

Structuring experimental data: rethinking data acquisitions to enable replications.

bit.ly/20230201-Verona-StructuringData

Vittorio Iacovella @V_Iacovella / @v_iacovella@qoto.org Verona, February 2nd 2023

Data are quantitative tools to support a scientific claim.

After data collection, you rigorously analyze your data and build the scientific narration

Data are quantitative tools to support a scientific claim.

After data collection, you rigorously analyze your data and build the scientific narration

Your final goal is to position your story as an official contribution to the general progress in knowledge

, rigour,

Data are quantitative tools to support a scientific claim.

After data collection, you rigorously analyze your data and build the scientific narration

rigour,

Data are quantitative tools to support a scientific claim.

After data collection, you rigorously analyze your data and build the scientific narration

rigou

Data are quantitative tools to support a scientific claim.

After data collection, you rigorously analyze your data and build the scientific narration

Data are quantitative tools to support a scientific claim.

After data collection, you rigorously analyze your data and build the scientific narration

What if

The common way to position scientific stories as official contributions to the general progress in knowledge turn out to have flaws?

What if

The common way to position scientific stories as official contributions to the general progress in knowledge turn out to have flaws?

"Replication Crisis" - 2015

RESEARCH ARTICLE SUMMARY

PSYCHOLOGY

replicability

Estimating the reproducibility of psychological science

Open Science Collaboration*

INTEROPLICATION. Depreducibility is a defin | viously observed finding and is the

Enable reproductions Foster replications

Integrate the common ways to build scientific stories

Build discoverable collections of properly arranged data and metadata, readable by both humans and machines

Take care of their preservation in time

A manifesto for reproducible science

Marcus R. Munafò¹¹²*, Brian A. Nosek³,⁴, Dorothy V. M. Bishop⁵, Katherine S. Button⁶, Christopher D. Chambers⁶, Nathalie Percie du Sert⁶, Uri Simonsohn⁶, Eric-Jan Wagenmakers¹⁰, Jennifer J. Ware¹¹ and John P. A. Ioannidis¹².¹³,¹⁴

)	~ ~ 6 ₹	100% ▼ €	% .0 __ .00 __ 1	23 ▼ Predefinit
G8				
	A	В ∢	▶ E	F
1	Participant ID	Label	Reaction Time	Accuracy
2	001	3382A1A8	0,34	46,24%
3	002	179881BE	0,14	44,11%
4	003	76AE93B1	0,05	57,59%
5	004	B824ADC2	0,46	75,58%
6	005	129147CA	0,03	41,52%
7	006	440FEF25	0,51	84,90%
8	007	824AC0BB	0,36	32,08%
9	008	8341B25F	0,78	42,42%
10	009	CFFFE870	0,23	57,36%
11	010	B32BF2AC	0,46	67,05%
12	011	197296CF	0,17	33,51%
13	012	18DFE4C2	0,84	79,19%
14	013	54B3A12D	0,80	6,75%
15	014	5A2CF043	0,95	47,60%
16	015	56FE4507	0,78	72,19%
17	016	8F5B6442	0,18	72,07%
18	017	60ED878E	0,13	24,08%
19	018	0237A1BF	0,68	44,87%
20	019	1D315730	0,96	51,90%
21	020	D939ABCD	0,78	6,88%
22	021	4AF28762	0,15	19,45%
23	022	79E0557F	0,90	31,41%
24	023	C871FBB9	0,42	79,10%

Structuring data 1. Redundancy

1. Redundancy

Do not be concise when collecting data

What you may consider useless for building a scientific narration could be crucial to enable reproducibility

1. Redundancy

Do not be concise when collecting data

What you may consider useless for building a scientific narration could be crucial to enable reproducibility

Systematically keep track of the software versions; monitor resolution and refresh rate, etc.

Structuring data 2. Interoperability

Arrange the redundant information you collected using a standard schema according to the FAIR principles:

Metadata and data use a formal, accessible, shared, and broadly applicable language for knowledge representation

Brain Imaging Data Structure v1.8.0

Brain Imaging Data Structure v1.8.0

The BIDS Specification

Introduction

Common principles

Modality agnostic files

Modality specific files

Magnetic Resonance Imaging

Magnetoencephalography

Electroencephalography

Intracranial Electroencephalography

Task events

Physiological and other continuous recordings

Behavioral experiments (with no neural recordings)

Genetic Descriptor

Task events

The purpose of this file is to describe timing and o Events are, for example, stimuli presented to the p. Definitions). A single event file MAY include any cc events. Events MAY overlap in time. Please mind t "event related" study designs are supported (in cor events" can be represented by an individual row in

Template:

Where <matches> corresponds to task filename. F

Fach took avanta file DEAL HIDES a corresponding to

In BIDS information is arranged throughout a self-explanatory, informative directory structure

File labelling is modularly constructed in order to communicate information without exploring the internal file content

```
+--- dataset description.json
    participants.tsv
         ses-imaging
             --- sub-01 ses-imaging Tlw.json
            +--- sub-01 ses-imaging Tlw.nii.gz

    sub-01 ses-imaging dwi.bval

                 sub-01_ses-imaging dwi.bvec
                 sub-01 ses-imaging dwi.json
                 sub-01 ses-imaging dwi.nii.gz
         ses-task
        +--- beh
                        (es-beh)task-predict beh.json
                 sub-01 ses-beh task-predict run-01 beh.tsv
                 sub-01 ses-beh task-predict run-02 beh.tsv
                 sub-01 ses-beh task-predict run-03 beh.tsv
                 sub-01 ses-beh task-predict run-04 beh.tsv
                 sub-01 ses-beh task-predict_run-05_beh.tsv
                 sub-01 ses-beh task-predict run-06 beh.tsv
                 sub-01 ses-beh task-predict run-07 beh.tsv
            +--- sub-01 ses-beh task-predict run-08 beh.tsv
            +--- sub-01 ses-beh_task-predict_run-09_beh.tsv
         sessions tsv
```


In BIDS easy to access, human readable information is positioned within the dataset root directory in order to facilitate quick and easy dataset summary

```
+--- dataset description.json
   -- participants.tsv
               ses-imaging
        "Acknowledgements": ""
        "Authors": [
           "Marc Himmelberg"
           "Ekin Tuncok",
           "Jesse Gomez",
           "Kalanit Grill-Spector"
           "Marisa Carrasco"
           "Jonathan Winawer"
        "BIDSVersion": "1.0.1",
        "DatasetDOI": "doi:10.18112/openneuro.ds004440.v1.0.1",
        "Funding": [
           "R01-EY023915",
           "R01-EY027401"
           "P30-EY013079"
           "R01-EY022318"
        "HowToAcknowledge": "Cite the publication".
        "License": "CCO",
        "Name": "Stanford Child and Adult Checkerboard Retinotopy Dataset",
        "ReferencesAndLinks": [
           "Comparing visual cortex of children and adults reveals a late-stage change in how V1 samples the visual
           "Development differentially sculpts receptive fields across early and high-level human visual cortex"
                     +--- sub-01 ses-beh task-predict run-09 beh.tsv
```

The native format for BIDS-compliant information is structured (.json / .tsv) text for metadata and data

Compilation of this files is easy, cross-platform and it does not require any specific tool

Serialization and de-serialization is native and easy to automatize

```
"trial_id":{
    "LongName":"Identifier of a specific trial",
    "Description":"It identifies specific trials throughout the experiment",
    "Units": "ordinal number"
},

"trial_type":{
    "LongName":"Type of a specific trial",
    "Description":"A number identifying the category of a trial",
    "Units": "integer number"
},

"RT":{
    "LongName":"Reaction Time",
    "Description":"It identifies the time when the participant responded to the instruction",
    "Units": "seconds"
},

"total_time": {
    "LongName":"Trial full duration",
    "Description":"Trial full duration",
    "Description":"Trial full duration",
    "Description":"Trial full duration",
    "Description":"Trial full duration of a cipale trial"
```

```
trial id
                                  RT total time
                 trial type
                                                   arev c
                                                           vellow c
                 0.12983 2232.2
                                          321
                 0.14882 2190.4
                                  1868
                                          272
                 0.049064
                                  3286.1
                                          64
                                                  111
                 0.13208 2040.3
                                          176
                 0.1157 2786.7
                                  1360
                                          263
                                  511
                                          203
                 0.16499 3273.3
                                  488
                                          372
                 0.049056
                                  2492
                                          1100
                                                   367
                 0.18212 2558
                                  260
                                          228
                                          67
                 0.26536 2758
                                  1058
11
                 0.13204 3406.2
                                  1652
                                          216
12
                                          104
                 0.14826 3822.1
                                  800
                 0.098874
                                  3406.2
                                          290
                                                   342
```

BIDS covers almost all the different angles of the neuroimaging galaxy

If you cannot find your modality, BIDS is modular, easily scalable and integrable through BIDS extension proposals

There is an active and responsive community to help you

BEP034	Computational modeling	derivative metadata	Michael Schirner Petra Ritter
BEP035	Modular extensions for individ- ual participant data mega-analy- ses with non-compliant derivatives	derivative	Giuseppe Gallitto Balint Kincses Tamas Spisak
BEP036	Phenotypic Data Guidelines	• raw	Eric Earl Samuel Guay
BEP037	Non-Invasive Brain Stimulation (NIBS)	• raw	Giacomo Bertazzoli Vittorio Iacovella Carlo Miniussi Marta Bortoletto

Neuro Questions >	bids •	Latest Top	My Posts	Bookmarks
Topic				
☑ Qsiprep : how to to bids, qsiprep, bids-app	oggle distor	tion correction p	properly with n	ny dataset?
NII to BIDS (no dico	ms)			
Can .nsx and .TRC bids, leeg	iEEG data b	e converted to	BIDS?	
☑ BIDS categorizati	on for magn	etization transfe	er MRI scan	
BEP Draft: BIDS-HI)sEMG			
Preprocessing fai bids, fmriprep	ling to finish	with 22.0.0		

Structuring data 3. Findability

3. Findability

Place your structured dataset in a place where it will be assigned with a globally unique and persistent identifier

Dedicated repositories would require you to structure your data according to a standard schema

3. Findability

Place your structured dataset in a place where it will be assigned with a globally unique and persistent identifier

This place should be registered or indexed in a searchable resource

Google Dataset Search

Is Granger Causality a Viable Technique for Analyzing fMRI Data?

Emotion Reactivity Is Increased 4-6 Weeks Postpartum in Healthy Women: A Lor

Q Search

REGISTRY OF RESEARCH DATA REPOSITORIES

Take home messages

Reproducibility and replicability shape up research routines, starting from data acquisition

Building structured, machine readable data collections is a way to make your research reproducible and foster replication

Take home questions

Is your current project reproducible and / or replicable?

Can you easily describe and show to a colleague the features of a dataset you collected six months ago?

thanks for your attention

https://bit.ly/20230201 lacovella DataAcquisitions

Vittorio Iacovella @V_Iacovella / @v_iacovella@qoto.org Verona, February 2nd 2023