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How & Why to Simulate the FTMS Data?

• Advancing the FTMS fundamentals and generating novel insights

• Support of FTMS data processing workflows (simulated vs experimental data)

• Reviewing & writing: manuscripts, project applications, ideas verification

• Teaching & training: understanding the FTMS concepts and definitions

• Support FTMS data interpretation and experiment design (settings selection)
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• Approaches to simulate the FTMS isotopic envelopes and mass spectra

Presently, FTMS data simulations remain underused



True or False?

Anal. Chem., 2021

Anal. Chem., 2018
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True or False?

IJMS, 2020
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15k @ m/z 200

120k @ m/z 200

Analysis of mAb light and heavy chains with a Fusion Lumos Orbitrap FTMS

Anal. Chem., 2021

Why is it?
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https://spectroswiss.ch/quiz/
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• Approaches to simulate the FTMS isotopic envelopes and mass spectra



FTMS Data Simulation Approaches

• Analytical models for estimation of ion oscillation frequencies and resolution

• Accurate simulation of the FTMS data processing workflow

• Empirical estimation of resolution: peak shape addition to isotopic distributions

• Numerical simulations of ion motion and induced current detection
• SIMION, Particle-in-Cell (PIC): Amster (IJMS, 2020), Hendrickson (IJMS, 2009), etc.

• For each FTMS instrument: parameters of ion oscillations (e.g., frequency); dependency of
resolution on frequency, relationship between frequency and m/z

Hofstadler, IJMS IP 1994, Easterling 1999, Makarov JASMS 2009

• Gaussian peak shapes are added using the resolution relationship with m/z

• The resolution values are estimated from the experimental peaks (FasmaTech, etc.)

• Simulation and processing of time-domain transients, for each instrument (this work)

https://www.envipat.eawag.ch/ - as employed in LIPIC (Cataldi, JASMS 2021) 
https://www.chemcalc.org/ - ChemCalc (Patiny, J. Chem. Inf. Model 2013)

https://www.envipat.eawag.ch/
https://www.chemcalc.org/
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FTMS Data Simulation via Time-Domain Transients

Nagornov et al.: Small molecules: JASMS 2020, 31, 1927–1942; Large molecules: JASMS 2022, 33, 1113–1125
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• Approaches to simulate the FTMS isotopic envelopes and mass spectra

• Teaching & training: understanding the FTMS concepts and definitions



Compound definition:
• elemental composition, isotopic labelling / enrichment
• amino acid sequence
• mass (m/z) or frequency value
• proteoforms – sequence and modifications (mAbs, viruses, …)
Ion (charged compound) definition:
• Charge carrier: electron, H+, K+, Na+, Cs+, I-, HCOO-

• Ionization mode: positive, negative, or a neutral species
• Charge state: from the lowest to the highest
• Isotopologues: how many and which ones

FT processing settings:
• FTMS instrument and model: ICR/MRMS, Orbitraps
• Harmonics order: fundamental and higher order harmonics
• Resolution: at target peak, instrument setting, transient length
• FT mode: absorption or magnitude
• Apodization window: none, full (Kaiser), half (semi Kaiser)
• Number of zero fills: 0, 1, 2, or 3
• Sampling rate (digitization frequency): 1, 2, 4, 6 MHz, or any
• Noise (added to the transient): noise amplitude
• Decay rate: ion signal decay rate in a transient, e-(decay rate) 

• Phase: initial phase (angle) of ion detection in a transient
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[THALIA + H]+

unapodized
magnitude mode

7 T FT-ICR MS
192 ms transient
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Full window, Kaiser
apodization
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A+1
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Frequency 
spectrum
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unapodized transient
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apodized transient
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half window apodization
absorption mode FT (aFT)
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apodized transient
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full window apodization
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# zero fills = 0



23

# zero fills = 1
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# zero fills = 2
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# zero fills = 3
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noise
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noise
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transient decay
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transient decay
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phase = 00
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phase = 250

00
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phase = 250
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different FTMS instruments
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large 
molecules: 

mAbs

[M+30H]30+
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isotopic beats:
mAbs
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Isotopes: mAbs
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Isotopes: mAbs

A+115
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Isotopic fine structure: mAbs
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• Approaches to simulate the FTMS isotopic envelopes and mass spectra

• Support FTMS data interpretation and experiment design (settings selection)
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https://spectroswiss.ch/quiz/
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15k @ m/z 200: 3’100 30k @ m/z 200: 4’900

60k @ m/z 200: 6’000 120k @ m/z 200: 6’300 240k @ m/z 200: 6’400

Isotopic Envelope

~25 Da

Monoclonal Antibody (mAb) Analysis

Q Exactive HF 
of trastuzumab

[M+30H]30+

[M+30H]30+[M+30H]30+
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Hofstadler, S. A.; Bruce, J. E.; Rockwood, A. L.; 
Anderson, G. A.; Winger, B. E.; Smith, R. D. 
Isotopic beat patterns in Fourier transform ion 
cyclotron resonance mass spectrometry: 
implications for high resolution mass 
measurements of large biopolymers. 
IJMS and Ion Processes 1994, 132, 109-127

Makarov, A.; Denisov, E. Dynamics of ions of 
intact proteins in the Orbitrap mass analyzer. 
JASMS 2009, 20, 1486-1495

Easterling, M. L.; Amster, I. J.; van Rooij, G. J.; 
Heeren, R. M. A. Isotope beating effects in the 
analysis of polymer distributions by Fourier 
transform mass spectrometry. 
JASMS 1999, 10, 1074-1082

Isotopic Beats in FTMS Transients
The constructive and destructive 
interferences between close 
frequency ion signals - beats 
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Isotopic Beats in FTMS Transients: mAbs
• Sample: a monoclonal antibody, trastuzumab
• Instrument: a Q Exactive HF BioPharma, native mode, [M+30H]30+

• Transient simulation with FTMS Simulator

Nagornov et al., JASMS 2022, 33, 1113–1125  
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Resolution and SNR Dependencies: mAbs
• Sample: a monoclonal antibody, trastuzumab
• Instrument: a Q Exactive HF BioPharma, native mode, [M+30H]30+

• Transient simulation and data processing with FTMS Simulator

• Colors: unapodized aFT; half window apodized aFT; full window apodized aFT
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Consequences for mAb Analysis
• Only proteoforms with > 25 Da mass difference can be resolved (regular settings)



Isotopic Beats in High-Resolution FTMS: mAbs
• Sample: a monoclonal antibody, trastuzumab
• Instrument: a Q Exactive HF BioPharma, native mode, [M+30H]30+

• Transient simulation with FTMS Simulator

Nagornov et al., JASMS 2022, 33, 1113–1125  
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Resolution & SNR Dependencies in HR FTMS: mAbs
• Sample: a monoclonal antibody, trastuzumab
• Instrument: a Q Exactive HF BioPharma, native mode, [M+30H]30+

• Transient simulation and data processing with FTMS Simulator

• Colors: unapodized aFT; half window apodized aFT; full window apodized aFT
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• Approaches to simulate the FTMS isotopic envelopes and mass spectra

• Advancing the FTMS fundamentals and generating novel insights

• Support FTMS data interpretation and experiment design (settings selection)



Resolution «Resonance» in the mFT ICR
• Sample: a biopolymer with an average mass of 150 kDa, H10282C6646N1724O2141S44

• Instrument: a 12 T FT-ICR MS, [M+10H]10+, full window (Kaiser-type) apodization

• Color coding: magnitude mode FT; absorption mode FT

• Simulations: FTMS Simulator

To be verified experimentally!

Nagornov et al., JASMS 2022, 33, 1113–1125  



The 2nd Beat Challenge: Full Window Apodization
• Transient period: 11.5 s



The 2nd Beat Challenge: Full Window Apodization
• Transient period: 12.25 s



The 2nd Beat Challenge: Full Window Apodization
• Transient period: 13 s



The 2nd Beat Challenge: Full Window Apodization
• Isotopic envelopes are correlated for each charge state (no deconvolution)



How & Why to Simulate the FTMS Data?

• Reviewing and writing: manuscripts, project applications, ideas verification

• Teaching & training: understanding the FTMS concepts and definitions
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• Approaches to simulate the FTMS isotopic envelopes and mass spectra

• Support FTMS data interpretation and experiment design (settings selection)

• Support of FTMS data processing workflows (simulated vs experimental data)

• Advancing the FTMS fundamentals and generating novel insights



FTMS Workflows Embedding Data Simulation 

1 2

3 4

5 6

Nagornov et al., ASMS 2022, poster  

metadata
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Profile Library Simulations: Low Resolution

• Specify a database of target compounds (from small molecules to proteins)
• Suggest adducts, modifications, charge carriers, and charge states

• Automatically determine FTMS instrument model and settings from metadata

SIMULATE
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Correlate Experimental and Simulated Data
• Isotopic envelopes are compared for each charge state (no deconvolution)
• Charge state distributions are used to filter out the false positives
• Selected Ion Current (SIC) chromatograms show proteoform-specific elution periods
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Targeted & Untargeted Deconvolution: Low Resolution
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Profile Library Simulations: High-Resolution
• Isotopically resolved envelopes SIMULATE
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Targeted Deconvolution: High Resolution
• Analysis of monoclonal antibodies subunits (LC – light chains, 25 kDa)
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Targeted & Untargeted Deconvolution: High Resolution
• Deconvolution approaches for isotopically-resolved data: FLEXDeconv, Hardklor, ...
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Targeted Deconvolution: Small Molecule Analysis

• Efficient feature extraction with reduced artifacts introduction and false positives

• Analysis of steroids in human seminal fluid with a Q Exactive Focus
• Data annotation using 789 steroids database and 5 ppm mass tolerance
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Targeted Deconvolution: Complex Mixture Analysis

• Feature extraction of compound classes: LC/GC-MS complex mixture analysis
• LC-MS analysis of a complex mixture on a 7 T LTQ FT Ultra
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Conclusions: 
Why to Simulate FTMS Data via Time-Domain Transients?

• Peak interference and unresolved peaks – artifacts in resolution estimation

• Understanding the FTMS data and hypothesis verification (w/out experimental data)

• Peak shape dependence on the FT processing – apodization, zero fills, etc.

• Step-by-step visualization of the FT processing workflow – teaching & training

• Resolution dependence on mass, charge state, instrument model, etc.

• Computationally, data processing speeds are comparable with peak overlay methods

Disclaimer: FTMS Simulator is only an example tool – it validates the approach

• Revealing novel insights into FTMS, with subsequent experimental verification



Thank you!
Sergey Girel

Project number: 
829157
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