
Vectorization with Haswell

and CilkPlus

August 2013

Author:
Fumero Alfonso, Juan José

Supervisor:
Nowak, Andrzej

CERN openlab Summer Student Report 2013

Project Specification
This project concerns the parallel computing and vectorization field for Physics Computing at
CERN. The document summarises the results and experience from vectorization activities and an
initial evaluation of the CilkPlus technology with two different benchmarks from CERN.

Abstract

With the release of the Intel Sandy Bridge processor, vectorization ceased to be a “nice to have”
feature and became a necessity. This work is focused on optimization, running comparative
measurements of available vectorization technologies currently under investigation by the CERN
Concurrency Forum. In particular, the project involves an assessment of the limits of
autovectorization in two compilers, an evaluation of CilkPlus as implemented in ICC/GCC and an
evaluation of AVX/AVX2 benefits with respect to legacy SSE workloads.

Table of Contents
1 Introduction .. 3

2 Vectorization techniques .. 6

2.1 The Vc Library .. 8

2.2 CilkPlus .. 8

3 Evaluation setup and benchmarks ... 9

3.1 Experimental Platforms .. 10

3.2 Exploring vector instructions: Matrix Multiplication ... 11

3.3 CERN MLFit with 500’000 events .. 12

4 CilkPlus evaluation ... 14

4.1 Understanding Vectorization with CilkPlus .. 14

4.2 Geant Vector Prototype ... 18

4.2.1 First approach .. 20

4.2.2 Second approach ... 21

4.2.3 Third and fourth approach .. 22

4.2.4 Fifth approach .. 22

4.2.5 Preliminary results ... 22

2 | P a g e

4.2.6 Assembly code .. 23

4.2.7 Comparison of Perf (PMU based) statistics ... 24

4.2.8 An improved CilkPlus solution for the Geant Vector Prototype 25

5 Conclusions ... 27

6 Annex A: How to install the Geant Vector Prototype? ... 28

6.1 ROOT Installation... 28

6.2 Geant Vector Prototype ... 28

6.3 How to run the Benchmark? .. 29

6.3.1 Example of execution .. 29

7 Annex B: Installation script for the Geant Vector Prototype 31

Acknowledgements ... 33

8 References ... 33

1 Introduction
Gordon Moore predicted in 1965 that the number of transistors on a chip would double each 18-
24 months. This implies an increase of computational power. The Figure 1 shows the number of
transistor evolution between 1971 and 2004. The dashed line shows the value of Moore
prediction. The dots indicate the Intel processor model and the number of transistors. We can see
that the last tendency is not very close to Moore prediction:

3 | P a g e

Figure 1: Increasing the number of transistors compared with the Moore’s Law between 1971 and 2004

Nowadays, instead of using unique processors per chip (MCP), modern devices contain several
processing units per socket and allow running several hardware threads simultaneously on the
same socket. For each new generation of processor, manufacturers increase the numbers of cores
and reduce the size of transistors, building faster and more integrated processors.

From the programming model view, this allows to exploit different levels of parallelism [2], from
shared memory to distributed memory and heterogeneous systems, combining execution with any
kind of accelerator such as GPUs or Intel MIC. It depends on the problem that we want to solve.
At CERN the main computational problems are dedicated to Physics Computing and High
Energy Physics. This kind of problem is data independent and it is usual to compute independent
particles on independent cores. Exploiting vectorization could be an advantage to process more
particles per instruction, in particular on the latest generations of CPUs, through the AVX and
AVX2 instructions sets. This kind of parallel programming model is based on a Single Instruction
Multiple Data model (SIMD). This work is focused on this optimization area.

With vectorization the programmer can operate with sets of data instead of scalar values in
hardware. For instance, with AVX the programmer can multiply eight float elements in a vector
in one processor instruction. Each core in the processor has special functional units to operate
vector registers. Figure 2 shows the process inside a functional vector unit.

4 | P a g e

A[0]A[1]A[2]A[3]A[4]A[5]A[6]A[7]

B[0]B[1]B[2]B[3]B[4]B[5]B[6]B[7]

C[0]C[1]C[2]C[3]C[4]C[5]C[6]C[7]

+

Figure 2: An Add operation in vectorization. In one hardware instruction it is possible add eight floats using
AVX vector code on Sandy Bridge processors.

Advanced Vector Instructions (AVX) are extensions to the x86 instruction set architecture for
Intel and AMD microprocessors. The first implementation of this instruction set was for Intel
Sandy Bridge microarchitecture in 2011 and AMD Bulldozer several months after the Intel one.
AVX is available in the last Intel microarchitectures: Sandy Bridge, Ivy Bridge and Haswell, but
they do present some implementation and ISA differences, dependent on the architecture
technology and the design of the processors. The theoretical FLOPS/Cycle, the number of
floating point instructions per cycle, is 8 in the case of double precision on Sandy Bridge and
Ivy Bridge and 16 on Haswell. In single precision the number of FLOPS/Cycle is 16 with Sandy
Bridge and Ivy Bridge, and 32 in case of Haswell.

Haswell contains new instructions and new operations for FMA (Fused Multiply-Add) which
double the core’s peak FPU throughput [7]. Two FMA execution units were added to the
microarchitecture. These instructions are able to execute operations such as axb +c with a single
instruction. The L1 and L2 bandwidth have been doubled to ensure the execution units stay fed,
and the integer and FPU register files have all been enlarged.

The code below is an example to show how the compiler generates vector instructions. The
following loop can be vectorized with any vector instruction set.

for (int i = 0; i < n; i++) {
 c[i] = a[i] + b[i];

}

Compilers detect such cases and generate specific instructions sets such as SSE4, SSE, or AVX.
The following snippet presents the assembly version of the previous C99/C++ code. Note the
instructions start with “v”, indicating that instructions are AVX and YMM registers are
employed. Processors with the AVX instructions set contain 16 YMM registers (YMM0-
YMM15). In the first line the vector elements are moved to the YMM0 register. Then an add
operation is executed and the result is stored into the YMM1 register.

1 vmovups .L_2il0floatpacket.8(%rip), %ymm0
2 vaddps .L_2il0floatpacket.9(%rip), %ymm0, %ymm1
3 vmovups %ymm1, 32(%rsp)
4 vmovups %ymm1, 64(%rsp)

5 | P a g e

This approach can be combined with other models such as MPI or OpenMP. There are some
modern programming imply vectorization. . For instance, when OpenCL is executed on the CPU
vector instructions are normally used to execute the kernels.

Using vectorization the programmers can take advantage of the fastest registers in the core
prepared for computation of a set of elements. Figure 3 shows the typical layout of modern
multicore processors. A socket can contain several processing units. Each processing unit
contains its own L1 Cache with Data and Instructions. The core is organized to execute
microinstructions in a pipeline, an instruction runs on the functional units and the next instruction
is decoding in the previous step of the pipeline [3] while the processor is looking for the next one
in memory. The vector units are in the lowest level of this hierarchy and as a consequence are a
fast facility that processes arrays and vectors.

L3 Cache

L2 Cache L2 Cache

L1
Data

L1
Inst.

L1
Data

L1
Data

L1
Data

L1
Inst.

L1
Inst.

L1
Inst.

Functional Units
Registers

Vector Registers

Functional Units
Registers

Vector Registers

Functional Units
Registers

Vector Registers

Functional Units
Registers

Vector Registers

Figure 3: Cache Hierarchy in modern processors.

2 Vectorization techniques
There are several ways to develop vector code with GCC/Intel C/C++, from autovectorization,
specific syntax to use vectorization, annotations in the code until intrinsics functions or assembler
code. The compiler can help us to vectorize with specific options in compilation time, such as -
vec-report1 (in case of Intel Compiler) and detects the loops than can be vectorized and a
briefly explanation about that. The compiler creates a dependency graph to detect is the loop is
data independent and create vector code for SSE or AVX or other vector instruction set. There are
several obstacles to creating vector code and easy loops are more likely to be converted to vector
code rather than complex ones [1]. Some of the most relevant programming challenges are named
as follows:

6 | P a g e

1. Countable loops. This means loop variable must be known at compilation time and does
not depend on other conditions to break the loop.

2. No breaks inside the loops: The break statement terminates the vector code and
parallelism.

3. No function calls. With Intel Compiler is it also possible call to MKL functions. Many of
them are vector functions.

4. No data dependency between iterations. All iterations have to be completely
independents to achieve vectorization. This case is similar to restrictions in OpenMP or
Cuda/OpenCL.

5. Contiguous memory access: the vector optimization gets two, four or eight operands from
memory (it depends on the vector instruction set such as SSE or AVX and the data type)
and operates with this data. If the data is not contiguous, the processor has to look for the
words in the different cache levels and vector code could not be efficient.

There are some general guidelines on how to write vectorizable code. As mentioned before, one
should avoid data dependencies between loops and avoid read-after-write (RAW) dependencies.
Also it is preferable help to compiler to take the decision on vectorization. To do that, it is better
to use array annotations rather than using pointers. Sometimes, with Intel’s compilers the code is
not vectorizable although there is not any data dependency and pointers inside. This is because of
compilers guard against possible data dependencies. It is up to the programmer to specify that that
region is safe and vectorizable. In these cases, it is possible to assist the compiler through adding
#pragma vector always and #pragma ivdep in the case of the Intel C compiler.

Another approach is to program with instrinsics. These are functions that the compiler replaces
with the proper assembly instructions to use vector instructions sets. For instance, if to use AVX
intrinsics one has to operate with a special data type and call a specific AVX function. The
listing below shows a sketch of computation adding two vectors in AVX. In one AVX instruction
it is possible to compute eight floats. Note that the loop is incremented by eight. Lines 3 and 4
load the eight floats elements into a_i and b_i variables. Line 7 computes the sum of these two
vectors and line 10 stores the result in memory. In this case, the data type is float and we can
package eight float numbers in an AVX register and operate on them (see lines 3-7).

1 for(int i = 0; i < N; i += 8) {
2 // Load 8 float to registers
3 __m256 a_i = _mm256_load_ps(&a[i]);
4 __m256 b_i = _mm256_load_ps(&b[i]);
5
6 // Compute out_i = a_i + b_i
7 __m256 out_i = _mm256_add_ps(a_i, b_i);
8
9 // Store the 8 floats into array
10 _mm256_store_ps(&out[i], out_i);
11 }

The compiler will replace the AVX called functions with inline assembly. This approach is very
efficient but very low level. It is the responsibility of the programmer to write good code and to
control any dependency in the loop. Otherwise, the result will be incorrect.

The lowest level approach is write assembly code inline and work with XMM and YMM registers
directly and operate on them. This solution is the where the programmer can get the best
performance but the ASM code could be hard to maintain and would be architecture dependent.
There are other approaches to use vectorization, gaining portability and relatively high level of
the programmability point of view such as specific libraries or compilers. This work is centered

7 | P a g e

on CilkPlus and autovectorization. The rest of the report is focused in these aspects. This work
introduces a benchmark based on CilkPlus array notation and studies related issues, as evaluated
at CERN.

2.1 The Vc Library
Vc is a free software library assisting with the vectorization of C++ code. This library is a high
level API to use specific instruction sets such as SSE, SSE4 and AVX. The library is
implemented using intrinciscs functions. The application programming interface of Vc is the
most important feature allowing the efficient development of vectorized algorithms. The
intrinsics functions are very low level of programming, but by working with the Vc Library, the
programmer can abstract the lowest layer away and still use specific instructions to run his
applications faster and take advantage of the SIMD programming model. Listing 1 shows a
sketch of conversion from Cartesian 2D coordinates to polar coordinates with Vc Library. The
full source code is available in the Vc webpage [9].

1 for (size_t i = 0; i < x_mem.vectorsCount(); i++) {
2 const float_v x = x_mem.vector(i);
3 const float_v y = y_mem.vector(i);
4 r_mem.vector(i) = Vc::sqrt(x * x + y* y);
5 float_v phi = Vc::atan2(y, x) * 57.295780181884765625f;
6 phi(phi < 0.f) += 360.f;
7 phi_mem.vector(i) = phi;
8 }

The objects x_mem and y_mem contain the Vc vectors. In the second and third line, x and y are
copied to local variables. This can help to compiler with optimizations. The fourth line calls to a
specific function of Vc (Vc::sqrt) and computes the r value to get the ratio in polar
coordinates. In the same way, It is computed phi to get the appropriate angle. Finally the variable
is saved into the vector. When the example is compiled the SSE implementation is used by
default by default. It is possible to work with SSE2, SSE3, SSE4 and AVX.

2.2 CilkPlus
CilkPlus is an extension of the C99/C++ programming languages designed specifically for
parallel computing through thread parallelism and vector parallelism. There are
severalimplementations of this language. The most well-known implementation is that bundled
with the Intel compiler. Recently, GCC has joined the CilkPlus effort and contains a branch of
GCC from version 4.7 where the CilkPlus component is implemented. LLVM has implemented a
CilkPlus but it is not completed and it only supports task parallelism and hyperobjects [4].

CilkPlus defines new tokens in the language to specify task parallelism (thread parallelism).
There are three new tokens:

• Cilk_spawn: when this token is used the function that is called is meant to be
executed in parallel. In this case, the runtime of CilkPlus creates a task dependency
graph and if there is not any data dependency, CilkPlus creates a new thread to execute
the function.

• Cilk_sync. previously with cilk_spawn.
• Cilk_for: this token is used to replace the “for” token and create a parallel loop. In

this case it is the responsibility of the programmer to create vectorizable loops.
Sometimes it is not possible because of data dependencies or complex loops.

8 | P a g e

In order to avoid deadlocks when cilk_for is used, Cilk Plus provides a set of reducers for the
most common associative operations. All of these reductions functions are vectorizable and the
user can implement new functions.

With the previous tokens it is possible express programs using thread parallelism. It is also
possible create vectorizable code with CilkPlus. The language has some extensions very similar
to OpenMP where the programmer can annotate his loops and help to the compiler to create the
proper vector code.

1 #pragma simd
2 for (int i = 0; i < n; i++) {
3 v[i] = a[i] + b[i];
4 }

The compiler will optimize the above code to the following one:

1 for (int i = 0; i < n; i += 4) {
2 tmp_v[4];
3 tmp_v[0:4] = a[i:4] + b[i:4];
4 v[i:4] = tmp_v[0:4];
5 }

One of the main features of CilkPlus is the extension of C99 and C++ with special array
notations. This notation expresses a set of high level vector parallel array operations. This is
another way to create vector code and this helps the compiler to effectively vectorize the code.
The array notation syntax is similar to the following:

array[lower_bound:length:stride]

The array is processed from the lower position until lower + length. The stride indicates the
separation of the elements to be processed. This extension is particularly useful when one needs
to start coding from scratch and obtain a fast implementation. If the code is clear and does not
contain any data dependency, the compiler can create vector code for each array statement
through array notation.

There are some additional annotations available to facilitate the compilation into vector code. One
of them is #pragma simd. With this annotation the compiler enforces the creation of vector
code, even if the generated assembly is not efficient. This pragma is useful when the programmer
fully confident that the code is vectorizable.

Another approach that helps to compiler to vectorize the code is aligning the memory that we
have allocated. The easiest way to write an annotation before the loop indicating to compiler that
the next region aligns the memory - #pragma vector aligned.

3 Evaluation setup and benchmarks
In this report, two different Physics Computing benchmarks were evaluated. One of them is
MLfit [8] that is presented in the next section and the other is a Geant Vector Prototype ported to
CilkPlus. A preliminary evaluation with different instructions set across different Intel
Microarchitectures is presented. The rest of work is focused on analysis two Benchmarks of
physics of particles at CERN and a very simple case of study of Matrix Multiplication in order to

9 | P a g e

get a preliminary study of the different vector instructions set across different Intel
microarchitectures.

3.1 Experimental Platforms
In order to evaluate different Intel microarchitectures with different vector instructions sets, three
different platforms were used: two workstations and a server. Table 1 summarizes the different
platforms. Moreover, MLFit was run with different vector instruction sets: SSE, SSE4.2 and
AVX. In case of the Haswell microarchitecture, AVX2 and FMA were used. The benchmark was
compiled with the Intel C++ Compiler 13.1 for each microarchitecture. Also some experiments
were run with GCC 4.8.1 but we did not enough time to complete them. Each experiment took
some hours if in case of GCC 4.8.1 in case of MLfit evaluation.

Server Microarchitecture Processor Frequency (MHz)

olwork05 Sandy Bridge Intel Xeon CPU E5-2690 (x2) 2900

opladev37 Ivy Bridge Intel Xeon CPU E3-1265L v2 2500

opladev38 Haswell Intel Xeon CPU E3-1285L V3 3100

Table 1: Michroarchitectures and features used in the experiments.

The Sandy Bridge server contains two sockets with eight physical cores each, and 16 threads
when HyperThreading is enabled. A Sandy Bridge system, for example, can run up to 32 threads
simultaneously. Both the Ivy Bridge and Haswell systems contain one socket and four physical
cores each, with eight threads when HyperThreading is enabled. For all experiments, Turbo Boost
was disabled and results are scaled to the frequency of the Sandy Bridge processor. For each
machine the KMP_AFFINITY variable was used to fill up all physical cores and then all virtual
cores. The first core (core 0) has been filled as the last one, because it is also used by the
operating system.

Table 2 shows cache sizes for each Intel microarchitecture. As mentioned before, the Sandy
Bridge machine is a server type system which contains two sockets and 32 threads in total.

10 | P a g e

Machine L1 L2 L3

Sandy Bridge

32 K 256K 20M

Ivy Bridge

32 K 256K 8M

Haswell

32 K 256K 8M

Table 2: Memory cache sizes for each microarchitecture used in the experiments.

Table 3 indicates the compiler options that were used with the Intel C++ Compiler. Notice that
on Haswell it is possible to use the core_avx2 option to generate instructions from the AVX2
vector instruction set.

Option Description

-xsse The compiler enables SSE3, SSE2 and SSE1 vector code

-xsse4.2 ICC may generate instructions from SSE to SSE4.1 and SSE4.2

-xavx ICC generates instructions for AVX (256 bits) if the processor supports them.

-xcore_avx2 ICC generas AVX2 vector code, only enabled on the Haswell
microarchitecture.

-no-fma ICC enables FMA by default when AVX2 is used. This option is needed to
disable FMA and compare AVX2 vector code with AVX

Table 3: Intel C/C++ Compiler options used on MLFit.

3.2 Exploring vector instructions: Matrix Multiplication
Matrix Multiplication (MxM) is a basic kernel frequently used to showcase peak performance.
The program was compiled with the Intel C Compiler 13.1. The code was selected from Intel
Benchmark for Matrix Multiplication. This benchmark is implemented with OpenMP.

The figure 4 shows the speedup for AVX for different microarchitectures. In this case, AVX2 on
Haswell is around 2 times faster compared to AVX in Sandy Bridge. Ivy Bridge presents almost

11 | P a g e

the same speedup for AVX and AVX2 without FMA on Haswell. The big advantage is when
AVX2 and FMA are used at the same time. All results are scaled by frequency and the matrix
size is A(600,1200) * B(1200,2400). The benchmark multiplies the matrices 100 times and takes
the total time.

Figure 4: Comparison with AVX across different Intel microarchitectures for MxM problem.

3.3 CERN MLFit with 500’000 events
MLfit is a simplified version of the Roofit package (a component of the ROOT framework used
in likehood based data analysis) at CERN. The MLfit benchmark is used at openlab as a
representative of data analysis applications used in the High Energy Physics community. The
Maximum Likelihood (ML) procedure is a popular statistical technique used to estimate
parameters of a statistical model on a given numbers of events. Some previous publications
provide specific details about the MLfit method computed in this benchmark [8], [10].

The benchmark is written in OpenMP and MPI [1] and can be executed on CPUs and on the Intel
Xeon Phi accelerator. In this work a study of this benchmark is presented across different Intel
Microarchitectures and different vector instruction sets: SSE, SSE4.2, AVX and AVX2.

The benchmark was run with 500,000 events for reference with previous measurements. Figures
5 and 6 show the speedup with different vector instruction sets across different Intel
microarchitectures. The speedup for each variant is shown on Figure 5, where it is compared to
one thread with SSE on Sandy Bridge. AVX in Sandy Bridge is a bit better than SSE and SSE4.2
for this numbers of events. Ivy Bridge scales to a factor of 1.5 with SSE and SSE4.2. In the case
of Haswell, SSE and SSE4.2 scale by a factor of 1.7 and AVX/AVX2 by a factor of more than

0

1

2

3

4

5

6

7

8

9

10

1 2 4

Sp
ee

du
p

#OpenMP Threads

AVX Comparison MxM

AVX - Sandy

AVX - Ivy

AVX - Haswell

AVX - H - NOFMA

AVX2 - H

AVX2 - H -NOFMA

12 | P a g e

2.5. On this benchmark, there are not many differences between AVX and AVX2, even when
using the FMA instruction set. Figure 7 shows the relative speedup for each instruction set
classified by microarchitecture. The graph shows that Haswell provides better potential for
speedups. Major are noted when AVX and AVX2 are used. Overall, the speedup in the case of
Haswell is 2.5 times higher than Sandy Bridge with one OpenMP thread.

Figure 5: Speedup with 500,000 events for MLfit with different Intel microarchitectures.

Figure 6: Relative speedup with different instruction sets over Intel microarchitectures.

0

0.5

1

1.5

2

2.5

3

Sandy Bridge Ivy Bridge Haswell

Sp
ee

du
p

Intel Microarchitecture

Speedup 500,000 events

SSE

SSE4.2

AVX

AVX2

0

0.5

1

1.5

2

2.5

3

SSE SSE4.2 AVX AVX2

Sp
ee

du
p

Vector Instruction Set

#1 OpenMP Thread Comparison 500,000

Sandy Bridge

Ivy Bridge

Haswell

13 | P a g e

In case of AVX comparison (Figure 7), AVX2 does not seem to present any advantage over
AVX. Also, for all results, the Ivy Bridge microarchitecture scaled almost the same eight threads
working than Haswell microarchitecture.

Figure 7: AVX comparison from 1 to 8 threads with different Intel microarchitectures.

4 CilkPlus evaluation
The ideal case to create vector code is through autovectorization. But the compiler has to be smart
to create the proper vector code and sometimes it is not possible or the code is not as good as we
expected. In these cases are needed new tools or libraries to create take advantage of the vector
code. CilkPlus compiler with data parallelism has been evaluated. The classical MxM problem
has been developed with different approach in CilkPlus and the Benchmark Geant Vector
Prototype. All tests were executed on Haswell mircroarchitecture and were compiled with Intel
14.0. GCC 4.8.1 CilkPlus branch was not possible because of the compiler cannot parse some
CilkPlus statements. The errors were reported to GCC CilkPlus team.

4.1 Understanding Vectorization with CilkPlus
In the section 2.2 it was mentioned that it is possible to create vector code through #pragma
simd and CilkPlus array notations. But they present some differences and the code that the
compiler generates is different for each strategy (CilkPlus array notation or #pragma simd). In
this section, a study of different implementations of a short benchmark in CilkPlus is presented,
in order to create and understand the vector code, the programmability of such syntax and how
the compiler deals with source code of this type.

0
1
2
3
4
5
6
7
8
9

1 2 4 8

Sp
ee

du
p

#OpenMP Threads

AVX Comparison

AVX-Sandy

AVX-Ivy

AVX-Haswell

AVX2-Haswell

14 | P a g e

Below the classic algorithm for Matrix Multiplication is presented (MxM). The following code
shows the sequential version of the MxM problem.

// result = a*b
void mxm_seq(double * restrict result, double *a, double *b, int m) {
 int i, j, k;
 for (i = 0; i < m; i++) {
 for (j = 0; j < m; j++) {
 for (k = 0; k < m; k++) {
 result[i*m+j] += a[i*m+k] * b[k*m+j];
 }
 }
 }
}

The #pragma simd version is identical to the sequential one. In this case, the compiler is
given more information about how to create vector code. The snippet below shows the pragma-
SIMD implementation.

void mxm_cilk_simd(double * restrict result, double * a, double * b, int
n) {
 for (int i = 0; i < n; i++) {
 for (int j = 0; j < n; j++) {
 #pragma simd reduction(+:result[i*n+j])
 for (int k = 0; k < n; k++) {
 result[i*n+j] += a[i*n+k] * b[k*n+j];
 }
 }
 }
}

#pragma simd instructs the compiler to ignore every implication from the language standard,
such as the data dependency, memory access, etc [5]. Besides, the efficiency heuristic is turned
off by the compiler when this pragma is enabled. The loop has to be an ideal case to vectorize and
it is the responsibility of the programmer to provide favourable conditions. Pragma SIMD should
be written with a reduction operation. In the case of the Intel 13.1 compiler (ICC) the code is
semantically correct and the result is correct as well. However, in case of ICC 14.0 release
version the result is wrong. It is necessary to add the reduction operation (reduction(+:
result[i*n*j]).

As a first implementation with CilkPlus Array Notation, the sequential version was translated to
CilkPlus array notation. The code is shown below:

void mxm_array_notation_fail(double * restrict result, double * a,
double * b, int n) {
 // Process four elements by four elements.
 // AVX can multiply 4 doubles in one instruction.
 int stride = 4;
 for (int i = 0; i < n; i++) {
 for (int j = 0; j < n; j++) {
 for (int k = 0; k < n; k+= stride) {
 result[i*n+j:stride] += a[i*n+k:stride] *
b[k*n+j:stride:n];
 }
 }
 }
}

15 | P a g e

This snippet is almost the same as the sequential version, but four elements are multiplied by four
elements with Array Notation. Again, the code is incorrect. The compiler unrolls the loop by 4
using array notations and the array “result” is invariant in the inner loop. Even so, the compiler
does not return any error in compilation time or warnings. Using the array notation at the left
hand side (result[i*n+j:stride]) does not work because this would imply that j columns of b would
be processed at the same time. Because of 1. this is does not work. Two strides would be needed
at the same time, one for k and one for j which is also not possible (kind of nested array
notations).

This has been corrected above by using a reduction for the same (invariant) element result[i*n+j].

void mxm_array_notation(double * restrict result, double * a, double *
b, int n) {
 // Process four elements by four elements.
 // AVX can multiply 4 doubles in one instruction.
 int stride = 4;
 for (int i = 0; i < n; i++) {
 for (int j = 0; j < n; j++) {
 for (int k = 0; k < n; k+= stride) {
 result[i*n+j] += __sec_reduce_add(a[i*n+k:stride] *
b[k*n+j:stride:n]);
 }
 }
 }
}

In this case the result and the code are correct but the performance is not very good because
vectorization is only used in the reduction operation. One of the possible optimizations is to
interchange the loops j and k such as is shown in the code below.

void mxm_array_notation_interchange(double * restrict result, double *
a, double * b, int n) {
 for (int i = 0; i < n; i++) {
 for (int k = 0; k < n; k++) {
 for (int j = 0; j < n; j+= n) {
 result[i*n+j:n] += a[i*n+k] * b[k*n+j:n];
 }
 }
 }
}

The snippet is quite simple: the code is clearer than the previous one and it is also possible to
express it with array notation, giving the compiler more information about the data distribution
and possible vector code. The difference with #pragma simd is that in this case, array notation
respects the language standard (aliasing, data dependencies, etc). The compiler is more
conservative when array notation is used.

Figure 8 shows runtimes for each implementation, varying the matrix size, compiled for AVX
vector instruction set. The MxM program with CilkPlus was executed on a Haswell machine with
one thread (HyperThreading enabled and TurboBoost disabled) and compared with one CilkPlus
thread using different approach to vectorization. The program was compiled with the beta release
of the Intel C Compiler version 14.0. The best case is that where the OpenMP (thread

16 | P a g e

parallelism) version is used, with only 1 thread for comparison. The best CilkPlus variant is the
one where two loops (j, k) are interchanged, and the performance is superior to the pragma simd
version. On Figure 9 one can see in more detail the speedup for each CilkPlus version and
OpenMP compiled for AVX2. This case is similar to the behaviour found in AVX. The speedup
with pragma simd is less than one in both cases (AVX and AVX2). This means that the code is
slower than the sequential code.

Figure 8: MxM comparison with CilkPlus AVX and OpenMP varying the data size.

Figure 9: MxM comparison with CilkPlus and AVX varying the data size.

0

1

2

3

4

5

6

7

8

256 512 1024 2048 4096

Sp
ee

du
p

Matrix Size

MxM Comparison on Haswell with AVX

CilkArray

CilkSIMD

Cilk Ichange

OpenMP #1

0

1

2

3

4

5

6

7

8

256 512 1024 2048 4096

Sp
ee

du
p

Matrix Size (NxN)

MxM Comparison on Haswell with AVX2

CilkArray

CilkSIMD

Cilk Ichange

OpenMP #1

17 | P a g e

This analysis shows the differences between each implementation using AVX and AVX2 on the
Haswell microarchitecture. Figure 10 shows these differences in speedup comparing AVX and
AVX2 to the sequential version and a matrix size of 1024x1024. The bars titled CilkSIMD show
the speedup for the pragma simd implementation. If the code is compiled for AVX2 the speedup
is over 2.5 better than the sequential version. The central bars correspond to the CilkPlus array
notation with j-k loops interchanged. The speedup in case of AVX is almost 4.5 and is about 20%
faster than AVX. The last two bars show the speedup with OpenMP and 1 thread.

Figure 10: Speedup compared with the sequential version in Haswell. The results correspond to a matrix size of
1024x1024. The OpenMP version was run with 1 thread.

4.2 Geant Vector Prototype
Detector simulation is one of the most CPU intensive tasks in modern High Energy Physics.
Geant Vector Prototype represents a benchmark for these kinds of simulations. It is used a part of
ROOT Framework and compares the last processors optimization and advantage with the
traditional model of ROOT [6].

At CERN openlab, a new part of this benchmark has been implemented in CilkPlus to study the
differences with respect to other strategies for vectorization. The source code simulates a set of
particles around a shape and computes the distance and direction for each particle. Figure 11
shows a representation of the calculation that is performed in the TGeoBBox simulation. In these
tests, the original implementation was evaluated, where the compiler enables autovectorization
and it was contrasted with new implementations using the CilkPlus array notation. Although
CilkPlus contains specific constructs for a thread model, such as cilk_for or cilk_spawn, where
the runtime could launch new tasks in parallel, our work is focused on the array notation. Each
particle is completely independent of the other particles, as in other simulations of this type.
Reading the array notation the compiler is expected to know more about how the data is

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

CilkSIMD CilkIchange OpenMP 1 thread

Sp
ee

du
p

Code Version

Comparison AVX and AVX2: 1024

AVX

AVX2

18 | P a g e

organized and it should therefore generate vector instructions. The overall advantage of
vectorization here is that is possible to process more particles per instruction.

SHAPE

Figure 11: Overview diagram of the Geant Vector Prototype simulation for TGeoBBox code. The distance for all
particles around the shape is computed.

The original version of this benchmark contains an outer loop to process all particles. For each
particle, its distance x,y,z from the shape is computed. The Listing below shows pseudo code of
the computation implemented in the function DistanceFromOutside:

for (k = 0; k < np; k++) {
 Compute_x();

Compute_y();
Compute_z();
Distance[k] = factor*combiation(x,y, z);

}

This loop is called 14 times because there are 14 sets of particles, varying in size from 1, 2, 4… to
8192. For each number of particles, there are 500 repetitions.

The next listing shows a sketch of the original code. It consists of a main loop to process each
particle (x, y, z) around the shape. First, the code computes the position of the particle relative to
the origin. Second, the final distance of each particle having the values x, y, z is updated. Overall,
five different approaches have been implemented, each aiming for better performance than the
original version.

 for(unsigned int k=0;k<np;++k) // @EXPECTVEC
 {
 Bool_t in;
 Double_t saf[3];
 Double_t newpt[3];

 Double_t factor=1.;
 Double_t infactor;

19 | P a g e

 newpt[0] = p[0][k] - origin[0];
 saf[0] = TMath::Abs(newpt[0])-par[0];
 factor = (saf[0]>=stepmax[k]) ? TGeoShape::Big() : 1.; // this
might be done at the end
 in = (saf[0]<0);

 newpt[1] = p[1][k] - origin[1];
 saf[1] = TMath::Abs(newpt[1])-par[1];
 factor *= (saf[1]>=stepmax[k]) ? TGeoShape::Big() : 1.; // this
might be done at the end
 in = in & (saf[1]<0);

 newpt[2] = p[2][k] - origin[2];
 saf[2] = TMath::Abs(newpt[2])-par[2];
 factor *= (saf[2]>=stepmax[k]) ? TGeoShape::Big() : 1.; // this
might be done at the end
 in = in & (saf[2]<0);

 infactor = (double) !in;

 // i=0
 Int_t hit0=0;
 if (saf[0] > 0 & newpt[0]*d[0][k] < 0) // if out and right
direction
 {
 snxt[0] = saf[0]/TMath::Abs(d[0][k]); // distance to y-z face
 double coord1=newpt[1]+snxt[0]*d[1][k]; // calculate new y and
z coordinate
 double coord2=newpt[2]+snxt[0]*d[2][k];
 hit0 = (TMath::Abs(coord1)>par[1] | TMath::Abs(coord2)>par[2])?
0 : 1; // 0 means miss, 1 means hit
 }

4.2.1 First approach
If there is not any data dependent between iterations, the vectors in the code could be expressed
with array notation. The vectors contain the information points (x,y,z) for each particle. This
means that there are very small vectors

double point_aux[3] = { p[0][k], p[1][k], p[2][k] };
newpt[0:3] = point_aux[0:3] - origin[0:3];
saf[:] = abs(newpt[:])-par[:];
if (saf[:] >= stepmax[k])
 #pragma vector aligned
 factor[:] = geobig;
else
#pragma vector aligned
factor[:] = 1;
factor_scalar = __sec_reduce_mul(factor[:]);
if (saf[:] < 0)
 in = false;
infactor = (double) !in;

the listing above shows the first part, where each component of each particle is computed in the
original code. The major difference is that the code is much smaller than the original version. The
code is much clearer and this also can improve the productivity. However, the Intel compiler
cannot vectorize some of these statements with array notation. For instance, in the second line the
compiler returns a message that the loop is complex. The same happens on the third line, in which

20 | P a g e

a call to an external function (abs) to is needed to compute the absolute value of each element
before doing the final operation. In any case, the if statement was vectorized as well as the
reduction operation.

//#pragma vector aligned
if (saf[:] > 0) {
 if (newpt[:]*distance_aux[:] < 0) {
 snxt[:] = saf[:]/abs(distance_aux[:]);
 coord1_vector[:] = newpt[aux_newpt[:]]
+snxt[:]*d[aux_newpt[:]][k]; // calculate new y and z coordinate
 coord2_vector[:] = newpt[aux2_newpt[:]]+snxt[:]*d[aux_d[:]][k];
 hit_vector[:] = (abs(coord1_vector[:]) > par_auxa[:] |
abs(coord2_vector[:]) > par_auxb[:])? 0 : 1; // 0 means miss, 1 means hit
 }
 }
 distance[k] = (hit_vector)?
factor_scalar*infactor*(__sec_reduce_add(hit_vector[:] * snxt[:])) :
infactor*geobig;
 }

This listing shows the last part of the original loop. In this case, we need to compute the final
distance for the particle located in (x,y, z) but each component has to be computed having the rest
of the components in mind. Note that an additional vector was used as a second index to the data
vectors. This kind of expression can reduce the code and the number of conditional statements for
each particle’s components The problem (again) is that the compiler is not vectorizing this code.

4.2.2 Second approach
In the first approach, very small vectors were processed and the data size did not exceed three
elements.. It is possible to remove the main loop of the function, but temporary variables and
arrays are needed to process all particles in one CilkPlus statement. Actually all x, all y and all z
values of all sets of particles are computed:

 Double_t *newpt_x = (Double_t *) _mm_malloc(sizeof(Double_t)*np,
ALIGN_AVX);
 Double_t *newpt_y = (Double_t *) _mm_malloc(sizeof(Double_t)*np,
ALIGN_AVX);
 Double_t *newpt_z = (Double_t *) _mm_malloc(sizeof(Double_t)*np,
ALIGN_AVX);

The following Listing shows how x values are computed with CilkPlus.

 // All x points for all particles
 newpt_x[0:np] = p[0][0:np] - origin[0];
 saf_vector_x[0:np] = abs(newpt_x[0:np]) - par[0];
 if (saf_vector_x[0:np] >= stepmax[0:np])
 factor[0:np] = big;
 else
 factor[0:np] = 1;
 if (saf_vector_x[0:np] < 0)
 in_vector[0:np] = true;
 else
 in_vector[0:np] = false;

21 | P a g e

The advantage of using this approach is that the source code is much clearer than the rest of the
implementation and also the number of lines of code is reduced. The main problem is that the
compiler does not create the vector code for the first and second statements.

4.2.3 Third and fourth approach
It has been mentioned that we need additional memory to process all values (set of particles). In
order to reduce this, two additional versions were implemented: one of them allocates arrays of
medium sizes (called tiles) and processes them. The second one is allocating the memory in
advance and processes the tiled data. The problem with these two last approaches is that, in the
best case, the time is the double of that in the version mentioned before (the second approach
where all particles are processed through CilkPlus array notation).

4.2.4 Fifth approach
The last idea was to process the elements in the loop in order to compute four particles each
iteration. Additional vectors are needed like in the second version, but much smaller (12 elements
to process four particles each iteration). The following listing shows a portion of the code
discussed. Note that this approach is on a lower level compared to the rest of implementations.
But, in this case, the Intel compiler detects all CilkPlus array notation as vectorizable statements,
even the arrays that in the first implementation were considered to be “complex structures”.

 #pragma ivdep
 #pragma vector always
 #pragma vector aligned
 for(unsigned int k = 0; k < np; k += 4) {
 #pragma vector aligned
 factor[:] = 1;
 double point_aux[12];
 unsigned int j = k;

 #pragma simd
 for (unsigned int i = 0; i < (LENVEC*3); i+=3) {
 point_aux[i] = p[0][j];
 point_aux[i+1] = p[1][j];
 point_aux[i+2] = p[2][j];
 j++;
 }

 #pragma ivdep
 #pragma vector always
 #pragma vector aligned
 newpt[0:3] = point_aux[0:3] - origin[0:3];
 newpt[4:3] = point_aux[4:3] - origin[0:3];
 newpt[7:3] = point_aux[9:3] - origin[0:3];
 newpt[10:3] = point_aux[10:3] - origin[0:3];
 saf[:] = abs(newpt[:])-par[:];
 if (saf[:] >= stepmax[k])
 factor[:] = geobig;

4.2.5 Preliminary results
Table 4 shows the preliminary results for each CilkPlus version of the Geant Vector Prototype
Benchmark. The total time and the computational time per particle have been measured. The
Benchmark is run to process from 1 particle to 8192 particles. The times and analysis showed in
the Table 4 is for 8192 particles. The total time indicates how much takes to run it and the time

22 | P a g e

per particle is the total time divided into the number of particles. The last columns show wheter
the compiler was able to vector all CilkPlus array notation in the code. The Root version
indicates the original version which corresponds to the code in the Root framework.

Version Total time Time (s) per particle
Same
result?

Vector
CODE

Vector
ALL

Root 0,276 2,730E-04 YES - -
Auto-optimized
version 0,123 1,180E-04 YES AVX NO
Last-cilkplus 0,269 2,680E-04 YES AVX NO
First-cilkplus 0,274 2,730E-04 YES AVX NO
Second-cilkplus 0,377 3,540E-04 YES AVX NO
Third-cilkplus 0,407 3,730E-04 NO AVX NO
Fourth-cilkplus 0,650 8,040E-04 YES AVX YES

Table 4: Time comparison between different versions of the Geant Vector Prototype benchmark, including
CilkPlus implementations.

Note that the best version is the original version, as optimized by the compiler. In this case there
is no CilkPlus array notation and the compiler takes the its own decisions on how to optimize the
code. The second best version is when small vectors are processed small vector and when they
are processed vectors each 4 particles. In case of the third version, where the additional memory
is allocated outside the main loop, the result is not correct.

4.2.6 Assembly code
Table 5 shows the comparison between the ASM (.S) file generated for each version of the
benchmark. The second column indicates the total ASM lines of the function that is being
vectorized. The second and third columns indicate the number of instructions that used XMM
registers and YMM registers. There are some instructions, such as vinsertf128 and vextractf128,
where both registers are used. This is shown in the fourth column. The vinsertf128 instruction
replaces either the lower half or the upper half of a 256-bit YMM register with the value of a 128-
bit source operand. The other half of the destination is unchanged. Correspondingly,
vextracttf128 extracts either the lower half or the upper half of a 256-bit YMM register and
copies the value to a 128-bit destination operand.

On the right side of the table the number of jump instructions is indicated, as well as the total time
to execute the function for each particle. Notice that the best version, as mentioned before, is the
automatically optimized one. The statistics for this version are shown in the first row. Other rows
indicate the values for each CilkPlus version. The last version correspondswhen CilkPlus detects
all array notation are vectorized. In this case the number of total lines is lower than the original
version, but contains less XMM and instructions. The first version is the simple translation to
CilkPlus in order to use small vectors each iteration. In this case the total of assembly lines is
very low and also contains almost 50% of instructions with XMM registers, but in this case is not
used any YMM operation.

23 | P a g e

Code #Lines
XMM
Instructions

YMM
instructions V*tf128 Jump Time

Auto-optimized
version 729 434 135 33 28 0,150
Last-cilkplus 507 342 154 34 10 0,281
First-cilkplus 289 133 0 0 11 0,266
Second-cilkplus 707 275 136 28 12 0,431
Third-cilkplus 707 275 136 28 12 0,462
Fourth-cilkplus 1010 406 217 102 44 0,745

Tabla 5: ASM Comparison for each CilkPlus version and the auto optimized version.

4.2.7 Comparison of Perf (PMU based) statistics
To better understand the performance results, each version was measured with linux-perf. Tables
6 and 7 summarize the results. All results presented are the total statistics.

Version Cycles Insns Per Cycle Branches Time
Auto-optimized
version 2.678.846.562 1,17 481.479.014 0,000118
Last-cilkplus 3.340.918.582 1,12 545.952.203 0,000268
First-cilkplus 3.356.677.160 1,24 640.323.963 0,000273
Second-cilkplus 3.870.739.549 1,07 634.312.969 0,000354
Third-cilkplus 3.950.685.971 1,08 651.628.305 0,000373
Fourth-cilkplus 4.715.796.328 1,19 645.794.406 0,000804

Table 6: Perf comparison for each CilkPlus version and the auto optimized version

The original version executes 1.17 instructions per cycle and the total cache misses is the lowest
value compared with the rest of implementations with 7,5% of total references. The last version
and the first version show very similar results. The major difference is between the numbers of
instructions per cycle being better in the first implementation with 1.24. The three last
implementations are not doing very well. Following the results in table 7, the last version, where
all CilkPlus statements with array notation are vectorized by the Intel compiler and the first
version (small vectors) present a similar ratio of cache misses, about 27%.

Version Cache Misses Cache references
% Cache
Misses Time

Auto-optimized
version 327.094 4.509.255 7,254 0,000118
Last-cilkplus 894.158 6.879.908 12,997 0,000268
First-cilkplus 887.427 6.699.531 13,246 0,000273
Second-cilkplus 3.169.916 13.064.301 24,264 0,000354
Third-cilkplus 3.396.769 13.423.264 25,305 0,000373
Fourth-cilkplus 3.057.942 14.076.222 21,724 0,000804

Table 7: Perf Comparison. Cache misses and reference for each version.

24 | P a g e

4.2.8 An improved CilkPlus solution for the Geant Vector Prototype
With receiving feedback from Intel Support, a new CilkPlus version of the benchmark was
proposed. This one is similar to the last version where the Intel compiler detects all array notation
statements as vectorizable portions of code. The time per particle of this version is 59.23 us.. This
is about 50% faster than the autovectorizable version of the Geant Vector Prototype.

The main difference with the rest of approaches is that in this case a set of 4 particles is computed
in parallel. This fixed number is the number of doubles that can be processed in one AVX
instruction. The listing below shows a part of this solution. Note that explicit memory alignment
is needed before processing the elements with array notation. All memory for extra arrays is
aligned at the beginning of the loop. Also, the majority of arrays are not allocated. Instead of
allocations, a set of pointers is used. This allows to save memory and gives more information to
the compiler about the data distribution through constant variables.

 for (int i = 0; i < np-tailsize; i+= 4)
 {
 const double (*vx)[4] = (const double (*)[4]) &(point.x[i]);
 const double (*vy)[4] = (const double (*)[4]) &(point.y[i]);
 const double (*vz)[4] = (const double (*)[4]) &(point.z[i]);
 const double (*vdirx)[4] = (const double (*)[4]) &(dir.x[i]);
 const double (*vdiry)[4] = (const double (*)[4]) &(dir.y[i]);
 const double (*vdirz)[4] = (const double (*)[4]) &(dir.z[i]);
 const double (*vstepmax)[4] = (const double (*)[4]) &(stepmax[i]);
 double (*vdistance)[4] = (double (*)[4]) &(distance[i]);

 __assume_aligned(vx,32);
 __assume_aligned(vy,32);
 __assume_aligned(vz,32);
 __assume_aligned(vdirx,32);
 __assume_aligned(vdiry,32);
 __assume_aligned(vdirz,32);
 __assume_aligned(vstepmax,32);
 __assume_aligned(vdistance,32);
 __assume_aligned(origin,32);

 double newptx[4] __attribute__((aligned(32)));
 double newpty[4] __attribute__((aligned(32)));
 double newptz[4] __attribute__((aligned(32)));

 double safx[4] __attribute__((aligned(32)));
 double safy[4] __attribute__((aligned(32)));
 double safz[4] __attribute__((aligned(32)));

 double in[4] __attribute__((aligned(32)));

 double snxtx[4] __attribute__((aligned(32)));
 double snxty[4] __attribute__((aligned(32)));
 double snxtz[4] __attribute__((aligned(32)));

 double hit0[4] __attribute__((aligned(32)));
 double hit1[4] __attribute__((aligned(32)));
 double hit2[4] __attribute__((aligned(32)));

 double mask1[4] __attribute__((aligned(32)));
 double mask2[4] __attribute__((aligned(32)));

 newptx[:] = vx[0][:] - origin[0];
 newpty[:] = vy[0][:] - origin[1];
 newptz[:] = vz[0][:] - origin[2];

25 | P a g e

 #pragma ivdep
 safx[:] = std::abs(newptx[:]) - dx;
 safy[:] = std::abs(newpty[:]) - dy;
 safz[:] = std::abs(newptz[:]) - dz;

 vdistance[0][:] = big;

 mask1[:] = (safx[:] >= vstepmax[0][:] || safy[:] >= vstepmax[0][:]
|| safz[:] >= vstepmax[0][:]) ? 1.0 : 0.0;
 int faraway = __sec_reduce_any_nonzero(mask1[:]);
 if (faraway) return;

 in[:] = ((safx[:] < 0.0) && (safy[:] < 0.0) && (safz[:] < 0.0)) ?
0.0 : 1.0;

 snxtx[:] = safx[:]/std::abs(vdirx[0][:]+tiny);
 mask1[:] = std::abs(newpty[:]+snxtx[:]*vdiry[0][:]) - dy;
 mask2[:] = std::abs(newptz[:]+snxtx[:]*vdirz[0][:]) - dz;
 hit0[:] = (safx[:] > 0.0 && newptx[:]*vdirx[0][:] < 0.0 &&
(mask1[:] <= 0.0 && mask2[:] <= 0.0)) ? 1.0 : 0.0;

 snxty[:] = safy[:]/std::abs(vdiry[0][:]+tiny);
 mask1[:] = std::abs(newptx[:]+snxty[:]*vdirx[0][:]) - dx;
 hit1[:] = (safy[:] > 0.0 && newpty[:]*vdiry[0][:] < 0.0 &&
(mask1[:] <= 0.0 && mask2[:] <= 0.0)) ? 1.0 : 0.0;

 snxtz[:] = safz[:]/std::abs(vdirz[0][:]+tiny);
 mask2[:] = std::abs(newpty[:]+snxtz[:]*vdiry[0][:]) - dy;
 hit2[:] = (safz[:] > 0.0 && newptz[:]*vdirz[0][:] < 0.0 &&
(mask1[:] <= 0.0 && mask2[:] <= 0.0)) ? 1.0 : 0.0;

 if (hit0[:] > 0.0 || hit1[:] > 0.0 || hit2[:] > 0.0)
 vdistance[0][:] = hit0[:]*snxtx[:] + hit1[:]*snxty[:] +
hit2[:]*snxtz[:];
 #pragma vector nontemporal
 vdistance[0][:] *= in[:];
 }

 // do the tail part for the moment, we just call the old static
version
 for(unsigned int i = 0; i < tailsize; ++i)
 {
 double p[3]={point.x[np-tailsize+i], point.y[np-tailsize+i],
point.z[np-tailsize+i]};
 double d[3]={dir.x[np-tailsize+i], dir.y[np-tailsize+i], dir.z[np-
tailsize+i]};
 distance[np-tailsize+i]=TGeoBBox_v::DistFromOutsideS(p, d, dx, dy,
dz, origin, stepmax[np-tailsize+i]);
 }
}

Some pragmas are still needed, like #pragma ivdep and #pragma nontemporal. If
#pragma ivdep annotation is not added, the compiler returns a message indicating that in this
piece of code there is data dependence and it does not generate vector code. In that case the time
per particle is 0.000112 seconds, about 5% faster than the original but 45% slower if the
annotation is not written.

26 | P a g e

 #pragma ivdep
 safx[:] = std::abs(newptx[:]) - dx;
 safy[:] = std::abs(newpty[:]) - dy;
 safz[:] = std::abs(newptz[:]) - dz;

#pragma vector nontemporal directs the compiler to use non-temporal stores on
systems based on all supported architectures. If #pragma vector nontemporal is not
added there is not difference in the runtime on Haswell and using the Intel C Compiler 14.0.

5 Conclusions
Since the Sandy Bridge microarchitecture, it is possible to work with wider vector registers. The
Intel microarchitectures reviewed present a clear evolution of the vector instructions sets with
AVX and AVX2. This evolution is also well visible in Intel Xeon Phi coprocessors. AVX2 is on
the way to an extension to 512 bits of length, where it will be possible to compute eight numbers
in double precision per processor instruction.

An evaluation of two different tools used in High Energy Physics at CERN was presented in this
work. Also, several challenges of autovectorization and of how to write vector code with CilkPlus
have been studied with different benchmarks.

From the point of view of this evaluation and production systems, CilkPlus array notation is a
novel offering. In case of the GCC variant, several bugs have been reported to the GCC CilkPlus
team. Because of its novelty, the CilkPlus implementation in the LLVM compiler is not equipped
with support for data parallelism yet. This includes: #pragma simd, elemental functions and
array notation.

With the high level of parallel programming and vectorization in these extensions, the compiler
must still be relatively smart in order to analyse code and to generate proper vector code without
semantic changes. The high level of abstraction at which many of the operations surveyed are
used is sometimes penalized with poor performance, and it is necessary to provide the compiler
with more information, often excessive from the point of view of code readability. These are low-
level and architecture specific details, like memory alignment or specific pragmas to be sure that
the data set is completely independent. Only then can good performance be achieved.

From the programmability point of view, CilkPlus is very easy to learn and brings benefits. The
syntax for array notation is simple yet powerful. Some classic examples, like MxM with CilkPlus,
were studied with different approaches. In summary, the more information the compiler has about

27 | P a g e

how the data is distributed, the better. At the same time, the more lower levels details are
available, the better. Aligning memory properly or loop tiling are architecture-dependent (for
instance when a stripped is expressed related with the number of instructions that can be
processed in parallel with AVX) and the high level programmer has to know the details – despite
using a promising high-level syntax. CilkPlus is a potential language for physicists,
mathematicians and scientists who might not be computer architecture experts. That philosophy is
opposite to the very interesting aim of CilkPlus.

CilkPlus could be a very interesting language in future generations of the compilers. Apart from
abstaining from having to declare low levels details, there should be an acceptable way to express
the data parallelism and to benefit from it. Working with other approaches like intrinsics, modern
programs become completely dependent of the architecture, but with CilkPlus array notation a set
of statements could end up directly on vector units.

Finally, some questions and bugs were reported to Intel and to GCC in the hope that following
versions of Intel and GCC CilkPlus are fixed and improved.

6 Annex A: How to install the Geant Vector Prototype?
Geant Vector Prototype depends on ROOT framework. To install see the following steps.

6.1 ROOT Installation
$ cd ~
$ git clone http://root.cern.ch/git/root.git
$ git checkout -b v5-34-09 v5-34-08
$ cd root
$./configure
$ make –j 8

When the installation is finished is needed set all ROOT variables:

$ source bin/thisroot.sh

6.2 Geant Vector Prototype

First of all is needed the source code.

$ cd ~
$ git clone https://git.cern.ch/pub/geant
$ git checkout cilkdev

An auto configuration script is given. It is necessary to change the first line of the script. It
depends of the installation path of Intel Compiler, ROOT and Geant Vector Prototype.

 8 ##
 9 # Parameters of installation
 10 GEANT_DIRECTORY="`pwd`/Geant Vector Prototype"
 11 ROOT_DIRECTORY="`pwd`/build/"
 12 ICC_PATH="/opt/envhpc/intel/composerxe"
 13 MODULE="/usr/local/Modules/3.2.9/bin/modulecmd bash"

28 | P a g e

https://git.cern.ch/pub/geant

 14 OUTPUT="testing01"
 15 ##

The module variable is not used with Intel Compiler compilation. It is necessary to change or
review the lines 10-14. The next Listing is showed an example of execution in order compile with
ICC.

$./configure_geant.sh icc
Compiling with Intel Compiler

Building in directory: testing01

-- The C compiler identification is Intel
-- The CXX compiler identification is Intel
-- Check for working C compiler:
/opt/envhpc/intel/composer_xe_2013.2.146/bin/intel64/icc
-- Check for working C compiler:
/opt/envhpc/intel/composer_xe_2013.2.146/bin/intel64/icc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Check for working CXX compiler:
/opt/envhpc/intel/composer_xe_2013.2.146/bin/intel64/icpc
-- Check for working CXX compiler:
/opt/envhpc/intel/composer_xe_2013.2.146/bin/intel64/icpc -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Found ROOT 5.34/08 in /home/juanjo/cern/experiments/build
-- Vc library not found; try to set a VCROOT environment variable to the
base installation path or add -DVCROOT= to the cmake command
-- Found TBB library in
/opt/envhpc/intel/composer_xe_2013.2.146/tbb/lib/intel64/libtbb.so
-- Configuring done
-- Generating done
CMake Warning:
…

6.3 How to run the Benchmark?
One configured and compiled ROOT framework and Geant Vector Prototype is needed a set
some environment variables. They are needed ICC, ROOT and some LD_LIBRARY_PATH to
install_dir/lib. For instance:

$ cd testing01/bin
$ source ~/cern/experiments/root_gcc/bin/thisroot.sh
$ source /opt/envhpc/intel/bin/compilervars.sh intel64
$ export LD_LIBRARY_PATH=../lib/:$LD_LIBRARY_PATH
$./

6.3.1 Example of execution
$./BenchTGeoBBox_v
TIMER OVERHEAD IS :2.29895e-08
 prepared data with 8192 points inside
 prepared data with 8192 points inside
 prepared data with 8192 points inside
 prepared data with 8192 points inside
 prepared data with 8192 points inside
 prepared data with 8192 points inside
 prepared data with 397 points inside
 prepared data with 0 points inside

29 | P a g e

 have 2676 points hitting
 have 2731 points hitting
Loops from 0 to 500 and 0 to 14
Elapsed sequential time: 0.315074 (s)
CilkPlus elapsed time per particle 0.000312 (s)

 VECTORSIZE TIMECONTAINS R.SPEEDUP TIMESAFETY R.SPEEDUP
TIMEDISTMIN R.SPEEDUP TIMEDISTOUT R.SPEEDUP
 1 3.05725e-08 1 4.54025e-08 1
4.91745e-08 1 7.00585e-08 1
 2 2.80385e-08 2.18075 3.20345e-08 2.8346
8.79325e-08 1.11846 9.79425e-08 1.4306
 4 3.82225e-08 3.19942 3.91425e-08 4.63971
1.409e-07 1.39601 1.72776e-07 1.62195
 8 5.14805e-08 4.75093 6.14305e-08 5.9127
2.52336e-07 1.55901 3.40388e-07 1.64655
 16 9.35025e-08 5.23152 1.03128e-07 7.04403
4.7124e-07 1.66962 6.30192e-07 1.77872
 32 1.8278e-07 5.35243 1.874e-07 7.75281
9.29266e-07 1.69336 1.21564e-06 1.8442
 64 3.54198e-07 5.52413 3.89298e-07 7.46409
1.76296e-06 1.78516 2.4022e-06 1.86652
 128 6.99166e-07 5.59706 6.93584e-07 8.37896
3.48517e-06 1.80603 4.81845e-06 1.86107
 256 1.40463e-06 5.57198 1.37913e-06 8.42779
6.91519e-06 1.82044 9.66296e-06 1.85605
 512 2.78114e-06 5.6283 2.73169e-06 8.50977
1.37696e-05 1.82848 1.92421e-05 1.86414
 1024 5.58977e-06 5.60063 5.49868e-06 8.45514
2.73758e-05 1.83939 3.87529e-05 1.85121
 2048 1.10941e-05 5.64375 1.08922e-05 8.53679
5.46321e-05 1.84341 7.73969e-05 1.85382
 4096 2.234e-05 5.6054 2.16725e-05 8.58084
0.000109007 1.84776 0.000155169 1.84933
 8192 4.46212e-05 5.6128 4.312e-05 8.62562
0.00021842 1.84432 0.000314792 1.82317
Main loop: 0 - 500 & 0 - 14
CilkPlus elapsed time: 0.297455 (s)
CilkPlus elapsed time per particle 0.000294 (s)

 VECTORSIZE TIMECONTAINS R.SPEEDUP TIMESAFETY R.SPEEDUP
TIMEDISTMIN R.SPEEDUP TIMEDISTOUT R.SPEEDUP
 1 3.78496e-07 1 1.07716e-07 1
7.51925e-08 1 2.25414e-07 1
 2 2.58886e-07 2.92403 5.26405e-08 4.09253
8.54105e-08 1.76073 1.86712e-07 2.41456
 4 2.95824e-07 5.11785 4.66705e-08 9.23208
1.27182e-07 2.36487 1.84472e-07 4.88776
 8 3.43968e-07 8.80305 4.78605e-08 18.0051
2.19228e-07 2.7439 3.35336e-07 5.37763
 16 4.63612e-07 13.0625 6.97925e-08 24.6941
4.38452e-07 2.74392 6.32702e-07 5.70036
 32 6.63832e-07 18.2454 9.75405e-08 35.3384
7.90096e-07 3.0454 1.21671e-06 5.92852
 64 1.16048e-06 20.8739 1.28728e-07 53.5535
1.56424e-06 3.07646 2.41882e-06 5.96427
 128 1.54983e-06 31.26 2.11776e-07 65.105
3.08445e-06 3.12037 4.62606e-06 6.23707
 256 2.90885e-06 33.3105 3.9925e-07 69.068
6.12921e-06 3.14058 9.17012e-06 6.29284
 512 5.6094e-06 34.5474 6.99888e-07 78.7995
1.22631e-05 3.13937 1.82339e-05 6.32955

30 | P a g e

 1024 1.14482e-05 33.8552 1.33441e-06 82.6597
2.45009e-05 3.14262 3.633e-05 6.35355
 2048 2.33089e-05 33.256 2.66165e-06 82.8822
4.8965e-05 3.14498 7.27336e-05 6.34712
 4096 4.57848e-05 33.861 5.45109e-06 80.9391
9.78391e-05 3.14791 0.000145978 6.32489
 8192 9.18368e-05 33.7625 1.07172e-05 82.3359
0.000195598 3.1492 0.000296118 6.23601

7 Annex B: Installation script for the Geant Vector
Prototype

#!/bin/bash

Author: Juan José Fumero | July 2013
Email : juan.jose.fumero.alfonso@cern.ch

Parameters of installation
GEANT_DIRECTORY="`pwd`/geant5"
ROOT_DIRECTORY="`pwd`/build/"
ICC_PATH="/opt/envhpc/intel/composerxe"
MODULE="/usr/local/Modules/3.2.9/bin/modulecmd bash"
OUTPUT="testing01 "
##1

module () {
 eval `$MODULE $*`
}

function icc() {
 echo "Compiling with Intel Compiler"
 echo -e "\nBuilding in directory: $OUTPUT \n"
 source $ROOT_DIRECTORY/bin/thisroot.sh
 source $ICC_PATH/bin/compilervars.sh intel64
 export CC=icc
 export CXX=icpc
 dir_build=$OUTPUT
 mkdir $dir_build
 cd $dir_build
 export GEANT_OUTPUT_DIR=$PWD
 #module add vc
 export LDFLAGS="-lrt"
 if [[$1 == "original"]]
 then
 echo -e "\n CMAKE with original version \n"
 cmake -DUSE_ICC=ON -DVECGEOBENCHMARKS=ON -DUSEAVX=ON -
DCMAKE_BUILD_TYPE=Release $GEANT_DIRECTORY
 else
 echo -e "\n CMAKE with original CILKPLUS VERSION \n"

31 | P a g e

 cmake -DUSE_ICC=ON -DUSE_CILK=ON -DUSE_AVX=ON -
DVECGEOBENCHMARKS=ON -DCMAKE_BUILD_TYPE=Release $GEANT_DIRECTORY
 fi
 make
 export LD_LIBRARY_PATH="./lib/":$LD_LIBRARY_PATH
 echo "==================================="
 echo "Configured and compiled"
}

GCC Configuration of Geant Vector Prototype
function gcc() {
 echo "Compiling with GCC"
 echo -e "\nBuilding in directory: $OUTPUT \n"
 source $ROOT_DIRECTORY/bin/thisroot.sh
 echo $MODULEPATH
 #module add cilkplus/4.8
 module add cilkplus/4.8-fixed
 #module add vc
 module add tbb
 dir_build=$OUTPUT
 mkdir $dir_build
 cd $dir_build
 export GEANT_OUTPUT_DIR=$PWD
 export LDFLAGS="-lrt"
 if [[$1 == "original"]]
 then
 cmake -DUSE_GCC=ON -DVECGEOBENCHMARKS=ON -DUSEAVX=ON -
DCMAKE_BUILD_TYPE=Release $GEANT_DIRECTORY
 else
 cmake -DUSE_GCC=ON -DUSE_CILK=ON -DVECGEOBENCHMARKS=ON -
DUSEAVX=ON -DCMAKE_BUILD_TYPE=Release $GEANT_DIRECTORY
 fi
 make
 export LD_LIBRARY_PATH="./lib/":$LD_LIBRARY_PATH
 echo "==================================="
 echo "Configured and compiled"
}

compiler=$1
version=$2

if [[$compiler == "gcc"]]
then
 gcc $version
elif [[$compiler == "icc"]]
then
 icc $version
else
 echo "Usage: ./configure_geant.sh <gcc|icc> [original|cilk]"
fi

32 | P a g e

Acknowledgements

This work was carried out under the CERN openlab summer student program 2013 in
collaboration with Intel, Intel CilkPlus Team. As part of Intel: Laurent Duhem, Jeff Arnorld,
Klaus Dieter Oertel, Georg Zitzlsberger, Hans Pabst, Martyn John Carden, Barry M Tannenbaum,
Pablo Halpern and John Pierer . Also we would like thank Balaji Iver from GCC CilkPlus Team
as well. The Geant Vector Prototype was followed and advised by Sandro Wenzel, Federico
Carminati and John Apostolakis from the Physics Department at CERN.

8 References
[1] Sverre Jarp, Afio Lazzaro, Julien Leduc, Andrzej Nowak, Liviu Valsan. Report on
parallelization of MLfit benchmarch using MPI and MPI. CERN openlab July 2012.

[2] Sverre Jarp, Afio Lazzaro, Andrzej Nowak, Liviu Valsan. Comparison os Software
Technologies for Vectorization and Parallelization. CERN OpenLAB 2012 – Whitepaper.

[3] John L. Hennesy, David A. Patterson. Computer Architecture. Quantitative Approach. Fifth
Edition (The Morgan Kaufmann Series in Computer Architecture Design).

[4] LLVM CilkPlus: http://cilkplus.github.io/

[5] Martyn Corden. Requirements for Vectorizing Loops with #pragma SIMD. Intel Articles 2012.

[6] John Apostolakis, René Brun, Federico Carminati and Andrei Gheata. Rethinking particle
transport in the many-core era towards GEANT 5. J. Phys.: Conf. Ser. 396 022014

[7] Intel® Next Generation Microarchitecture. Codename Haswell: New Processor Innovations.
Intel Developer Forum 2012.

[8] Sverre Jarp, Alo Lazzaro, Julien Leduc, Andrzej Nowak and Felice Pantaleo. Parallelization
of maximum likelihood fits with OpenMP and CUDA. CERN Openlab 2011-009.

[9] Vc Library website: http://code.compeng.uni-frankfurt.de/projects/vc

[10] Sverre Jarp, Alfio Lazzaro, Julian Leduc, Andrzej Nowak, Livio Valsan. Report on
parallelization of MLfit benchmark using OpenMP and MPI. CERN openlab, July 2012.

33 | P a g e

http://code.compeng.uni-frankfurt.de/projects/vc

	Vectorization with Haswell
	and CilkPlus
	August 2013
	Author:
	Fumero Alfonso, Juan José
	Supervisor:
	Nowak, Andrzej
	CERN openlab Summer Student Report 2013

	Project Specification
	Table of Contents
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1 Introduction
	2 Vectorization techniques
	2.1 The Vc Library
	2.2 CilkPlus

	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	3 Evaluation setup and benchmarks
	3.1 Experimental Platforms
	1.1
	1.1
	1.1
	1.1
	1.1 Exploring vector instructions: Matrix Multiplication
	1.1
	3.2
	3.3 CERN MLFit with 500’000 events

	4 CilkPlus evaluation
	4.1 Understanding Vectorization with CilkPlus
	4.2 Geant Vector Prototype
	4.2.1 First approach
	4.2.2 Second approach
	4.2.3 Third and fourth approach
	4.2.4 Fifth approach
	4.2.5 Preliminary results
	4.2.6 Assembly code
	4.2.7 Comparison of Perf (PMU based) statistics
	4.2.8 An improved CilkPlus solution for the Geant Vector Prototype

	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	5 Conclusions
	6 Annex A: How to install the Geant Vector Prototype?
	6.1 ROOT Installation
	6.2 Geant Vector Prototype
	6.3 How to run the Benchmark?
	6.3.1 Example of execution

	7 Annex B: Installation script for the Geant Vector Prototype
	Acknowledgements

	8 References

