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Abstract
Soil degradation threatens agricultural production and soil multifunctionality. Efforts for private and public govern-
ance are increasingly emerging to leverage sustainable soil management. They require consensus across science, policy, 
and practice about what sustainable soil management entails. Such agreement does not yet exist to a sufficient extent 
in agronomic terms; what is lacking is a concise list of soil management measures that enjoy broad support among 
all stakeholders, and evidence on the question what hampers their implementation by farmers. We therefore screened 
stakeholder documents from public governance institutions, nongovernmental organizations, the agricultural indus-
try, and conventional and organic farmer associations for recommendations related to agricultural soil management 
in Germany. Out of 46 recommended measures in total, we compiled a shortlist of the seven most consensual ones: 
(1) structural landscape elements, (2) organic fertilization, (3) diversified crop rotation, (4) permanent soil cover, (5) 
conservation tillage, (6) reduced soil loads, and (7) optimized timing of wheeling. Together, these measures support 
all agricultural soil functions, and address all major soil threats except soil contamination. Implementation barriers 
were identified with the aid of an online survey among farmers (n = 78). Results showed that a vast majority of farmers 
(> 80%) approved of all measures. Barriers were mostly considered to be economic and in some cases technological, 
while missing knowledge or other factors were less relevant. Barriers were stronger for those measures that cannot be 
implemented in isolation, but require a systemic diversification of the production system. This is especially the case for 
measures that are simultaneously beneficial to many soil functions (measures 2, 3, and 4). Results confirm the need for 
a diversification of the agricultural system in order to meet challenges of food security and climate change. The shortlist 
presents the first integrative compilation of sustainable soil management measures supporting the design of effective 
public or private governance.

Keywords Agriculture in transition · Diversification in agriculture · Soil functions · Soil health · Sustainable soil management · 
Stakeholder recommendations

1 Introduction

Agricultural soils are multifunctional. Beyond food pro-
duction, they filter and store water, store and recycle nutri-
ents, sequester carbon, and provide habitat for biological 
activity (Schulte et al. 2014). These functions play a cru-
cial role in the resilience of agricultural production sys-
tems and agricultural landscape ecosystems. However, the 
ability of soils to perform these functions is threatened by 
degradation processes such as erosion, compaction, bio-
diversity decline, organic matter decline, or contamina-
tion (Glæsner et al. 2014). While the intensification of 
agriculture has strongly increased productivity, a concur-
rent rise in soil threats impairs the other soil functions 
(Techen and Helming 2017; Virto et al. 2015). Since soil 
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fertility depends on the interplay of all functions, this also 
threatens long-term food security (Kibblewhite et al. 2008; 
Wagg et al. 2014). Historically, soil degradation resulting 
from poor soil management has led to the collapse of civi-
lizations (Olson 1981; Snyder 2020). A sustainable man-
agement of agricultural soils that preserves or improves 
soil functions is therefore a pressing challenge, especially 
in light of a growing world population and climate change 
(Lal 2009).

There is increasing awareness among stakeholders of the 
importance of sustainable soil management. The United 
Nations (UN) declared 2015 as the International Year of 
Soils, researchers and institutional authorities highlight the 
importance of soils for the attainment of the UN’s Sustain-
able Development Goals (EEA 2019; Helming et al. 2018; 
Keesstra et al. 2016), and recent popular documentaries raise 
public awareness about the need for soil protection (Tickell 
and Tickell 2020; Uhlig 2019).

However, at the European Union (EU) level, a legal 
framework specifically addressing soil protection is lack-
ing (Virto et al. 2015). Although multiple EU regulations, 
such as the Common Agricultural Policy (CAP), the nitrates 
directive, the water framework directive, or the habitats 
directive address soil-related aspects, they do not specifi-
cally address the functioning of soils and do not account for 
the soil system in a holistic approach (Frelih-Larsen et al. 
2017). Consequently, legislation pertaining to soil protec-
tion is inconsistent in the EU and insufficient for ensuring 
adequate protection of soils (Glæsner et al. 2014). By the 
end of 2021, the European Commission published a new 
Soil Strategy after a failed attempt toward a European Soil 
Framework Directive in 2014 (SIEUSOIL 2020). The new 
strategy foresees a soil health law by 2023. This is urgent, 
especially in view of the transnational magnitude and entan-
glement of challenges, such as climate change mitigation 
and adaptation or growing food demand, which threaten the 
achievement of the Sustainable Development Goals by 2030 
(Ronchi et al. 2019; Ginzky et al. 2018).

Even in European countries where a national legal 
framework for soil protection has been in force for many 
years, such as in Germany, sufficient soil protection is not 
guaranteed. The German Soil Protection Act only partially 
prescribes preventive action, and the principles of good 
agricultural practices stated in the Act are considered too 
vague to be effective (Gunreben 2005; Prager et al. 2011; 
Rothstein et al. 2014). Consequently, soil degradation con-
tinues to be a serious problem in Germany and is expected 
to increase significantly by 2050 (Routschek et al. 2014; 
Wunder & Bodle 2019). Many stakeholders have become 
aware of this problem, and many recommendations for soil 
health-improving management measures in arable systems 
in Germany and Europe have been published (Fig. 1). They 
differ in terms of purpose, cost, systemic integration, and 
transformational requirements. They address different soil 
threats and soil functions, and their suitability varies regard-
ing geophysical setting, soil properties, and farming system. 
However, there is still no consensus on what exactly sustain-
able soil management entails, and the multitude of different 
recommendations makes it difficult to see the forest for the 
trees. This hampers the adoption of soil governance meas-
ures, so that soil conservation management going beyond the 
legal requirements currently depends primarily on voluntary 
actions by farmers (Altobelli et al. 2020; FAO and ITPS 
2015; Juerges and Hansjürgens 2018).

While agricultural soils are usually private property and 
their specific management is determined by farmers, man-
agement impacts on soil functions also affect public goods 
such as biodiversity, water regulation, and climate change 
mitigation (Powlson et al. 2011). Thus, there is a legitimate 
public interest in establishing mechanisms of public and pri-
vate governance, such as regulations, subsidies, certification, 
and land-renting contracts, that promote sustainable soil 
management practices. To obtain a high degree of accept-
ance, which is particularly important in private governance, 
such mechanisms need to build on a consensus around sus-
tainable soil management measures, which includes the 

Fig. 1  Soil-improving man-
agement measures based on 
stakeholder recommendations: 
implementation of structural 
landscape elements, use of 
organic fertilizer, diversified 
crop rotations, permanent 
soil cover, conservation till-
age, reduced soil loads, and 
optimized timing of wheeling. 
Picture: Veronika Strauss.
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perspectives and concerns of different stakeholder groups 
(Horschig et al. 2020).

Among the stakeholders, farmers are of central impor-
tance, as they are responsible for implementing measures 
and are directly affected by regulations pertaining to soil 
management. Although they have a vested interest in manag-
ing their soils sustainably, diverse obstacles and drivers for 
choosing unsustainable management options exist (European 
Commission 2006). Identifying such obstacles is important 
for designing governance mechanisms that efficiently incen-
tivize sustainable soil management. Other relevant stake-
holder groups are policy makers and public institutions, the 
agriculture and food industry, and environmental and social 
nongovernmental organizations (NGOs). To our knowledge, 
no work has yet been published that analyzes the views of 
these stakeholder groups toward agricultural measures 
required for sustainable soil management in a comprehen-
sive way. To contribute to addressing this research gap, our 
objectives are to:

 i. give an overview of the recommendations for sus-
tainable agricultural soil management from different 
stakeholder groups (longlist),

 ii. derive a shortlist of sustainable agricultural soil man-
agement measures that meet widespread agreement 
across all stakeholder groups,

 iii. analyze which soil threats and soil functions are 
affected by these management measures and identify 
possible gaps, and

 iv. analyze farmer perspectives on these measures and 
identify barriers to their implementation, including 
possible requirements for systemic change.

The results of our study provide a basis for designing pub-
lic and private governance mechanisms. We use Germany 
as an example for a country in the temperate climate zone 
with highly industrialized agriculture and low yield gaps. 
We combine an analysis of stakeholder documents with a 
farmer survey.

2  Materials and methods

2.1  Stakeholder document analysis

2.1.1  Selection of stakeholders

A screening of stakeholders relevant to the German agri-
cultural sector was performed, focusing on stakeholders 
active at the national or federal state level but also includ-
ing relevant European and international institutions. Stake-
holders were identified using a keyword-based Google 
search for documents addressing soil management, soil 

threats, or soil functions, and followed by a snowball sam-
pling method (i.e., identification of one stakeholder could 
offer the connection to further stakeholders; cf. Atkinson 
and Flint 2004). All stakeholders were assigned to one of 
the following categories:

• Public governance and institutions (GOV): ministries, 
environmental protection agencies, governmental advi-
sory councils; institutions of the European Union and 
the United Nations;

• Non-governmental organizations (NGO): interest 
groups with a focus on the environment, social issues, 
sustainability, or agricultural soils;

• Agricultural industry (IND): companies and industry 
associations from the seeding, fertilizer, pesticide, and 
agricultural technology sectors;

• Conventional farming associations (CONV): groups, 
networks, and associations of conventional farmers in 
Germany;

• Organic farming associations (ORG): groups, net-
works, associations of organic farmers in Germany, 
and organic food labels.

We differentiated between conventional and organic 
farming associations due to different requirements and 
limitations applying to both farming systems (Crittenden 
et  al. 2015). For GOV, well-known stakeholders such 
as international institutions and agricultural and envi-
ronmental ministries of the German federal states were 
added. For the other categories, additional stakeholders 
were identified by searching for the German equivalents 
of the keywords “NGO” + “environment,” “agriculture,” 
or “arable” (NGO); for “agric*” + “seeding,” “pesticide,” 
“fertilizer,” or “agricultural machinery” (IND); and for 
“agricultural association” or “farmers union” ± “organic” 
(CONV, ORG).

2.1.2  Selection of documents

Websites of the identified stakeholders were searched for 
soil-related documents using the keywords “soil,” “soil 
protection,” or the German equivalents. The following four 
criteria had to be met for a document to be selected:

1. Clear link to agricultural soil management in Germany, 
or valid globally.

2. Addresses specific management options directly appli-
cable by farmers. Only listing desired outcomes, such as 
“avoid erosion” was not considered sufficient.

3. Applicable to arable cropping.
4. Specifically addresses soil protection, soil health 

improvement or sustainable soil management.
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2.1.3  Analysis of documents

A full-text analysis was performed for all selected documents. 
For assessing the agricultural measures addressed, we devel-
oped an analytical framework (Fig. 2). The categorization of 
agricultural soil management measures was based on Techen 
and Helming (2017). However, we added “farming system” as 
a fifth main category and slightly modified the subcategories. 
Similar measures were combined under a common name. For 
example, “use of manure” and “use of compost” were recorded 
as “organic fertilizer.” All measures were assigned to a sub-
category, and linkages between the measures and soil threats 
or soil functions described in the documents were recorded.

For each measure, we counted the total number of docu-
ments addressing it, as well as the number of documents per 
stakeholder group. Documents issued by multiple stakeholder 
groups were counted for the group with the largest number 
of contributing authors. There was one tie where a docu-
ment had been issued by one stakeholder each from NGO and 
CONV. We assigned the document to CONV because this 
stakeholder group is closer to implementing the measures.

The overall share of documents recommending a measure 
reflects the agreement among the stakeholders. We created a 
shortlist of measures that were recommended by at least 1

3
 of 

all stakeholder documents. This share also marks the thresh-
old above which each measure was recommended by at least 
one stakeholder from each group.

2.2  Farmer survey

We conducted an online survey with German farmers using 
the open source application LimeSurvey® (version 4.3.15, 
build 200907, LimeSurvey GmbH, Hamburg, Germany). 
Although the survey was performed in German language, 
we refer here to English translations. In June/July 2021, an 
email with the link to the survey was sent to 16 major Ger-
man agricultural organizations and 62 local farmer associa-
tions across all federal states, with a request to forward it to 
their members. All complete answers submitted by August 
9, 2021, were included in the analysis (n = 78).

For all measures on the shortlist, we asked farmers the 
following questions:

• Is the measure reasonable?
• What is the most important challenge to implementation? 

The responses to choose from included technology, eco-
nomic constraints, lack of knowledge, and other (with a 
comment option).

If the comments provided with the option “other” speci-
fied technical/economic/knowledge-related barriers, then the 
answer was assigned to the respective category. All answer 
fields were mandatory (except for an open comment field 
at the very end of the survey). However, there was also the 
option to answer “I don’t know/no answer.”

Fig. 2  Framework for document selection and analysis. The approach for categorizing of the measures was adopted from Techen and Helming 
(2017). Soil threats: Glæsner et al. (2014); soil functions: Schulte et al. (2014).
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3  Results and discussion

3.1  Sustainable soil management measures 
recommended by stakeholders

Out of the 85 stakeholders we identified, 40 issued docu-
ments that met our selection criteria (Appendix Table 1). 
The share within each group was 58% for GOV (14/24), 
58% for NGO (7/12), 22% for IND (5/23), 33% for CONV 
(5/15), and 82% for ORG (9/11).

Forty-six measures were identified in the document anal-
ysis (Fig. 3). Overall, “mechanical pressures” was the cat-
egory most often addressed by the stakeholders, while “farm-
ing system” was the least addressed. The highest number of 

recommendations was recorded for “inputs into the soil.” Of 
the groups, GOV stakeholders provided the highest number of 
recommendations.

Seven measures were recommended by more than one-
third of the stakeholders and by stakeholders from all 
groups, namely, “structural landscape elements/biodiversity 
refuges,” “permanent soil cover,” “diversified crop rotation,” 
“conservation tillage,” “reduced soil loads,” “optimized tim-
ing of wheeling,” and “organic fertilizer” (Fig. 1). These 
measures formed our shortlist and are discussed further.

The largely differing numbers of documents per stakeholder 
group implied the risk of overrepresenting recommendations of 
groups with high numbers of documents (e.g., GOV). However, 
weighing the groups (i.e., calculating the arithmetic means (x̅) 

Fig. 4  Rating of reasonability 
of the shortlist of measures by 
German farmers (n = 78).

Fig. 5  Major barriers to the 
implementation of the shortlist 
of measures as perceived by 
German farmers (n = 78).



 V. Strauss et al.

1 3

   17  Page 8 of 26

for each measure, based on equally weighted shares of agree-
ment within each stakeholder group) caused only minimal 
changes in the long list and no changes in the shortlist.

3.2  Results of the farmer survey

Seventy-eight farmers replied to the survey. Respond-
ents’ locations were spread across Germany but mainly 
eastern states (the western federal states were poorly rep-
resented, possibly due to the severe floods in July 2021 
that also affected agriculture (He et al. 2021)). Farm sizes 
were evenly distributed between farms smaller than 100 
ha (36%), between 100 and 500 ha (38%) and larger than 
500 ha (26%). Most respondents performed mixed arable 
and livestock farming (63%), while 27% performed only 
arable farming and 9% only livestock farming (other: 1%). 
The share of respondents performing organic farming was 
significantly higher (19%) than the German average (7.5%, 
cf. Destatis 2021). 78% performed conventional farming, 
and 3% performed both organic and conventional farming 
(Appendix Fig. 7)

All measures on the shortlist were considered reason-
able by a vast majority of the survey respondents (Fig. 4). 
There were some differences between organic and conven-
tional farming systems for some measures: “structural land-
scape elements,” “permanent soil cover,” and “optimized 
timing of wheeling” were considered more reasonable by 
organic farmers than conventional farmers (93.3/77.0%, 
100.0/78.7%, and 93.3/77.0%, respectively); “Conservation 
tillage” was considered more reasonable by conventional 
farmers than by organic farmers (91.8/73.3%). Economics 
was considered the most important challenge to implemen-
tation for five of the seven measures, while for “conserva-
tion tillage,” it was technology, and for “optimized timing 
of wheeling,” the responses were equally distributed and no 
prevalent barrier could be identified (Fig. 5).

3.3  Discussion of measures

In this section, the shortlisted measures are discussed. For 
each measure, we first report the benefits that the stakeholder 
documents associate with it, discuss benefits and challenges 
in the context of scientific literature, and address suitabil-
ity and barriers of implementation from farmers’ perspec-
tive. This also allows us to analyze how well the measures 
address soil threats and soil functions, and how easily they 
can be implemented in existing farming systems.

3.3.1  Structural landscape elements/biodiversity refuges

Structural elements in agricultural fields include hedgerows, 
live fences, shelterbelts, ponds, nonproductive trees, flower 
strips, buffer strips, perennial wooden structures, or stone or 

terrace walls. In the stakeholder documents, implementing 
structural elements was considered a measure that contrib-
utes mainly to the soils’ habitat function and addresses the 
threat of biodiversity decline, while it was often not clear 
from the documents whether this refers exclusively to soil 
organisms or also to aboveground biodiversity. Many docu-
ments also pointed to a link with the production function 
of soils because biodiversity is a functional element of soil 
fertility and because structural elements may provide shelter 
for pollinators and other beneficial species. Structural ele-
ments were also frequently linked to the prevention of wind 
and water erosion, as well as to preventing organic matter 
decline. To a lesser extent, positive effects of structural ele-
ments on water purification and retention and carbon seques-
tration were mentioned.

Research confirms that structural elements form impor-
tant soil biodiversity reservoirs (Barthel et al. 2013) and are 
crucial for habitat connectivity and for the preservation of 
species that are incompatible with agriculture (Grass et al. 
2019; Savić et al. 2021). They provide shelter for pollinators 
and predators and enhance their diversity and abundance 
(Dainese et al. 2017; van Vooren et al. 2017). The positive 
effect on predators may also reduce pesticide demand (Ste-
ingröver et al. 2010; Bianchi et al. 2008). Linear elements 
such as hedgerows, or flower strips can reduce soil erosion 
(Marshall and Moonen 2002), contribute to soil sediment 
and nutrient interception (Garratt et al. 2017), and thus ben-
efit water quality (Tamburini et al. 2020). They can also 
significantly increase organic matter content and carbon 
stock in adjacent fields (van Vooren et al. 2017; Wojew-
oda and Russel 2003). Structural landscape elements are 
important for the intrinsic and functional diversity of agri-
cultural landscapes (van den Berge et al. 2018; Grass et al. 
2019) and therefore contribute directly and indirectly to soil 
multifunctionality.

While crop yield has been found to be more stable and 
more resilient to extreme events on fields with structural 
elements (Redhead et al. 2020), the overall yield is signifi-
cantly reduced in close proximity to hedgerows and only 
slightly increased at farther distances (Raatz et al. 2019; 
van Vooren et al. 2017). Additionally, structural landscape 
elements occupy agricultural land, resulting in a trade-off 
between ecosystem service delivery and crop yield (van 
Vooren et al. 2017; Redhead et al. 2020). While seminatu-
ral habitats provide better pollination in agricultural fields, 
this cannot counterbalance the higher costs due to increased 
working time and fuel consumption (Clough et al. 2020; 
Kirchweger et al. 2020).

Accordingly, while 81% of the survey respondents 
deemed the implementation and preservation of structural 
landscape elements reasonable, economic constraints were 
perceived as the most important obstacle to their implemen-
tation (58%). Comments displayed a rather low motivation 
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of farmers to implement and preserve structural elements 
and highlighted opportunity costs due to the occupied area 
and increased workload resulting from maintenance tasks. 
This might be especially relevant for small farms where 
taking land out of cultivation is more challenging than on 
larger farms (Wuepper et al. 2020). Several respondents 
commented that implementing structural landscape elements 
would only be possible with increased funding, while the 
application process for existing funding was perceived as 
complicated. In Europe, implementing landscape elements 
can be funded if they are registered as Ecological Focus 
Areas (EFA). However, due to strict requirements (e.g., 
regarding spatial dimensions) and a difficult administrative 
registration process, most farmers do not avail of this option 
(Zinngrebe et al. 2017).

Thus, improved funding schemes for structural elements 
may improve the adoption of this measure. It could easily 
be integrated into existing farming schemes, requiring only 
slight changes to management, such as respecting protective 
distances to structural elements when applying pesticides 
and fertilizers. Improved knowledge transfer about the long-
term beneficial effects of diversely structured landscapes for 
yield stability and resilience might also foster a more posi-
tive attitude of farmers toward structural elements.

3.3.2  Organic fertilizer

This measure refers to an increased use of organic ferti-
lizer or the addition of organic amendments. This includes 
the incorporation of straw and other crop residues, green 
manure, farmyard manure, solid dung, compost, sewage 
sludge, fermentation residues, horn manure and horn silica, 
or biochar. While some stakeholders recommended using 
mineral fertilizer as an additional option, others recom-
mended completely avoiding mineral fertilizers. Several 
documents contained specifications, e.g., that the addition 
of organic amendments should be done in a balanced and 
context-adapted way, that knowledge about the nutrient com-
position of the organic amendments was required, or that 
the organic material should be incorporated into the soil 
(especially slurry). This measure was mostly linked to nutri-
ent supply, humus preservation and formation, soil struc-
ture, and soil fertility. Organic fertilizers were considered 
to contribute to the improvement and maintenance of soil 
health, enabling good crop performance. Further linkages 
were made to the habitat function of soils, soil water holding 
capacity, erosion prevention, pest control, and the closing of 
nutrient cycles.

The use of organic fertilizer/adding diverse organic 
amendments to the soil has beneficial effects on soils, includ-
ing improved biological functions, increased organic carbon, 
improved soil aggregate stability, more balanced release of 
N fertilizers, decreased nitrate leaching, pest and pathogen 

suppression, and improved crop yields; especially when 
regularly applied over long periods (Bailey and Lazarovits 
2003; Crystal-Ornelas et al. 2021; Diacono and Montemurro 
2011; Vida et al. 2020). However, the financial profitabil-
ity of organic inputs is uncertain, especially in the short 
term (Constantin et al. 2015; Hijbeek et al. 2019), while 
excessive use of organic fertilizers is associated with nitrate 
leaching and groundwater pollution (Kühling et al. 2021). 
Furthermore, the regional concentration of specialized crop 
farms and livestock farms may cause shortages in the avail-
ability of animal manure, as transporting manure over long 
distances is economically unviable (Biberacher et al. 2009; 
Wezel et al. 2014) and results in high labor and energy costs 
(Sanchez et al. 2004). Another obstacle is the varying nutri-
ent content of organic fertilizers which may lead farmers to 
opt for mineral fertilizer instead (Bert et al. 2009; Biberacher 
et al. 2009). Additionally, farmers also often lack knowledge 
of and experience with biobased fertilizers, e.g., regarding 
the timing of N availability to meet crop demands (Tur-Car-
dona et al. 2018; Sanchez et al. 2004). Tur-Cardona et al. 
(2018) found that farmers are more likely to choose organic 
fertilizers when they are clearly cheaper than mineral ferti-
lizers. With the drastic increase of the energy prices since 
early 2022, organic fertilizers may become more attractive 
to farmers. However, solid forms of fertilizers and fertilizers 
that ensure a fast release of nutrients are typically preferred 
by farmers. While unprocessed manure is mostly cost-free 
for them, processed organic fertilizers (e.g., digestates) come 
in a more convenient form (e.g., pellets, less odorous) and 
without uncertainties regarding their nutrient content (Case 
et al. 2017; Tur-Cardona et al. 2018). However, heavily pro-
cessed organic fertilizers may have reduced to no beneficial 
effects on soils as compared to mineral fertilizers (Löbmann 
et al. 2016).

Preferring organic over mineral fertilizer was deemed 
reasonable by 92% of the respondents, with no difference 
between conventional and organic farmers, but with a small 
difference between farms with livestock (96%) and farms 
without livestock (88%). Thirty-six percent of respondents 
considered economic constraints to be the most important 
obstacle to implementing this measure. In the comments, 
respondents pointed out decreasing livestock numbers in 
some regions, the low economic value of slurry as opposed 
to high costs, the effort needed for transportation and appli-
cation, and high costs for machinery (trailing shoe, slurry 
injection). Legal requirements, such as the ban on spreading 
slurry on frozen soil and the amended German Fertilizer 
Ordinance in general were named as additional obstacles.

The expected positive effect on soil quality and associated 
co-benefits may function as a driver for implementations of 
this measure. The decision to increase organic fertilizer use 
may motivate specialized crop farms to switch to a mixed 
system that includes livestock, resulting in a complete 
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redesign of the farming system (Wezel et al. 2014). More 
research is needed, e.g., on the linkage between organic 
input and pests, diseases, and weeds (Hijbeek et al. 2019), 
to reduce farmer uncertainty regarding the effects of organic 
amendments.

3.3.3  Diversified crop rotation

The level of specification for this measure differed between 
documents. Specific recommendations were to alternate 
leafy and cereal crops, winter and summer crops, and 
humus-decreasing and humus-enhancing crops; integrate 
catch crops, legumes, and deep-rooting crops; not grow 
corn directly after corn; and integrate rotational fallow land, 
rotational grazing, or planted set-aside areas for soil regen-
eration. More general recommendations were to establish 
crop rotations with at least 3 to 5 elements and pay attention 
to crop-specific cultivation pauses (NGO). Multiple ben-
efits were associated with diversified crop rotations, such 
as increased biodiversity in agricultural landscapes and a 
reduction in pest pressure. This would reduce pesticide use 
and the associated risks of soil contamination and lead to 
more resilient crops. Furthermore, this measure was often 
linked to erosion control. Finally, diversified rotations also 
come with diversified root systems. This was considered to 
improve soil structure, increase fertility, reduce the risk of 
compaction and contribute to carbon sequestration and soil 
organic matter preservation.

Many studies confirm the positive effects of diverse crop 
rotations on soil biodiversity, microbial activity, soil struc-
ture, and aggregation, and consequently, on long-term fertil-
ity, habitat quality, erosion risk mitigation, and water reten-
tion (Ayalew et al. 2021; D’Acunto et al. 2018; Kay 1990; 
Kollas et al. 2015; Munkholm et al. 2013; Tiemann et al. 
2015). However, effects depend on the specific management. 
For example, increases in carbon sequestration depend on 
crop choices, site-specific factors, and management (FAO 
and ITPS 2021; Scheffler and Wiegmann 2019). For ben-
eficial effects on soil microbial communities and reduced 
pesticide use, rotations of 5 or more crops, including differ-
ent crops and cultivation types such as winter and summer 
cereals, roots and tubers, legumes, or set-aside, have been 
recommended (Andert et al. 2016; Tiemann et al. 2015). In 
Europe, farms must already practice some degree of crop 
diversification to receive CAP greening payments; on the 
farm level, farms of a size between 10 and 30 ha need to 
grow at least 2 different crops, and farms larger than 30 ha 
need to grow at least 3 different crops, whereby the main 
crop must not cover more than 75% of the area (EC 2021). 
Accordingly, the majority of farms in Germany grow only 
2 or 3 different crops at a time. Rotations are dominated 
by large proportions of maize and wheat, and little consid-
eration is given to phytosanitary aspects (suitable precrop, 

cultivation pauses) (BMEL 2019; Steinmann and Dobers 
2013).

Almost all survey respondents (96%) thought it was rea-
sonable to diversify crop rotations. Farmers are aware of 
the ecological advantages of a more diverse crop rotation 
(Andert et al. 2016). However, their options are restricted 
by farm specialization, the availability of machinery on the 
farm, knowledge, market preferences, agricultural policies, 
and soil conditions. This results in (regional) preferences 
for specific crops (FAO and ITPS 2021; Steinmann and 
Dobers 2013). A majority of respondents (63%) consid-
ered economic constraints the most important obstacle to 
implementing this measure, followed by a lack of knowl-
edge (21%). The comments revealed that farm type and size 
are also restricting factors: respondents stated that for small 
farms or farms growing fodder crops, there was little scope 
for diversifying crop rotations. Further obstacles were seen 
in uncertainties about revenues and yield stability for some 
crops.

Overall, implementing more diversified crop rotations 
would require substantial systemic changes for most farms 
in Germany. To motivate the implementation of this meas-
ure by German farmers, Andert et al. (2016) recommend 
providing more detailed information on the advantages of 
crop diversity, as well as a better design of financial and 
political incentives, rather than using command and control 
measures.

3.3.4  Permanent soil cover

Stakeholders recommended keeping soils covered as much 
as possible throughout the year. This can be achieved 
through catch crops, undersown crops, mulching (e.g., with 
crop residues), and optimization of the crop rotation (mini-
mizing the time between harvest and sowing of the succeed-
ing crop). More specific recommendations for catch crops 
were the use of seed mixtures and optimized seeding time 
to minimize the risk of crop failure due to pests, diseases, 
or weather extremes (e.g., dry periods). Furthermore, avoid-
ing row crops (e.g., substituting corn with alfalfa or clover 
grass in biogas production) or performing mulch sowing for 
row crops, as well as perennial crops or dense sowing (e.g., 
choosing more dense cereals over winter wheat), was recom-
mended. Possible economic disadvantages were mentioned 
for some of these management options, but also the pos-
sibility of reduced herbicide demand due to the weed sup-
pressing function of soil cover. Continuous soil cover was 
mostly linked to the prevention of erosion. Furthermore, the 
increased organic matter input caused by this measure was 
considered to contribute to carbon sequestration and the pre-
vention of soil organic matter decline, with positive effects 
on soil fertility and yield stability. Finally, this measure was 
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associated with biodiversity preservation and an improved 
habitat function for above and belowground organisms.

Soil cover is a key factor in reducing the risk of wind and 
water erosion (Deumlich et al. 2006). In the universal soil 
loss equation (USLE), soil cover management is represented 
by the C-factor, which is the only factor that farmers can 
control (Auerswald et al. 2021). Cover crops are particularly 
favorable, since they provide soil cover during winter when 
soils would otherwise be barren. However, they come with 
additional costs for farmers (e.g., seeds, additional manage-
ment) and their implementation may require changes to the 
established crop rotations (Sattler & Nagel 2010). In this 
regard, farmers may lack specific knowledge (Werner et al. 
2017). Furthermore, continuous vegetation cover increases 
the overall water demand and reduces groundwater recharge 
(Lischeid and Natkhin 2011). Nonetheless, cover crops are 
among the most commonly applied EFA options in Europe 
(Zinngrebe et al. 2017), indicating a fair level of accept-
ance and practicability. Cover crops suppress weeds and thus 
reduce the need for tillage or herbicides (Brust et al. 2014; 
Gerhards & Schappert 2020). Furthermore, they increase 
the soil organic matter content (Poeplau & Don 2015), help 
recycle nitrogen in the upper soil layer (Hooker et al. 2008), 
improve soil structure and soil hydraulic properties, and have 
a beneficial effect on the habitat function of soils (Gerhards 
& Schappert 2020). The use of regional species and seed 
mixtures may result in more efficient soil cover, due to their 
adaptation to local conditions and a higher species diver-
sity (Dybzinski et al. 2008; Nabel et al. 2021). Efficient soil 
cover can also be achieved by undersown crops (i.e., sow-
ing a cover crop into the main crop after its establishment), 
while yields may be unaffected or even increase (Berg-
kvist et al. 2011; Johnson et al. 2021). Providing soil cover 
through mulching with crop residues (e.g., wheat straw) is a 
common practice in conservation tillage systems. Depend-
ing on the quantity and quality of residues, mulching can 
increase soil fertility, reduce fertilizer need, increase soil 
organic matter, and contribute to sustaining stable soil eco-
systems (Kollas et al. 2015; Tiemann et al. 2015). However, 
mulching may also add to the persistence of residue-borne 
pathogens (Koivunen et al. 2018). This problem is likely 
to worsen with ongoing climate change (Fareed Mohamed 
Wahdan et al. 2020).

Maintaining soil cover was deemed reasonable by 83% 
of the respondents. Economic constraints (32%) and lack 
of knowledge (28%) were perceived as the most important 
obstacles to implementation. In the comments, farmers 
pointed to problems of water scarcity, phytosanitary prob-
lems, the planned ban on glyphosate in the EU, the need 
for appropriate machinery, and the incompatibility of this 
measure with specific crops.

Improved information for farmers on how to achieve con-
tinuous soil cover, distributed through, e.g., farm advisory 

systems, could address specific knowledge deficits and 
increase the adoption of this measure (Werner et al. 2017). 
However, implementing the different soil cover management 
options also requires systemic change. For cover crops, rota-
tions may need to be adapted, while for the integration of 
undersown crops, compatible crops must be selected and 
specialized machinery, such as for combined harvesting and 
sowing, may be required (Sattler and Nagel 2010). Where 
water is a limiting factor, mulching may be preferable to 
continuous vegetation cover. In this case, diversified crop 
rotations may be necessary to avoid increased pest pressure 
(Buhre et al. 2009). Alternatively, farmers may consider 
switching to conservation tillage systems, as described in 
the following section.

3.3.5  Conservation tillage

Conservation tillage practices refer to management where 
mulch seeding, strip-till, or direct seeding replace conven-
tional plowing to minimize mechanical disturbances of the 
soil. These practices were considered to improve the soils’ 
carrying capacity; increase carbon sequestration; lower 
water losses; increase biological activity; prevent erosion, 
compaction, and capping; and reduce  NO3 losses. Opinions 
differed on how to manage the increased weed pressure 
associated with plowless systems. NGO and GOV stake-
holders stated that farmers should not use broad-spectrum 
herbicides, or at least should not increase their herbicide 
use. Instead, the establishment of diverse plant communities 
and adapted crop rotations were suggested for countering 
weed pressure. In contrast, CONV, IND, and other GOV 
stakeholders considered conservation tillage practices to be 
inevitably linked with broadspectrum herbicide use, espe-
cially where a high degree of soil cover is maintained.

Conservation tillage measures can increase soil carrying 
capacity and reduce soil compaction, though effects differ 
depending on soil properties and types of management (Mir-
zavand and Moradi-Talebbeigi 2021; Pöhlitz et al. 2018). On 
the other hand, switching from conventional tillage to con-
servation tillage may also increase compaction, e.g., when 
crop rotations do not include deep-rooting crops and when 
the conditions for bioturbation by earthworms are unfavora-
ble (Schlüter et al. 2018). Furthermore, heavy machinery can 
cause higher compaction in fields under conservation tillage 
than in plowed fields (Koch et al. 2008). Accordingly, Peigné 
et al. (2018) found that after 10 years of conservation tillage 
in an organic farming system on a sandy soil, soil compac-
tion had increased, possibly due to intensive mechanical 
weed control measures. While it is widely acknowledged 
that conservation tillage enhances soil organic carbon (SOC) 
content in the upper soil layer, it is controversial whether this 
contributes to climate change mitigation, as the soil carbon 
stock in deeper soil layers can decrease (Lou et al. 2012; 
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Moreno et al. 2006). For the whole soil profile, Dimassi 
et al. (2014) report a net decrease in the soil organic carbon 
stock in reduced tillage systems under wet and warm condi-
tions. Even where an increase in carbon stock is achieved, 
the climate benefits may be offset by higher  N2O emissions 
(Guenet et al. 2021; Mei et al. 2018). Conservation tillage 
practices have also been found to reduce soil erosion (Seitz 
et al. 2018). Obstacles to implementation mostly arise from 
trade-offs with weed pressure. As mechanical weed control 
through plowing is no longer applied, conservation tillage 
practices typically result in increased herbicide use and the 
combination of conservation tillage and use of broad-spec-
trum herbicides reduces labor requirements and working 
costs (Mal et al. 2015), while effects on soil biodiversity 
can be positive or negative for different invertebrate, micro-
bial, and fungal taxa (Chávez-Ortiz et al. 2022; Froslev et al. 
2022; van Capelle et al. 2012; Zaller et al. 2014). A trade-off 
with productivity may arise because it usually takes longer 
for untilled soils to warm up in spring, resulting in later 
crop growth and reduced mineralization (BLE 2020). The 
effects of conservation tillage cannot be generalized as they 
strongly depend on soil properties, climatic conditions, and 
farm management, such as the type of conservation tillage, 
cultivated crop, and weed management. Accordingly, the 
main influencing factors for adoption among European farm-
ers are the biophysical conditions of an area and agricultural 
specialization (especially the cultivated crop), while the tim-
ing of sowing and harvest, as well as the socioeconomic con-
ditions of the area, also plays a role (Bijttebier et al. 2018).

In the farmer survey, 88% of respondents considered 
conservation tillage a reasonable option, while 6% did not. 
Technology was considered the main obstacle to implemen-
tation (45%), followed by economic constraints (15%). For 
other reasons, farmers pointed to the planned ban on glypho-
sate use in Europe, which would limit the availability of 
broad-spectrum herbicides. Direct seeding was especially 
considered to depend on the application of these herbicides, 
although many farmers were aware of negative impacts on 
the environment. Where farmers cannot use broad-spectrum 
herbicides, as in organic farming systems, conservation till-
age practices are difficult. Accordingly, among the organic 
farmers, a higher share (18%) rejected the measure.

Conservation tillage practices require specialized machin-
ery and potentially different timing of farming operations, 
but they can easily be implemented without major systemic 
changes if broad-spectrum herbicides are used for weed con-
trol. For increased herbicide use to be avoided, successful 
application of conservation tillage requires a high standard 
of management, including thorough crop choice and rota-
tions tailored to local soil and climatic conditions (Peigné 
et al. 2007), indicating substantial systemic change. Nabel 
et al. (2021) suggest that the use of broad-spectrum herbi-
cides can be avoided in mulch seeding and that tillage could 

be used as a measure for pest control if all other options fail. 
In this case, they recommend immediately applying organic 
amendments to offset the carbon losses caused by the tillage 
and allow for a quick fauna restoration.

3.3.6  Reduced soil loads

A reduction in soil loads was recommended by 19 stakehold-
ers (47.5%). Recommendations were (a) to reduce machin-
ery weight, e.g., by using information and communication 
technology (ICT) and robotics (also to detect soil compac-
tion), filling bunkers of harvesting machinery only partly, 
or performing umbilical slurry spreading where the slurry 
is pumped from the field edge to the tractor via a flexible 
pipeline, and (b) to ensure a larger contact area and better 
weight distribution, e.g., by using tire pressure regulation, 
twin tires, high floatation tires, caterpillar machinery, addi-
tional axles, crab-steering (offset track driving), or semi-
mounted or attached devices. Unloading/transfer technology 
(conveyor belts) and the separation of field and street trans-
port were recommended to facilitate optimal tire pressure 
for both purposes. Ideally, soil-protective properties should 
already be taken into account when purchasing machinery. 
A combination of multiple management options was consid-
ered to be most effective. The main benefit was considered 
to be the prevention of soil compaction, and only a few link-
ages to soil functions or other soil threats were described. 
Good soil structure, high earthworm activity, and avoided 
costs for potential soil loosening were mentioned as potential 
co-benefits of reduced weight pressure, while low tire pres-
sure was considered to improve traction and thus reduce fuel 
costs and working time.

Many studies recommend the use of lighter machinery 
and an increase in the size of the contact area (Frelih-Larsen 
et al. 2018; Ledermüller et al. 2018; ten Damme et al. 2019), 
as well as low tire pressure (Brunotte and Lorenz 2015; 
ten Damme et al. 2019). The use of lightweight agricul-
tural robots is still uncommon in Germany. Although some 
multifunctional models exist and are considered promising 
technologies (BMEL 2021; Scholz et al. 2014), farmers 
are generally skeptical about return on investment (Barnes 
et al. 2019). Findings by Rübcke von Veltheim and Heise 
(2020; 2021) indicate that the willingness of farmers to 
adopt robotics correlates with field size rather than with 
farm size. Reducing soil loads to prevent subsoil compac-
tion is crucial, as the impacts of compaction are not imme-
diately visible (Frelih-Larsen et al. 2018), and compaction 
can persist for decades or centuries (Berisso et al. 2012; 
Sharratt et al. 1998). Only in some cases can soils alleviate 
compaction quickly without human intervention (Badalík-
ová, 2010). Prevention is also less costly than dealing with 
the consequences of subsoil compaction, such as decreased 
water infiltration, increased erosion risk, and decreased crop 
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performance and farm profitability (Alakukku et al. 2003; 
Jamali et al. 2021).

Since both the weight pressure and frequency of 
wheeling are factors influencing soil compaction, the 
use of lighter machinery may not be beneficial if it 
leads to more frequent wheeling (Seehusen et al. 2019). 
For better weight distribution, twin tires are useful, but 
they add to the width of the vehicle. If this exceeds the 
maximum allowed on public streets, tires need to be 
mounted and dismounted at the field, which is costly 
and time consuming (KTBL 2011). Similarly, there is a 
weight limit for caterpillar machinery on German roads. 
Attached devices also improve weight distribution but 
require a larger area for turning maneuvers, making this 
measure only practicable on large fields. Field enlarge-
ment, however, is undesirable from the perspective of 
sustainable management. Additional axles are another 
option, although the alleviating effect on soil pressure 
is negated where manufacturers implement them to 
enable higher total machine weights (Alakukku et al. 
2003). Low tire pressure is beneficial in the field but 
not feasible for street travel. Regulation systems can be 
used to adjust the pressure (Volk et al. 2011), although 
they are still expensive. Furthermore, while lowering the 
pressure is easy, increasing it requires time and energy, 
especially when high loads are carried (e.g., after har-
vest). Pressure regulation is therefore easier for slurry 
application, where the trailer is lighter when returning 
from the field, than for harvesting machinery (KTBL 
2011). Finally, workers need to be trained and instructed 
on pressure regulation. Where management steps are 
executed by external contractors, the farmer’s influence 
on this is limited (KTBL 2011).

In the farmer survey, 96% of respondents deemed a reduc-
tion in the weight pressure reasonable (not reasonable: 4%). 
Obstacles to implementation were considered to be mainly 
economic constraints (49%) or related to technology (29%). 
Switching from large machinery to lighter alternatives has 
economic consequences as it requires investment and may 
decrease cost and working time efficiency. Survey respond-
ents stated that the high costs for specialized machinery 
would require the use of large areas to be profitable and 
pose a problem for smaller farms.

Thorsøe et al. (2019) discourage a general weight limit 
for machinery because it would unnecessarily restrict farmer 
options at times when the soil is dry and able to carry high 
loads. The proposed management options for this measure 
are mostly technical, requiring little systemic change but 
typically investment in specialized machinery. In this regard, 
the measure of “filling harvesting bunkers only partly” is 
an exception as new machinery is not required. However, 
it is time consuming due to more frequent unloading and 
therefore costly.

3.3.7  Optimized timing of wheeling

A total of 18 stakeholders (45%) recommended optimized 
timing of wheeling, meaning that field traffic should be 
avoided when the soil is too wet to prevent compaction 
and maintain a good soil structure. For this purpose, it 
was recommended that soil consistency/soil humidity 
be measured and machinery and working capacities be 
reserved to be able to perform agronomic operations only 
at suitable times. Some stakeholders recommended com-
bining this measure with other management options for 
optimal compaction prevention, e.g., conservation tillage 
for better soil carrying capacity, the use of wide tires, and 
the use of the crab-steering (offset track driving) mode. 
Others pointed out the importance of this measure for 
compaction prevention.

Several studies highlight the importance of this measure 
for preventing subsoil compaction (Alakukku et al. 2003; 
van den Akker and Soane 2005). Since the carrying capac-
ity of soil is strongly influenced by soil moisture, there is a 
risk of compaction when soils are wet. The weight pressure 
of machinery may then exceed the soil’s carrying capacity, 
especially for management tasks characterized by high soil 
loads, such as slurry distribution or harvest (Thorsøe et al. 
2019). Preventing compaction can also reduce the risk of 
water erosion (Fullen 1985). However, tight work schedules 
may force farmers to use machinery under unfavorable soil 
moisture conditions, as specialized machinery needs a high 
degree of utilization to be profitable (Lorenz et al. 2016). 
Further barriers to sustainably addressing subsoil compac-
tion are a lack of knowledge and problem awareness, the 
preference of farmers to fulfill short-term contracts over 
long-term soil fertility management, outsourcing of respon-
sibilities (e.g., farming operations done by contractors), and 
the complex nature of subsoil compaction (Thorsøe et al. 
2019). Marx and Jacobs (2020) also note that the collabora-
tion between scientists and practitioners is still insufficient; 
furthermore, farmers experience top-down communication 
of recommendations for compaction prevention that are 
often generalizing or difficult to understand, which limits 
the acceptance of recommended measures.

Eighty-one percent of the survey respondents rated the 
optimization of the wheeling timing as reasonable, while 
13% did not. Responses related to the main obstacles to 
implementation were evenly distributed among knowl-
edge (26%), economic constraints (23%), and technology 
(22%). Farmers commented that (unpredictable) weather 
conditions complicate the implementation of this measure. 
Further problems were seen in the time requirements and 
organizational challenges, such as outsourcing operations to 
contractors, or when farming was practiced as a secondary 
job, which would sometimes make it impossible to take soil 
conditions into account. Reserving or increasing working 
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capacities was commented to be unrealistic for economic 
reasons.

To promote the implementation of this measure, Thorsøe 
et al. (2019) recommend the development of a legal frame-
work that incentivizes and enables sustainable management 
decisions. They stress the need for systemic solutions that 
include not only farmers but also other stakeholders such 
as farming education institutions, machinery manufactur-
ers, contractors and retailers. Technical solutions are also 
under development. These include decision-support tools 
and concepts that define the timeframe for the workability 
of the soil, considering the weather, compaction risk, and 
machine utilization (Edwards et al. 2016; Ledermüller et al. 
2018; Lorenz et al. 2016; Obour et al. 2017). They could 
help optimize the timing of wheeling as much as possible, 
without requiring a substantial systemic change for farms. 
However, for regions where seasonal high soil moisture lev-
els regularly occur, Chamen et al. (2003) recommend rather 
choosing crops that require little work during this time, 
which implies greater changes for farms.

3.4  Synthesis of measures

Our analysis of the effects, co-benefits, and trade-offs of 
the proposed management measures shows that benefits for 
soil functions and reductions in soil threats are highly inter-
linked. Most of the proposed measures improve multiple soil 
functions simultaneously, and many of the soil threats and 

functions are addressed by multiple measures (Fig. 6). Ero-
sion and water purification and retention are addressed by all 
seven measures. Compaction, biodiversity and organic mat-
ter/carbon sequestration are addressed by five to six of the 
seven measures. The production function was not affected 
negatively by any of the shortlisted measures. However, eco-
nomic trade-offs may exist since many of the measures may 
be less profitable. For example, diversified crop rotations 
may require more costly seeds and the cultivation of less 
profitable crops, or land area for production may be reduced 
if structural landscape elements are established or if green 
manure is cultivated for organic fertilizers. Soil contamina-
tion was the only soil threat that was not addressed by the 
shortlist of measures. Conversely, some organic fertilizers 
bear the potential to contribute to the contamination of soils, 
e.g., through heavy metals in recycled sewage sludge (Tar-
pani et al. 2020).

While reducing soil loads and optimizing the timing of 
wheeling are suitable options for preventing soil compaction, 
these measures do not provide many other benefits to agri-
cultural soils, indicating that technological solutions alone 
are not sufficient for sustainable soil management. On the 
other hand, the measures that have multiple beneficial effects 
on soils, namely, “organic fertilization,” “diversified crop 
rotation,” and “permanent soil cover,” are also the measures 
that will involve the greatest systemic changes in the farming 
system. Organic fertilization requires growing green manure 
and/or developing ways to obtain animal-based organic 

Fig. 6  Linkages between the shortlist of measures and soil threats and 
soil functions. Green squares = positive linkage (i.e., mitigation of 
soil threats/fostering of soil functions). Grey squares = no linkages 

made. Striped squares: linkage weak or contested (green = positive, 
red = negative).
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fertilizers, i.e., introducing livestock into the farm system 
or at least establishing a collaboration with livestock farms. 
Diversifying crop rotations and maintaining continuous soil 
cover require adaptations of crop rotations and workflows 
and will affect farm revenues. These examples support the 
general finding about the importance of diversification for 
the improvement of ecosystem services in agricultural sys-
tems (Tamburini et al. 2020). In the long term, for “struc-
tural landscape elements,” “organic fertilization,” “diversi-
fied crop rotation,” and “permanent soil cover,” a positive 
impact on the production function is even possible. The 
soil function “recycling of nutrients” is only supported by 
“organic fertilization” and “diversified crop rotation.” This 
highlights the importance of these two measures, especially 
for achieving closed nutrient cycles, which is considered a 
crucial element of sustainable agriculture but at the same 
time linked to major systemic changes not only at the farm 
level, but also for the entire agrifood system (Magdoff et al. 
1997).

3.5  Methodology discussion

The objectives of this study required several simplifications. 
All stakeholder documents meeting our selection criteria 
were treated equally, irrespective of differences in quality, 
level of detail, or influence of the respective stakeholders. 
Furthermore, the categorization of stakeholder groups did 
not account for within-group heterogeneities. Finally, the 
bundling of recommendations under a common term always 
implies a loss of information. However, these simplifications 
allowed the recommendations to be sorted, overlaps between 
stakeholder opinions to be identified, and widely accepted 
management measures to be derived.

It is possible that the keyword-based search did not iden-
tify all relevant documents. The number of documents found 
differed greatly between stakeholder groups, which may 
reflect differences in the awareness of the need for more 
sustainable soil management, a group’s role with regard to 
promoting or implementing such management, or specific 
biases and interests. Overall, the number of documents per 

group was considered too low to allow for a detailed analysis 
of within-group and between-group differences.

4  Conclusion

Governance for more sustainable soil management is easiest 
to implement and most effective where proposed measures 
meet with approval across a wide set of stakeholder groups. 
Out of the multitude of measures recommended by stake-
holders, we derived a shortlist of seven measures for which 
there is a high degree of agreement, and which are proposed 
by stakeholders from all investigated stakeholder groups. 
The measures address all soil functions and all soil threats 
except for contamination. For this soil threat, additional 
measures will be necessary.

Many of the measures address more than one threat or 
function, and most of the measures have multiple benefits. 
However, the measures require varying degrees of systemic 
change in the farm system to be implemented, even more so 
since the measures should ideally be implemented in com-
bination. Diversification is one of the key principles behind 
more sustainable soil management. Our findings support 
the common evidence that a diversification of approaches 
and cropping systems is the preferable way to maintain and 
restore soil health and to meet future challenges of food 
security and climate change.

In our survey, the vast majority of farmers supported the 
shortlist of measures. Obstacles to implementation were 
mainly considered to be economic constraints and partly 
technical, while a lack of knowledge was seen as only a 
minor obstacle. These results provide valuable information 
for the formulation of effective governance options.

While this work was able to identify agricultural 
measures with wide support across all stakeholder 
groups, the definition of these measures is still too broad 
for direct implementation in a farming or policy context. 
Future research should seek to specify these measures 
and tailor them to varying local conditions and farming 
contexts.
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