 (doi: 10.20944/preprints202201.0239.v1).</li> <li>Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn</li> </ul>                                       | nd (Strong) |
|      |                                                                                                                                                                                                                                                                                                           |             |
| 2022 | 0041   Three Types of Neutrosophic Alliances based on Connectedness and (Strong) Edges                                                                                                                                                                                                                    | Manuscrip   |
|      | Henry Garrett, "Three Types of Neutrosophic Alliances based on Connectedness ar<br>Edges", ResearchGate 2022 (doi: 10.13140/RG.2.2.18486.83521).                                                                                                                                                          | nd (Strong) |
|      | > Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn                                                                                                                                                                                                                                  |             |
| 2022 | 0040   Three types of neutrosophic alliances based of connectedness and (strong) edges (In-Progress)                                                                                                                                                                                                      | Manuscrip   |
|      | ▶ Henry Garrett, "Three types of neutrosophic alliances based of connectedness are dges (In-Progress)", ResearchGate 2022 (doi: 10.13140/RG.2.2.27570.12480).                                                                                                                                             | nd (strong) |
|      | $\ensuremath{\blacktriangleright}$ Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn                                                                                                                                                                                                 |             |
| 2022 | 0039   Closing Numbers and Super-Closing Numbers as (Dual)Resolving and (Dual)Coloring                                                                                                                                                                                                                    | Manuscrip   |
|      | <ul> <li>alongside (Dual)Dominating in (Neutrosophic)n-SuperHyperGraph</li> <li>Henry Garrett, "Closing Numbers and Super-Closing Numbers as (Dual)Res (Dual)Coloring alongside (Dual)Dominating in (Neutrosophic)n-SuperHyperGraph" 2022, 2022010145 (doi: 10.20944/preprints202201.0145.v1).</li> </ul> | 0           |
|      | $\blacktriangleright$ Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn                                                                                                                                                                                                              |             |
| 2022 | 0039   Closing Numbers and Super-Closing Numbers as (Dual)Resolving and (Dual)Coloring                                                                                                                                                                                                                    | Manuscrip   |
|      | <ul> <li>alongside (Dual)Dominating in (Neutrosophic)n-SuperHyperGraph</li> <li>Henry Garrett, "Closing Numbers and Super-Closing Numbers as (Dual and (Dual)Coloring alongside (Dual)Dominating in (Neutrosophic)n-SuperHyperGraph ResearchGate 2022 (doi: 10.13140/RG.2.2.18909.54244/1).</li> </ul>    |             |
|      | $\ensuremath{\blacktriangleright}$ Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn                                                                                                                                                                                                 |             |
| 2022 | 0038   Co-degree and Degree of classes of Neutrosophic Hypergraphs                                                                                                                                                                                                                                        | Manuscrip   |
|      | Henry Garrett, "Co-degree and Degree of classes of Neutrosophic Hypergraphs"<br>2022, 2022010027 (doi: 10.20944/preprints202201.0027.v1).                                                                                                                                                                 | , Preprints |
|      | $\ensuremath{\blacktriangleright}$ Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn                                                                                                                                                                                                 |             |
| 2022 | 0038   Co-degree and Degree of classes of Neutrosophic Hypergraphs                                                                                                                                                                                                                                        | Manuscrip   |
|      | ▶ Henry Garrett, "Co-degree and Degree of classes of Neutrosophic Hyp<br>ResearchGate 2022 (doi: 10.13140/RG.2.2.32672.10249).                                                                                                                                                                            | pergraphs", |
|      | $\blacktriangleright$ Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn                                                                                                                                                                                                              |             |
| 2021 | 0037   Dimension and Coloring alongside Domination in Neutrosophic Hypergraphs                                                                                                                                                                                                                            | Manuscrip   |
|      | <ul> <li>Henry Garrett, "Dimension and Coloring alongside Domination in Net<br/>Hypergraphs", Preprints 2021, 2021120448 (doi: 10.20944/preprints202112.0448.v1)</li> <li>Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn</li> </ul>                                               | *           |
| 2021 | 0037   Dimension and Coloring alongside Domination in Neutrosophic Hypergraphs                                                                                                                                                                                                                            | Manuscrip   |
|      | Henry Garrett, "Dimension and Coloring alongside Domination in Net<br>Hypergraphs", ResearchGate 2021 (doi: 10.13140/RG.2.2.13070.28483).                                                                                                                                                                 | eutrosophic |
|      | Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn                                                                                                                                                                                                                                    |             |

|      | Henry Garrett, "Different Types of Neutrosophic Chromatic Number", Pre<br>2021120335 (doi: 10.20944/preprints202112.0335.v1).                                                                                                   | eprints 2021,             |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
|      | <ul> <li>Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn</li> </ul>                                                                                                                                      |                           |
| 2021 | 0036   Different Types of Neutrosophic Chromatic Number                                                                                                                                                                         | Manuscrip                 |
|      | <ul> <li>Henry Garrett, "Different Types of Neutrosophic Chromatic Number", Resear (doi: 10.13140/RG.2.2.19068.46723).</li> <li>Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn</li> </ul>               |                           |
| 2021 | 0035   Neutrosophic Chromatic Number Based on Connectedness                                                                                                                                                                     | Manuscrip                 |
|      | <ul> <li>Henry Garrett, "Neutrosophic Chromatic Number Based on Connectedness", Pr<br/>2021120226 (doi: 10.20944/preprints202112.0226.v1).</li> </ul>                                                                           | 1                         |
|      | <ul> <li>Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn</li> </ul>                                                                                                                                      |                           |
| 2021 | 0035   Neutrosophic Chromatic Number Based on Connectedness                                                                                                                                                                     | Manuscrip                 |
|      | Henry Garrett, "Neutrosophic Chromatic Number Based on Connectedness", F<br>2021 (doi: 10.13140/RG.2.2.18563.84001).                                                                                                            | ResearchGate              |
|      | $\blacktriangleright$ Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn                                                                                                                                    |                           |
| 2021 | 0034   Chromatic Number and Neutrosophic Chromatic Number                                                                                                                                                                       | Manuscrip                 |
|      | <ul> <li>Henry Garrett, "Chromatic Number and Neutrosophic Chromatic Number", Pr 2021120177 (doi: 10.20944/preprints202112.0177.v1).</li> <li>Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn</li> </ul> | eprints 2021,             |
|      | / Ivaliable at Twitter, Rescarciforate, Scribt, Readenna, Zerioto, Enikerin                                                                                                                                                     |                           |
| 2021 | 0034   Chromatic Number and Neutrosophic Chromatic Number                                                                                                                                                                       | Manuscrip                 |
|      | <ul> <li>Henry Garrett, "Chromatic Number and Neutrosophic Chromatic Number", F 2021 (doi: 10.13140/RG.2.2.36035.73766).</li> <li>Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn</li> </ul>             | ResearchGate              |
| 2021 | 0033   Metric Dimension in fuzzy(neutrosophic) Graphs #12                                                                                                                                                                       | Manuscrip                 |
|      | <ul> <li>Henry Garrett, "Metric Dimension in fuzzy(neutrosophic) Graphs #12", Resear (doi: 10.13140/RG.2.2.20690.48322).</li> <li>Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn</li> </ul>             | cchGate 2021              |
| 0001 |                                                                                                                                                                                                                                 | Manageria                 |
| 2021 | <ul> <li>0032   Metric Dimension in fuzzy(neutrosophic) Graphs #11</li> <li>Henry Garrett, "Metric Dimension in fuzzy(neutrosophic) Graphs #11", Resear (doi: 10.13140/RG.2.2.29308.46725).</li> </ul>                          | Manuscrip<br>cchGate 2021 |
|      | Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn                                                                                                                                                          |                           |
| 2021 | 0031   Metric Dimension in fuzzy(neutrosophic) Graphs #10                                                                                                                                                                       | Manuscrip                 |
|      | Henry Garrett, "Metric Dimension in fuzzy<br>(neutrosophic) Graphs #10", Resear (doi: 10.13140/RG.2.2.21614.54085).                                                                                                             | rchGate 2021              |
|      | $\slash$ Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn                                                                                                                                                 |                           |
| 2021 | 0030   Metric Dimension in fuzzy(neutrosophic) Graphs #9                                                                                                                                                                        | Manuscrip                 |
|      | Henry Garrett, "Metric Dimension in fuzzy<br>(neutrosophic) Graphs #9", Resear (doi: 10.13140/RG.2.2.34040.16648).                                                                                                              | chGate 2021               |
|      | Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn                                                                                                                                                          |                           |
| 2021 | 0029   Metric Dimension in fuzzy(neutrosophic) Graphs #8                                                                                                                                                                        | Manuscrip                 |
|      | <ul> <li>Henry Garrett, "Metric Dimension in fuzzy(neutrosophic) Graphs #8", Resear<br/>(doi: 10.13140/RG.2.2.19464.96007).</li> <li>Anilable at Traiting Research Cate Scribtly Academic Zanada Lindadha</li> </ul>            | rchGate 2021              |
|      | Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn                                                                                                                                                          |                           |

 $Henry\ Garrett \cdot Independent\ Researcher \cdot \ Department\ of\ Mathematics \cdot \ DrHenryGarrett@gmail.com \cdot \ Manhattan,\ NY,\ USA$ 

| 2021 | 0028   Metric Dimension in fuzzy(neutrosophic) Graphs-VII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Manuscript |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
|      | Henry Garrett, "Metric Dimension in fuzzy(neutrosophic) Graphs-VII", ResearchGa<br>(doi: 10.13140/RG.2.2.14667.72481).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | te 2021    |
|      | $\slash$ Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |
| 2021 | 0028   Metric Dimension in fuzzy(neutrosophic) Graphs-VII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Manuscript |
|      | Henry Garrett, "Metric Dimension in fuzzy(neutrosophic) Graphs-VII", Preprint 2021110142 (doi: 10.20944/preprints202111.0142.v7).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | s 2021,    |
|      | Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |
| 2021 | 0027   Metric Dimension in fuzzy(neutrosophic) Graphs-VI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Manuscript |
|      | Henry Garrett, "Metric Dimension in fuzzy<br>(neutrosophic) Graphs-VI", Preprint 2021110142 (doi: 10.20944/preprints202111.0142.v6).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | s 2021,    |
|      | Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |
| 2021 | $0026 \ \big  \ {\rm Metric \ Dimension \ in \ fuzzy(neutrosophic) \ Graphs-V}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Manuscript |
|      | Henry Garrett, "Metric Dimension in fuzzy(neutrosophic) Graphs-V", Preprint 2021110142 (doi: 10.20944/preprints202111.0142.v5).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | s 2021,    |
|      | Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |
| 2021 | 0025   Metric Dimension in fuzzy(neutrosophic) Graphs-IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Manuscript |
|      | <ul> <li>Henry Garrett, "Metric Dimension in fuzzy(neutrosophic) Graphs-IV", Preprint 2021110142 (doi: 10.20944/preprints202111.0142.v4).</li> <li>Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | s 2021,    |
|      | W Avalable at Twitter, ResearchGate, Schod, Academia, Zenodo, Emixedin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |
| 2021 | 0024   Metric Dimension in fuzzy(neutrosophic) Graphs-III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Manuscrip  |
|      | Henry Garrett, "Metric Dimension in fuzzy(neutrosophic) Graphs-III", Preprint 2021110142 (doi: 10.20944/preprints202111.0142.v3).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | s 2021,    |
|      | Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |
| 2021 | 0023   Metric Dimension in fuzzy(neutrosophic) Graphs-II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Manuscrip  |
|      | Henry Garrett, "Metric Dimension in fuzzy(neutrosophic) Graphs-II", Preprint<br>2021110142 (doi: 10.20944/preprints202111.0142.v2).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s 2021,    |
|      | Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |
| 2021 | 0022   Metric Dimension in Fuzzy Graphs and Neutrosophic Graphs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Manuscrip  |
|      | <ul> <li>Henry Garrett, "Metric Dimension in Fuzzy Graphs and Neutrosophic Graphs", P 2021, 2021110142 (doi: 10.20944/preprints202111.0142.v1)</li> <li>Acribella et Traiting Research Cata Social Academia Zanada Linka Hariballa et Traiting Research Cata Social Academia Zanada Linka Hariballa et Traiting Research Cata Social Academia Zanada Linka Hariballa et Traiting Research Cata Social et al. 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 2010; 201</li></ul> | reprints   |
|      | Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |
| 2021 | 0021   Valued Number And Set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Manuscrip  |
|      | <ul> <li>Henry Garrett, "Valued Number And Set", Preprints 2021, 202108022<br/>10.20944/preprints202108.0229.v1).</li> <li>Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9 (doi:    |
| 0001 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |
| 2021 | 0020   Notion of Valued Set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Manuscrip  |
|      | Henry Garrett, "Notion of Valued Set", Preprints 2021, 2021070410<br>10.20944/preprints202107.0410.v1).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ) (doi:    |
|      | Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |
| 2021 | 0019   Set And Its Operations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Manuscrip  |
|      | Henry Garrett, "Set And Its Operations", Preprints 2021, 202106050<br>10.20944/preprints202106.0508.v1).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8 (doi:    |
|      | $\blacktriangleright$ Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |

| 2021 | 0018   Metric Dimensions Of Graphs                                                                                                                                                                                     | Manuscrip |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|      | Henry Garrett, "Metric Dimensions Of Graphs", Preprints 2021, 202106039 10.20944/preprints202106.0392.v1).                                                                                                             | 2 (doi:   |
|      | > Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn                                                                                                                                               |           |
| 2021 | 0017   New Graph Of Graph                                                                                                                                                                                              | Manuscrip |
|      | Henry Garrett, "New Graph Of Graph", Preprints 2021, 2021060323<br>10.20944/preprints202106.0323.v1).                                                                                                                  | 6 (doi:   |
|      | Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn                                                                                                                                                 |           |
| 2021 | 0016   Numbers Based On Edges                                                                                                                                                                                          | Manuscrip |
|      | Henry Garrett, "Numbers Based On Edges", Preprints 2021, 202106031<br>10.20944/preprints202106.0315.v1).                                                                                                               | 5 (doi:   |
|      | Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn                                                                                                                                                 |           |
| 2021 | 0015   Locating And Location Number                                                                                                                                                                                    | Manuscrip |
|      | Henry Garrett, "Locating And Location Number", Preprints 2021, 202106020 10.20944/preprints202106.0206.v1).                                                                                                            | 6 (doi:   |
|      | Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn                                                                                                                                                 |           |
| 2021 | 0014   Big Sets Of Vertices                                                                                                                                                                                            | Manuscrip |
|      | <ul> <li>Henry Garrett, "Big Sets Of Vertices", Preprints 2021, 2021060189</li> <li>10.20944/preprints202106.0189.v1).</li> </ul>                                                                                      | (doi:     |
|      | Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn                                                                                                                                                 |           |
| 2021 | 0013   Matroid And Its Outlines                                                                                                                                                                                        | Manuscrip |
|      | Henry Garrett, "Matroid And Its Outlines", Preprints 2021, 2021060146 10.20944/preprints202106.0146.v1).                                                                                                               | 6 (doi:   |
|      | Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn                                                                                                                                                 |           |
| 2021 | 0012   Matroid And Its Relations                                                                                                                                                                                       | Manuscrip |
|      | <ul> <li>Henry Garrett, "Matroid And Its Relations", Preprints 2021, 2021060080 10.20944/preprints202106.0080.v1).</li> </ul>                                                                                          | ) (doi:   |
|      | Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn                                                                                                                                                 |           |
| 2021 | 0011   Metric Number in Dimension                                                                                                                                                                                      | Manuscrip |
|      | <ul> <li>Henry Garrett, "Metric Number in Dimension", Preprints 2021, 202106000-10.20944/preprints202106.0004.v1).</li> <li>Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn</li> </ul>          | 4 (doi:   |
| 2018 | 0010   A Study on Domination in two Fuzzy Models                                                                                                                                                                       | Manusanin |
| 2018 | <ul> <li>M. Nikfar, "A Study on Domination in two Fuzzy Models", Preprints 2018, 20180401.</li> </ul>                                                                                                                  | Manuscrip |
|      | <ul> <li>M. Nikiar, A study on Domination in two Fuzzy Models , Freprints 2018, 20180401 10.20944/preprints201804.0119.v2).</li> <li>Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn</li> </ul> | 19 (001:  |
| 2019 | 0009   Nikfar Domination Versus Others: Restriction, Extension Theorems and Monstrous Examples                                                                                                                         | Manuscrij |
| 2019 | <ul> <li>M. Nikfar, "Nikfar Domination Versus Others: Restriction, Extension Theorem<br/>Monstrous Examples", Preprints 2019, 2019010024 (doi: 10.20944/preprints201901.002)</li> </ul>                                | ns and    |
|      | > Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn                                                                                                                                               |           |
| 2019 | 0008   Nikfar Dominations: Definitions, Theorems, and Connections                                                                                                                                                      | Manuscrij |
|      | M. Nikfar, "Nikfar Dominations: Definitions, Theorems, and Connections", Resear 2019 (doi: 10.13140/RG.2.2.28955.31526/1).                                                                                             |           |
|      |                                                                                                                                                                                                                        |           |

| 2019 | 0007   Nikfar Domination in Fuzzy Graphs                                                                                | Manuscrip   |
|------|-------------------------------------------------------------------------------------------------------------------------|-------------|
|      | M. Nikfar, "Nikfar Domination in Fuzzy Graphs", Preprints 2019, 20190<br>10.20944/preprints201901.0024.v2).             | 10024 (doi: |
|      | $\slash$ Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn                                         |             |
| 2019 | 0006   Nikfar Domination in Fuzzy Graphs                                                                                | Manuscrip   |
|      | M. Nikfar, "Nikfar Domination in Fuzzy Graphs", Preprints 2019, 20190<br>10.20944/preprints201901.0024.v2).             | 10024 (doi: |
|      | $\hfill >$ Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn                                       |             |
| 2018 | 0005   The Results on Vertex Domination in Fuzzy Graphs                                                                 | Manuscrip   |
|      | M. Nikfar, "The Results on Vertex Domination in Fuzzy Graphs", Preprints 2018, (doi: 10.20944/preprints201804.0085.v2). | 2018040085  |
|      | ${\ensuremath{\mathbb P}}$ Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn                       |             |
| 2019 | 0004   Nikfar Domination in Fuzzy Graphs                                                                                | Manuscrip   |
|      | M. Nikfar, "Nikfar Domination in Fuzzy Graphs", Preprints 2019, 20190<br>10.20944/preprints201901.0024.v1).             | 10024 (doi: |
|      | $\blacktriangleright$ Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn                            |             |
| 2019 | 0003   Nikfar Domination in Neutrosophic Graphs                                                                         | Manuscrip   |
|      | M. Nikfar, "Nikfar Domination in Neutrosophic Graphs", Preprints 2019, 20190 10.20944/preprints201901.0025.v1).         | 10025 (doi: |
|      | $\hfill Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn$                                         |             |
| 2018 | 0002   Vertex Domination in t-Norm Fuzzy Graphs                                                                         | Manuscrip   |
|      | M. Nikfar, "Vertex Domination in t-Norm Fuzzy Graphs", Preprints 2018, 2018(10.20944/preprints201804.0119.v1).          | 40119 (doi: |
|      | $\blacktriangleright$ Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn                            |             |
| 2018 | 0001 $\mid$ The Results on Vertex Domination in Fuzzy Graphs                                                            | Manuscrip   |
|      | M. Nikfar, "The Results on Vertex Domination in Fuzzy Graphs", Preprints 2018, (doi: 10.20944/preprints201804.0085.v1). | 2018040085  |
|      | Available at Twitter, ResearchGate, Scribd, Academia, Zenodo, LinkedIn                                                  |             |

| Publ | lications: Books                                                                                                                                                                                                             |            |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| 2023 | 0069   SuperHyperMatching                                                                                                                                                                                                    | Amazor     |
|      | <ul> <li>ASIN : B0BSDPXX1P Publisher : Independently published (January 15, 2023</li> <li>English Paperback : 582 pages ISBN-13 : 979-8373872683 Item Weight :<br/>Dimensions : 8.5 x 1.37 x 11 inches</li> </ul>            | 3.6 pounds |
|      | <ul> <li>ASIN : B0BSDC1L66 Publisher : Independently published (January 16, 2023)</li> <li>English Hardcover : 548 pages ISBN-13 : 979-8373875424 Item Weight : Dimensions : 8.25 x 1.48 x 11 inches</li> </ul>              | , 0 0      |
| 2023 | 0068   Failed SuperHyperClique                                                                                                                                                                                               | Amazo      |
|      | <ul> <li>ASIN : B0BRZ67NYN Publisher : Independently published (January 10, 2023)</li> <li>English Paperback : 454 pages ISBN-13 : 979-8373274227 Item Weight : 2<br/>Dimensions : 8.5 x 1.07 x 11 inches</li> </ul>         | .83 pounds |
|      | <ul> <li>ASIN : B0BRYZTK24 Publisher : Independently published (January 10, 2023)</li> <li>English Hardcover : 460 pages ISBN-13 : 979-8373277273 Item Weight : 2<br/>Dimensions : 8.25 x 1.27 x 11 inches</li> </ul>        | ,          |
| 2023 | 0067   SuperHyperClique                                                                                                                                                                                                      | Amazor     |
|      | ASIN : B0BRWK4S1Y Publisher : Independently published (January 8, 2023)<br>: English Paperback : 376 pages ISBN-13 : 979-8373040471 Item Weight : 2.<br>Dimensions : 8.5 x 0.89 x 11 inches                                  |            |
|      | <ul> <li>ASIN : B0BRM24YJX Publisher : Independently published (January 8, 2023)</li> <li>English Hardcover : 388 pages ISBN-13 : 979-8373041935 Item Weight : 2.36 pounds I</li> <li>: 8.25 x 1.1 x 11 inches</li> </ul>    |            |
| 2023 | 0066   Failed SuperHyperStable                                                                                                                                                                                               | Amazo      |
|      | <ul> <li>ASIN : B0BRNG7DC8 Publisher : Independently published (January 4, 2023)</li> <li>English Paperback : 304 pages ISBN-13 : 979-8372597976 Item Weight : 1.</li> <li>Dimensions : 8.5 x 0.72 x 11 inches</li> </ul>    |            |
|      | <ul> <li>ASIN : B0BRLVN39L Publisher : Independently published (January 4, 2023)</li> <li>English Hardcover : 306 pages ISBN-13 : 979-8372599765 Item Weight : 1.89 pounds 1 : 8.25 x 0.91 x 11 inches</li> </ul>            |            |
| 2023 | 0065   SuperHyperStable                                                                                                                                                                                                      | Amazo      |
|      | <ul> <li>ASIN : B0BRDG5Z4Y Publisher : Independently published (January 2, 2023)</li> <li>English Paperback : 294 pages ISBN-13 : 979-8372248519 Item Weight : 1.</li> <li>Dimensions : 8.27 x 0.7 x 11.69 inches</li> </ul> |            |
|      | <ul> <li>ASIN: B0BRJPG56M Publisher: Independently published (January 2, 2023)</li> <li>English Hardcover: 290 pages ISBN-13: 979-8372252011 Item Weight: 1.79 pounds 1</li> <li>: 8.25 x 0.87 x 11 inches</li> </ul>        | 0 0        |
| 2023 | 0064   Failed SuperHyperForcing                                                                                                                                                                                              | Amazo      |
|      | <ul> <li>ASIN: B0BRH5B4QM Publisher: Independently published (January 1, 2023)</li> <li>English Paperback: 337 pages ISBN-13: 979-8372123649 Item Weight: 2.</li> <li>Dimensions: 8.5 x 0.8 x 11 inches</li> </ul>           |            |
|      | ASIN : B0BRGX4DBJ Publisher : Independently published (January 1, 2023)<br>English Hardcover : 337 pages ISBN-13 : 979-8372124509 Item Weight : 2.07 pounds I<br>: 8.25 x 0.98 x 11 inches                                   |            |
| 2022 | 0063   SuperHyperForcing                                                                                                                                                                                                     | Amazor     |
|      | ▶ ASIN : B0BRDG1KN1 Publisher : Independently published (December 30, 2022<br>: English Paperback : 285 pages ISBN-13 : 979-8371873347 Item Weight : 1.<br>Dimensions : 8.5 x 0.67 x 11 inches                               |            |
|      | ASIN : B0BRDFFQMF Publisher : Independently published (December 30, 2022<br>: English Hardcover : 285 pages ISBN-13 : 979-8371874092 Item Weight : 1.                                                                        |            |

 $Henry\ Garrett \cdot Independent\ Researcher \cdot \ Department\ of\ Mathematics \cdot \ DrHenryGarrett@gmail.com \cdot \ Manhattan,\ NY,\ USA$ 

 $\blacktriangleright$  ASIN : B0BRDFFQMF Publisher : Independently published (December 30, 2022) Language : English Hardcover : 285 pages ISBN-13 : 979-8371874092 Item Weight : 1.77 pounds Dimensions : 8.25 x 0.86 x 11 inches

|              | 0062   SuperHyperAlliances                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                              |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
|              | <ul> <li>ASIN : B0BR6YC3HG Publisher : Independently published (December 27, 2022)</li> <li>English Paperback : 189 pages ISBN-13 : 979-8371488343 Item Weight : 1<br/>Dimensions : 8.5 x 0.45 x 11 inches</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                | ,                                                                                                            |
|              | ASIN : B0BR7CBTC6 Publisher : Independently published (December 27, 2022)<br>English Hardcover : 189 pages ISBN-13 : 979-8371494849 Item Weight : 1.21 pounds<br>: 8.25 x 0.64 x 11 inches                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                              |
| 2022         | 0061   SuperHyperGraphs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Amazor                                                                                                       |
|              | <ul> <li>ASIN : B0BR1NHY4Z Publisher : Independently published (December 24, 2022)</li> <li>English Paperback : 117 pages ISBN-13 : 979-8371090133 Item Weight : 13 ounces : 8.5 x 0.28 x 11 inches</li> <li>ASIN : B0BQXTHTXY Publisher : Independently published (December 24, 2022)</li> </ul>                                                                                                                                                                                                                                                                                                                                    | Dimensions ) Language :                                                                                      |
|              | English Hardcover : 117 pages ISBN-13 : 979-8371093240 Item Weight : 12.6 ounces : 8.25 x 0.47 x 11 inches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Dimensions                                                                                                   |
| 2022         | 0060   Neut. SuperHyperEdges                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Amazor                                                                                                       |
|              | ASIN : B0BNH11ZDY Publisher : Independently published (November 27, 2022)<br>English Paperback : 107 pages ISBN-13 : 979-8365922365 Item Weight : 12 ounces<br>: 8.5 x 0.26 x 11 inches                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                              |
|              | ASIN : B0BNGZGPP6 Publisher : Independently published (November 27, 2022)<br>English Hardcover : 107 pages ISBN-13 : 979-8365923980 Item Weight : 11.7 ounces<br>: 8.25 x 0.45 x 11 inches                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                              |
| 2022         | 0059   Neutrosophic k-Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Amazor                                                                                                       |
|              | <ul> <li>English Paperback : 159 pages ISBN-13 : 979-8352590843 Item Weight : 1<br/>Dimensions : 8.5 x 0.38 x 11 inches</li> <li>ASIN : B0BF2XCDZM Publisher : Independently published (September 14, 2022<br/>English Hardcover : 159 pages ISBN-13 : 979-8352593394 Item Weight : 1.04 pounds<br/>: 8.25 x 0.57 x 11 inches</li> </ul>                                                                                                                                                                                                                                                                                             | ) Language :                                                                                                 |
| 2022         | 0058   Neutrosophic Schedule                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Amazor                                                                                                       |
|              | <ul> <li>ASIN : B0BBJWJJZF Publisher : Independently published (August 22, 2022)</li> <li>English Paperback : 493 pages ISBN-13 : 979-8847885256 Item Weight : 3<br/>Dimensions : 8.5 x 1.16 x 11 inches</li> <li>ASIN : B0BBJLPWKH Publisher : Independently published (August 22, 2022)</li> <li>English Hardcover : 493 pages ISBN-13 : 979-8847886055 Item Weight : 2.98 pounds</li> <li>: 8.25 x 1.35 x 11 inches</li> </ul>                                                                                                                                                                                                    | 3.07 pounds<br>Language :                                                                                    |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                              |
| 2022         | 0057   Neutrosophic Wheel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Amazor                                                                                                       |
| 2022         | <ul> <li>ASIN : B0BBJRHXXG Publisher : Independently published (August 22, 2022)</li> <li>English Paperback : 195 pages ISBN-13 : 979-8847865944 Item Weight : 1</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2) Language                                                                                                  |
| 2022         | ASIN : B0BBJRHXXG Publisher : Independently published (August 22, 2022)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2) Language<br>1.28 pounds<br>Language :                                                                     |
|              | <ul> <li>ASIN : B0BBJRHXXG Publisher : Independently published (August 22, 2022)</li> <li>English Paperback : 195 pages ISBN-13 : 979-8847865944 Item Weight : 1<br/>Dimensions : 8.5 x 0.46 x 11 inches</li> <li>ASIN : B0BBK3KG82 Publisher : Independently published (August 22, 2022)</li> <li>English Hardcover : 195 pages ISBN-13 : 979-8847867016 Item Weight : 1.25 pounds</li> </ul>                                                                                                                                                                                                                                       | L28 pounds<br>Language :                                                                                     |
| 2022<br>2022 | <ul> <li>ASIN : B0BBJRHXXG Publisher : Independently published (August 22, 2022)</li> <li>English Paperback : 195 pages ISBN-13 : 979-8847865944 Item Weight : 1<br/>Dimensions : 8.5 x 0.46 x 11 inches</li> <li>ASIN : B0BBK3KG82 Publisher : Independently published (August 22, 2022)</li> <li>English Hardcover : 195 pages ISBN-13 : 979-8847867016 Item Weight : 1.25 pounds</li> <li>: 8.25 x 0.65 x 11 inches</li> </ul>                                                                                                                                                                                                    | 2) Language<br>28 pounds<br>Language :<br>Dimensions<br>Amazon<br>2) Language                                |
|              | <ul> <li>ASIN : B0BBJRHXXG Publisher : Independently published (August 22, 2022)</li> <li>English Paperback : 195 pages ISBN-13 : 979-8847865944 Item Weight : 1<br/>Dimensions : 8.5 x 0.46 x 11 inches</li> <li>ASIN : B0BBK3KG82 Publisher : Independently published (August 22, 2022)</li> <li>English Hardcover : 195 pages ISBN-13 : 979-8847867016 Item Weight : 1.25 pounds<br/>: 8.25 x 0.65 x 11 inches</li> <li>0056   Neutrosophic t-partite</li> <li>ASIN : B0BBJLZCHS Publisher : Independently published (August 22, 2022)</li> <li>English Paperback : 235 pages ISBN-13 : 979-8847834957 Item Weight : 1</li> </ul> | 2) Language<br>1.28 pounds<br>Language :<br>Dimensions<br>Amazon<br>2) Language<br>1.52 pounds<br>Language : |

 $Henry\ Garrett \cdot Independent\ Researcher \cdot Department\ of\ Mathematics \cdot DrHenryGarrett@gmail.com \cdot Manhattan,\ NY,\ USA$ 

|      | <ul> <li>ASIN : B0BB5Z9GHW Publisher : Independently published (August 22, 2022) I</li> <li>English Paperback : 225 pages ISBN-13 : 979-8847820660 Item Weight : 1.46</li> <li>Dimensions : 8.5 x 0.53 x 11 inches</li> </ul>                                                                                                                                                        |                       |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
|      | ASIN : B0BBGG9RDZ Publisher : Independently published (August 22, 2022) La<br>English Hardcover : 225 pages ISBN-13 : 979-8847821667 Item Weight : 1.42 pounds Dir<br>: 8.25 x 0.72 x 11 inches                                                                                                                                                                                      |                       |
| 2022 | 0054   Neutrosophic Star                                                                                                                                                                                                                                                                                                                                                             | Amazo                 |
|      | <ul> <li>ASIN : B0BB5ZHSSZ Publisher : Independently published (August 22, 2022) La English Paperback : 215 pages ISBN-13 : 979-8847794374 Item Weight : 1.4 pounds Dir : 8.5 x 0.51 x 11 inches</li> <li>ASIN : B0BBC4BL9P Publisher : Independently published (August 22, 2022) La English Hardcover : 215 pages ISBN-13 : 979-8847796941 Item Weight : 1.36 pounds Dir</li> </ul> | mensions<br>anguage : |
|      | $: 8.25 \ge 0.7 \ge 11$ inches                                                                                                                                                                                                                                                                                                                                                       |                       |
| 2022 | 0053   Neutrosophic Cycle                                                                                                                                                                                                                                                                                                                                                            | Amazo                 |
|      | <ul> <li>ASIN : B0BB62NZQK Publisher : Independently published (August 22, 2022) I</li> <li>English Paperback : 343 pages ISBN-13 : 979-8847780834 Item Weight : 2.17</li> <li>Dimensions : 8.5 x 0.81 x 11 inches</li> </ul>                                                                                                                                                        |                       |
|      | ASIN : B0BB65QMKQ Publisher : Independently published (August 22, 2022) La<br>English Hardcover : 343 pages ISBN-13 : 979-8847782715 Item Weight : 2.11 pounds Dir<br>: 8.25 x 1 x 11 inches                                                                                                                                                                                         |                       |
| 2022 | 0052   Neutrosophic Path                                                                                                                                                                                                                                                                                                                                                             | Amazo                 |
|      |                                                                                                                                                                                                                                                                                                                                                                                      |                       |
|      | $\blacktriangleright$ ASIN : B0BB5Z9FXL Publisher : Independently published (August 8, 2022) La English Hardcover : 315 pages ISBN-13 : 979-8847731263 Item Weight : 1.95 pounds Dir : 8.25 x 0.93 x 11 inches                                                                                                                                                                       | 0 0                   |
| 2022 | 0051   Neutrosophic Complete                                                                                                                                                                                                                                                                                                                                                         | Amazor                |
|      | <ul> <li>ASIN : B0BB6191KN Publisher : Independently published (August 8, 2022) I</li> <li>: English Paperback : 227 pages ISBN-13 : 979-8847720878 Item Weight : 1.47</li> <li>Dimensions : 8.5 x 0.54 x 11 inches</li> </ul>                                                                                                                                                       |                       |
|      | ASIN : B0BB5RRQN7 Publisher : Independently published (August 8, 2022) La<br>English Hardcover : 227 pages ISBN-13 : 979-8847721844 Item Weight : 1.43 pounds Di<br>: 8.25 x 0.73 x 11 inches                                                                                                                                                                                        |                       |
| 2022 | 0050   Neutrosophic Dominating                                                                                                                                                                                                                                                                                                                                                       | Amazo                 |
|      | <ul> <li>ASIN : B0BB5QV8WT Publisher : Independently published (August 8, 2022) I</li> <li>English Paperback : 357 pages ISBN-13 : 979-8847592000 Item Weight : 2.25</li> <li>Dimensions : 8.5 x 0.84 x 11 inches</li> </ul>                                                                                                                                                         | pounds                |
|      | ASIN : B0BB61WL9M Publisher : Independently published (August 8, 2022) La<br>English Hardcover : 357 pages ISBN-13 : 979-8847593755 Item Weight : 2.19 pounds Dir<br>: 8.25 x 1.03 x 11 inches                                                                                                                                                                                       |                       |
|      | 0049   Neutrosophic Resolving                                                                                                                                                                                                                                                                                                                                                        | Amazo                 |
| 2022 |                                                                                                                                                                                                                                                                                                                                                                                      |                       |
| 2022 | <ul> <li>ASIN : B0BBCJMRH8 Publisher : Independently published (August 8, 2022) I</li> <li>: English Paperback : 367 pages ISBN-13 : 979-8847587891 Item Weight : 2.31</li> <li>Dimensions : 8.5 x 0.87 x 11 inches</li> </ul>                                                                                                                                                       |                       |
| 2022 | : English Paperback : 367 pages ISBN-13 : 979-8847587891 Item Weight : 2.31                                                                                                                                                                                                                                                                                                          | pounds                |

 $Henry\ Garrett \cdot Independent\ Researcher \cdot \ Department\ of\ Mathematics \cdot \ DrHenryGarrett@gmail.com \cdot \ Manhattan,\ NY,\ USA$ 

|                                       | ▶ ASIN : B0B7QGTNFW Publisher : Independently published (July 28, 2022) Language : English Paperback : 133 pages ISBN-13 : 979-8842880348 Item Weight : 14.6 ounces Dimensions : 8.5 x 0.32 x 11 inches                                                                                                                                                                                                                                 |
|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                       | ASIN : B0B7QJWQ35 Publisher : Independently published (July 28, 2022) Language : English Hardcover : 133 pages ISBN-13 : 979-8842881659 Item Weight : 14.2 ounces Dimensions : 8.25 x 0.51 x 11 inches                                                                                                                                                                                                                                  |
| 2022                                  | 0047   Neutrosophic Total Amazo                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                       | ▶ ASIN : B0B7GLB23F Publisher : Independently published (July 25, 2022) Language : English Paperback : 137 pages ISBN-13 : 979-8842357741 Item Weight : 14.9 ounces Dimensions : 8.5 x 0.33 x 11 inches                                                                                                                                                                                                                                 |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2022                                  | 0046   Neutrosophic Perfect Amazon                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                       | ASIN : B0B7CJHCYZ Publisher : Independently published (July 22, 2022) Language : English Paperback : 127 pages ISBN-13 : 979-8842027330 Item Weight : 13.9 ounces Dimensions : $8.5 \ge 0.3 \ge 11$ inches                                                                                                                                                                                                                              |
|                                       | $\blacksquare$ ASIN : B0B7C732Z1 Publisher : Independently published (July 22, 2022) Language : English Hardcover : 127 pages ISBN-13 : 979-8842028757 Item Weight : 13.6 ounces Dimensions : 8.25 x 0.49 x 11 inches                                                                                                                                                                                                                   |
| 2022                                  | 0045   Neutrosophic Joint Set Amazo                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                       | <ul> <li>ASIN : B0B6L8WJ77 Publisher : Independently published (July 15, 2022) Language : English Paperback : 139 pages ISBN-13 : 979-8840802199 Item Weight : 15 ounces Dimensions : 8.5 x 0.33 x 11 inches</li> <li>ASIN : B0B6L9GJWR Publisher : Independently published (July 15, 2022) Language : English Hardcover : 139 pages ISBN-13 : 979-8840803295 Item Weight : 14.7 ounces Dimensions : 8.25 x 0.52 x 11 inches</li> </ul> |
| August 30,                            | 0044   Neutrosophic Duality GLOBA                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2022 30,                              | 610044   Neutrosopine Duanty GLOBAI<br>KNOWLEDGE                                                                                                                                                                                                                                                                                                                                                                                        |
|                                       | Publishin<br>House&Amazon&Googl<br>Scholar&UNM                                                                                                                                                                                                                                                                                                                                                                                          |
|                                       | Neutrosophic Duality, GLOBAL KNOWLEDGE - Publishing House:<br>GLOBAL KNOWLEDGE - Publishing House 848 Brickell Ave Ste 950 Miami, Florida 33131<br>United States. ISBN: 978-1-59973-743-0<br>Henry Garrett, (2022). "Neutrosophic Duality", Florida: GLOBAL KNOWLEDGE - Publishing                                                                                                                                                      |
|                                       | House 848 Brickell Ave Ste 950 Miami, Florida 33131 United States. ISBN: 978-1-59973-743-0 (http://fs.unm.edu/NeutrosophicDuality.pdf).                                                                                                                                                                                                                                                                                                 |
|                                       | ASIN : B0B4SJ8Y44 Publisher : Independently published (June 22, 2022) Language : English Paperback : 115 pages ISBN-13 : 979-8837647598 Item Weight : 12.8 ounces Dimensions : 8.5                                                                                                                                                                                                                                                      |
|                                       | x 0.27 x 11 inches<br>ASIN : B0B46B4CXT Publisher : Independently published (June 22, 2022) Language : English<br>Hardcover : 115 pages ISBN-13 : 979-8837649981 Item Weight : 12.5 ounces Dimensions : 8.25<br>x 0.46 x 11 inches                                                                                                                                                                                                      |
| JNM: http://fs.u<br>Google Scholar: h | /LEDGE - Publishing House: http://fs.unm.edu/NeutrosophicDuality.pdf<br>nm.edu/NeutrosophicDuality.pdf<br>ttps://books.google.com/books?id=dWWkEAAAQBAJ<br>//www.amazon.com/dp/B0B4SJ8Y44                                                                                                                                                                                                                                               |
|                                       | //www.amazon.com/dp/B0B46B4CXT                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                         |

2022 0043 | Neutrosophic Path-Coloring

Amazon

 $Henry\ Garrett \cdot Independent\ Researcher \cdot Department\ of\ Mathematics \cdot DrHenryGarrett@gmail.com \cdot Manhattan,\ NY,\ USA$ 

|      | ASIN : B0B3F2BZC4 Publisher : Independently published (June 7, 2022) Lan<br>Paperback : 161 pages ISBN-13 : 979-8834894469 Item Weight : 1.08 pounds D<br>x 0.38 x 11 inches                                                                                                                                                                                        |                         |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
|      |                                                                                                                                                                                                                                                                                                                                                                     | , – –                   |
| 2022 | 0042   Neutrosophic Density                                                                                                                                                                                                                                                                                                                                         | Amazon                  |
|      | ASIN : B0B19CDX7W Publisher : Independently published (May 15, 20:<br>English Paperback : 145 pages ISBN-13 : 979-8827498285 Item Weight : 15.7 oun<br>: 8.5 x 0.35 x 11 inches                                                                                                                                                                                     | ,                       |
|      | <ul> <li>ASIN : B0B14PLPGL Publisher : Independently published (May 15, 202<br/>English Hardcover : 145 pages ISBN-13 : 979-8827502944 Item Weight : 15.4 oun<br/>: 8.25 x 0.53 x 11 inches</li> </ul>                                                                                                                                                              |                         |
| 2022 | 0041   Properties of SuperHyperGraph and Neutrosophic SuperHyperGraph Go                                                                                                                                                                                                                                                                                            | ogle Commerce Ltd       |
|      | Publisher Infinite Study Seller Google Commerce Ltd Published on Apr :<br>30 Features Original pages Best for web, tablet, phone, eReader Language I<br>Antiques & Collectibles / Reference Content protection This content is DRM f                                                                                                                                | English Genres          |
|      | Properties of SuperHyperGraph and Neutrosophic SuperHyperGraph From<br>Garrett Infinite Study, 27 Apr 2022 - Antiques & Collectibles - 30 pages Googl<br>Henry Garrett, "Properties of SuperHyperGraph and Neutrosophic Super<br>Neutrosophic Sets and Systems 49 (2022) 531-561 (doi: 893 10.5281/ze<br>(http://fs.unm.edu/NSS/NeutrosophicSuperHyperGraph34.pdf). | eBooks<br>rHyperGraph", |
| 2022 | 0040   Neutrosophic Connectivity                                                                                                                                                                                                                                                                                                                                    | Amazon                  |
|      | ASIN : B09YQJG2ZV Publisher : Independently published (April 26, 20:<br>English Paperback : 121 pages ISBN-13 : 979-8811310968 Item Weight : 13.4 oun<br>: 8.5 x 0.29 x 11 inches                                                                                                                                                                                   |                         |
|      | ASIN : B09YQJG2DZ Publisher : Independently published (April 26, 20)<br>English Hardcover : 121 pages ISBN-13 : 979-8811316304 Item Weight : 13.1 oun<br>: 8.25 x 0.48 x 11 inches                                                                                                                                                                                  | , 0 0                   |
| 2022 | 0039   Neutrosophic Cycles                                                                                                                                                                                                                                                                                                                                          | Amazon                  |
|      | <ul> <li>ASIN : B09X4KVLQG Publisher : Independently published (April 8, 2</li> <li>English Paperback : 169 pages ISBN-13 : 979-8449137098 Item Weight Dimensions : 8.5 x 0.4 x 11 inches</li> </ul>                                                                                                                                                                | ,                       |
|      | ASIN : B09X4LZ3HL Publisher : Independently published (April 8, 2022) Lan<br>Hardcover : 169 pages ISBN-13 : 979-8449144157 Item Weight : 1.09 pounds Di<br>x 0.59 x 11 inches                                                                                                                                                                                      |                         |
| 2022 | 0038   Girth in Neutrosophic Graphs                                                                                                                                                                                                                                                                                                                                 | Amazon                  |
|      | <ul> <li>ASIN : B09WQ5PFV8 Publisher : Independently published (March 29, 2</li> <li>English Paperback : 163 pages ISBN-13 : 979-8442380538 Item Weight Dimensions : 8.5 x 0.39 x 11 inches</li> </ul>                                                                                                                                                              |                         |
|      | ASIN : B09WQQGXPZ Publisher : Independently published (March 29, 20<br>English Hardcover : 163 pages ISBN-13 : 979-8442386592 Item Weight : 1.06 pour<br>: 8.25 x 0.58 x 11 inches                                                                                                                                                                                  |                         |
| 2022 | 0037   Matching Number in Neutrosophic Graphs                                                                                                                                                                                                                                                                                                                       | Amazon                  |
|      |                                                                                                                                                                                                                                                                                                                                                                     | (022) Languago          |
|      | <ul> <li>ASIN : B09W7FT8GM Publisher : Independently published (March 22, 2</li> <li>: English Paperback : 153 pages ISBN-13 : 979-8437529676 Item Weight<br/>Dimensions : 8.5 x 0.36 x 11 inches</li> </ul>                                                                                                                                                        |                         |

| 2022         | 0036   Clique Number in Neutrosophic Graph                                                                                                                                                                                                                                                                                                                                                                          | Amazon                                     |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
|              | <ul> <li>ASIN : B09TV82Q7T Publisher : Independently published (March 7, : English Paperback : 155 pages ISBN-13 : 979-8428585957 Item Weigh Dimensions : 8.5 x 0.37 x 11 inches</li> <li>ASIN : B09TZBPWJG Publisher : Independently published (March 7, 2 English Undergen ISE Publisher : 101 page 155 pages ISBN 12 : 070 849500255 Item Weight : 101 page</li> </ul>                                           | t : 1.04 pounds<br>2022) Language :        |
|              | English Hardcover : 155 pages ISBN-13 : 979-8428590258 Item Weight : 1.01 pc<br>: 8.25 x 0.56 x 11 inches                                                                                                                                                                                                                                                                                                           | bunds Dimensions                           |
| 2022         | 0035   Independence in Neutrosophic Graphs                                                                                                                                                                                                                                                                                                                                                                          | Amazon                                     |
|              | ▶ ASIN : B09TF227GG Publisher : Independently published (February 27, 5<br>English Paperback : 149 pages ISBN-13 : 979-8424231681 Item Weight : 1 po<br>: 8.5 x 0.35 x 11 inches                                                                                                                                                                                                                                    | unds Dimensions                            |
|              | <ul> <li>ASIN : B09TL1LSKD Publisher : Independently published (February 27, 5<br/>English Hardcover : 149 pages ISBN-13 : 979-8424234187 Item Weight : 15.7 or<br/>: 8.25 x 0.54 x 11 inches</li> </ul>                                                                                                                                                                                                            |                                            |
| 2022         | 0034   Zero Forcing Number in Neutrosophic Graphs                                                                                                                                                                                                                                                                                                                                                                   | Amazon                                     |
|              | $\clubsuit$ ASIN : B09SW2YVKB Publisher : Independently published (February 18, English Paperback : 147 pages ISBN-13 : 979-8419302082 Item Weight : 15.8 or : 8.5 x 0.35 x 11 inches                                                                                                                                                                                                                               |                                            |
|              | $\blacktriangleright$ ASIN : B09SWLK7BG Publisher : Independently published (February 18, English Hardcover : 147 pages ISBN-13 : 979-8419313651 Item Weight : 15.5 or : 8.25 x 0.54 x 11 inches                                                                                                                                                                                                                    | ,                                          |
| 2022         | 0033   Neutrosophic Quasi-Order                                                                                                                                                                                                                                                                                                                                                                                     | Amazon                                     |
|              | <ul> <li>ASIN : B09S3RXQ5C Publisher : Independently published (February 8, 2)</li> <li>English Paperback : 107 pages ISBN-13 : 979-8414541165 Item Weight : 12 ou</li> <li>8.5 x 0.26 x 11 inches</li> <li>ASIN : B09S232DQH Publisher : Independently published (February 8, 2)</li> <li>English Hardcover : 107 pages ISBN-13 : 979-8414545446 Item Weight : 11.7 ou</li> <li>8.25 x 0.43 x 11 inches</li> </ul> | unces Dimensions<br>2022) Language :       |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                          |
| Jan 29, 2022 | 0032   Beyond Neutrosophic Graphs pub                                                                                                                                                                                                                                                                                                                                                                               | E-<br>lishing&Amazon&Google<br>Scholar&UNM |
|              | Beyond Neutrosophic Graphs, E-publishing:<br>Educational Publisher 1091 West 1st Ave Grandview Heights, Ohio 43212 Un<br>ISBN 978-1-59973-725-6                                                                                                                                                                                                                                                                     | nited States                               |
|              | Henry Garrett, (2022). "Beyond Neutrosophic Graphs", Ohio: E-publishi<br>Publisher 1091 West 1st Ave Grandview Heights, Ohio 43212 United Stat<br>59973-725-6 (http://fs.unm.edu/BeyondNeutrosophicGraphs.pdf).                                                                                                                                                                                                     |                                            |
|              | ▶ ASIN : B0BBCQJQG5 Publisher : Independently published (August 8,<br>: English Paperback : 257 pages ISBN-13 : 979-8847564885 Item Weigh<br>Dimensions : 8.5 x 0.61 x 11 inches                                                                                                                                                                                                                                    | t : 1.65 pounds                            |
|              | ASIN : B0BBC4BJZ5 Publisher : Independently published (August 8, 2022) La<br>Hardcover : 257 pages ISBN-13 : 979-8847567497 Item Weight : 1.61 pounds I<br>x 0.8 x 11 inches<br>E-publishing: Educational Publisher: http://fs.unm.edu/BeyondNeutrosophic                                                                                                                                                           | Dimensions : 8.25                          |
|              | L-publishing: Educational Publisher: http://is.uum.edu/Beyondiveutrosophic<br>UNM: http://fs.uum.edu/BeyondNeutrosophicGraphs.pdf<br>Google Scholar:https://books.google.com/books?id=cWWkEAAAQBAJ<br>Paperback: https://www.amazon.com/gp/product/B0BBCQJQG5                                                                                                                                                       | ла ариз.рш                                 |
|              | Hardcover: https://www.amazon.com/Beyond-Neutrosophi<br>Garrett/dp/B0BBC4BJZ5                                                                                                                                                                                                                                                                                                                                       | ic-Graphs-Henry-                           |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                            |

|      | ASIN : B09RB5XLVB Publisher : Independently published (January 26, 2022) Lang<br>English Paperback : 87 pages ISBN-13 : 979-8408627646 Item Weight : 10.1 ounces Dime<br>: 8.5 x 0.21 x 11 inches                                                                                                                                                                                                   | -                |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
|      | ASIN : B09R39MTSW Publisher : Independently published (January 26, 2022) Lang<br>English Hardcover : 87 pages ISBN-13 : 979-8408632459 Item Weight : 9.9 ounces Dime<br>: 8.25 x 0.4 x 11 inches                                                                                                                                                                                                    | -                |
| 2022 | 0030   Neutrosophic Hypergraphs                                                                                                                                                                                                                                                                                                                                                                     | Amaz             |
|      | <ul> <li>ASIN : B09PMBKVD4 Publisher : Independently published (January 7, 2022) Lang<br/>English Paperback : 79 pages ISBN-13 : 979-8797327974 Item Weight : 9.3 ounces Dime<br/>: 8.5 x 0.19 x 11 inches</li> <li>ASIN : B09PP8VZ3D Publisher : Independently published (January 7, 2022) Lang<br/>English Hardcover : 79 pages ISBN-13 : 979-8797331483 Item Weight : 9.1 ounces Dime</li> </ul> | nsions<br>uage : |
|      | $: 8.25 \ge 0.38 \ge 11$ inches                                                                                                                                                                                                                                                                                                                                                                     |                  |
| 2022 | 0029   Collections of Articles                                                                                                                                                                                                                                                                                                                                                                      | Amaz             |
|      | <ul> <li>ASIN : B09PHHDDQK Publisher : Independently published (January 2, 2022) Lang<br/>English Hardcover : 543 pages ISBN-13 : 979-8794267204 Item Weight : 3.27 pounds Dime<br/>: 8.25 x 1.47 x 11 inches</li> </ul>                                                                                                                                                                            | -                |
| 2022 | 0028   Collections of Math                                                                                                                                                                                                                                                                                                                                                                          | Amaz             |
|      | <ul> <li>ASIN : B09PHBWT5D Publisher : Independently published (January 1, 2022) Lang<br/>English Hardcover : 461 pages ISBN-13 : 979-8793793339 Item Weight : 2.8 pounds Dime<br/>: 8.25 x 1.28 x 11 inches</li> </ul>                                                                                                                                                                             | -                |
| 2022 | 0027   Collections of US                                                                                                                                                                                                                                                                                                                                                                            | Amaz             |
|      | <ul> <li>ASIN : B09PHBT924 Publisher : Independently published (December 31, 2021) Lang<br/>English Hardcover : 261 pages ISBN-13 : 979-8793629645 Item Weight : 1.63 pounds Dime<br/>: 8.25 x 0.81 x 11 inches</li> </ul>                                                                                                                                                                          | -                |
| 2021 | 0026   Neutrosophic Chromatic Number                                                                                                                                                                                                                                                                                                                                                                | Amaz             |
|      | <ul> <li>ASIN : B09NRD25MG Publisher : Independently published (December 20, 2021) Lan</li> <li>: English Paperback : 67 pages ISBN-13 : 979-8787858174 Item Weight : 8.2 ounces Dime</li> <li>: 8.5 x 0.16 x 11 inches Language : English</li> <li>-</li> </ul>                                                                                                                                    |                  |
| 2021 | 0025   Simple Ideas                                                                                                                                                                                                                                                                                                                                                                                 | Amaz             |
|      | <ul> <li>ASIN : B09MYTN6NT Publisher : Independently published (December 9, 2021) Lang<br/>English Paperback : 45 pages ISBN-13 : 979-8782049430 Item Weight : 6.1 ounces Dime<br/>: 8.5 x 0.11 x 11 inches</li> <li>-</li> </ul>                                                                                                                                                                   |                  |
| 2021 | 0024   Neutrosophic Graphs                                                                                                                                                                                                                                                                                                                                                                          | Amaz             |
|      | <ul> <li>ASIN : B09MYXVNF9 Publisher : Independently published (December 7, 2021) Lan</li> <li>: English Paperback : 55 pages ISBN-13 : 979-8780775652 Item Weight : 7 ounces Dime</li> <li>: 8.5 x 0.13 x 11 inches</li> <li>-</li> </ul>                                                                                                                                                          |                  |
| 2021 | 0023   List                                                                                                                                                                                                                                                                                                                                                                                         | Amaz             |
|      |                                                                                                                                                                                                                                                                                                                                                                                                     | uage :           |

|      | 0022   Theorems                                                                                                                                                                                                               | Amazon |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
|      | <ul> <li>ASIN : B09KDZXGPR Publisher : Independently published (October 28, 2021) Lan English Paperback : 51 pages ISBN-13 : 979-8755453592 Item Weight : 6.7 ounces Dim : 8.5 x 0.12 x 11 inches</li> <li>-</li> </ul>       | 0 0    |
| 2021 | 0021   Dimension                                                                                                                                                                                                              | Amazon |
|      | <ul> <li>ASIN : B09K2BBQG7 Publisher : Independently published (October 25, 2021) Lan English Paperback : 55 pages ISBN-13 : 979-8753577146 Item Weight : 7 ounces Dimer 8.5 x 0.13 x 11 inches</li> <li>-</li> </ul>         | 0 0    |
| 2021 | 0020   Beyond The Graph Theory                                                                                                                                                                                                | Amazon |
|      | <ul> <li>ASIN : B09KDZXGPR Publisher : Independently published (October 28, 2021) Lan English Paperback : 51 pages ISBN-13 : 979-8755453592 Item Weight : 6.7 ounces Dim : 8.5 x 0.12 x 11 inches</li> <li>-</li> </ul>       |        |
| 2021 | 0019   Located Heart And Memories                                                                                                                                                                                             | Amazon |
|      | <ul> <li>ASIN : B09F14PL8T Publisher : Independently published (August 31, 2021) Lan English Paperback : 56 pages ISBN-13 : 979-8468253816 Item Weight : 7 ounces Dimer 8.5 x 0.14 x 11 inches</li> <li>-</li> </ul>          | 0 0    |
| 2021 | 0018   Number Graphs And Numbers                                                                                                                                                                                              | Amazon |
|      | <ul> <li>ASIN: B099BQRSF8 Publisher: Independently published (July 14, 2021) Language: Paperback: 32 pages ISBN-13: 979-8537474135 Item Weight: 4.8 ounces Dimensions 0.08 x 11 inches</li> <li>-</li> </ul>                  | 0      |
| 2021 | 0017   First Place Is Reserved                                                                                                                                                                                                | Amazon |
|      | <ul> <li>ASIN : B098CWD5PT Publisher : Independently published (June 30, 2021) Lan,<br/>English Paperback : 55 pages ISBN-13 : 979-8529508497 Item Weight : 7 ounces Dimer<br/>8.5 x 0.13 x 11 inches</li> <li>-</li> </ul>   | 0 0    |
| 2021 | 0016   Detail-oriented Groups And Ideas                                                                                                                                                                                       | Amazon |
|      | <ul> <li>ASIN : B098CYYG3Q Publisher : Independently published (June 30, 2021) Lan,<br/>English Paperback : 69 pages ISBN-13 : 979-8529401279 Item Weight : 8.3 ounces Dim<br/>: 8.5 x 0.17 x 11 inches</li> <li>-</li> </ul> |        |
| 2021 | 0015   Definition And Its Necessities                                                                                                                                                                                         | Amazon |
|      | <ul> <li>ASIN : B098DHRJFD Publisher : Independently published (June 30, 2021) Land English Paperback : 79 pages ISBN-13 : 979-8529321416 Item Weight : 9.3 ounces Dime : 8.5 x 0.19 x 11 inches</li> <li>-</li> </ul>        | 0 0    |
| 2021 | 0014   Words And Their Directionss                                                                                                                                                                                            | Amazon |
|      | ASIN : B098CYS8G2 Publisher : Independently published (June 30, 2021) Lang<br>English Paperback : 65 pages ISBN-13 : 979-8529393758 Item Weight : 8 ounces Dimen                                                              | 5 0    |
|      | 8.5 x 0.16 x 11 inches                                                                                                                                                                                                        |        |

|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \ <b>T</b>                                                                                                                                                                                                                                     |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | ASIN : B098CR8HM6 Publisher : Independently published (June 30, 2021<br>English Paperback : 45 pages ISBN-13 : 979-8728873891 Item Weight : 6.1 ounce<br>: 8.5 x 0.11 x 11 inches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , 0 0                                                                                                                                                                                                                                          |
|      | <b>)</b> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                |
| 2021 | 0012   Metric Number In Dimension                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Amazor                                                                                                                                                                                                                                         |
|      | <ul> <li>ASIN : B0913597TV Publication date : March 24, 2021 Language : English Fi KB Text-to-Speech : Enabled Enhanced typesetting : Enabled X-Ray : Not E Wise : Not Enabled Print length : 48 pages Lending : Not Enabled Kindle</li> <li>-</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                |
| 2021 | 0011   Domination Theory And Beyond                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Amazo                                                                                                                                                                                                                                          |
|      | <ul> <li>ASIN : B098DMMZ87 Publisher : Independently published (June 30, 20:<br/>: English Paperback : 188 pages ISBN-13 : 979-8728100775 Item Weight :<br/>Dimensions : 8.5 x 0.45 x 11 inches</li> <li>-</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | , 0 0                                                                                                                                                                                                                                          |
| 2021 | 0010   Vital Glory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Amazor                                                                                                                                                                                                                                         |
|      | ASIN : B08PVNJYRM Publication date : December 6, 2020 Language : En<br>: 1544 KB Simultaneous device usage : Unlimited Text-to-Speech : Enabled Sc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | reen Reader :                                                                                                                                                                                                                                  |
|      | Supported Enhanced typesetting : Enabled X-Ray : Not Enabled Word Wise : I length : 24 pages Lending : Enabled Kindle<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Enabled Print                                                                                                                                                                                                                                  |
| 2021 | length : 24 pages Lending : Enabled Kindle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                |
| 2021 | <ul> <li>length : 24 pages Lending : Enabled Kindle</li> <li>-</li> <li>0009   Análisis de modelos y orientación más allá</li> <li>Análisis de modelos y orientación más allá Planteamiento y problemas en<br/>Ediciones Nuestro Conocimiento (2021-04-06) eligible for voucher ISBN-13: 978<br/>2 ISBN-10:6203599026EAN:9786203599022Book language:Blurb/Shorttext:El en<br/>resolución de problemas es una selección obvia para hacer la investigación y el<br/>situación que puede provocar las perspectivas vagas que queremos no ser para<br/>creativas y nuevas que queremos ser. Estudio simultáneamente dos modelos. E<br/>basa tanto en la investigación como en la discusión que el autor piensa que p<br/>para entender y hacer crecer nuestra fantasía y la realidad juntas.Publishing hou<br/>Nuestro Conocimiento Website: https://sciencia-scripts.com By (author) : H<br/>Number of pages:64Published on:2021-04-06Stock:Available Category: Mathemati<br/>Keywords:Dos modelos, optimización de rutas y transporte, Two Models, Optin<br/>and Transportation</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | onUK&MoreBook<br>dos modelos<br>-620-3-59902-<br>foque para la<br>análisis de la<br>extraer ideas<br>ste estudio se<br>ouede ser útil<br>use: Ediciones<br>lenry Garrett<br>cs Price:39.90                                                     |
| 2021 | <ul> <li>length : 24 pages Lending : Enabled Kindle</li> <li>-</li> <li>0009   Análisis de modelos y orientación más allá</li> <li>Análisis de modelos y orientación más allá Planteamiento y problemas en<br/>Ediciones Nuestro Conocimiento (2021-04-06) eligible for voucher ISBN-13: 978<br/>2 ISBN-10:6203599026EAN:9786203599022Book language:Blurb/Shorttext:El er<br/>resolución de problemas es una selección obvia para hacer la investigación y el<br/>situación que puede provocar las perspectivas vagas que queremos no ser para<br/>creativas y nuevas que queremos ser. Estudio simultáneamente dos modelos. E<br/>basa tanto en la investigación como en la discusión que el autor piensa que p<br/>para entender y hacer crecer nuestra fantasía y la realidad juntas.Publishing ho<br/>Nuestro Conocimiento Website: https://sciencia-scripts.com By (author) : H<br/>Number of pages:64Published on:2021-04-06Stock:Available Category: Mathemati<br/>Keywords:Dos modelos, optimización de rutas y transporte, Two Models, Optir</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | onUK&MoreBook<br>dos modelos<br>-620-3-59902-<br>foque para la<br>análisis de la<br>extraer ideas<br>ste estudio se<br>puede ser útil<br>se: Ediciones<br>lenry Garrett<br>cs Price:39.90<br>nizing Routes                                     |
| 2021 | <ul> <li>length : 24 pages Lending : Enabled Kindle</li> <li>-</li> <li>0009   Análisis de modelos y orientación más allá</li> <li>Análisis de modelos y orientación más allá</li> <li>Análisis de modelos y orientación más allá</li> <li>Panálisis de modelos y orientación más allá</li> <li>Panálisis de modelos y orientación más allá</li> <li>Pantalisis de modelos y orientación of pages:64N:9786203599022Book language:Blurb/Shorttext:El erresolución de problemas es una selección obvia para hacer la investigación y el situación que puede provocar las perspectivas vagas que queremos no ser para creativas y nuevas que queremos ser. Estudio simultáneamente dos modelos. E basa tanto en la investigación como en la discusión que el autor piensa que para entender y hacer crecer nuestra fantasía y la realidad juntas.Publishing hor Nuestro Conocimiento Website: https://sciencia-scripts.com By (author) : H</li> <li>Number of pages:64Published on:2021-04-06Stock:Arailable Category: Mathemati Keywords:Dos modelos, optimización de rutas y transporte, Two Models, Optir and Transportation</li> <li>MoreBooks</li> <li>https://www.morebooks.shop/store/gb/book/análisis-de-modelos-y-orientación-</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                        | onUK&MoreBook<br>dos modelos<br>-620-3-59902-<br>tfoque para la<br>análisis de la<br>extraer ideas<br>ste estudio se<br>ouede ser útil<br>use: Ediciones<br>lenry Garrett<br>cs Price:39.90<br>nizing Routes<br>más-<br>.) Language :          |
| 2021 | <ul> <li>length : 24 pages Lending : Enabled Kindle</li> <li>-</li> <li>0009   Análisis de modelos y orientación más allá</li> <li>Análisis de modelos y orientación más allá</li> <li>Panálisis de modelos y orientación más allá</li> <li>Análisis de modelos y orientación más allá</li> <li>Panálisis de modelos y orientación más allá</li> <li>Panalisis de modelos y orientación obvia para hacer la investigación y el situación que puede provocar las perspectivas vagas que queremos no ser para creativas y nuevas que queremos ser. Estudio simultáneamente dos modelos. E basa tanto en la investigación como en la discusión que el autor piensa que para entender y hacer crecer nuestra fantasía y la realidad juntas.Publishing hor Nuestro Conocimiento Website: https://sciencia-scripts.com By (author) : H</li> <li>Number of pages:64Published on:2021-04-06Stock:Available Category: Mathemati Keywords:Dos modelos, optimización de rutas y transporte, Two Models, Optir and Transportation</li> <li>MoreBooks</li> <li>https://www.morebooks.shop/store/gb/book/análisis-de-modelos-y-orientación-allá/isbn/978-620-3-59902-2</li> <li>Product details Publisher : Ediciones Nuestro Conocimiento (6 April 2021 Spanish I</li></ul> | onUK&MoreBook<br>dos modelos<br>-620-3-59902-<br>foque para la<br>análisis de la<br>extraer ideas<br>ste estudio se<br>puede ser útil<br>use: Ediciones<br>lenry Garrett<br>cs Price:39.90<br>nizing Routes<br>más-<br>) Language :<br>x 22 cm |

Анализ моделей и руководство за пределами Подход и проблемы в двух моделях Sciencia Scripts (2021-04-06) eligible for voucher ISBN-13: 978-620-3-59908-4 ISBN-10:6203599085EAN:9786203599084Book language: Russian Blurb/Shorttext:Подход к решению проблем является очевидным выбором для проведения исследований и анализа ситуации, которая может вызвать смутные перспективы, которыми мы не хотим быть для извлечения творческих и новых идей, которыми мы хотим быть. Я одновременно изучаю две модели. Это исследование основано как на исследовании, так и на обсуждении, которое, по мнению автора, может быть полезным для понимания и развития наших фантазий и реальности вместе.Publishing house: Sciencia Scripts Website: https://sciencia-scripts.com By (author) : Генри Гарретт Number of pages:68Published on:2021-04-06Stock:Available Category: Mathematics Price:39.90 Keywords:Две модели, оптимизация маршрутов и транспорта, Two Models, Optimizing Routes and Transportation

https://www.morebooks.shop/store/gb/book/анализ-моделей-и-руководство-запределами/isbn/978-620-3-59908-4

Э Анализ моделей и руководство за пределами: Подход и проблемы в двух моделях (Russian Edition) Publisher : Sciencia Scripts (April 6, 2021) Language : Russian Paperback : 68 pages ISBN-10 : 6203599085 ISBN-13 : 978-6203599084 Item Weight : 5.3 ounces Dimensions : 5.91 x 0.16 x 8.66 inches

0007 | Análise e Orientação de Modelos Além

#### Amazon | MoreBooks | Walmart

Análise e Orientação de Modelos Além Abordagem e Problemas em Dois Modelos Edições Nosso Conhecimento (2021-04-06) eligible for voucher ISBN-13: 978-620-3-59907-7 ISBN-10:6203599077EAN:9786203599077Book language:Blurb/Shorttext:A abordagem para resolver problemas é uma seleção óbvia para fazer pesquisa e análise da situação, que pode trazer as perspectivas vagas que queremos não ser para extrair idéias criativas e novas idéias que queremos ser. Eu estudo simultaneamente dois modelos. Este estudo é baseado tanto na pesquisa como na discussão que o autor pensa que pode ser útil para compreender e fazer crescer juntos a nossa fantasia e realidade.Publishing house: Edições Nosso Conhecimento Website: https://sciencia-scripts.com By (author) : Henry Garrett Number of pages:64Published on:2021-04-065tock:Available Category: Mathematics Price:39.90 Keywords:Dois Modelos, Otimização de Rotas e Transporte, Two Models, Optimizing Routes and Transportation MoreBooks:

https://www.morebooks.shop/store/gb/book/análise-e-orientação-de-modelos-além/isbn/978-620-3-59907-7

Henry Garrett Análise e Orientação de Modelos Além (Paperback) About this item Product details

A abordagem para resolver problemas é uma seleção óbvia para fazer pesquisa e análise da situação, que pode trazer as perspectivas vagas que queremos não ser para extrair idéias criativas e novas idéias que queremos ser. Eu estudo simultaneamente dois modelos. Este estudo é baseado tanto na pesquisa como na discussão que o autor pensa que pode ser útil para compreender e fazer crescer juntos a nossa fantasia e realidade. Análise e Orientação de Modelos Além (Paperback) We aim to show you accurate product information. Manufacturers, suppliers and others provide what you see here, and we have not verified it. See our disclaimer Specifications

Language Portuguese Publisher KS Omniscriptum Publishing Book Format Paperback Number of Pages 64 Author Henry Garrett Title Análise e Orientação de Modelos Além ISBN-13 9786203599077 Publication Date April, 2021 Assembled Product Dimensions (L x W x H) 9.00 x 6.00 x 1.50 Inches ISBN-10 6203599077 Walmart

Análise e Orientação de Modelos Além: Abordagem e Problemas em Dois Modelos (Portuguese Edition) Publisher : Edições Nosso Conhecimento (April 6, 2021) Language : Portuguese Paperback : 64 pages ISBN-10 : 6203599077 ISBN-13 : 978-6203599077 Item Weight : 3.67 ounces Dimensions : 5.91 x 0.15 x 8.66 inches

0006 | Analizy modelowe i wytyczne wykraczające poza

Amazon & More Books

2021

#### 2021

Analizy modelowe i wytyczne wykraczające poza Podejście i problemy w dwóch modelach Wydawnictwo Nasza Wiedza (2021-04-06) eligible for voucher ISBN-13: 978-620-3-59906-0 ISBN-10:6203599069EAN:9786203599060Book language:Blurb/Shorttext:Podejście do rozwiązywania problemów jest oczywistym wyborem do prowadzenia badań i analizowania sytuacji, które mogą wywo lywać niejasne perspektywy, których nie chcemy dla wydobycia kreatywnych i nowych pomys lów, które chcemy. I jednocześnie studiować dwa modele. Badanie to oparte jest zarówno na badaniach jak i dyskusji, które zdaniem autora mogą być przydatne do zrozumienia i rozwoju naszych fantazji i rzeczywistości razem.Publishing house: Wydawnictwo Nasza Wiedza Website: https://sciencia-scripts.com By (author) : Henry Garrett Number of pages:64Published on:2021-04-06Stock:Available Category: Mathematics Price:39.90 Keywords:Dwa modele, optymalizacja tras i transportu, Two Models, Optimizing Routes and Transportation

MoreBooks:

https://www.morebooks.shop/store/gb/book/analizy-modelowe-i-wytyczne-wykraczające-poza/isbn/978-620-3-59906-0

Analizy modelowe i wytyczne wykraczające poza: Podejście i problemy w dwóch modelach (Polish Edition) Publisher : Wydawnictwo Nasza Wiedza (April 6, 2021) Language : Polish Paperback : 64 pages ISBN-10 : 6203599069 ISBN-13 : 978-6203599060 Item Weight : 3.67 ounces Dimensions : 5.91 x 0.15 x 8.66 inches

2021

#### 0005 | Modelanalyses en begeleiding daarna

Amazon&MoreBooks

▶ Modelanalyses en begeleiding daarna Aanpak en problemen in twee modellen Uitgeverij Onze Kennis (2021-04-06) eligible for voucher ISBN-13: 978-620-3-59905-3 ISBN-10:6203599050EAN:9786203599053Book language:Blurb/Shorttext:De aanpak voor het oplossen van problemen is een voor de hand liggende keuze voor het doen van onderzoek en het analyseren van de situatie die de vage perspectieven kan oproepen die we niet willen zijn voor het extraheren van creatieve en nieuwe ideeën die we willen zijn. Ik bestudeer tegelijkertijd twee modellen. Deze studie is gebaseerd op zowel onderzoek als discussie waarvan de auteur denkt dat ze nuttig kunnen zijn voor het begrijpen en laten groeien van onze fantasieën en de werkelijkheid samen.Publishing house: Uitgeverij Onze Kennis Website: https://sciencia-scripts.com By (author) : Henry Garrett Number of pages:64Published on:2021-04-06Stock:Available Category: Mathematics Price:39.90 Keywords:Twee modellen, optimalisering van routes en transport, Two Models, Optimizing Routes and Transportation MoreBooks

Modelanalyses en begeleiding daarna: Aanpak en problemen in twee modellen (Dutch Edition) Publisher : Uitgeverij Onze Kennis (April 6, 2021) Language : Dutch Paperback : 64 pages ISBN-10 : 6203599050 ISBN-13 : 978-6203599053 Item Weight : 3.99 ounces Dimensions : 5.91 x 0.15 x 8.66 inches

2021

### 0004 | Analisi dei modelli e guida oltre

Amazon | MoreBooks | Walmart

Analisi dei modelli e guida oltre Approccio e problemi in due modelli Edizioni Sapienza (2021-04-06) eligible for voucher ISBN-13: 978-620-3-59904-6 ISBN-10:6203599042EAN:9786203599046Book language:Blurb/ShorttextL'approccio per risolvere i problemi è una selezione ovvia per fare ricerca e analisi della situazione che può suscitare le prospettive vaghe che non vogliamo essere per estrarre idee creative e nuove che vogliamo essere. Studio contemporaneamente due modelli. Questo studio si basa sia sulla ricerca che sulla discussione che l'autore pensa possa essere utile per capire e far crescere insieme la nostra fantasia e la realtà.Publishing house: Edizioni Sapienza Website: https://sciencia-scripts.com By (author) : Henry Garrett Number of pages:60Published on:2021-04-06Stock:Available Category: Mathematics Price:39.90 Keywords:Due modelli, ottimizzazione dei percorsi e del trasporto, Two Models, Optimizing Routes and Transportation

MoreBooks Henry Garrett Analisi dei modelli e guida oltre (Paperback) About this item Product details

L'approccio per risolvere i problemi è una selezione ovvia per fare ricerca e analisi della situazione che può suscitare le prospettive vaghe che non vogliamo essere per estrarre idee creative e nuove che vogliamo essere. Studio contemporaneamente due modelli. Questo studio si basa sia sulla ricerca che sulla discussione che l'autore pensa possa essere utile per capire e far crescere insieme la nostra fantasia e la realtà. Analisi dei modelli e guida oltre (Paperback) We aim to show you accurate product information. Manufacturers, suppliers and others provide what you see here, and we have not verified it. See our disclaimer Specifications

Publisher KS Omniscriptum Publishing Book Format Paperback Number of Pages 60 Author Henry Garrett Title Analisi dei modelli e guida oltre ISBN-13 9786203599046 Publication Date April, 2021 Assembled Product Dimensions (L x W x H) 9.00 x 6.00 x 1.50 Inches ISBN-10 6203599042 Walmart

Analisi dei modelli e guida oltre: Approccio e problemi in due modelli (Italian Edition) Publisher : Edizioni Sapienza (April 6, 2021) Language : Italian Paperback : 60 pages ISBN-10 : 6203599042 ISBN-13 : 978-6203599046 Item Weight : 3.53 ounces Dimensions : 5.91 x 0.14 x 8.66 inches

2021

#### 0003 | Analyses de modèles et orientations au-delà

#### Amazon | MoreBooks | Walmart

Analyses de modèles et orientations au-delà Approche et problèmes dans deux modèles Editions Notre Savoir (2021-04-06) eligible for voucher eligible for voucher ISBN-13: 978-620-3-59903-9 ISBN-10:6203599034EAN:9786203599039Book language: French Blurb/Shorttext:L'approche pour résoudre les problèmes est une sélection évidente pour faire la recherche et l'analyse de la situation qui peut éliciter les perspectives vagues que nous ne voulons pas être pour extraire des idées créatives et nouvelles que nous voulons être. J'étudie simultanément deux modèles. Cette étude est basée à la fois sur la recherche et la discussion, ce qui, selon l'auteur, peut être utile pour comprendre et développer nos fantasmes et la réalité ensemble.Publishing house: Editions Notre Savoir Website: https://sciencia-scripts.com By (author) : Henry Garrett Number of pages:64Published on:2021-04-06Stock:Available Category: Mathematics Price:39.90 Keywords:Two Models, Optimizing Routes and Transportation, Deux modèles, optimisation des itinéraires et des transports

MoreBooks:

https://www.morebooks.shop/store/gb/book/analyses-de-modèles-et-orientations-audelà/isbn/978-620-3-59903-9

Henry Garrett Analyses de modèles et orientations au-delà (Paperback) About this item Product details

L'approche pour résoudre les problèmes est une sélection évidente pour faire la recherche et l'analyse de la situation qui peut éliciter les perspectives vagues que nous ne voulons pas être pour extraire des idées créatives et nouvelles que nous voulons être. J'étudie simultanément deux modèles. Cette étude est basée à la fois sur la recherche et la discussion, ce qui, selon l'auteur, peut être utile pour comprendre et développer nos fantasmes et la réalité ensemble. Analyses de modèles et orientations au-delà (Paperback) We aim to show you accurate product information. Manufacturers, suppliers and others provide what you see here, and we have not verified it. See our disclaimer Specifications

Language French Publisher KS Omniscriptum Publishing Book Format Paperback Number of Pages 64 Author Henry Garrett Title Analyses de modèles et orientations au-delà ISBN-13 9786203599039 Publication Date April, 2021 Assembled Product Dimensions (L x W x H) 9.00 x 6.00 x 1.50 Inches ISBN-10 6203599034 Walmart

 Analyses de modèles et orientations au-delà: Approche et problèmes dans deux modèles (French Edition) Publisher : Editions Notre Savoir (April 6, 2021) Language : French Paperback
 : 64 pages ISBN-10 : 6203599034 ISBN-13 : 978-6203599039 Item Weight : 3.67 ounces Dimensions : 5.91 x 0.15 x 8.66 inches

### Henry Garrett · Independent Researcher · Department of Mathematics · DrHenryGarrett@gmail.com · Manhattan, NY, USA 2021 0002 | Modell-Analysen und Anleitungen darüber hinaus Amazon | MoreBooks

978-620-3-59901-5 ISBNeligible for voucher **ISBN-13**: 10:6203599018EAN:9786203599015Book language:  $\operatorname{German}$ Blurb/Shorttext:Die Herangehensweise zur Lösung von Problemen ist eine offensichtliche Auswahl für die Forschung und Analyse der Situation, die die vagen Perspektiven, die wir nicht sein wollen, für die Extraktion von kreativen und neuen Ideen, die wir sein wollen, hervorbringen kann, Ich studiere gleichzeitig zwei Modelle. Diese Studie basiert sowohl auf der Forschung als auch auf der Diskussion, von der der Autor denkt, dass sie für das Verständnis und das Zusammenwachsen unserer Fantasie und Realität nützlich sein kann. Publishing house: Verlag Unser Wissen Website: https://sciencia-scripts.com By (author) : Henry Garrett Number of pages:68Published on:2021-04-06Stock:Available Category: Mathematics Price:39.90 Keywords:Zwei Modelle, Optimierung von Routen und Transport, Two Models, Optimizing Routes and Transportation

MoreBooksHenry Garrett Modell-Analysen und Anleitungen darüber hinaus (Paperback) About this item

Product details

Die Herangehensweise zur Lösung von Problemen ist eine offensichtliche Auswahl für die Forschung und Analyse der Situation, die die vagen Perspektiven, die wir nicht sein wollen, für die Extraktion von kreativen und neuen Ideen, die wir sein wollen, hervorbringen kann. Ich studiere gleichzeitig zwei Modelle. Diese Studie basiert sowohl auf der Forschung als auch auf der Diskussion, von der der Autor denkt, dass sie für das Verständnis und das Zusammenwachsen unserer Fantasie und Realität nützlich sein kann. Modell-Analysen und Anleitungen darüber hinaus (Paperback) We aim to show you accurate product information. Manufacturers, suppliers and others provide what you see here, and we have not verified it. See our disclaimer Specifications

Language German Publisher KS Omniscriptum Publishing Book Format Paperback Number of Pages 68 Author Henry Garrett Title Modell-Analysen und Anleitungen darüber hinaus ISBN-13 9786203599015 Publication Date April, 2021 Assembled Product Dimensions (L x W x H) 9.00 x 6.00 x 1.50 Inches ISBN-10 6203599018

Walmart

Seller assumes all responsibility for this listing. Item specifics Condition: New: A new, unread, unused book in perfect condition with no missing or damaged pages. See the ... Read moreabout the condition ISBN: 9786203599015 EAN: 9786203599015 Publication Year: 2021 Type: Textbook Format: Paperback Language: German Publication Name: Modell-Analysen Und Anleitungen Daruber Hinaus Item Height: 229mm Author: Henry Garrett Publisher: Verlag Unser Wissen Item Width: 152mm Subject: Mathematics Item Weight: 113g Number of Pages: 68 Pages About this product Product Information Die Herangehensweise zur Loesung von Problemen ist eine offensichtliche Auswahl fur die Forschung und Analyse der Situation, die die vagen Perspektiven, die wir nicht sein wollen, fur die Extraktion von kreativen und neuen Ideen, die wir sein wollen, hervorbringen kann. Ich studiere gleichzeitig zwei Modelle. Diese Studie basiert sowohl auf der Forschung als auch auf der Diskussion, von der der Autor denkt, dass sie fur das Verstandnis und das Zusammenwachsen unserer Fantasie und Realitat nutzlich sein kann. Product Identifiers Publisher Verlag Unser Wissen ISBN-13 9786203599015 eBay Product ID (ePID) 11049032082 Product Key Features Publication Name Modell-Analysen Und Anleitungen Daruber Hinaus Format Paperback Language German Subject Mathematics Publication Year 2021 Type Textbook Author Henry Garrett Number of Pages 68 Pages Dimensions Item Height 229mm Item Width 152mm Item Weight 113g Additional Product Features Title\_Author Henry Garrett

eBay

Modell-Analysen und Anleitungen darüber hinaus: Ansatz und Probleme in zwei Modellen (German Edition) Publisher : Verlag Unser Wissen (April 6, 2021) Language : German Paperback : 68 pages ISBN-10 : 6203599018 ISBN-13 : 978-6203599015 Item Weight : 3.99 ounces Dimensions : 5.91 x 0.16 x 8.66 inches Paperback

0001 | Model Analyses and Guidance Beyond

Amazon&MoreBooks

2021

 $Henry \ Garrett \cdot Independent \ Researcher \cdot Department \ of \ Mathematics \cdot Dr Henry \ Garrett @gmail.com \cdot Manhattan, NY, USA \ Mathematics \cdot Dr Henry \ Garrett \ Mathematics \ Manhattan, NY, USA \ Mathematics \ Mathemathematics \ Mathematics \ Mathematics \ Mathematics \ Mathe$ 

▶ Model Analyses and Guidance Beyond Approach and Problems in Two Models LAP LAMBERT Academic Publishing (2020-12-02 ) eligible for voucher ISBN-13: 978-620-3-19506-4 ISBN-10:6203195065EAN:9786203195064Book language: English Blurb/Shorttext:Approach for solving problems is an obvious selection for doing research and analysis the situation which may elicit the vague perspectives which we want not to be for extracting creative and new ideas which we want to be. I simultaneously study two models. This study is based both research and discussion which the author thinks that may be useful for understanding and growing our fantasizing and reality together.Publishing house: LAP LAMBERT Academic Publishing Website: https://www.lap-publishing.com/ By (author) : Henry Garrett Number of pages:52Published on:2020-12-02Stock:Available Category: Mathematics Price:39.90 Keywords:Two Models, Optimizing Routes and Transportation

 $\blacktriangleright$  Model Analyses and Guidance Beyond: Approach and Problems in Two Models Publisher : LAP LAMBERT Academic Publishing (December 2, 2020) Language : English Paperback : 52 pages ISBN-10 : 6203195065 ISBN-13 : 978-6203195064 Item Weight : 3.39 ounces Dimensions : 5.91 x 0.12 x 8.66 inches

I've participated in all virtual conferences which are listed below [Some of them without selective process].

 $-https://web.math.princeton.edu/\ pds/onlinetalks/talks.html$ 

• • •

Also, I've participated in following events [Some of them without selective process]:

-The Hidden NORMS seminar -Talk Math With Your Friends (TMWYF) -MATHEMATICS COLLOQUIUM: https://www.csulb.edu/mathematics-statistics/mathematics-colloquium -Lathisms: Cafe Con Leche -Big Math network

I'm in mailing list in following [Some of them without selective process] organizations:

-[Algebraic-graph-theory] AGT Seminar (lists-uwaterloo-ca)

-Combinatorics Lectures Online (https://web.math.princeton.edu/ pds/onlinetalks/talks.html)

-Women in Combinatorics

-CMSA-Seminar (unsw-au)

-OURFA2M2 Online Undergraduate Resource Fair for the Advancement and Alliance of Marginalized Mathematicians  $\ldots$ 

 $Henry\ Garrett \cdot Independent\ Researcher \cdot Department\ of\ Mathematics\ \cdot Dr Henry Garrett@gmail.com\ \cdot\ Manhattan,\ NY,\ USA$ 

Social Accounts

I've listed my accounts below.

-My website [Covering all my contributions containing articles and books as free access to download with PDF extension and more]: https://drhenrygarrett.wordpress.com

-Amazon [Some of my all books, here]: https://www.amzn.com/author/drhenrygarrett

-Twitter: @DrHenryGarrett (www.twitter.com/DrHenryGarrett)

 $- ResearchGate: \ https://www.researchgate.net/profile/Henry-Garrett-2$ 

-Academia: https://independent.academia.edu/drhenrygarrett/

-Scribd: https://www.scribd.com/user/596815491/Henry-Garrett

 $- Scholar: \ https://scholar.google.com/citations?hl=enuser=SUjFCmcAAAAJview_{o}p = list_w orkssort by = pubdate$ 

 $- {\it LinkedIn: https://www.linkedin.com/in/drhenrygarrett/$ 

| <b>&gt;&gt;&gt;</b> Referen |                                                                        |         |
|-----------------------------|------------------------------------------------------------------------|---------|
| 2017-2022                   | Dr. Henry Garrett                                                      | WEBSITH |
|                             | Department of Mathematics, Independent Researcher, Manhattan, NY, USA. |         |
|                             | E-mail address: DrHenryGarrett@gmail.com                               |         |
| 2017-2022                   | Dr. Henry Garrett                                                      | WEBSITE |
|                             | Department of Mathematics, Independent Researcher, Manhattan, NY, USA. |         |

### $Henry\ Garrett \cdot Independent\ Researcher \cdot Department\ of\ Mathematics \cdot \frac{DrHenryGarrett@gmail.com}{OrHenryGarrett@gmail.com} \cdot Manhattan,\ NY,\ USA$

E-mail address: HenryGarrettNY@gmail.com



Mathematician | Author | Scientist | Puzzler | Main Account is in Twitter: @DrHenryGarrett (www.twitter.com/DrHenryGarrett) | Amazon: https://www.amazon.com/author/drhenrygarrett | Website: DrHenryGarrett.wordpress.com

In this research book, there are some research chapters on researches on the basic properties, the research book starts to make understandable.

more

Some studies and researches about neutrosophic graphs, are proposed as book in the following by Henry Garrett (2022) which is indexed by Google Scholar and has more than 2498 readers in Scribd. It's titled "Beyond Neutrosophic Graphs" and published by Ohio: E-publishing: Educational Publisher 1091 West 1st Ave Grandview Heights, Ohio 43212 United State. This research book covers different types of notions and settings in neutrosophic graph theory and neutrosophic SuperHyperGraph theory.

[Ref] Henry Garrett, (2022). "Beyond Neutrosophic Graphs", Ohio: E-publishing: Educational Publisher 1091 West 1st Ave Grandview Heights, Ohio 43212 United States. ISBN: 978-1-59973-725-6 (http://fs.unm.edu/BeyondNeutrosophicGraphs.pdf).

Also, some studies and researches about neutrosophic graphs, are proposed as book in the following by Henry Garrett (2022) which is indexed by Google Scholar and has more than 3218 readers in Scribd. It's titled "Neutrosophic Duality" and published by Florida: GLOBAL KNOWLEDGE - Publishing House 848 Brickell Ave Ste 950 Miami, Florida 33131 United States. This research book presents different types of notions SuperHyperResolving and SuperHyperDominating in the setting of duality in neutrosophic graph theory and neutrosophic SuperHyperGraph theory. This research book has scrutiny on the complement of the intended set and the intended set, simultaneously. It's smart to consider a set but acting on its complement that what's done in this research book which is popular in the terms of high readers in Scribd.

[Ref] Henry Garrett, (2022). "Neutrosophic Duality", Florida: GLOBAL KNOW- LEDGE - Publishing House 848 Brickell Ave Ste 950 Miami, Florida 33131 United States. ISBN: 978-1-59973-743-0 (http://fs.unm.edu/NeutrosophicDuality.pdf).