

1

Cell Modeling in Jupyter Notebook using
CompuCell3D
TRINITY CHUNG,1,* T. J. SEGO,2 JAMES A. GLAZIER3
1 Undergraduate student at University of California, Berkeley, CA 94720, USA.
2 Assistant Professor, Ph.D. at Department of Medicine, University of Florida, Gainesville, FL 32611,
USA.
3 Professor, Ph.D. at Biocomplexity Institute and Department of Intelligent Systems Engineering,
Indiana University, Bloomington, IN 47408, USA.
*trinityc@berkeley.edu

Abstract: CompuCell3D (CC3D) is an open-source software framework for building and
executing multi-cell biological virtual-tissue models. It represents cells using the Glazier–
Graner–Hogeweg model, also known as Cellular Potts model. The primary CC3D application
consists of two separate tools, a smart model editor (Twedit++) and a tool for model execution,
visualization and steering (Player). The CompuCell3D version 4.x release introduces support
for Jupyter Notebooks, an interactive computational environment, which brings the benefits of
reproducibility, portability, and self-documentation. Since model specifications in CC3D are
written in Python and CC3DML and Jupyter supports Python and other languages, Jupyter can
naturally act as an integrated development environment (IDE) for CC3D users as well as a live
document with embedded text and simulations. This update follows the trend in software to
move away from monolithic freestanding applications to the distribution of methodologies in
the form of libraries that can be used in conjunction with other libraries and packages. With
these benefits, CC3D deployed in Jupyter Notebook is a more natural and efficient platform for
scientific publishing and education using CC3D.

Keywords: CompuCell3D, Jupyter Notebook, cell modeling, virtual tissue, biology education

© 2022 under the terms of the J ATE Open Access Publishing Agreement

1. Introduction

Computational biological modeling enables scientists to quantitatively describe complex
biological systems, test existing biological knowledge and generate new biological hypotheses.
Cell-based computational biological modeling describes biological systems on the basis of
individual cells [1], and can include dynamic deterministic or stochastic descriptions of cell
location and state. Research using computational modeling has produced novel quantitative
descriptions of the underlying mechanisms of many developmental processes like
somitogenesis [2], vasculogenesis [3, 4] and gastrulation [5], and has provided new biomedical
insights in various problems of health and disease such as acetaminophen metabolism [6],
autosomal dominant polycystic kidney disease [7], antiviral therapies [8, 9], and influenza
infection and host-pathogen interactions [10].

There exist multiple software for cell-based computational biological modeling, each
of which employs various numerical methods and provides different features and
specializations, including Artistoo [11], Biocellion [12], CHASTE [13], Morpheus [14],
PhysiCell [15], Simmune [16], and TissueSimulationToolkit [17] among others. CompuCell3D
(CC3D) [18], which implements the Glazier–Graner–Hogeweg model [19], also known as
Cellular Potts model, to simulate multicellular systems, has a long legacy as an open-source,
cross-platform modeling and simulation environment meant to be accessible to all levels of
biologists, from students to veteran researchers. To provide accessibility to a broad user base

2

across multiple disciplines, CC3D is distributed with supporting graphical user interfaces
(GUIs) that streamline model and simulation specification (e.g., automated project generators,
code snippets and browsable documentation) and project sharing (e.g., well-defined project file
structures, built-in project archive import/export) and provide interactive simulation execution
and real-time, customizable data visualization.

CC3D version 4.x development added support for Jupyter Notebooks, an interactive
computational environment that provides the benefits of reproducibility, portability, and self-
documentation in the form of executable, interactive scripts in a web browser. Jupyter
Notebook acts as one integrated environment, in which text and graphics can be presented
alongside executable code [20]. Jupyter was created in 2013 and is the most widely used
computational notebook [21], with more than 2.5 million notebooks in GitHub since September
of 2018 [22]. While CC3D was originally developed to support model specifications written in
Python and CC3DML (an XML-based language), recent CC3D developments expanded
deployment support to include specifications defined purely in Python. Since Jupyter supports
Python and other languages, Jupyter can naturally act as an integrated development
environment (IDE) for CC3D users as well. This update follows the current trend in software
development and distribution to move away from monolithic, freestanding applications and
towards the distribution of libraries that can be used in conjunction with other software. With
these benefits, CC3D deployed in Jupyter Notebook is a powerful resource to expose students
to computational biology as well as for scientists publishing work using CC3D. In this paper,
we describe the basic features of CC3D simulation visualization in Jupyter Notebook as
relevant to students, educators and scientists interested in integrating Jupyter-based
computational biological modeling and simulation into their classrooms and projects.

2. Software Design

CC3D is written in C++ and provides Python language bindings, including an interface for
runtime simulation execution and control in Python. The current distribution of the CC3D
software includes two GUIs: Twedit++, a text editor for writing model specification code
controlling the simulation (Fig. 1.1), and CC3D Player, a freestanding application to run and
interact with a simulation (Fig. 1.2). Twedit++ and CC3D Player are both built on the PyQt
framework, and CC3D Player uses the CC3D Python interface for runtime simulation
execution. Likewise, the CC3D visualization pipeline employs infrastructure from the
Visualization Toolkit (VTK) [23], which also provides Python language bindings and
supporting widgets for interactive visualization in a Jupyter Notebook. These important
software features permit both control of CC3D simulation execution and real-time rendering
and visualization of CC3D simulation data within Jupyter. Furthermore, CC3D Player
integrates VTK support for PyQt to provide interactive visualization, while VTK also provides
implementations of those same widgets deployed in CC3D Player but for Jupyter Notebook.
CC3D support for Jupyter Notebook integrates such features from VTK to provide a
comparable user experience between simulation execution and visualization in CC3D Player
and a Jupyter Notebook.

Player offers flexible visualization specifically tailored to the needs of CC3D users.
While general standard visualization tools exist, they can be cumbersome for non-expert users.
Player provides a simple way of representing complex visual data in real time by allowing the
user to run/pause/stop execution of the simulation while rendering the graphics in real time.
Users can create multiple graphics windows to view different properties, locations and objects
of the simulation simultaneously. Rendering settings such as outlines, colors, bounds, and more
can be configured to communicate the information the user needs. The view on the frames can
be manipulated directly during the simulation with natural controls for pan, tilt, and zoom,

3

switch between two- and three-dimensional views and setting view coordinates for two-
dimensional visualization. Player also supports on-demand rendering of visualized simulation
data and saving to file, as well as scheduling rendering at regular intervals of simulation time.

The Jupyter Notebook implementation of CC3D includes the rich features provided
by Player, but in an interactive environment supporting user-specified visualization along with
the implementation of their models, simulation specifications and documentation. Users can
specify an arbitrary number of graphics frames, each of which can be individually customized
to visualize simulation data in ways that complement, clarify or demonstrate the ideas
communicated in their Jupyter Notebook. Each graphics frame can be interactively configured,
and each graphics frame configuration can be stored to file during development in a human-
readable JSON format and reloaded during subsequent executions of a Jupyter Notebook (e.g.,
when shared with others). CC3D visualization in Jupyter Notebook supports displaying
individual graphics frames or grids of frames that effectively communicate complex simulation
data over multiple fields (e.g., reaction-diffusion fields), which are common to models
developed in CC3D that target intercellular signaling and/or dynamic environmental
conditions. To this end, CC3D promotes deployment of multiple interactive visualization
frames through multiprocessing and an application-specific message-passing interface.
Visualization of each frame is executed in a separate process and message passing shares
serialized simulation data from the computational core to each visualization process, and
likewise instructions from user interactions are shared from each visualization process back to
the computational core for real-time manipulation of data visualization (Fig. 1.3).

Fig. 1.1. Editing a simulation file using Twedit++ on MacOS

Fig. 1.2. Visualizing a simulation in CompuCell3D Player on MacOS

Fig. 1.3. Visualizing a CompuCell3D simulation in a Jupyter Notebook

4

Previous CompuCell3D releases are primarily designed to run natively on Windows,
Mac or Linux operating systems with a GUI. This meets the needs of a majority of users but
makes remote client-server computing setups difficult since the remote server needs to render
and stream its GUI. For instance, CompuCell3D version 4 is available through nanoHUB [24]
and is rendered using the X11 default window manager (Fig. 2). The nanoHUB deployment of
CC3D is fully functional and can demonstrate all the capabilities of CC3D, however, there are
challenges to using it as a development environment. For one, the simulation execution speed
on this platform is slower. In addition, since the remote desktop is an isolated environment,
some basic computer functionality including keyboard shortcuts such as copy/paste are not
transferable between the client and remote machine.

Fig. 2. CompuCell3D Player and Twedit++ running on nanoHUB X11 window manager

On the other hand, a client-server interface is inherent to Jupyter, making Jupyter

Notebooks that specify and describe a CC3D simulation easily deployable and efficient on
cloud computing systems (Fig. 3). Jupyter can be hosted on a cloud server and accessed using
a link by the client user. In such deployments, computations are performed on the server and
the graphics are rendered locally, which can significantly improve user experience by
increasing the performance of visualization interactivity.

Fig. 3. Jupyter instance of nanoHUB with CompuCell3D files

3. Discussion

5

The flexible, portable, and reproducible format of Jupyter Notebook makes it an appealing
environment to use as an educational resource and to supplement scientific publications. A
single Jupyter Notebook can display instructions, figures, live code and simulations in a single
browser window, forming a coherent "computational narrative" [20]. In comparison, working
with the native CC3D application would require three different components, where code is
written in Twedit++, simulations run in CC3D Player, and instructions are outlined in a separate
document. In addition, the Twedit++ and CC3D Player applications have menus and features
which may be irrelevant for a particular presentation, while a Jupyter Notebook can selectively
load and display relevant components. This customizable and interactive format makes it
simpler for audiences to follow and understand the concepts, technical details and overall scope
of a CC3D-based project in Jupyter Notebook than with native CC3D (Fig. 4).

Fig. 4. With the CompuCell3D native applications, the development environment (Twedit++), simulation controller
(Player), and supporting documentation (User Manuals) are separate. With Jupyter Notebook, these three aspects are

seamlessly integrated as one.

The portability of Jupyter Notebook also makes it easier for teachers to distribute and
collect Notebooks as assignments. Jupyter Notebook files may be uploaded onto file-sharing
sites such as GitHub or other institutional platforms. In addition, existing online tools for
Jupyter Notebooks such as nbviewer [25] allow for more ways to access/view a Notebook.
With the flexibility and portability benefits that Jupyter offers, CC3D can be more effectively
used in the classroom to demonstrate and reinforce biological concepts to students. Fig. 5.
demonstrates an example of CC3D in Jupyter Notebook for educational use, including steps to
run CC3D and additional exercises The full example notebook can be found in .pdf and Jupyter
Notebook formats in the supplementary materials. In this fashion, a curriculum can be created
with interactive Notebooks in place of worksheets. Previously, CC3D would have been difficult
to deploy in classrooms because of its device-dependent and multicomponent nature. The
development of CC3D for Jupyter Notebook enables a simpler replication and distribution
process for instructors. The time to set up the CC3D environment for learning and to create
new lesson materials would be reduced because of the streamlined format. The format benefits
students as well: a Notebook allows a more focused way of learning rather than having to use
and reference multiple applications to operate CC3D, as discussed above. The interactive

6

format also encourages exploration, providing opportunity for a different kind of learning
format. Previous research has shown that working with simulated models improves
foundational and conceptual skills in biology students [26]. In addition, given the increasing
need for online learning, simulations could be an alternative to exercises in a physical
laboratory [27].

Fig. 5. Excerpts from the SortingDemo_ExtendedContent.ipynb file included in supplementary materials.

Instructions for running the simulation and additional exercises are seamlessly integrated into one interactive
environment through Jupyter Notebook.

Another beneficial use for CC3D in Jupyter Notebook is to embed CC3D simulations

into research publications as supplementary media to help other researchers understand,
interrogate and reproduce published work. As reports indicate, a current crisis of reproducibility
across published science, especially for the field of computational biology [28], has filled much
of the recent literature with works that cannot be reproduced because of factors like insufficient
descriptions of methodology. CC3D support for Jupyter Notebook can thus help mitigate the
waning reproducibility in computational biological modeling by providing a straightforward
way for scientists to publish research in a format that makes it easier for others to trace,

7

understand and reproduce their work. Since Jupyter Notebooks can be shared via accessible file
hosting or cloud computing platforms like GitHub and nanoHUB, sharing or accessing a
published Notebook is trivial, and many researchers are already familiar with these tools.

One limitation to using CC3D in Jupyter Notebook is that performance can vary
depending on how much algorithmic work is done in Python. While the cost of pure backend
calculations are unaffected, certain algorithms such as loops implemented in Python are less
efficient than the C++ counterpart, which the Jupyter environment does not currently support.
As a result, simulations have longer execution time than executed in the native desktop
application, which may make Jupyter Notebook unsuitable for larger-scale simulations. For
example, a simple benchmark running a 2D cell sorting demo demonstrated an execution time
of 35 seconds in a Jupyter Notebook, compared to 2 seconds in Player and 0.5 seconds in a
pure Python implementation (see Supporting Materials 1). While simulation performance
varies depending on the machine and setup, and there are techniques to improve simulation
performance, which is out of the scope of this paper, an implementation of a CC3D simulation
may not be appropriate in Jupyter Notebook when developing, testing and applying
computationally expensive algorithms specified in Python. However, a CC3D simulation
implementation in a Jupyter Notebook still provides value for the purposes of sharing,
demonstration and communication, and so CC3D-based research projects that do not primarily
use Jupyter Notebook to generate published results should still provide a published
implementation in a Jupyter Notebook to support reproducibility, as well as to showcase
published work in an accessible and engaging medium.

4. Conclusion

CC3D is a software tool for computational biologists to develop, test and apply cell-based
computational models of biological systems, while Jupyter Notebook is a generic interactive
computing environment. Providing support for Jupyter in CC3D pushes computational
biological modeling towards modern software practices and better accessibility for more users
of different backgrounds. The Jupyter implementation of CC3D preserves the intuitiveness of
CC3D Player while also serving as an IDE.

The authors encourage biology educators and student researchers to try using this new
feature of CC3D and share any work done using this tool with the community of CC3D
developers and users. Engagement and feedback allow the developers to continue improving
and adding features which are most useful to users. In addition, learning resources will be
continually added to support a growing user base.

Acknowledgments.

We thank Hayden Fennell, postdoctoral researcher at Indiana University, for contributing his time and
expertise to create an example Jupyter Notebook using CC3D for educational use.

We additionally thank Prof. Jared Ashcroft and The Micro Nano Technology Education Center of
Pasadena City College for helping initiate this collaboration and for ongoing support. We acknowledge
support from National Science Foundation grants NSF 2120200, NSF 2000281 and NSF 1720625 and
National Institutes of Health grants U24 EB028887 and R01 GM122424.

Disclosures.

8

The authors declare no conflicts of interest.

Supporting Materials.
1. Source code for simulation benchmarks using CC3D Player, CC3D Python API and a Jupyter

Notebook.

References

[1] Merks, Roeland MH, and James A. Glazier. "A cell-centered approach to developmental biology." Physica A:

Statistical Mechanics and its Applications 352.1 (2005): 113-130.
[2] Hester, Susan D., et al. "A multi-cell, multi-scale model of vertebrate segmentation and somite formation."

PLoS computational biology 7.10 (2011): e1002155.
[3] Merks, Roeland MH, et al. "Cell elongation is key to in silico replication of in vitro vasculogenesis and

subsequent remodeling." Developmental biology 289.1 (2006): 44-54.
[4] Merks, Roeland MH, et al. "Contact-inhibited chemotaxis in de novo and sprouting blood-vessel growth." PLoS

computational biology 4.9 (2008): e1000163.
[5] Vasiev, Bakhtier, et al. "Modeling gastrulation in the chick embryo: formation of the primitive streak." PLoS

One 5.5 (2010): e10571.
[6] Sluka, James P., et al. "A liver-centric multiscale modeling framework for xenobiotics." PloS one 11.9 (2016):

e0162428.
[7] Belmonte, Julio M., et al. "Virtual-tissue computer simulations define the roles of cell adhesion and

proliferation in the onset of kidney cystic disease." Molecular biology of the cell 27.22 (2016): 3673-3685.
[8] Sego, T. J., et al. "A modular framework for multiscale, multicellular, spatiotemporal modeling of acute

primary viral infection and immune response in epithelial tissues and its application to drug therapy timing and
effectiveness." PLoS computational biology 16.12 (2020): e1008451.

[9] Ferrari Gianlupi, Juliano, et al. "Multiscale Model of Antiviral Timing, Potency, and Heterogeneity Effects on
an Epithelial Tissue Patch Infected by SARS-CoV-2." Viruses 14.3 (2022): 605.

[10] Sego, T. J., et al. "A multiscale multicellular spatiotemporal model of local influenza infection and immune
response." Journal of Theoretical Biology 532 (2022): 110918.

[11] Wortel, I. M., & Textor, J. (2021). Artistoo, a library to build, share, and explore simulations of cells and tissues
in the web browser. ELife, 10, e61288. https://doi.org/10.7554/eLife.61288

[12] Kang, S., Kahan, S., McDermott, J., Flann, N., & Shmulevich, I. (2014). Biocellion: Accelerating computer
simulation of multicellular biological system models. Bioinformatics, 30(21), 3101–3108.
https://doi.org/10.1093/bioinformatics/btu498

[13] Pitt-Francis, J., Pathmanathan, P., Bernabeu, M. O., Bordas, R., Cooper, J., Fletcher, A. G., Mirams, G. R.,
Murray, P., Osborne, J. M., Walter, A., Chapman, S. J., Garny, A., van Leeuwen, I. M. M., Maini, P. K.,
Rodríguez, B., Waters, S. L., Whiteley, J. P., Byrne, H. M., & Gavaghan, D. J. (2009). Chaste: A test-driven
approach to software development for biological modelling. Computer Physics Communications, 180(12),
2452–2471. https://doi.org/10.1016/j.cpc.2009.07.019

[14] Starruß, J., de Back, W., Brusch, L., & Deutsch, A. (2014). Morpheus: A user-friendly modeling environment
for multiscale and multicellular systems biology. Bioinformatics, 30(9), 1331–1332.
https://doi.org/10.1093/bioinformatics/btt772

[15] Ghaffarizadeh, A., Heiland, R., Friedman, S. H., Mumenthaler, S. M., & Macklin, P. (2018). PhysiCell: An
open source physics-based cell simulator for 3-D multicellular systems. PLOS Computational Biology, 14(2),
e1005991. https://doi.org/10.1371/journal.pcbi.1005991

[16] Meier-Schellersheim, M., & Mack, G. (1999). SIMMUNE, a tool for simulating and analyzing immune system
behavior. arXiv. https://doi.org/10.48550/arXiv.cs/9903017

[17] Daub, J. T., & Merks, R. M. H. (2015). Cell-based computational modeling of vascular morphogenesis using
Tissue Simulation Toolkit. Methods in Molecular Biology (Clifton, N.J.), 1214, 67–127.
https://doi.org/10.1007/978-1-4939-1462-3_6

[18] Swat, M. H., Thomas, G. L., Belmonte, J. M., Shirinifard, A., Hmeljak, D., & Glazier, J. A. (2012). Multi-Scale
Modeling of Tissues Using CompuCell3D. In Methods in Cell Biology (Vol. 110, pp. 325–366). Elsevier.
https://doi.org/10.1016/B978-0-12-388403-9.00013-8

[19] Graner, F., & Glazier, J. A. (1992). Simulation of biological cell sorting using a two-dimensional extended
Potts model. Physical Review Letters, 69(13), 2013–2016. https://doi.org/10.1103/PhysRevLett.69.2013

[20] Kluyver, T., Ragan-Kelley, B., Perez, F., Granger, B., Bussonnier, M., Frederic, J., Kelley, K., Hamrick, J.,
Grout, J., Corlay, S., Ivanov, P., Avila, D., Abdalla, S., & Willing, C. (2016). Jupyter Notebooks – a publishing
format for reproducible computational workflows. Positioning and Power in Academic Publishing: Players,
Agents and Agendas, 87–90. https://doi.org/10.3233/978-1-61499-649-1-87

[21] Shen, H., “Interactive notebooks: Sharing the code,” Nature News, vol. 515, no. 7525, p. 151, 2014.

9

[22] Perkel, J. M. (2018). Why Jupyter is data scientists’ computational notebook of choice. Nature, 563(7729),
145–146. https://doi.org/10.1038/d41586-018-07196-1

[23] Perez, F., & Granger, B. E. (2007). IPython: A System for Interactive Scientific Computing. Computing in
Science Engineering, 9(3), 21–29. https://doi.org/10.1109/MCSE.2007.53

[24] Gianlupi, J., & Sego, T. J. (2021). CompuCell3D v4 Main Tool (4.2.5.1). nanoHUB.
https://doi.org/10.21981/85GJ-SC30

[25] Bussonnier, M., & RK, M. (2012). nbviewer: Jupyter Notebook Viewer. Project Jupyter. https://nbviewer.org/
[26] Bergan-Roller, H. E., Galt, N. J., Chizinski, C. J., Helikar, T., & Dauer, J. T. (2018). Simulated computational

model lesson improves foundational systems thinking skills and conceptual knowledge in biology
students. BioScience, 68(8), 612–621. https://doi.org/10.1093/biosci/biy054

[27] Pillay, C. S. (2020). Analyzing biological models and data sets using Jupyter notebooks as an alternate to
laboratory-based exercises during COVID-19. Biochemistry and Molecular Biology Education, 48(5), 532–534.
https://doi.org/10.1002/bmb.21443

[28] Papin, J. A., Gabhann, F. M., Sauro, H. M., Nickerson, D., & Rampadarath, A. (2020). Improving
reproducibility in computational biology research. PLOS Computational Biology, 16(5), e1007881.
https://doi.org/10.1371/journal.pcbi.1007881

