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ABSTRACT
This paper highlights the most important benchmarks in the recent
research history of network science.

In particular, I address the network topology of the so-called
Erdős and Rényi network in terms of the network model they
developed to describe random networks. Subsequently, I discuss
the emerging limitations of this model in regard to real networks.
Accordingly, I address on the extension of the Erdős-Rényi network
by Watts and Strogatz. Due to the emergence and development
of the world-wide-web and social networks as a consequence, a
new topology and properties of networks have emerged in the
research area of Network Science, which will be discussed using
the Barabási-Albert model.
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1 INTRODUCTION
In the history of Network Science, it has emerged that a number of
assumptions about the topology and properties of random networks
do not correspond to the nature of real networks.

The scientific work of Erdős, Rényi and Gilbert reached the first
milestone regarding the properties of random networks in the his-
tory. Through a literature review, In this short paper, I will examine
the main cornerstones in the evolution of network science in the
last decades based on high-quality literature. In this research, I
will particularly focus on the historical milestones of the two re-
searchers Watts Strogatz, as well as the research papers of Barabási
and Albert.

The two first-mentioned mathematicians, Watts and Strogatz,
discovered serious limitations of the Erdős, Rényi and Gilbert model
concerning the properties of random networks. Within their pub-
lications, they build a model, which can successfully predict the
coexistence of a high clustering and a short average path length in
a random network.

However, the results of Watts Strogatz fail to explain the degree
distribution in the network. At this point, I will explain the so-called
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scale-free network, whose properties then provide the basis for the
Barabási-Albert model. The detection of scale-free networks, which
follow a power-law distribution, proved the existence of hubs in
real networks. This existence of nodes in a network with a signifi-
cantly high degree of linkages was proved by the two observations
of Preferential Attachment and Growth in scale-free networks. Pref-
erential attachment refers to the condition that nodes, which are
newly added to the network are likely to link to nodes that already
have a higher degree than other nodes in the network. The study
of Barabási and Albert has furthermore brought out a model for
the construction of scale-free networks under the coexistence of
Preferential Attachment and Growth.

Each of the evolutionary steps mentioned here with regard to
the network topology and its properties, has its justification in a
certain way and will probably keep it in the future.

It should be noted, however, that in explaining the origin of real
network properties, such models that can capture the emergence
of the network are required [2].

2 LITERATURE REVIEW
In my literary research I focus among other studies on the publica-
tions of P. Erdős and A. Rényi: "On random graphs" from 1960 and
the work of A.-L. Barabási: "Linked: The new science of networks"
from 2003.

2.1 Random Networks
In general, it can be said that the main objective of network science
is to model the network properties and to apply the findings to
use-cases in the real world. [2].

If you look at a network visualized with nodes and edges from a
bird’s eye view, it is often very difficult to recognize a clear archi-
tecture and the nodes seem to be connected completely randomly
(Figure 1). Frequently, the composition of nodes and edges seems to
be random. This makes a prediction for a possible model with regard
to the network architecture quite difficult. The random network
theory takes advantage of this apparent randomness to explain the
creation and characterization of networks that are truly random.

One of the fundamental properties of random networks is that
they consist of 𝑁 nodes, where each pair of nodes is connected by
a probability 𝑝 [4]. Furthermore, there are two other definitions of
random networks. On the one hand, there is the so-called 𝐺 (𝑁 /𝐿)
model. Here the 𝑁 labeled nodes are connected with randomly
placed 𝐿 on the left. The two mathematicians Erdős and Rényi
created this definition in 1959 in some published papers on random
networks. On the other hand, there is another definition which
states that each pair of𝑁 labeled nodes is connected by a probability

https://doi.org/10.1145/nnnnnnn.nnnnnnn


𝑝 [3]. The so-called𝐺 (𝑁 /𝑝) model was developed by Edgar Gilbert
simultaneously with the work of Erdős and Rényi.

The𝐺 (𝑁 /𝑝) model thus enriches the properties of random net-
works by the probability with which two nodes are connected,
while the𝐺 (𝑁 /𝐿) model assumes a limited number of connections
in a network. Due to the common research conducted in regard
to random networks, the model that finally gained acceptance in
the literature is also called the Erdős-Rényi-Gilbert model. Among
these is the 𝐺 (𝑁 /𝑝) model, which is used more often not only
because of its simpler way to compute, but also because in real
networks it is very rare that there is a fixed number of nodes and
links [2].

For the creation of a random network the following steps have
to be considered:

• initially, assume a number 𝑁 of nodes which are isolated
from each other

• further, you select a random pair of nodes, and generate a
random number between 0 and 1. If this number exceeds the
predefined threshold for 𝑝 , the selected pair of nodes will be
linked together. Otherwise, they remain isolated

• the second step is repeated continuously for each of the
𝑛(𝑛 − 1)/2 node pairs

As I mentioned before, this procedure generates a random graph
network, which is called Erdős-Rényi-Gilbert network, since their
mathematical work has made an important contribution to the
understanding of the properties of these networks. Of course, each,
randomly created network will have smaller and larger differences
by the parameters 𝑁 and 𝑝 . For example, if you increase the value
of 𝑝 , the network topology will become denser [3].

2.1.1 Degree Distribution of the Erdős-Rényi-Gilbert model . In
this subsection I would like to mention the degree distribution
of random networks. In the creation and observation of random
networks, it can be seen that some nodes have a significant number
of links, while others have a very small number of links, or are
completely isolated (Figure 1). These differences in the distribution

Figure 1: Different degree distribution of nodes in a random
network

are explained by the degree distribution 𝑝𝑘 , which indicates the
probability of a random node having the degree 𝑘 .

The shape of the distribution of a random network, follows the
form of a binomial distribution (Figure 2). However, for 𝑁 >>< 𝑘 >

this binomial distribution can also be approximated by a Poisson
distribution. Even though both distributions have the same proper-
ties, they are expressed by different parameters. While the binomial
distribution depends on the two parameters 𝑝 and 𝑁 , the Poisson
distribution only relies on the parameter < 𝑘 >. Due to its simplic-
ity, the Poisson distribution is often preferred as an approximation
in calculations. Due to the fact that most real networks are sparse,
this limitation leads to the fact that the degree distribution can be
well approximated by the Poisson distribution [1].

In summary, the Poisson distribution is only an approximation
of a random network. Its key feature is that the properties are inde-
pendent of the network size and depend only on a single parameter
< 𝑘 > (average degree). In the case of smaller networks (102) the
degree distribution deviates strongly from the Poisson distribu-
tion and can be explained much better by a binomial distribution.
The larger a network is (103,𝑛), the more the degree distribution
necessarily deviates from the Poisson distribution [1].

Thus, in a random network, all individuals represented by nodes
have a comparable number of connections. The problem with this
is that it disregards those individuals that have more connections
than others. The relation to reality is missing, because "famous"
individuals are likely to have more connections than the average
individual. This is the logical consequence of an important property
of random networks: "in a large random network, the degree of
most nodes is in the narrow vicihity of <k>" [3].

2.1.2 Watts-Strogatz model. In 1998, the two scientists, Duncan
Watts and Steven Strogatz, published their extension of the random
network model in Nature magazine. Their extension is based on
two observations.

• small-world property
• high clustering

Watts and Strogatz found that the average distance in real networks
between two nodes is logarithmically dependent on 𝑁 , instead of

Figure 2: Binominial vs Poisson Distribution

2



following a polynominal expected regular lettices. Furthermore, it
turns out that the average clustering coefficient of real networks
is significantly higher than expected in random networks [1]. The
Watts-Strogatz model interpolates between a regular grid, which on
the one hand has high clustering, but no small-world phenomena,
and a random network, which has low clustering but corresponds
to small-world phenomena. As an extension of the Erdős-Rényi-
Gilbert model, the Watts Strogatz model predicts a Poisson Distri-
bution as well [5].

The research of Watts and Strogatz proved an important assump-
tion in the evolution of network science: "Real networks are not
random". Evidence for this can be seen, for example, in an assumed
random society. According to this assumption, an Austrian student
would be just as likely to have links in a small African town as to
establish links in his own town. Another example is the network
of proteins, where the interactions between proteins must follow
strict biochemical rules [1].

2.2 The scale-free property
The World Wide Web is a good example of a real world network.
Especially when you talk about the existence of hubs, nodes with a
significantly high degree. The presence of hubs is not unique in the
www. Hubs are also an expression of a deeper organizational prin-
ciple, which is also called the scale-free property [1]. The physicist
Hawoong Jong mapped the nd.edu domain in 1998, with a cumu-
lative total of about 300,000 documents and 1.5 million links. The
sequence of images shows an increasingly enlarged local region of
the network (Figure 3).

A major difference between a scale-free network and a random
network is in the tail of the degree distribution. While a random
network can be approximated by the Poisson distribution, the scale-
free network follows the so-called power-law distribution. The
key difference between these two distributions is in their different
shapes. While the nodes in a random network have a comparable
degree and hubs are "forbidden", the power-law distribution even
expects hubs. Moreover, the more nodes there are in a network,
the larger these hubs become. In a power-law network, most nodes
have only a few links, which are held together by a few highly
linked nodes. Therefore, it can be seen that random networks have
a scale, while scale-free networks have a lack of scale [3].

Figure 3: Mapping of the nd.edu domain by Hawoong Jeong

In conclusion, scale-free networks have played a very important
role in the development and evolution of network science. The
reasons for this are that firstly a lot of networks are scale-free
and therefore the role of the scale-free property is unavoidably
important. Nevertheless, it must be said that not all networks are
scale-free. An example is the power-grid network, which consists
of generators and switches and is held together by transmission
lines. Another important point for the important role of scale-free
networks, is the presence of hubs. These fundamentally change the
network characteristics, similar to the small-world phenomena.

2.3 The Barabási-Albert Model
The World Wide Web has few websites that have an exceptionally
large number of links. Examples would be google.com or face-
book.com. The existence of hubs in scale-free networks, as already
mentioned, is the big difference compared to random networks.
Therefore, the question arises: why are hubs missing in random
networks? This question can be answered relatively easily on the
basis of two points. On the one hand, a random network assumes
that there is a fixed number of nodes. In a scale-free network, it
expands by adding nodes. On the other hand, a random network
assumes that the link between two nodes is random. In the world
of scale-free networks, newly added nodes prefer to link to nodes
that already have a higher degree than other nodes in the network
[3].

These two important concepts of scale-free networks are named
Growth and Preferential Attachment. These main properties are the
cornerstones of the Barabási-Albert model, which can create scale-
free networks. At the end of the 1990’s, the two mathematicians
developed this model.

Preferential attachment follows a probabilisticmechanism.When
a new node is added to the network, preferential attachment implies
that between linking to a node with degree = 2 and one with degree
= 4, the chance that this node will choose the node with degree =
4 is twice as likely. The concept of growth just means, that there
exists a continuously process to add a new node at each time step
[1].

The two properties growth and preferential attachment must
coexist. If, for example, preferential attachment is missing, this
leads to a growing network which has a stationary but exponential
degree distribution. In contrast, the lack of growth would mean
that, on the one hand, stationary would be missing and the network
would converge to a complete graph [1].

3 CONCLUSION
The foundations placed by Erdős, Rényi and Gilbert regarding the
properties of random networks will probably still be relevant in the
future. Only through this work it was possible to uncover the small-
world phenomenon by Watts-Strogatz. Thus if we want to explain
the origin of particular network properties, other models have to
be chosen that can explain the network origin and its growth. The
Barabási-Albert model has shown that some real networks, such as
the www, can be explained by preferential attachment and growth
in a power-law distribution [2].
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