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SUMMARY

An increasing demand to develop sustainable solutions and technologies within the aerospace industry and
the extensive amount of data within each engineering discipline of aircraft design, has advanced the devel-
opment of the Multidisciplinary Design Analysis and Optimization (MDAO) technology. Utilizing MDAO in
the aircraft design process allows to obtain an improved design from a holistic point of view by capturing
and including the interactions between different disciplines in the design problem. Currently, MDAO is not
yet widely used in the aerospace industry, as there are several obstacles hindering its full implementation,
especially the generation of considerable computational expense when dealing with large-scale problems.
Therefore, this thesis investigated on how to adjust the MDAO problem formulation with the use of sensitiv-
ity analysis and thus to consequently alleviate the computational expense of MDAO problems. This thesis
achieved to contribute a new approach to the existing literature on how to adjust the MDAO problem for-
mulation by developing and subsequently incorporating a sensitivity analysis tool into the sequencing and
decomposition algorithms of KADMOS (Knowledge-and graph-based Agile Design for Multidisciplinary Op-
timization System), a software that is used within the MDAO formulation phase.

The two methodologies that were created within this thesis develop, evaluate, and incorporate a sensitiv-
ity analysis tool to improve the MDAO problem formulation with the goal to reduce the execution time of the
MDAO problem. The aim of the first methodology is to identify and remove design variables that have a non-
influential effect on the objective by utilizing global sensitivity methods, as these allow to characterize the
input variables on the entire input space. Concurrently, using this method, it was also possible to determine
the key design variables for an aircraft design problem. The second methodology uses local sensitivity meth-
ods, as they only characterize around a single point, to improve the existing sequencing and decomposition
algorithms in KADMOS. The goal is to optimize the execution order and the distribution of disciplines over
various partitions, as the incorporation of sensitivity information into the decomposition algorithms allows
to gather disciplinary tools with low sensitivities in the one partition while collecting disciplinary tools with
high sensitivity in another partition, resulting in reducing the number of necessary iterations. Subsequently,
both methodologies were validated and verified with the use of mathematical problems. A variable complex-
ity problem was used to evaluate that a feedback loop containing low sensitivities will lead to fewer iterations
compared to a feedback loop with higher sensitivities, thus leading to a reduction in computational time.

The methodologies were tested on an aircraft design problem and efficiently demonstrated the identi-
fication and removal of low sensitivity design variables from the problem formulation, with minor impact
on accuracy. However, it was determined that it did not speed up the whole computation time due to the
large computational time associated with performing sensitivity analyses. Anyhow, it was evaluated that
performing sensitivity analysis concurrently on more than one objective variable during the MDAO prob-
lem formulation allowed for time savings and for reduction of the computational cost. Overall, this thesis
demonstrated that although incorporating sensitivity information in the MDAO problem formulation phase
is advantageous, the computational effort to perform the sensitivity analysis may diminish the benefits. To
make the adjustment of the MDAO formulation with sensitivity information a standardized and widely used
procedure, its application has to be further advanced in future, respectively new methodologies could be
developed.
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1
INTRODUCTION

The aerospace industry is facing extensive challenges, as the growing importance of sustainability consider-
ations and the requested reduction of the environmental impact of aviation need to be incorporated into the
design process of novel aircraft configurations. Especially to be emphasized is the planned goal of reducing
carbon dioxide (CO2) by 75%, nitrogen oxide emissions (NOx ) by 90%, noise by 65% until 2050, and to in-
crease fuel efficiency by 2% annually until 2050 [1, 2]. Therefore, significant technological innovations in en-
gine and airframe design are needed and can only be achieved through substantial technical advancements,
like the development of cutting-edge future aircraft configurations and technologies. Subsequently, aircraft
design will become even more complex in the future. Already, current aircraft design represents a highly
intricate and interdisciplinary process where numerous discipline domains need to be considered and incor-
porated simultaneously. The engineering domains, like structure, propulsion, flight control, performance,
weights, and aerodynamics, are mutually interdependent and their integration to obtain a particular aircraft
configuration is a highly iterative process. It requires the continuous optimization by a multidisciplinary sys-
tem approach and involves compromises in each discipline. Consequently, the design goal is, for instance,
to identify all relevant future aircraft configurations and technologies, respective to the projected objective,
and to achieve the most suitable integration of all aerospace engineering disciplines and aircraft components
into, for example, an efficient and sustainable aircraft that complies with all the requirements.

Continuous digitalization of aircraft design has generated an extensive amount of data for each engi-
neering discipline which need to be collected, analyzed, and evaluated, creating a considerable technical
complexity of the aircraft design process. Furthermore, the integration of all relevant data, respective to the
objective, into the design product results in an extreme time- and cost-consuming expense. Therefore, the
aircraft design process has to be made more cost-effective and efficient. The ultimate goal is to shorten the
time to market for new products, variants, or technologies. Consequently, particular emphasis has been
focused on the development of new strategies to generalize and facilitate the aircraft design process. A suc-
cessful approach is using the innovative technology of Multidisciplinary Design Analysis and Optimization
(MDAO) [3–5]. MDAO enables the efficient analysis and optimization of a design that consists of a complex
system where multiple coupled disciplines interact. Additionally, a further goal of the application of MDAO is
the modeling of MDAO workflows which consequently allow the repetitive design and optimization of an air-
craft design system, respectively to comparatively assess different aircraft configurations. MDAO is discussed
below and in Chapter 2. The research project AGILE (Aircraft 3rd Generation MDO for Innovative Collabo-
ration of Heterogeneous Teams of Experts) was established to further enhance the use of MDAO for aircraft
design [6, 7]1. AGILE propagates a collaborative MDAO platform which has been created by experts and or-
ganizations from several countries. Consequently, this facilitates the aircraft design process by, for example,
establishing the formulation of an automated collaborative MDAO workflow. This was further enhanced by
the development of a novel design methodology within MDAO, the “AGILE Paradigm” and the development
of the AGILE Framework. The AGILE Paradigm consists of the knowledge architecture, which supports the
formulation of the design problem and the selection of the most suitable solution strategy, and the collabo-
rative architecture, which focuses on cross-national and cross-organizational integration of design compe-
tencies into MDAO workflows [8]. One of the software developed within the AGILE Framework is KADMOS

1https://www.agile-project.eu/, accessed: 31.08.2022
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2 1. INTRODUCTION

(Knowledge-and graph-based Agile Design for Multidisciplinary Optimization System), using graph-based
analysis for the formulation of an MDAO problem and the MDAO solution strategy. AGILE lead to a 40%-time
reduction for setup and solving of an MDAO problem [8, 9]. The subsequent AGILE 4.0 project automates
the collaborative MDAO workflow further in also digitalizing and incorporating data from various levels of
the aeronautical supply chain, like design, production, certification, and manufacturing2. It thus alleviates
the optimization of the entire life cycle of an airplane. The additional project DEFAINE (Design Exploration
Framework based on AI for froNt-loaded Engineering) provides a technological platform for an advanced de-
sign exploration framework, based on principles of artificial intelligence and machine learning3. The purpose
of DEFAINE is to improve early stages of design solutions and subsequently reduce lead time and costs of air-
craft design. DEFAINE is discussed later in Section 2.1. This thesis aims to contribute to DEFAINE and AGILE
4.0 in introducing a novel approach to consider sensitivity data, obtained from sensitivity analysis, into the
sequencing and decomposition algorithms of KADMOS and also, identify non-influential design variables,
respective to the objective, during the MDAO problem formulation procedure. The purpose of this research
is to determine if this consideration of sensitivity data during the MDAO formulation phase will ensure a
further reduction of MDAO execution time and consequently in lead time and costs of aircraft design.

Despite the benefits of MDAO and the before discussed applications, it is not yet widely utilized in the
aerospace industry, as there are numerous obstacles that need to be resolved [10, 11]. In particular, due to
the increasing complexity of aeronautical systems, MDAO problems tend to become large, have a long setup
time, and a significant computational expense [12].

For a better understanding of the MDAO problem formulation and how it is set up into the MDAO devel-
opment process, refer to Figure 1.1. There are two main phases of the MDAO development process: MDAO
formulation, depicted on the left side of Figure 1.1, and MDAO execution phase, depicted on the right side of
Figure 1.1.

Figure 1.1: Overview of the MDAO development process [13].

To obtain an efficient and easy implementable MDAO problem, MDAO problem formulation needs to be
carefully evaluated, as the formulation plays a key role in reducing the computational time. The first step of
the MDAO problem formulation is to establish a tool repository which contains the tools, like for example the
disciplinary analyses, which are needed to analyze the design. The next step of the formulation is the defini-
tion of the MDAO problem - the relevant design problem, the design variables and constraints, the respective
objective, and the quantities of interest need to be specified. Then, for example, for each disciplinary tool
an input and an output CPACS (Common Parametric Aircraft Configuration Schema) file is formulated which
together constitute the database and subsequently is used to analyze the MDAO problem. The database
of the tool repository is processed using KADMOS (Knowledge-and graph-based Agile Design for Multidis-
ciplinary Optimization System) [11]. Consequently, an MDAO solution strategy, is defined and derives the
formal MDAO model, meaning that it is not executable, of the MDAO system. The solution strategy is iterated
over the MDAO problem until the optimal solution strategy, or MDAO architecture, is derived. The MDAO ar-
chitecture determines how the execution process is coordinated in specifying the interaction between tools
and other elements, like optimizers and convergers.

For this work, the software package KADMOS is utilized for the formulation phase of the MDAO develop-
ment process. A more detailed review of KADMOS and how it is incorporated into this work is outlined in the
next chapter, in Section 2.2 and Figure 2.4. The formulation phase includes sequencing and decomposition
of the MDAO system and affects the execution time of the MDAO system. Sequencing is defined as the de-
termination of the execution order, whereas decomposition is defined as the distribution of the disciplines
over various partitions which can be executed successively or in parallel. Currently, various sequencing and

2https://www.agile4.eu/, accessed: 31.08.2022
3https://www.defaine.eu/, accessed: 17.08.2022
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decomposition algorithms are implemented in KADMOS [14]. The algorithms that are used in KADMOS are
extensively discussed in Section 2.2.2.

This thesis strives to contribute to KADMOS by integrating sensitivity analysis into the MDAO formula-
tion process. For this purpose, this thesis uses two different approaches to use sensitivity data as a tool to
enhance the optimization of the MDAO formulation. Firstly, the use of global sensitivity data will help to
identify design variables of low influence and consequently will speed up the execution time of MDAO by
only considering variables that are influential in respect to the requested objective during the MDAO formu-
lation. Secondly, the consideration of local sensitivity data permits an optimization of the solution strategy,
as the sequencing and partitioning can be improved. Currently, the algorithms that are used in KADMOS, do
not use sensitivity information. Therefore, a focus of this thesis is to enhance these algorithms by implement-
ing sensitivity information into them in order to adjust the MDAO problem formulation. For sequencing, the
consideration of local sensitivity information permits to establish a sequence where the variables with low
sensitivity are placed in the feedback, which may lead to fewer iterations, thus, reducing the computational
time. For decomposition, the incorporation of local sensitivity information helps to collect disciplinary tools
with low sensitivities in the same partition and disciplinary tools with high sensitivities in a different parti-
tion which will result in reducing the number of necessary iterations. Detailed information of how sensitivity
analysis can improve sequencing and decomposition is explained in Section 4.2. Consequently, this thesis
provides a contribution to current scientific literature, research, and enhancement of MDAO as it propagates
a novel approach to include sensitivity information into the algorithms of KADMOS during the MDAO for-
mulation. Hence, this thesis supports the progressive advancement of MDAO for its application within the
aerospace industry and the automation of the development of a collaborative MDAO workflow.

The formulated problem is then passed onto the execution phase (right part of Figure 1.1), where the
system is solved to find the desired result, for example, the optimal design or an DoE.

1.1. RESEARCH QUESTION
The main research question of this thesis is:

To what extent can the MDAO problem formulation be adjusted, in order to reduce the MDAO execu-
tion time, by utilizing sensitivity data to refine the sequencing and decomposition algorithms of KADMOS
and to determine any non-influential variables, in respect to the requested objective?

The main research question is split into two sub-questions:

1. To what extent can the existing sequencing and decomposition algorithms of KADMOS be refined by using
sensitivity analysis in order to improve the MDAO problem formulation?

A goal of this thesis is to improve the sequencing and decomposition algorithms of KADMOS by implement-
ing sensitivity information, in order to optimize the execution order and the partitions. Sensitivity informa-
tion will be used to investigate if a feedback with low sensitivities will lead to fewer iterations until a converged
MDAO solution is reached, compared to a feedback with high sensitivities. In addition, for the decomposi-
tion one could gather disciplinary tools with strong sensitivities in the same partition and at the same time
to collect disciplinary tools with low sensitivities in a different partition. This may minimize the dependency
between the various partitions and can lead to a reduction in iterations.

2. To what extent could the number of design variables be reduced to decrease the computational expense while
still obtaining accurate results with the use of sensitivity analysis?

As the overall MDAO optimization cost strongly depends on the number of design variables, it is favorable to
reduce them in the MDAO problem formulation. Sensitivity data, derived from sensitivity analysis, reveal how
the design variables have an influence on the objective function and the level of coupling between systems.
Consequently, this thesis investigates the application of sensitivity analysis as a method for the reduction of
design space and thus control of the dimensionality of the MDAO problem and strives to identify criteria
when a variable can be removed.



4 1. INTRODUCTION

1.2. RESEARCH OBJECTIVE
The main research objective of this thesis is:

To advise and enable adjustments of the MDAO problem formulation by developing and implementing
a sensitivity analysis tool that generates, evaluates, and incorporates sensitivity information, derived from
local and global sensitivity analysis.

For the execution of the research objective several sub-goals are formulated:

1. Develop:

– A sensitivity analysis tool that will provide the user advice on how to adjust the MDAO problem
formulation

– Two independent methodologies to use sensitivity information during the MDAO problem for-
mulation.

– Methodology 1 will be utilizing global sensitivity methods to identify non-influential design
variables.

– Methodology 2 will be utilizing local sensitivity methods to improve the sequencing and de-
composition algorithms of KADMOS.

– A methodology to assess the influence of the adjusted MDAO problem formulation on the MDAO
execution time and on the accuracy of the obtained results.

2. Test and verify the implemented sensitivity analysis tool:

– Test the full MDAO system formulation and execution process on a theoretical mathematical
problem and on a realistic aircraft design problem.

3. Answer these questions:

– To what extent does the incorporation of sensitivity information into the sequencing and decom-
position algorithms of KADMOS benefit MDAO formulation?

– To what extent can the MDAO problem formulation be adjusted when non-influential design vari-
ables, in respect to the requested objective, are removed?

– How much will both approaches reduce the MDAO execution time?

– To what extent is integrating sensitivity analysis an efficient tool to reduce convergence time of
MDAO?

This thesis will follow the subsequent outline: After the previous introduction chapter, Chapter 2 will
outline the State of the Art for DEFAINE and KADMOS, Chapter 3 will provide a literature review about sen-
sitivity analysis, Chapter 4 the methodology, Chapter 5 the verification and validation, three case studies will
be evaluated in Chapter 6, 7, and 8, and the thesis finishes with Chapter 9 with the conclusion and recom-
mendations.



2
STATE OF THE ART

A description of the DEFAINE project and how this thesis is connected to the initiatives of the project is given
in Section 2.1. Afterwards, Section 2.2. gives an overview of how the software package KADMOS formulates
the MDAO system based on a repository of tools.

2.1. DEFAINE PROJECT
The DEFAINE (Design Exploration Framework based on AI for froNt-loaded Engineering) project provides
an advanced framework for large-scale exploration of aircraft designs, data analyses, and artificial intelli-
gence/machine learning capabilities, and consists of the following innovations4:

• The development of a knowledge-based engineering (KBE) methodology in order to model knowledge,
accelerate design solutions, and provide adjustments during a design study.

• A methodology for the automatic formulation of multidisciplinary design analysis and optimization
workflows.

• A smart, scalable, and cost-efficient computing infrastructure.

• A methodology based on automated data analysis techniques and machine learning algorithms to
identify trends and relations in large sets of design data and support machine-driven knowledge dis-
covery.

Figure 2.1 gives an overview of the DEFAINE project.

Figure 2.1: Overview of the framework for the DEFAINE project4.

3https://www.defaine.eu/, accessed: 17.08.2022

5
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DEFAINE is being developed to address the demands of the aerospace market, such as to reduce recurring
aircraft design costs by 10% and lead times for design updates by 50%3. For example, employing the KADMOS
package within DEFAINE for the automatic reformulation of workflows reduces the set-up/execution time of
design formulations. Simultaneously, increasing the number of advisory capabilities, like, for instance, the
adaptation of MDAO problem formulations based on insights obtained from sensitivity analysis, as discussed
later on in this thesis, will further enhance the set-up/execution time.

This thesis strives to contribute to the DEFAINE project in evaluating a new approach to include sensitivity
information into the workflow formulation, for instance in reducing the number of design variables and in
optimizing the sequencing and decomposition algorithms of KADMOS. This is explained in the introduction
and Chapter 4. Referring to Figure 2.1, the contribution of this thesis is an approach to enhance the workflow
system in the middle of Figure 2.1.

2.2. KADMOS
As this thesis strives to enhance the MDAO formulation process by using sensitivity data to identify non-
influential design variables, but also to incorporate them into the sequencing and decomposition algorithms
of KADMOS, KADMOS is extensively discussed in the subsequent chapter. KADMOS is an open-source Python
software package. It allows to automate the generation of MDAO problem formulations through a graph
based methodological approach [11]. Consequently, this enables to assemble, analyze, adjust, and recon-
figure MDAO computational models easily and flexibly. An indepth and comprehensive formulation of the
model is essential for the system, especially when the model contains a large number of coupled disciplines.
Furthermore, in order to find the optimal design, the MDAO system requires a formal specification, then the
solution strategy is determined, subsequently this formulation is translated into an executable workflow, and
afterwards executed, such as described in the sections below.

The subsequent section provides a definition of the graph syntax and main graph classes utilized in KAD-
MOS. A graph G contains a set of vertices V and a set of edges E: G = (V ,E), where an edge represents a
connection between two vertices [11]. All the graphs in the KADMOS methodology are directed graphs. In
directed graphs, the edge consists of a set of an ordered pair to indicate the edge direction. For undirected
graphs, the edges show the connections between the nodes, but the starting and ending points of the edges
are not defined. KADMOS uses two different types of directed graphs, as illustrated in Figure 2.2, data graphs
and process graphs. A data graph, Figure 2.2a, only consists of function and variable nodes. Function nodes
are executable blocks and variable nodes represent elements from the data schema. In addition, in the data
graph the direction of the edges is depicted. Figure 2.2b shows the process graph consisting of only the func-
tion nodes and their execution order.

(a) Data graph (b) Process graph

Figure 2.2: Example of the data and process graph used in KADMOS [11].

KADMOS enables the combination of data and process graphs to define an MDAO system and to facili-
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tate a convenient visualization of the assembled MDAO system in the form of an eXtended Design Structure
Matrix (XDSM) [15]. An example of an XDSM generated in KADMOS is shown in Figure 2.3. The executable
components of the MDAO system are placed along the diagonal. Iterative components such as the optimizer
and converger have an elliptical shape. Non-iterative components such as disciplinary tools and mathe-
matical relations are represented as rectangles. The grey-colored parallelograms show couplings between
components and white colored parallelograms show system inputs/outputs. The data flow is represented by
the thick grey line, whereas the thin black line and the sequence numbers on each block indicate the process
flow.

Figure 2.3: Example of an eXtended Design Structure Matrix (XDSM).

An overview of the full MDAO development process using KADMOS is illustrated in Figure 2.4. The first
step is to create a tool repository where for each disciplinary tool an input and an output file is formulated
according to a standard XML data schema. For example, the Common Parametric Aircraft Configuration
Schema (CPACS) [16] can be used as an XML data schema definition for the description of an aircraft and
its properties. CPACS represents a standard dictionary consisting of input and output data of disciplinary
analysis tools in conceptual and preliminary aircraft design. Each disciplinary tool in the MDAO system uses
a CPACS file as input and the resulting output is recorded in a new CPACS file. All accumulated corresponding
CPACS files constitute the database that is subsequently used. This created database is then passed on to
KADMOS using a CMDOWS file. CMDOWS is an XML schema and stores the MDAO workflow in a neutral
format so that it can be used by the different applications, such as, for instance, MDAO problem formulation
and MDAO solution strategy [17]. Subsequently, KADMOS evaluates the CPACS input and CPACS output files
– if CPACS was used - and creates a Repository Connectivity Graph (RCG). The RCG is a directed graph and
links all the inputs/outputs of the different tools.

Figure 2.4: Overview of the full MDAO development process.
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Using the RCG, a Fundamental Problem Graph (FPG) is generated. Various steps are performed to create
the FPG, which are illustrated at the bottom of Figure 2.4. The FPG only contains necessary tools and variables
required to solve the MDAO problem. Therefore, the first step of the FPG (2.1 in Figure 2.4) is to remove any
redundant tools and variables. In the next step (2.2), each variable node is assigned to a specific problem role.
The possible problem roles are design variable, constraint, objective, or quantity of interest. All outputs of the
graph need to be assigned to a problem role, otherwise they are considered irrelevant outputs. In addition,
the function nodes need to be categorized into pre-coupling, coupled, and post-coupling functions. Pre-
coupling functions are the first functions in the analysis order and do not incorporate any data feedback, but
only forward data. Coupled functions are defined as a group of functions that consist of having at minimum
one circular dependency. Post-coupling functions are defined as functions that utilize the outputs of the
pre-coupling and coupling functions in order to compute the MDAO model output.

The next steps of the FPG (2.3. and 2.4. in Figure 2.4) are sequencing and decomposition in order to
formulate the execution process of the disciplines. An extensive review of the decomposition and sequencing
process is provided in Section 2.2.2. In the last step of the FPG (2.5 in Figure 2.4) the graph validity is checked
based on strict conditions and all problematic nodes are solved. If nodes in the FPG exhibit issues related
to collisions and circularity, they are called problematic nodes and need to be resolved. Collision is defined
when multiple disciplines have the same output variables. Circularity occurs when the same variable is used
as an input and output within a discipline. Resolving collisions and circularity is achieved in three different
ways: edge removal, node splitting, and node removal [11].

In the last step of KADMOS (step 3 of Figure 2.4), an MDAO architecture is imposed on the FPG and KAD-
MOS creates an MDAO Data Graph (MDG) and an MDAO Process Graph (MPG). An XDSM is used to visualize
the two graphs and they are also saved as a CMDOWS file. Also, the MDG depicts how the data flow among the
different tools and contains all architectural elements, such as optimizers and convergers. The MPG consists
of the execution sequence of all blocks in the architecture. There are various MDAO architectures that can
be applied such as Individual Discipline Feasible (IDF), Multidisciplinary Feasible (MDF), Multidisciplinary
Analysis (MDA), etc.

2.2.1. EXECUTION PHASE OF THE PROBLEM FORMULATION
Once the desired MDAO solution strategy, for instance, an MDF architecture, has been decided, the problem
formulation needs to be executed by creating a workflow. The CMDOWS file of the MDG and MPG is then
communicated to a workflow software which translates it to an executable model as depicted in Figure 2.4
(step 4). In this thesis, the software package OpenMDAO [18] is used to execute the workflow and to solve the
optimization’s problems. OpenMDAO is an open-source platform for system analysis and multidisciplinary
design optimization written in Python. OpenMDAO is not able to directly process the CMDOWS file from
KADMOS, thus the software package OpenLEGO (Open-source Link between AGILE and OpenMDAO) [19] is
used as a link between KADMOS and OpenMDAO.

Another possible software is Remote Component Environment (RCE) [20] which translates the CMDOWS
file through a native plugin. Bruggeman [14] performed a software comparison between OpenMDAO and
RCE on a mathematical problem and concluded that the execution time in RCE is substantially greater than
in OpenMDAO. In addition, the results demonstrated that both software derived the same objective function
for all four architectures that were used.

2.2.2. SEQUENCING AND DECOMPOSITION
As mentioned before, during the generation of the FPG the execution process of the disciplines needs to be
formulated. In the MDAO problem formulation phase, the sequencing and decomposition of the disciplines
play a critical role in order to reduce the convergence time of MDAO systems, as the execution order de-
termines the number of feedback connections. There are two properties that need to be considered: the
execution time of a single iteration and the number of iterations. Subsequently, the total execution time ttot

can be calculated as shown in Equation 2.1:

ttot = ni ter ∗ ti ter (2.1)

where ni ter is the number of iterations and ti ter is the execution time for a single iteration. Decreasing
ni ter can be achieved by reducing the number of feedback connections, whereas ti ter can be reduced with
decomposition.
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SEQUENCING

Sequencing is defined as the determination of the execution order. For a small system containing a few dis-
ciplines and couplings, determining the execution order is a straightforward task. However, for large systems
having numerous connections, finding the best function order is not obvious. The objective of the sequenc-
ing algorithms is to find the sequence that has the lowest number of feedback connections together with the
shortest possible execution time of a single iteration for that number of feedback connections [14].

Figure 2.5 illustrates an example which contains four disciplines, where each discipline contains one out-
put variable and the execution time for each discipline is also depicted in the figure. In Figure 2.5a an initial
order is shown and contains three feedback variables. Disciplines A, B, and D can be executed simultaneously.
Then C is started after discipline A provided the required input. The execution time of one iteration is equal
to four seconds. Thus, the total time for this order is 12 seconds, as the execution time for one iteration is
four seconds and assuming that the number of iterations is equal to three, where the 3 is taken as a numerical
example. Figure 2.5b shows the order when the number of feedback connections is minimized. The system
contains only a single feedback variable. Disciplines D and C are executed in parallel, followed by B and A.
For a single iteration, the execution time is equal to nine seconds. Thus, the total time is nine seconds (ni ter

= 1, ti ter = 9), assuming that now it only takes one iteration, where the 1 is taken as a numerical example. The
order with minimum feedback reduces the total time by three seconds compared to the initial order.

(a) Initial order (b) Optimal order for minimum feedback

Figure 2.5: Example to explain sequencing algorithms.

Currently, there are various sequencing algorithms implemented within KADMOS [14]:

• Branch−and−bound: systematically searches the solution space by repeatedly dividing it into smaller
subspaces using a tree structure.

• Swapping: is an iterative improvement method and aims to improve a given solution by searching for
better solutions in the neighborhood. There are three different swapping methods:

Single−swap: consists of moving a single node to another place in the execution order.

Two−swap: consists of swapping the position of two nodes.

Hybrid−swap: first uses the two-swap method until converged and then uses single-swaps to
refine.

• Brute−force: consists of determining all possible sequences and inspects them separately.

• Genetic algorithm: different orders are created and evaluated based on their fitness, where better orders
have a higher fitness. Solutions with higher fitness are more likely to produce offspring.

A more indepth explanation and validation/verification of all the algorithms is provided by Bruggeman
[14].
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DECOMPOSITION

In addition to the sequencing algorithms, a decomposition algorithm is also implemented in KADMOS. De-
composition is defined as the distribution of the disciplines over various partitions. The goal is to obtain the
best decomposition of the system that balances the required coordination between partitions by minimizing
the couplings between partitions and the execution time of each partition [14].

Figure 2.6 shows an example with three disciplines to illustrate decomposition. Figure 2.6a shows one
partition, where all the disciplines are executed in sequence. If D1, D2, and D3 have an execution time of 4,
4, and 9 seconds, respectively, then the total execution time for a single iteration is 17 seconds. Figure 2.6b
shows the example with two partitions. D1 and D2 form one partition, while D3 forms the second partition.
As the two partitions can be performed in parallel, the total execution time for a single iteration is 9 seconds.
The example demonstrates the importance and benefit of implementing decomposition. However, one also
needs to consider the consequences of partitioning, as an increase in the number of partitions will cause a
reduction in execution time per iteration but the complexity increases which will lead to a greater number of
iterations. Thus, there is a trade-off between the complexity and the number of partitions.

Figure 2.6: Example to illustrate the decomposition process.

KADMOS employs a decomposition method called the Metis-based Decomposition of KADMOS graphs
(MDK). This method uses the Metis graph partitioning algorithm developed by Karypis and Kumar [21]. A
detailed description of the steps for the MDK method is provided by Bruggeman [14].

In this chapter an overview of the DEFAINE project and the software package KADMOS was provided. The
next chapter consists of a literature review about sensitivity analysis.



3
LITERATURE REVIEW

Chapter 3 provides a literature review and outlines the current state of research about sensitivity analysis. Af-
ter the introduction section 3.1, which explains the basic definitions and concepts to use sensitivity analysis,
the subsequent sections provide a detailed review of various sensitivity methods. Section 3.2 describes lo-
cal and global sensitivity analysis, 3.3 One-At-a-Time and Many-At-a-Time sensitivity methods, 3.4 sampling
strategies to obtain samples which contain values that are subsequently utilized in sensitivity analysis, 3.5
outlines the various sensitivity analysis methods which are used in this thesis, while 3.6 describes the soft-
ware used for performing sensitivity analysis. The current research status about sensitivity analysis and its
applications within the MDAO problem formulation in aircraft design is rather limited, available scientific
literature is discussed in the subchapters.

3.1. INTRODUCTION
Designing an aerospace vehicle involves the consideration of an extensive number of input variables, derived
from the mutual interference and/or interaction of multiple coupled disciplines which consequently results
in a considerable computational burden. In order to reduce this computational cost, the most important
variables of the formulated aircraft design problem can be pre-screened before a specific MDAO strategy
is applied. This can be achieved with the use of sensitivity analysis methods. In this subsection, the basic
definitions and concepts of sensitivity analysis are provided.

Sensitivity analysis allows to identify which parameters, or a set of parameters have the most influence on
the model output. Saltelli [22] listed a set of reasons to use sensitivity analysis, as it allows to determine:

• The design variables that contribute the most to the output

• If and which design variables interact with each other

• Non-influential design variables

In addition, it is also important to understand what sensitivity analysis can achieve. In literature, the aim
of applying sensitivity analysis is as follows:

• Ranking, also referred to as factor prioritization, comprises ordering the inputs in terms of their in-
fluence on the model output [23]. The inputs ranked the highest are the most influential parameters
of the model. Information from this type of analysis may be essential to model improvement, as the
most influential parameters become the focus of future evaluations. Figure 3.1a illustrates the effects
of three variables (X1, X2, X3) on the variance of output (V (Y )). V (E(Y |Xi )) shows the variance of Y
when factor Xi is left to vary freely, and all other factors are fixed at their nominal values. In this case,
factor X2 contributes the most to the output Y , hence, should be prioritized. In addition, the sensitivity
indices of the parameters can be ranked from highest to lowest as illustrated in the right plot of Figure
3.1a.

• Screening, also referred to as factor fixing, determines which model inputs have little or no influence on
the model output. This enables to set these inputs to a fixed value. For aircraft design problems which

11
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are comprised of computationally expensive models that have a large number of input parameters,
screening methods can be applied to identify which of these input parameters have the lowest influence
on the outputs [24]. Considering Figure 3.1a again, X1 has the smallest effect to the variability of output
Y , indicating that its value could be fixed in subsequent model executions. Eliminating such non-
influential factors or fixing them to a constant value may aid to reduce model complexity and reduce
unnecessary computational work in subsequent model runs.

• Mapping observes the effect of the inputs on the output. In Figure 3.1b, domain B of the output space Y
represents the group of behavioral model outcomes. Domain B represents the group of non-behavioral
model outcomes resulting from the entire input space X . Mapping is concerned with the process of
tracking which factor values in the input space X produce behavioral model outcomes in the output
space [25].

Figure 3.1: Ranking, screening, and mapping of sensitivity analysis [25].

A careful selection of the sensitivity analysis method must occur, as there is no suitable method compris-
ing all of the three above aims. In this thesis, ranking and screening methods will be used. The next section
explains two broad categories of sensitivity analysis: local and global sensitivity analysis methods.

3.2. LOCAL AND GLOBAL SENSITIVITY ANALYSIS
Sensitivity analysis methods are classified into two main groups [23]:

• Local sensitivity analysis methods evaluate how the outputs of a mathematical model or system change
with respect to variations in a single input variable, thus, around one design point. The input variables
are changed one by one at small increments and the effect of this individual input perturbation on the
model output is determined by using local sensitivity indices.

• Global sensitivity analysis methods evaluate how the model output changes when all input variables
are varied simultaneously over the entire input space. This allows to evaluate the contribution of each
input variable to the model output and additionally the interactions between the inputs.

Due to the low computational cost and ease of implementation of local sensitivity methods, they are
widely used in literature. However, they are only useful if the model is linear. Global methods are more suited
for non-linear models, and they also give indications of each input’s interactions with other input(s).

This distinction between local and global sensitivity methods is relevant for this thesis, as their different
properties and areas of application permit their use for different purposes within this thesis. Global methods
are used to adjust the MDAO problem formulation through the removal of non-influential design variables.
Whereas local methods are applied to change the MDAO problem formulation by using sensitivity informa-
tion within the sequencing and decomposition algorithms.
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3.3. ONE-AT-A-TIME AND MANY-AT-A-TIME SENSITIVITY METHODS

Each sensitivity method requires to evaluate the model using different sets of input values. Thus, sensitivity
methods can also be classified by counting how many input values’ changes occur for each successive model
simulation. The two categories, which can be either local or global sensitivity analysis methods, as outlined
at the end of this chapter, are as follows:

• One-At-a-Time (OAT) methods change only one input per model evaluation.

• Many-At-a-Time (MAT) methods change two or more inputs simultaneously per model evaluation.

Most OAT methods assume a baseline set of input values for which the model is known to converge.
Therefore, altering the value of an input is less likely to cause model evaluation to fail, for example due to
instability or numerical errors. However, the OAT method has some serious limitations, most notably the
difficulty of analyzing non-linear models [26]. Although widely used, OAT methods examine only a small
fraction of the possible parameter space, especially with models containing large number of parameters [27].
For example, for a 12-parameter model, the OAT method examines less than one thousandth of the created
parameter space [28]. Therefore, the simplicity of OAT methods comes at the expense of a more thorough
understanding of the parameter space.

Local methods can only be OAT, whereas global methods can be either OAT or MAT. MAT-based methods
are often more computationally expensive but are preferred for the analysis of non-linear functions because
they explore a larger proportion of parameter space [26].

3.4. SAMPLING STRATEGIES

Often, sensitivity information cannot be computed analytically. Alternately, numerical approximations can
be calculated, which require the generation of input samples and are called sampling. This section provides
a short overview of common sampling strategies that are necessary for sampling-based methods. Sampling-
based methods depend on the relationship between the sampled inputs and their corresponding outputs.

• Random Sampling obtains the values for the inputs with the use of a pseudorandom number generator.
Random sampling does not store the history of previous points, so points may accumulate in some
regions [29]. The problem with obtaining clustered samples is that the model approximation becomes
less reliable in regions further away from this cluster. Therefore, it is recommended to utilize a sampling
strategy that fills the factor space more evenly, such as Latin Hypercube Sampling (LHS).

• The Latin Hypercube Sampling (LHS) method is defined as dividing the input space into a number of
equiprobable regions and then picking random samples from each region [30]. For instance, with a
sample size of four, LHS would ensure that one point is in the 0 to 25th percentile range, one point
between the 25th to 50th percentiles, one between the 50th to 75th percentiles, and one in the 75th
to 100th percentile range. This ensures that the full range of values gets coverage and avoids random
clumping. In addition, LHS also leads to a faster convergence than random sampling [30].

• The Sobol Sequence is a quasi-random method that generally results in more stable estimates compared
to random sampling [31]. Quasi-random sequences guarantee that the samples fill the space more
evenly than uncorrelated random samples [32]. As a result, quasi-random sequences need fewer model
evaluations for convergence compared to random sampling [33].

3.5. REVIEW OF SENSITIVITY METHODS

In this section, a detailed review of the sensitivity analysis methods that are used in this thesis is provided.
Table 3.1 shows a summary of the implemented methods in this thesis and provides information including
whether they are global or local methods, detect interactions between factors, their capability to handle non-
linearities in the model, their computational cost, and aim(s).
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Table 3.1: Summary of sensitivity analysis methods covered in this thesis including whether they are global or local methods, detect
interactions between factors, capability to handle non-linearities in the model, the computational cost, and aim(s).

Method Type Interactions Non-linearities Cost Evaluation Aim
Morris Global Yes Yes Medium OAT Screen
Sobol Global Yes Yes High MAT Rank, Screen
FAST/eFAST Global Yes Yes High MAT Rank, Screen
Local-derivative Local No No Low OAT Rank

3.5.1. MORRIS METHOD
The Morris method [34] is a global sensitivity method, screening method and is based on a repetition of a
set of randomized OAT design experiments. The Morris method investigates how the output responds to a
change in the inputs by varying one input at a time.

The steps for the Morris method are:

• The first step is to sample a set of starting values with a defined range for all input variables and then
calculate the model output.

• The next step is to change the value of one input variable while all the other input variables remain
at the starting values and then determine the resulting change in the model output compared to the
model output that was obtained in the first step.

• Subsequently, the value of another input variable is changed while the previous input is kept at its
previously changed value and the other input variables are kept at the starting values. This process is
repeated until all input variables are changed.

• The Morris method approximates the derivative by using finite difference. With this method, each input
is associated to an elementary effect EEi , that is defined as the ratio between the variation in the model
output and the variation in the model input. The elementary effect, EEi of the i th input is as follows:

EEi = f (X1, X2, ..., Xi +∆, ..., Xn)− f (X1, X2, ..., Xi , ..., Xn)

∆
(3.1)

where X1, X2, ..., Xi are the model inputs and ∆ is the step-size. Morris [34] recommended a value of
∆= k/(2(k−1), where k is the number of inputs, which ensures a good coverage of the input space with
few trajectories.

• This procedure is repeated using different trajectory design r times where at each time a different set
of starting value is used. Generally, r is chosen to be between 4 and 10 [35]. The number of model
evaluations is determined by r (k +1).

After obtaining the elementary effects, the sensitivity indices are determined as follows:

µ∗
i =

∑r
k=1 |EE k

i |
r

(3.2)

σi =
[∑r

k=1(EE k
i −µi )2

r −1

]1/2

(3.3)

where µ j is the mean of the absolute value of the elementary effects and σ j is the standard deviation of
the elementary effects. The larger the value of µ∗

i , the more the i th input influences the model output. On
the other hand, the higher the σi value, the more non-linear the input is or the more it interacts with other
inputs, while a low σi indicates a linear, additive input.

The main advantage of the Morris method is the low computational expense as it requires only about
one model evaluation for each elementary effect per replication. However, a disadvantage is that the Morris
method is not able to distinguish between the effects caused by non-linearity and by the interactions with
other input factors.

In literature, Brevault et al. [24] used the Morris method on a multidisciplinary design of a space launch
vehicle and were able to identify non-influential design parameters. In addition, it was concluded that the
Morris method is more robust to sample sizing and has a lower computational cost than compared to the
Sobol method.
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VISUALIZATION OF THE MORRIS METHOD

The Morris method has its own visualization. The Morris plot is the mean absolute value of the base effect µ∗
plotted against the standard deviation σ of the base effect. This provides a visual representation of an input’s
ranking, which is shown on the µ axis. The interaction with other variables is shown on the σ axis. If a point
is at the lower left corner of the plot, then that indicates that it has little effect on the model output and few
interactions with other factors. Whereas, if a point is at the upper right corner of the plot, then it shows a large
influence on the output and has presence of interactions with other factors. Figure 3.2 shows an example of
the Morris plot for four inputs (X1, X2, X3, X4).

Figure 3.2: Example of the Morris plot.

3.5.2. SOBOL METHOD
In the following two sections, two commonly used ANalysis Of VAriance (ANOVA) methods are discussed, the
Sobol and the FAST method. The ANOVA method is a global sensitivity method and is a variance decomposi-
tion method that consists in the decomposition of the variance of the output into a sum of contributions due
to the input factors and their interactions [24], as shown in Figure 3.3. The results of the sensitivity analysis
allow to rank the model inputs (factors), where the objective is to determine which factors are non-influential
and may be set to a constant value without substantially affecting the results.

Figure 3.3: Apportioning output variance for ANOVA methods.

The first of these ANOVA methods, which is discussed subsequently, is the Sobol method [36, 37]. The
Sobol sensitivity indices are described in terms of conditional variances [38]. For example, first-order index
Si measures the direct contribution of each input factor to the output variance and is defined as:

Si =
VXi (EX∼i (Y |Xi ))

V (Y )
(3.4)

where V is the variance, Xi are all model inputs, E is the expected value, and Y is the model output.
Homma and Saltelli [39] introduced the total-order indices ST i , or known as total effects which allow to mea-
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sure the part of output variance explained by all the effects in which it plays a role. The equation for ST i

is:

STi =
EX∼i (VXi (Y |X∼i ))

V (Y )
(3.5)

An input is non-influential when the total-order index of that input is zero. Thus, ST i is used for factor
screening. First-order indices are typically used for ranking, particularly when the interaction with other
inputs does not have a significant effect on the output variance.

There are two major steps in order to compute the Sobol indices. The first step is to apply one of the
sampling strategies discussed in Section 2.5.3. It was determined that quasi-random methods such as the
Sobol Sequence are more efficient for calculating the total-order Sobol indices compared to random sampling
or LHS [40]. The second step is to compute the Sobol indices, ST i and Si by using the samples created from
the sampling strategy. There exist several different algorithms to calculate these indices, however the Sobol’s
approach is most commonly used [40].

The Sobol method is used throughout literature and in the aerospace industry. Duler et al. [41] performed
a sensitivity analysis based on the Sobol indices on a hybrid-electric aircraft powertrain and successfully iden-
tified non-influential performance parameters. Tremolet et al. [42] used the Sobol method on a multidisci-
plinary optimization of a blended wing body configurations and were able to determine the most influential
design variables with regard to minimizing the fuel weight.

3.5.3. FAST AND EFAST METHOD

The Fourier Amplitude Sensitivity Test (FAST) is another ANOVA method. The theory of FAST was first in-
troduced by Cukier et al. [43]. FAST uses a periodic sampling approach and Fourier series expansions to
decompose the variance of a model output into partial variances, contributed by different model parameters
[44]. FAST is more efficient to calculate the sensitivities compared to other variance-based global sensitivity
analysis methods, such as the Sobol method, as it computes all indices in one set of model evaluations [26].

An improved method developed from FAST is the extended-Fourier Amplitude Sensitivity Test (e-FAST)
[45]. The advantage of e-FAST over the classical FAST is the ability to compute both the first order and the
total order sensitivity of each input parameter.

The main advantage of variance-based sensitivity analyses, such as FAST and Sobol methods, is that they
are easy to implement and interpret. However, the computational cost to evaluate all the sensitivity indices
is excessively high, as the number of indices grows in an exponential way with the number of input variables
(e.g. 2k−1, where k is the number of input variables) [46]. This leads to a drawback that in order to obtain
sufficient accuracy of the sensitivity indices, a large number of model evaluations is required. In the case of
complex models, such as an aircraft design, where the number of inputs is large, using quantitative methods
could become unfeasible. An alternative method to overcome this problem are the screening methods, such
as the Morris method.

Park et al. [47] used the e-FAST method to determine the global sensitivities on an aero-structural design
optimization of a light-jet aircraft wing. The MDAO problem was formulated with two disciplines: an aero-
dynamic solver using the panel method and a structural solver using a finite element ANSYS model and the
objective function was to maximize the lift-to-drag ratio. Utilizing the e-FAST method successfully reduced
the number of design variables which lead to a reduction of the number of iterations by 33.55%, compared to
with the case when considering all design variables.

VISUALIZATION OF THE ANOVA METHODS

The sensitivity indices for the ANOVA methods are commonly visualized with a barplot but could also be
presented in a table. Figure 3.4 shows an example of a double barplot for the total-order (ST i ) and first-order
(Si ) Sobol sensitivity indices.
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Figure 3.4: Example of the visualization of the sensitivity indices for the ANOVA methods.

3.5.4. DERIVATIVE-BASED LOCAL SENSITIVITIES

The second category of sensitivity analyses are the local sensitivity methods. As stated before, these methods
evaluate how the model output changes relative to the change of a single parameter value. The simplest
approach to compute sensitivities is with the finite-difference method. The equation for the finite difference
is derived by truncating a Taylor Series expanded over a given point x. For instance, for a function f with one
variable x (Figure 3.5), the forward-difference approximation of the first derivative is derived by expanding
f(x+h),

f (x +h) = f (x)+h f ′(x)+ h2

2!
f ′′(x)+ h3

3!
f ′′′(x)+ ... (3.6)

Solving for the first derivative ( f ′), the finite difference equation is obtained

f ′(x) = f (x +h)− f (x)

h
+ϑ(h) (3.7)

where h is the finite-difference interval and ϑ(h) is the truncation error. The second order approximation
is obtained by using the expansion of f(x-h),

f (x −h) = f (x)−h f ′(x)+ h2

2!
f ′′(x)− h3

3!
f ′′′(x)+ ... (3.8)

and then subtracting it from Equation 3.6. The resulting derivative of f ’, results in the central-difference
formula,

f ′(x) = f (x +h)− f (x −h)

2h
+ϑ(h2) (3.9)

Figure 3.5: Finite-difference intervals [48].
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When the function has several variables, x becomes a vector, and the application of Equation 3.7 will
require the calculation of each component of the gradient ∇ f (x) by perturbating the corresponding vari-
able. This leads to a high cost for calculating the sensitivities using the finite-difference method for large
scale problems, as it is proportional to the number of design variables and f needs to be computed for each
perturbation of xi [49].

Another main disadvantage of the finite-difference method is the level of accuracy of its sensitivity results
which is influenced by the step size. The choice of the step size contributes to three different types of errors:
truncation error, condition error, and subtractive cancellation [50]. The truncation error is defined as the dif-
ference between the exact result and the computed result of a perturbated function. The truncation error is
the neglected terms in the finite-difference equation (ϑ(h)) and amplifies with increased step size. The con-
dition error is related to numerical noise and generally decreases with increased step size. With decreasing
values of the finite-difference interval h, the perturbated value will match the reference value and will lead
to subtractive cancellation. For very small values of h, all the digits of the perturbated value will be equal to
the reference value, leading to a derivative of zero. The choice of step size encounters the dilemma that it is
favorable to select a small step size to minimize the truncation error but at the same time avoiding using such
a small step size that the subtractive cancellation becomes dominant.

Currently, finite-difference methods are widely used due to ease of implementation and as they allow to
calculate the sensitivities when the computational model is a black box. The main limitation is that they eval-
uate the parameters one at a time and do not allow for the evaluation of simultaneous changes in all model
parameters. Furthermore, the interaction between parameters cannot be evaluated using a local sensitivity
analysis. Thus, local sensitivity analysis is more suited to determine the sensitivities on a single discipline.
Therefore, for MDAO systems with various coupled disciplines global sensitivity methods should be used.

3.6. SOFTWARE FOR PERFORMING SENSITIVITY ANALYSIS
In conclusion, three global sensitivity methods were implemented in this thesis: Sobol, FAST, and Mor-
ris methods and one local sensitivity method: the finite-difference method. The three global methods are
well established in literature; thus, an external software package called SAlib (Sensitivity Analysis Library in
Python) [51, 52] was utilized. SAlib contains Python implementations of commonly used sensitivity analysis
methods, including Sobol, FAST, and Morris methods. SALib allows to have a decoupled workflow, as SALib
does not directly interface with the computational model. A typical sensitivity analysis using SALib consists
of the following steps:

1. Determine the inputs of the model and their bounds.

2. Run a sampling strategy to generate model inputs.

3. Evaluate the model using the generated input and save the model output.

4. Run a sensitivity method on the outputs to calculate the sensitivity indices.



4
METHODOLOGY

The main goal of this thesis is to implement sensitivity information, obtained by conducting sensitivity anal-
ysis, into the MDAO problem formulation which subsequently is adjusted and optimized. Furthermore, it
will be evaluated if considering sensitivity information during MDAO formulation leads to a time reduction
for MDAO execution. Two independent methodologies were developed to perform these investigations. The
aim of the first methodology is to identify design variables that have a non-influential effect on the objective
by utilizing global sensitivity methods, as they allow to characterize the input variables on the entire input
space. The goal of the second methodology is to use a local sensitivity method to improve the sequencing
and decomposition algorithms because local sensitivity methods only characterize around a single point.

4.1. METHODOLOGY 1: IDENTIFY NON-INFLUENTIAL DESIGN VARIABLES
An overview of the steps performed in the first methodology is illustrated in Figure 4.1. The MDAO work-
flow is divided into four main phases: initial formulation, formulation analysis, formulation adjustment, and
execution. A detailed review of each phase is provided in the subsequent sub-sections. The development
of these steps does not provide an indicative time breakdown of the whole process, respectively some time
estimation for certain steps/phases. These will be obtained later on during the case studies when a specific
design is being evaluated.

Figure 4.1: Overview of the steps performed in the first methodology where non-influential design
variables are identified.
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4.1.1. PHASE 1: INITIAL FORMULATION

The first phase consists of creating an initial MDAO problem formulation using KADMOS. The generation of
the MDAO formulation follows the same steps as described in Section 2.2 and creates the KADMOS graphs:
RCG, FPG, and MDG/MPG. For the MDG/MPG an MDA architecture is applied, as later in the second phase
the problem needs to be solved numerous times in order to perform the sensitivity analysis.

4.1.2. PHASE 2: ANALYZE PROBLEM

The second phase consists of analyzing the problem with the use of global sensitivity analysis. In order to
achieve this, a sensitivity analysis tool was developed in Python which uses the library SALib for the Morris,
Sobol, and FAST sensitivity methods. In Figure 4.1, the first step of the sensitivity analysis tool (2.1.) is to
advise the user which sensitivity method is the most suitable for the given problem. The tool contains func-
tions that print a detailed description on how each method works and what requirements are necessary. In
addition, each method has different characteristics in terms of computational cost and accuracy. Thus, an
advisory capability is implemented which calculates the number of required problem evaluations. Table 4.1
shows an overview of how the required number of runs is calculated and the accuracy of each method.

Table 4.1: Overview of the required number of problem evaluations for each sensitivity method, where k is the number of design
variables, n is the minimum number of model evaluations for estimating one individual effect, Ns is the number of samples per

parameter, NR is the re-sampling size, and r is the number of trajectories.

Method
Required number of

problem evaluations [34, 53, 54]
Accuracy

Sobol n(2k +2) high
FAST Ns ∗k ∗NR highest

Morris r (k +1) least

In Table 4.1 k is the number of design variables. The smallest sample size for the Sobol method depends
on the minimum number of model evaluations for estimating one individual effect (n) and takes the value of
16, 32, or 64 [53]. The number of model evaluations for the FAST method depends on the number of samples
per parameter (Ns ) and the re-sampling size (NR ). The minimum value for Ns is 65 [54]. The smallest sample
size for the Morris method depends on the number of trajectories (r ) and is usually taken between 5 and 15
[34]. For instance, a problem with 10 design variables would require 352 model evaluations using the Sobol
method (n = 16, k = 10). Hence, if a single model evaluation takes a long time, then obtaining the sensitivity
information is a costly process.

For each method there is a trade-off between computational cost and accuracy. The FAST method is the
most accurate, however, it requires significant more numbers of problem evaluations. The Morris method
is the least computational expensive, however, it also has the least accuracy. In general, for all sensitivity
methods the number of model evaluations increases with the number of design variables. The developed
sensitivity analysis tool outputs such a table with the computed number of required problem evaluations
for the given problem. However, the user still needs to choose which sensitivity method to use, as it is very
problem dependent.

After the user determines which sensitivity method to use, the next step in the workflow (2.2. in Figure 4.1)
is to apply a sampling strategy. All implemented sensitivity methods are sampling-based methods, which rely
on the relationship between the sampled inputs and their corresponding outputs. Each sensitivity technique
requires the computation of the quantity of interest of the model using different sets of input values. An
overview of the sampling strategies for each method is shown in Table 4.2 and was described in Section 3.4.

Table 4.2: Overview of the sampling method for each sensitivity method.

Method Sampling method
Sobol Sobol Sequence
FAST Latin Hypercube Sampling (LHS)

Morris Latin Hypercube Sampling (LHS)

The computation of the Sobol sensitivity indices needs the input sample generated by the Sobol sequence
[37]. Helton et al. [55] compared the sensitivity analysis results obtained by different sampling strategies and
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they recommended the LHS compared to the random sampling for the analysis of complex systems with
small sample sizes. Thus, both the FAST and Morris methods will use the LHS.

A requirement for the sampling methods is the number of design variables and their lower and upper
bounds which are received from the MDG/MPG CMDOWS file in the first phase of the workflow. The sensi-
tivity analysis tool then automatically creates the sampling and generates an XML file containing the input
values for every problem evaluation.

The next step (2.3. in Figure 4.1) is to execute and solve the problem. Utilizing the OpenLEGO and Open-
MDAO, the problem is solved as a Multidisciplinary Analysis (MDA) with the generated input files and the
outputs saved to an XML file.

Using the set of inputs and the corresponding outputs allows to perform the sensitivity analysis and cal-
culate the sensitivity indices (2.4. in Figure 4.1). The sensitivity analysis is performed automatically and does
not require any input from the user.

The last step (2.5. in Figure 4.1) is to generate visualizations of the results in the form of a Morris plot
(Section 3.5.1) or barplot (Section 3.5.3) and to interpret the results. For the Sobol and FAST methods it applies
that if a design variable has a total sensitivity index of less than 1% or 5% of the variance in the output, then
that variable is non-influential, according to advice from literature [56]. For the Morris method there is no
fixed threshold value; however, a threshold is usually set as 5-10% of the maximum µ∗ value [56].

4.1.3. PHASE 3: FORMULATION ADJUSTMENT AND PHASE 4: EXECUTION
In the third phase of the first methodology, the MDAO problem formulation is adjusted according to the
sensitivity information obtained in the previous phase. The FPG is updated such that the problem role of the
non-influential design variables is removed and set to a constant value. In phase 4 the workflow is executed,
and a full optimization is performed with OpenMDAO.

4.2. METHODOLOGY 2: SEQUENCING AND DECOMPOSITION WITH USE OF

SENSITIVITY INFORMATION
As stated before, the second methodology was developed with the aim to improve the existing sequencing
and decomposition algorithms in KADMOS. As mentioned in Section 2.2.2, the original goal of sequencing
was to find the lowest number of feedback variables and the shortest possible execution time of a single
iteration for that number of feedback variables. Instead of using the number of feedback variables, local
sensitivity information can be used. The hypothesis is that if the sensitivity in the feedback is lower, then the
expectation is that the number of iterations is reduced. Fewer iterations will lead to a lower execution time.
For instance, a sequence with two feedback variables that both have a low sensitivity can have a lower number
of iterations than a sequence with one variable that has a high sensitivity. Thus, the goal is to determine a
sequence where the variables with a low sensitivity are placed in the feedback. In order to further explain this
concept, consider the example illustrated in Figure 4.2. The example consists of four disciplines (A, B, C, D)
where each discipline has a single output, and the corresponding sensitivity information is illustrated.

Figure 4.2: Example problem consisting of four disciplines with the corresponding sensitivity
information.

The left-hand side of Figure 4.3 shows the solution for the minimum number of feedback and has only a
single feedback connection (y A). The right-hand side of Figure 4.3 depicts the sequence where the variables

that have the lowest sensitivity are placed as feedback connections ( ∂y A
∂yC

, ∂yB
∂yD

). ∂yC
∂y A

, has the highest sensitivity
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and becomes a feedforward variable. The improved sequence may require less iterations, thus be a more
computational efficient sequence, even though it now has two feedback variables instead of one. A downside
is that the figure on the left will have a shorter execution time per iteration than the figure on the right. A
shorter runtime can lead to a shorter execution time even when the number of iterations is increased.

(a) Sequence for minimum number of
feedback variables

(b) Sequence obtained when considering sensitivity of
feedback variables

Figure 4.3: Comparison of the sequencing solution for the two different methods.

Incorporating sensitivity information can also be beneficial in the decomposition process. The goal is to
gather disciplinary tools with strong sensitivities in the same partition and at the same time to collect disci-
plinary tools with low sensitivities in a different partition. This allows to minimize the dependency between
the various partitions which again can lead to a reduction in iterations.

An overview of methodology 2 is illustrated in Figure 4.4. When creating the FPG two new steps are intro-
duced: 2.3: perform local sensitivity analysis and 2.4: create a coupling dictionary. A detailed description of
the two new steps is given in the following sub-sections.

Figure 4.4: Overview of the workflow for implementing sensitivity analysis within the sequencing and
decomposition algorithms.

4.2.1. PERFORMING SENSITIVITY ANALYSIS

The main difference to the previously described methodology is that the sensitivity analysis is performed on
a local level. Instead of investigating how influential the design variables are on the whole system, here a
sensitivity analysis on each tool is performed. This allows to obtain information to what extend each input of
the tool affects the output of the tool. A finite-difference sensitivity method is used to generate the sensitivity
information and allows to calculate the partial derivative of the output with respect to the input. The finite-
difference method was chosen due to the ease of implementation and the ability to compute the sensitivities
when the disciplinary tool is a black box.
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4.2.2. CREATING A COUPLING DICTIONARY
The existing sequencing and decomposition algorithms in KADMOS require a coupling dictionary as an in-
put to determine the number of feedback variables or to determine the sensitivity of the feedback connec-
tions. The coupling dictionary indicates from which function nodes the input and the number of variables
is obtained. Using the example problem (Figure 4.2), Figure 4.5a shows the original coupling dictionary. For
instance, discipline A has one coupling variable from discipline B and one from discipline C. Instead of using
the number of coupling variables, the modified coupling dictionary contains the sensitivity information and
is shown in Figure 4.5b.

Figure 4.5: Coupling dictionary for the example problem as shown in Figure 4.2.

The modified coupling dictionary is then passed as an input to the existing sequencing and decomposi-
tion algorithms. As discussed in Section 2.2.2 there are various sequencing algorithms. To further illustrate
how the sensitivity information is used, a branch-and-bound algorithm is applied to the example problem
(Figure 4.2) and is shown in Figure 4.6. This algorithm systematically explores the solution space by repeat-
edly dividing it into smaller subspaces using a tree structure. In the first step, the solution space is split into
four branches by fixing the first node of the sequence. For each branch, the bound is calculated by determin-
ing the sensitivity value and the execution time. For instance, discipline A obtains an input from discipline B
and C whose sensitivities are 0.40 and 0.08 respectively. If A is placed first, the sensitivities are added together
and the bound becomes (0.48, 1). The 1 in (0.48, 1) stands for the execution time of discipline A. After com-
puting the branches, it was determined that the branch with D placed first is the most promising, as it has the
lowest sensitivity value. Therefore, this branch is explored further, and the bounds are again calculated. The
most promising branch is selected, and the process is repeated until a global optimum is determined.

After performing the algorithm, it was determined that the sequence D, B, A, and C has the lowest sensi-
tivity in the feedback. The sequence is shown in Figure 4.7. The solution contains only a single feedback with
the lowest sensitivity.

Figure 4.6: Overview of the branch-and-bound algorithm applied to the example problem when
using sensitivity information.
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Figure 4.7: Final sequence obtained by the branch-and-bound algorithm using sensitivity
information.

In this chapter, a detailed description of the two implemented methodologies was given. In the next
chapter, the methodologies are verified and validated with the use of mathematical problems.
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VERIFICATION & VALIDATION

After the implementation of the two methodologies, they were verified and validated. Verification is a qual-
ity control process and used to evaluate whether the developed methodologies are suitable for the research
topic; while validation is a quality assurance process and proves that the outcomes are true and are based on
strong evidence.

5.1. VERIFICATION AND VALIDATION OF THE SENSITIVITY METHODS
The implemented global sensitivity methods were verified and validated on a mathematical function. The
Ishigami function is commonly used as a test function to benchmark, as it exhibits strong non-linearity and
non-monotonicity [57]. The function is defined as follows:

f (x) = si n(x1)+asi n2(x2)+bx4
3 si n(x1) (5.1)

where x j are the input factors that are uniformly distributed: −π ≤ x j ≤ π, j = 1,2,3. The variables a and
b are set to constant values of 7.0 and 0.1 respectively. The first-order and total-order sensitivity indices
can be calculated analytically. Table 5.1 and 5.2 show the comparison between the analytical values and
the calculated sensitivity indices from the Sobol and FAST method, respectively. The main peculiarity of
the function is the dependence on x3, as the first-order sensitivity index is equal to zero, but the total-order
cannot be neglected. All of the obtained results agree with the analytical values. The greatest percentage
difference is obtained for the total-order index of x3 for both methods. Overall, the FAST method is more
accurate than the Sobol method. In addition, the Morris method was also tested on the Ishigami function, and
the results are shown in Table 5.3. As the Morris method is a screening method and not a ranking method, the
results cannot be compared directly to the analytical values. However, µ∗ and the total-order index quantify
the same information as both are used for factor screening. Comparing the results of the Morris method and
the analytical total-order indices, the parameters (x1, x2, and x3) are ordered in the same way.

Table 5.1: Comparison between the Sobol sensitivity indices and the analytical values.

Parameter
First-order index

analytical
First-order Sobol

index
Total-order index

analytical
Total-order Sobol

index
x1 0.3138 0.3104 (1.08%) 0.5574 0.5556 (2.67%)
x2 0.4424 0.4437 (0.29%) 0.4424 0.4535 (2.47%)
x3 0.0 0.0122 (-%) 0.2436 0.2506 (2.83%)

Table 5.2: Comparison between the FAST sensitivity indices and the analytical values.

Parameter
First-order index

analytical
First-order FAST

index
Total-order index

analytical
Total-order FAST

index
x1 0.3138 0.3168 (0.95%) 0.5574 0.5558 (0.29%)
x2 0.4424 0.4426 (0.05%) 0.4424 0.4419 (0.11%)
x3 0.0 0.0 (0%) 0.2436 0.2392 (1.82%)

25
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Table 5.3: Results of the Morris method for the Ishigami function.

Parameter µ∗ σ

x1 7.8750 7.8747
x2 7.6703 6.2404
x3 6.2406 8.8306

5.2. VERIFICATION AND VALIDATION OF THE SEQUENCING AND DECOMPOSI-
TION PROCESS

In order to test the utilization of sensitivity information for the sequencing and decomposition process, it
was tested on a scalable mathematical problem, called the variable complexity problem [58]. The variable
complexity problem allows to generate numerous MDAO problems with arbitrary complexity by specifying
its changeable parameters. The changeable parameters in the variable complexity problem are [58]:

• the number of disciplines

• the number of global variables

• the number of local variables

• the number of coupling variables

• the number of local constraints

• the number of global constraints

• the execution time of the disciplines

The optimization problem of the variable complexity problem is defined as follows:

minimize f (x0,x,y)

with respect to x0,x

subject to c(x0,x,y) ≤ 0

(5.2)

where f is the objective that is minimized, x0 are the global design variables, x are the local design variables,
y are the coupling variables, and c are the constraint values. An equation is created to represent the analysis
of discipline i in the variable complexity problem as follows:

Bi i yi =−Ci x0 −Di xi −
N∑

j=1, j ̸=0
Bi j y j (5.3)

where Bi j , Ci , and Di are a coefficient matrix. The Bi j matrix shows how each coupling variable influ-
ences the other coupling variables. The Ci and Di matrices show the influence of the global and local design
variables on the coupling variables. The values for the Bi j , Ci , and Di matrices are generated randomly.

The objective of the variable complexity problem is defined as:

f =
(

nx 0∑
i=0

x0i +
N∑

i=1

nx i∑
j=1

xi j +
N∑

i=1

ny i∑
j=1

yi j

)3

(5.4)

The second developed methodology (Section 4.2) was tested on a variable complexity problem with the
chosen parameters shown in Table 5.4. In addition, Figure 5.1 shows the repository connectivity graph that
contains all the connections for the given problem.

Table 5.4: Chosen parameters for the variable complexity problem.

Number of disciplines 5
Number of global design variables 1
Number of local design variables [1, 2, 2, 1, 3]
Number of coupling variables [2, 1, 3, 1, 4]
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Figure 5.1: The repository connectivity graph of a variable complexity problem.

A local sensitivity analysis using the finite-difference method was performed on the problem and Table
5.5 shows the sensitivity values for the first discipline D1. As the disciplines only contain mathematical equa-
tions, the derivatives were also computed analytically to check that the finite-difference method is working
correctly. From the sensitivity values a coupling dictionary was created. For example, for D1 it is as follows:

D1 : {D3 : 0.2409,D4 : 0.1945,D5 =−0.1499}

Table 5.5: Comparison between the analytical values and sensitivity values using the finite-difference method for the first discipline
(D1).

Variable Analytical value Sensitivity value
∂y1_1
∂y3_3

0.15 0.15
∂y1_1
∂y4_1

0.15 0.15
∂y1_1
∂y5_2

-0.10 -0.10
∂y1_1
∂y5_3

-0.25 -0.25
∂y1_1
∂y5_4

0.20 0.20
∂y1_2
∂y3_3

0.0909 0.0909
∂y1_2
∂y4_1

0.0454 0.0454
∂y1_2
∂y5_2

0.0454 0.0454
∂y1_2
∂y5_3

-0.2272 -0.2272
∂y1_2
∂y5_4

0.1818 0.1818

After applying a branch-and-bound sequencing algorithm and the MDK decomposition algorithm with
two partitions on the problem, the fundamental problem graph is created. The generated graph is shown on
the right side of Figure 5.2. In addition, the left side of Figure 5.2 shows the original implementation of the
sequencing and decomposition process with the goal to minimize the number of feedback connections. Both
FPGs have the same partitioning, as the disciplines D2 and D3 are grouped together and the disciplines D1,
D5, and D4 are placed together. The main difference is the sequence of the second partition, as the order of
the disciplinary tools is D5, D4, and D1 compared to D1, D5, and D4.
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Figure 5.2: Left: FPG with the number minimum number of feedback connections, Right: FPG with
sensitivity analysis.

An MDA to be converged is applied to both problem formulations and the XDSMs are shown in the Ap-
pendix A.1 and A.2. The created problem formulation is then passed onto the workflow software OpenMDAO
in order to solve the problem and the results are shown in Table 5.6. For the implementation with the min-
imum number of feedback, solving the problem took 10 iterations, whereas the implementation with the
sensitivity information took 9 iterations. The developed methodology reduced the number of iterations from
10 to 9 for the given problem.

Table 5.6: Comparison of the results of the optimization between the minimum number of feedback implementation and the
implementation with sensitivity information.

Minimum number of
feedback

Implementation with sensitivity
information

Number of coupling
variables in feedback

8 11

Minimum objective 0.11206 0.11206
Number of iterations 10 9

After testing the developed methodology, the next step is to perform a verification and validation by com-
paring the results to analytical values and using a brute-force algorithm. As mentioned in Section 2.2.2, the
brute-force algorithms determine all possible sequences and partitions. For the verification and validation,
the variable complexity problem is again used with different inputs. The problem now consists of four disci-
plines with seven coupling variables. An overview of the RCG for the problem is given in Figure 5.3.

Figure 5.3: RCG of the variable complexity problem with four disciplines used for the verification and
validation.
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First, the sequencing algorithms were verified and validated. The problem consists of four disciplines,
thus, there are 24 different possible sequences. For each of the possible sequences, the sensitivity values
in the feedback were evaluated and results are shown in Table 5.7. As mentioned before, the goal of the
improved sequencing algorithm is to find a sequence where the variables with a low sensitivity are placed in
the feedback. After evaluating the results, two optimal sequences are found: D2, D4, D1, D3 and D2, D4, D3,
D1 as they have the lowest sum of sensitivities in the feedback.

Table 5.7: The sum of sensitivities in the feedback for all possible sequences.

Sequence of disciplines Sum of sensitivities in the feedback
D1, D2, D3, D4 -0.662
D1, D2, D4, D3 -0.867
D1, D3, D2, D4 -0.420
D1, D3, D4, D2 0.560
D1, D4, D2, D3 0.113
D2, D1, D3, D4 -0.412
D2, D1, D4, D3 -0.617
D2, D3, D1, D4 -0.412
D2, D3, D4, D1 -0.755
D2, D4, D1, D3 -0.960
D2, D4, D3, D1 -0.960
D3, D1, D2, D4 -0.420
D3, D1, D4, D2 0.560
D3, D2, D1, D4 -0.170
D3, D2, D4 , D1 -0.513
D3, D4, D1, D1 0.217
D3, D4, D2, D1 0.467
D4, D1, D2, D3 -0.230
D4, D1, D3, D2 0.012
D4, D2, D1, D3 0.020
D4, D2, D3, D1 0.020
D4, D3, D1, D2 0.012
D4, D3, D2 , D1 0.262

Next, a branch-and-bound sequencing algorithm and a brute-force algorithm were applied and the re-
sulting FPGs are shown in Figure 5.4. Both algorithms found the same optimal sequence: D2, D4, D1, and D3
and they also agreed with the analytical results.

(a) Solution using a branch-and-bound sequencing algorithm (b) Solution using a brute-force algorithm

Figure 5.4: FPGs of the sequencing using different algorithms.

The MDK decomposition algorithm was verified analytically by solving for all possible combinations. The
resulting FPGs for the two algorithms are shown in Figure 5.5. The exact same partitioning is obtained, as
disciplines D4 and D1 create one partition and disciplines D2 and D3 create the second partition.
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(a) MDK solution (b) Optimal analytical solution

Figure 5.5: FPGs of the decomposition using different methods.

In this section, a verification and validation on both of the implemented methodologies was performed.
The implemented global sensitivity methods were tested on a mathematical function and the obtained results
agreed with the analytical values. In addition, it was verified and validated that using sensitivity information
in the sequencing and decomposition algorithms produced the correct results by comparing it to the analyt-
ically obtained results and using a brute-force algorithm.



6
CASE STUDY 1

The developed methodologies were tested to generate the MDAO problem of a realistic aircraft design prob-
lem. The main purpose of case study 1 was to evaluate if integrating sensitivity information into the sequenc-
ing and decomposition algorithms of KADMOS in order to optimize them, respectively to use it additionally
to screen for non-influential design variables during the MDAO problem formulation, would lead to a shorter
MDAO execution time. Furthermore, it should be analyzed if this consideration of sensitivity data would
lead to a reduction of the whole computation time, which consists of the time needed to execute the MDAO
problem and the sensitivity analysis. Conclusively, the feasibility to include sensitivity analysis into MDAO
formulation according to the methodologies used during case study 1 for the application within aircraft de-
sign should be discussed.

Section 6.1 provides an overview of the Aircraft Design Initiator tool that is used for the conceptual design
and analysis of aircrafts, and which will be used for case study 1 and 2. Section 6.2 describes a design opti-
mization study of an Airbus A320-200, including the MDAO problem formulation, sensitivity analysis, MDAO
optimization, and MDAO execution.

Subsequently, a short overview of the steps performed for case study 1:

1. The first step is to establish the problem description of the aircraft design process for case study 1,
where the objective, design variables, constraints, and top-level requirements are defined. The objec-
tive of case study 1 is to minimize the Maximum Take-Off Mass (MTOM) of an Airbus A320-200.

2. Next, the initial MDAO problem formulation is created with the use of methodology #2, where sensitiv-
ity information, derived from a local sensitivity method, is used within the sequencing and decompo-
sition algorithms of KADMOS.

3. Afterwards, methodology #1 is utilized to identify non-influential design variables with the use of a
global sensitivity analysis method.

4. The MDAO problem formulation is subsequently adjusted by removing the non-influential design vari-
ables.

5. The last step consist of performing the MDAO optimization and evaluating the results.

6.1. THE AIRCRAFT DESIGN INITIATOR
Case study 1 and also subsequently case study 2 were performed using the TU Delft Aircraft Design Initiator,
which is an automated conceptual aircraft design and analysis tool developed at the Faculty of Aerospace
Engineering at the Delft University of Technology [59, 60]. The Initiator is able to generate feasible aircraft
designs that are based on a limited number of user-specified Top Level Aircraft Requirements (TLARs). In ad-
dition, the aircraft design complies with the regulations and requirements of the Federal Aviation Regulations
and the European Aviation Safety Agency. Thus, the Initiator is suited to test the developed methodologies on
an aircraft design.

The Initiator tool consists of various sizing, analyses, and design modules to perform a stepwise design
synthesis. Figure 6.1 shows the schematic process diagram of the Initiator. The design process, implementing
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the Initiator, is initiated with the specification of TLARs, such as the number of passengers, cargo weight,
range requirements, airport runway length, cruise speed, etc. Next, the preliminary sizing of the airplane
starts with a Class I Weight Estimation, using classical textbook sizing and weight estimation methods [61]
which are used for the first iteration of the conceptual design loop.

These design routines are then augmented with more high-fidelity analysis methods, such as the numer-
ical Class II.V EMWET wing weight estimation by Elham et al. [62], the fuselage configurator module, the
aerodynamic analysis module, etc. The following modules are used during the case studies:

• Database: consists of reference data for different aircrafts and these data are utilized by other disci-
plines to empirically determine initial values for key parameters.

• Empirical OEM : calculates the Operational Empty Mass (OEM) based on information of the Database
module.

• Class 1 Weight Estimation: calculates the aircraft mass breakdown.

• Fuselage Configurator: determines the fuselage geometry and the cabin layout.

• Geometry Estimation: determines the geometry of the wing, engine, and the horizontal and vertical
stabilizers.

• Athena Vortex Lattice (AVL): estimates the aerodynamic loads on the lifting surfaces and drag polar.

• Wing Thrust Loading: chooses a design point based on requirements that constraints the design space.

• Class 2 Weight Estimation: specifies a more detailed mass breakdown compared to the Class 1 weight
estimation and consists of component masses and center of gravity locations.

Figure 6.1: Schematic process diagram of the Initiator [60].

Several developments and changes were made in order to implement the Initiator in the MDAO develop-
ment process using KADMOS [14]:

• Creation of stand-alone modules: all the modules are now independent and take a Controller object as
an input.

• Creation of the general data schema: a new central data scheme was created that is able to be inter-
preted by the Initiator modules, KADMOS, and OpenLEGO. Figure 6.2 shows the central data schema.
The central data schema starts with an Initiator element which is further divided into aircraft sub-
elements. These sub-elements consist of missions, aircraft parts, performance parameters, results, etc.

• Creation of the input and output files: for each module in the Initiator, a list is generated with all the
variables that are required to execute the module. In addition, a list is also made for all the output
variables in each module.
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• Creation of a Python wrapper: The Initiator modules are all written in MATLAB, whereas OpenLEGO
and OpenMDAO are written in Python. Thus, a Python wrapper is used to execute the modules in
OpenLEGO and OpenMDAO.

Figure 6.2: The central data schema for the Initiator [14].

6.2. THE CONCEPTUAL DESIGN OF AN AIRBUS A320-200

The case study was performed on a conceptual design of an Airbus A320-200 in which the objective is to
minimize the Maximum Take-Off Mass (MTOM). The optimization problem is formulated as:

minimize : WMT OM (x)

with respect to : x

subject to : xl ≤ 0 ≤ xu

c(x) ≤ 0

(6.1)

where x is the design vector, xl and xu are the upper and lower bounds of the design vector, and c is the
constraint vector. Seven parameters were selected as design variables and their upper and lower bounds are
shown in Table 6.1. The design variables were chosen from the inputs of the RCG (Figure 6.3) and are related
to the wing and empennage geometry. Commonly used design variables for minimizing the MTOM are using
fuselage properties such as length and diameter. However, the Initiator uses an inside-out approach to de-
termine the fuselage geometry; thus, the fuselage length or diameter cannot be used as a design variable. An
overview of the constraints for the aircraft design problem is shown in Table 6.2. The top-level requirements
that are used for this problem are depicted in Table 6.3.

Table 6.1: Overview of the design variables and their bounds for the aircraft design problem of case study 1.

Design variables Bounds
Wing aspect ratio 8<AR<11
Wing kink position 0.35 < ηki nk <0.40
Horizontal tail taper ratio 0.30<T RHT <0.35
Vertical tail taper ratio 0.30<T RV T <0.35
Engine spanwise position 0.30<ηeng <0.40
Wing loading [N /m2] 2000<W /S<7000
Thrust-to-weight ratio 0.3<T /W <0.6
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Figure 6.3: The repository connectivity graph for the design of an Airbus A320-200.
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Table 6.2: Overview of the constraints for the aircraft design problem of case study 1.

Constraints
Balked landing climb AEO
Balked landing climb OEI
Cruise speed
En route climb
Fuel tank volume
Initial climb
Landing distance
Max cruise lift coefficient
Second segment climb
Take-off distance
Time to climb
Transition climb

Table 6.3: Airbus A320-200 top level requirements

Pax. Payload Mass Cruise Mach Range Altitude
156 20.5t 0.78 4000km 11.3km

The two developed methodologies, as described in Section 4.1 and 4.2, were created such that they are
independent. Thus, as a next step the execution order of these methodologies needs to be determined to best
fulfill the requirements of the case studies. For this case study, methodology #2 will be used first to generate
the initial MDAO problem formulation, where a local sensitivity method is used to determine the sensitivity
information and then this sensitivity information will be used within the sequencing and decomposition
algorithms of KADMOS. Then, methodology #1 will be utilized to identify any non-influential design variables
with the use of a global sensitivity method. Afterwards, the final MDAO problem formulation is generated and
is used for the optimization.

6.2.1. MDAO PROBLEM FORMULATION

The first stage of the MDAO development process was formulated and a Repository Connectivity Graph (RCG)
was generated and was loaded into KADMOS as a CMDOWS file. Figure 6.3 illustrates the RCG and shows a
complete overview of the problem with all connections and the different Initiator modules.

SENSITIVITY ANALYSIS WITHIN THE SEQUENCING AND DECOMPOSITION ALGORITHMS

Next, the Fundamental Problem Graph (FPG) is generated with the use of methodology #2. A local sensitivity
analysis using the finite-difference method was performed for each module and the obtained sensitivity val-
ues were used to create the coupling dictionary. The coupling dictionary was then passed on to the existing
branch-and-bound sequencing algorithm and the MDK decomposition algorithm. Next, an MDA conver-
gence architecture is imposed on the FPG to generate the MDG and MPG. Two different architectures were
applied to investigate how many partitions should be used to obtain the lowest number of iterations until
convergence is reached and thus subsequently to most efficiently optimize the MDAO execution in order to
obtain the shortest execution time. These two architectures are a Gauss-Seidel convergence with one parti-
tion and the partition convergence with two partitions. The resulting architectures are shown in Figure 6.4
and 6.5, respectively.

For the partition convergence architecture with two partitions, a Runtime Coupling Balance (RCB) value
of 0.5 was set, such that the execution time and coordination complexity were of equal importance. An exe-
cution time for each of the Initiator modules was specified and is summarized in Table 6.4. These execution
times are an estimation, as at the beginning of the convergence the execution time is longer compared to
when the solution is almost converged. For instance, the Fuselage Configuration module began with an exe-
cution time of around 12 seconds but once the solution was almost converged, the execution time decreased
to around 7 seconds.
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Figure 6.4: Gauss-Seidel convergence with one partition of the aircraft design problem when
minimizing for MTOM.
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Figure 6.5: Partition convergence with two partitions of the aircraft design problem when minimizing
for MTOM.
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Table 6.4: Execution time of each Initiator module.

Module Execution time [s]
Database 4
Empirical OEM 4
Class 1 Weight Estimation 3
Fuselage Configurator 7
Geometry Estimation 7
AVL 15
Wing Thrust Loading 5
Class 2 Weight Estimation 12

The architecture with two partitions (Figure 6.5) consists of one partition containing the AVL, Class 1
Weight Estimation, and the Wing Thrust Loading modules and has a total execution time of 23 seconds. The
second partition contains the Fuselage Configurator, Geometry Estimation, and the Class 2 Weight Estima-
tion modules and has a total execution time of 26 seconds.

The convergence results for the two different architectures are shown in Table 6.5. A convergence toler-
ance of 10−4 was used and was executed using 1 CPU. The two different architectures converge to the same
MTOM value. For the two partitions, the number of iterations increased because more disciplines are exe-
cuted in parallel, thus, the coordination complexity increased. The execution time of the Gauss-Seidel con-
vergence was faster compared to the partitioned convergence with two partitions because the Initiator mod-
ules were not able to be executed in parallel within OpenMDAO. Hence, for the following steps the Gauss-
Seidel convergence architecture with one partition will be used.

Table 6.5: Convergence results of the two different architectures: Gauss-Seidel convergence with one partition and a partition
convergence with two partitions for the aircraft design problem.

Gauss-Seidel convergence
with one partition

Partition convergence
with two partitions

Number of iterations 7 9
Execution time [s] 341 672
MTOM [t] 75485 75479

6.2.2. SENSITIVITY ANALYSIS TO IDENTIFY NON-INFLUENTIAL DESIGN VARIABLES
After the initial MDAO problem formulation is formed, the next step is to use methodology #1 to identify any
non-influential design variables in the aircraft design problem. In order to perform sensitivity analysis, the
developed sensitivity analysis tool was applied to the aircraft design problem and the steps are consequently
outlined.

The first step is to select an appropriate sensitivity analysis method based on computational cost and
accuracy of using each method. Table 6.6 shows the summary of the required runs to perform the sensi-
tivity analysis on the aircraft design problem. A single model evaluation of the aircraft problem using the
Gauss-Seidel convergence (Figure 6.4) takes around five minutes. Thus, using the Sobol or FAST method is
not suitable due to the extensive computational cost as they would take around 21 respectively 38 hours to
perform the sensitivity analysis.

Table 6.6: Number of model evaluations required for each global sensitivity method.

Sensitivity method
Number of model evaluations

with 7 design variables
Sobol 256
FAST 455

Morris 40

The Morris method was chosen with five trajectory designs (r =5) [34]. As stated before, in Section 3.5.1,
the Morris method outputs the standard deviations of the elementary effects (σ) and the mean of the absolute
values of the elementary effects associated with each parameter (µ∗). The next step is to create the input
values using the LHS sampling strategy. 40 different input sets were created such that each design variable
has a specific input value. The input values are shown in Appendix B.1. Next, these input values were placed
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in the Initiator input file. The Initiator input file uses the CPACS schema and an example is shown in Appendix
B.2. The subsequent step is to execute the MDAO problem using the created inputs and the derived MDAO
problem formulation (Figure 6.4) with the use of OpenLEGO and OpenMDAO. The resulting output values,
the MTOM values, are stored in an XML file and are shown in Appendix B.3.

Subsequently, using the inputs and their corresponding outputs, the sensitivity analysis can be performed
using the Morris method. The results of the sensitivity analysis are shown in Table 6.7 and of the Morris plot
in Figure 6.6.

Table 6.7: Results of the sensitivity analysis using the Morris method.

Design variable µ∗ σ

Wing aspect ratio 1491.4 1031.7
Wing kink position 15.3 24.0
Horizontal tail taper ratio 125.2 85.1
Vertical tail taper ratio 100.9 75.5
Engine spanwise position 20.3 31.2
Wing loading 216.0 89.2
Thrust-to-weight ratio 341.3 311.6

Figure 6.6: Morris plot of the sensitivity results with five trajectory designs.

Inspecting the µ∗ values in Figure 6.6, the design variable that most affects the objective is the wing as-
pect ratio followed by the thrust-to-weight ratio, as they have the highest µ∗ values. Whereas the engine
spanwise position and the wing kink position are non-influential design variables as they are less than 5% of
the maximum µ∗ value. In order to evaluate whether the results of the sensitivity analysis are reasonable, it
was analyzed how each of the design variables is used within the Initiator:

Wing aspect ratio: is an input of the Wing Thrust Loading module and the Geometry Estimation module.
For the Wing Thrust Loading module the wing aspect ratio is used to compute the wing loading and the drag
polar estimation. For the Geometry Estimation module, the wing aspect ratio is used for the calculation of
various geometric properties of the wing such as the span and area. In the Class 2 Weight Estimation module
the weight of the wing is calculated by using the Torenbeek method [61] and the wing weight is a function of
the maximum zero fuel weight, span, wing area, semi-chord sweep angle, design ultimate load factor, and the
maximum thickness of the wing root chord. The weight of the wing structure forms a large percentage of the
aircraft’s structural weight. Thus, altering the wing aspect ratio will have a significant effect on the MTOM.

Wing kink position: is an input of the Geometry Estimation module and is used to compute geometrical
distances at the kink chord, centerline root chord, and tapers of the wing sections. However, the wing kink
position is not used in determining the weight of the wing. Hence, it is reasonable that it is a non-influential
design variable.
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Horizontal tail taper ratio: is only used as an input for the Geometry Estimation module in order to cal-
culate the horizontal root chord. The horizontal root chord is then used to compute the horizontal tail area.
The horizontal tail area is passed to the Class 2 Weight Estimation module. The weight of the horizontal tail is
calculated using the Torenbeek method where the inputs are the horizontal tail area, the design dive speed,
and the horizontal tail semi-chord sweep angle. Thus, the horizontal taper ratio has a small indirect effect
on the horizontal tail weight. Another reason why the horizontal taper ratio is a non-influential parameter is
that the weight of the tail only accounts to about 2 to 3% of the MTOM.

Vertical tail taper ratio: uses the same approach as the horizontal tail taper ratio.
Engine spanwise position: is only an input of the geometry estimation module and is used to determine

the position of the engines.
Wing loading: is an output of the Wing Thrust Loading module and an input of the Class 2 Weight Esti-

mation module. The wing loading is used to calculate the weight of the wing.
Thrust−to−weight ratio: is an input of the Geometry Estimation module and the Class 2 Weight Estima-

tion module and is used for the initial sizing. In addition, the thrust-to-weight ratio is used to calculate the
thrust per engine which then is used to compute the propulsion system weight.

ROBUSTNESS TO SAMPLE SIZING OF THE MORRIS METHOD

A limitation of the Morris method is the level of accuracy when compared to the Sobol or FAST method. Hav-
ing a larger sample size may lead to more accurate results but it involves a trade-off with the computational
cost required to run the method on these extra samples. For the Morris method, the sample size is controlled
by the number of trajectory designs (r ).

The sensitivity analysis was repeated to investigate to what extent increasing the number of trajectory
designs has an influence on the results of the sensitivity analysis. The number of trajectory designs was
increased to ten which leads to a sample size of 80. The results of the sensitivity analysis are shown in Table
6.8 and Figure 6.7.

Table 6.8: Results of the sensitivity analysis using the Morris method with ten trajectory designs.

Design variable µ∗ σ

Wing aspect ratio 1475.2 (1.09%) 1043.7 (1.16%)
Wing kink position 14.9 (2.63%) 24.8 (3.28%)
Horizontal tail taper ratio 127.3 (1.66%) 86.6 (1.74%)
Vertical tail taper ratio 103.9 (2.92%) 73.3 (2.95%)
Engine spanwise position 28.6 (1.40%) 30.9 (0.96%)
Wing loading 212.5 (1.63%) 88.7 (0.56%)
Thrust-to-weight ratio 335.5 (1.71%) 307.7 (1.26%)

Figure 6.7: Morris plot of the sensitivity results with ten trajectory designs.
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Table 6.8 also includes the percentage differences compared to the results of the previous sensitivity anal-
ysis with five trajectory designs. Both sensitivity analyses identified that the engine spanwise position and
the wing kink position have a non-influential effect on the objective. Thus, it is concluded that using five
trajectory designs with a sample size of 40 is sufficient and an increase in sample size will not lead to more
accurate results. Furthermore, using ten trajectory designs doubled the time needed to perform the sensitiv-
ity analysis.

6.2.3. OPTIMIZATION OF THE MDAO PROBLEM FORMULATION

The MDAO problem formulation was adjusted according to the results of the above performed sensitivity
analysis by updating the FPG. The two non-influential parameters, engine spanwise position and the wing
kink position were removed as design variables and set to a constant value (middle of their bound: ηki nk =
0.375, ηeng = 0.35).

An MDF Gauss-Seidel architecture was applied and the XDSM of the optimization for minimizing the
MTOM is shown in Figure 6.8. The complete XDSM is shown in Appendix C. The results of the optimization
are shown in Table 6.9 and Figure 6.9 shows the wing loading diagram. Figure 6.10 shows the history of
MTOM values and the values for the design variables for each iteration. In addition, the optimization was
also conducted on the problem without the removal of the two non-influential design variables in order to
compare the results.

As shown in Table 6.9, the value of the objective (MTOM) is slightly different with a percent difference of
0.37% and increased by 296kg . The small difference in MTOM is due to the change of values for the two non-
influential design variables. For instance, in the original problem the engine spanwise position had a value of
0.368, whereas for the problem with inclusion of the sensitivity analysis the value was set to 0.35. The values
of the influential design variables for the original problem with seven design variables and the problem with
the removal of the two design variables exhibited only a minor deviation.

Table 6.9: Results of the optimization for the original problem and the problem with the removal of two non-influential design variables.

Original problem with
7 design variables

With sensitivity analysis and the
removal of two non-influential

design variables

Objective
MTOM [kg] 80617 80913 (0.37%)

Design variables
Wing aspect ratio 10.99 10.94
Wing kink position 0.383 -
Horizontal tail taper ratio 0.333 0.327
Vertical tail taper ratio 0.315 0.319
Engine spanwise position 0.368 -
Wing loading [N /m2] 5141 5185
Thrust-to-weight ratio 0.272 0.267

Constraints
Balked landing climb AEO -0.6104 -0.6056
Balked landing climb OEI -0.1068 -0.1098
Cruise speed -0.2529 -0.2554
En route climb -0.5371 -0.5374
Fuel tank volume -0.4427 -0.4389
Initial climb -0.1910 -0.1899
Landing distance 0.0015 0.0018
Max cruise lift coefficient -0.2588 -0.2568
Second segment climb -0.0513 0.0516
Take-off distance 0.0071 0.0074
Time to climb -0.5555 -0.5558
Transition climb -0.1410 -0.1406
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Figure 6.8: XDSM of the optimization for minimum MTOM using a MDF Gauss-Seidel architecture.
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Figure 6.9: Wing thrust loading diagram for the problem with the removal of two design variables.

Figure 6.10: History of MTOM and the design variables for the minimization of the MTOM.

Table 6.10 shows the evaluation time of the optimization and the sensitivity analysis. The evaluation
time of the optimization is reduced by 58.5 minutes when sensitivity analysis and the removal of two design
variables is implemented. A main limitation of performing sensitivity analysis is that it takes a significant
computational time. For this problem, it took 192.7 minutes to perform the sensitivity analysis as the problem
had to be evaluated 40 times. Thus, the total time for the problem execution incorporating sensitivity analysis
and the removal of two non-influential design variables increased by 134.2 minutes. However, for the next
iteration of the conceptual design one could reuse the gathered sensitivity analysis information to prioritize
tracking of these key design variables. Thus, the more optimizations that are performed the more beneficial
the sensitivity analysis becomes in terms of time.
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Table 6.10: Evaluation time of the optimization and sensitivity analysis.

Original problem
With sensitivity analysis and the
removal of two design variables

Evaluation time of the optimization [min] 143.3 84.8
Time for sensitivity analysis [min] - 192.7
Total time [min] 143.3 277.5
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CASE STUDY 2

The first case study demonstrated the benefits of using sensitivity analysis during the MDAO problem for-
mulation phase, for instance, in being able to identify non-influential design variables and to use sensitiv-
ity information to optimize the sequencing and decomposition algorithms of KADMOS. For the subsequent
MDAO execution the evaluation time is reduced when prior to the MDAO execution, the MDAO formulation
is optimized by incorporating sensitivity information. However, it was concluded that the use of sensitiv-
ity analysis for MDAO of an aircraft design problem is limited given the computational time associated with
performing the sensitivity analyses.

Aircraft preliminary design involves the optimization of several objectives. Thus, another case study was
performed for the optimization of the Airbus A320-200 in which the objective is to minimize the fuel mass,
additionally to minimizing the MTOM. The aim of the second case study is to analyze if performing sensitivity
analysis concurrently on more than one objective variable during the MDAO problem formulation, will lead
to time savings, consisting of the MDAO problem evaluation and the time needed to conduct the sensitivity
analysis.

7.1. PROBLEM FORMULATION

The same problem formulation is used as described for the first case study (Figure 6.4). However, instead of
only using MTOM as a quantity of interest, the fuel mass is also added as a quantity of interest. The resulting
MDAO problem formulation which uses a Gauss-Seidel convergence architecture is shown in Figure 7.1. An
MDA convergence architecture is used, as just the outputs from the given inputs are required, hence, an MDF
optimization is not needed.
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Figure 7.1: Problem formulation using the Gauss-Seidel convergence for the two objectives: MTOM
and fuel mass.
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7.2. SENSITIVITY ANALYSIS
For the sensitivity analysis the same seven design variables (Table 6.1) and sampling inputs (Appendix B.1)
as for case study 1 are used. The above problem formulation, as depicted in Figure 7.1 is solved using Open-
MDAO 40 times for every input set which results in the output values for the MTOM and fuel mass, shown in
Appendix D. Using the input and output values, the Morris method is again used to perform the sensitivity
analysis. The time to execute the sensitivity analysis took 183 minutes. Using this approach allows to save
time as the sensitivity analysis does not need to be evaluated separately for each objective. Thus, applying
sensitivity analysis to evaluate a second quantity of interest, increases the usefulness of executing the sen-
sitivity analysis and integrating the results into the MDAO problem formulation. Performing the sensitivity
analysis still involves computational expense and is time consuming, but in this case, can be applied for si-
multaneously evaluating MTOM and fuel mass as quantities of interest. An additional evaluation of more
quantities of interest, while using the same approach, would implement an additional benefit to use sensi-
tivity analysis.

7.2.1. MINIMIZING THE FUEL MASS
Table 7.1 and Figure 7.2 show the results of the sensitivity analysis for the design case when the objective is to
minimize the fuel mass. The design variables that affect the objective the most are the thrust-to-weight ratio,
the wing loading, and the wing aspect ratio. Only two design variables are identified as non-influential: the
engine spanwise position and the position of the wing kink.

The results of the sensitivity analysis are different compared to the first case study when minimizing for
the MTOM. The difference in the sensitivity analysis outcome is expected as global sensitivity methods eval-
uate the contribution of each input variables to the model output. However, the same two design variables
are determined to be non-influential.

Table 7.1: Results of the sensitivity analysis using the Morris method for minimizing fuel mass.

Design variable µ∗ σ

Wing aspect ratio 1544.9 3300.0
Wing kink position 76.7 104.8
Horizontal tail taper ratio 507.4 1100.3
Vertical tail taper ratio 486.3 1004.5
Engine spanwise position 110.3 132.9
Wing loading 1628.7 3628.4
Thrust-to-weight ratio 2429.5 4018.1

Figure 7.2: Morris plot of the sensitivity results for minimizing fuel mass.
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The third case study investigates if the minimization of the sensitivities in the feedback loop will lead to fever
iterations until a converged solution is reached, compared to a feedback loop with higher sensitivities. Fewer
iterations will lead to a decrease in computational time if the execution time per iteration does not increase
too much. For the case study, the variable complexity problem (VCP) is again used (Section 5.2), as it is able
to quickly generate numerous MDAO problems. The use of numerous MDAO problems allows to rule out any
coincidences and obtain a good average. In addition, a confidence interval is used and is defined as a range
around a measurement that conveys how precise the measurement is [63], in this case the equation for the
confidence interval is as follows: (

xn − 2zα/2snp
n

, xn + 2zα/2snp
n

)
(8.1)

where xn is the average value, zα/2 is the value of the confidence level, sn is the standard deviation, and n
is the number of test cases. In order to obtain a confidence interval of 95%, zα/2 was set to 1.96.

100 randomly test cases were generated that contain five disciplines, five coupling variables per disci-
pline, a coupling density of 0.1, and two partitions. The coefficient matrices (Bi j , Ci , Di ) of the VCP changed
for each test case and the values were generated randomly. Once again the finite-difference method was
used to generate the sensitivity information and the procedure of the methodology #2 was applied, where the
coupling dictionary was updated with the sensitivity data and then was passed to the sequencing and decom-
position algorithms. An MDA Gauss-Seidel convergence architecture was applied on the problem, and the
convergence tolerance was set to 10−10. Subsequently, the test cases were solved. The number of iterations to
achieve convergence for each test case is shown in Table 8.1 and the average number of iterations is shown in
Figure 8.1. In addition, the same test cases were also solved using the original approach of minimum number
of feedback connections in order to compare the results.
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Table 8.1: Comparison of the number of iterations for each test case for the two approaches: the minimum number of feedback
implementation and the implementation with sensitivity data.

Test case
Number of iterations

for minimum feedback
Number of iterations
with sensitivity data

Test case
Number of iterations

for minimum feedback
Number of iterations
with sensitivity data

1 7 5 51 6 6
2 5 5 52 5 5
3 8 7 53 10 9
4 9 6 54 9 8
5 10 9 55 6 6
6 6 6 56 10 8
7 7 7 57 7 6
8 10 9 58 7 7
9 7 7 59 8 7

10 7 6 60 6 6
11 7 7 61 9 8
12 11 8 62 6 6
13 7 7 63 8 7
14 10 9 64 7 7
15 7 7 65 7 7
16 8 7 66 6 6
17 9 9 67 7 7
18 9 8 68 8 8
19 12 9 69 12 9
20 7 6 70 8 7
21 10 9 71 7 7
22 7 7 72 9 8
23 9 8 73 7 7
24 7 7 74 10 7
25 7 6 75 7 7
26 6 6 76 6 6
27 7 6 77 7 6
28 10 8 78 8 7
29 5 5 79 8 6
30 9 8 80 8 8
31 7 6 81 6 6
32 9 8 82 8 7
33 5 5 83 7 7
34 4 4 84 7 7
35 10 9 85 9 8
36 4 4 86 8 8
37 11 9 87 7 6
38 6 6 88 9 8
39 12 10 89 7 7
40 10 7 90 7 7
41 7 7 91 7 7
42 5 5 92 8 7
43 6 6 93 6 6
44 7 6 94 8 7
45 6 6 95 6 6
46 5 5 96 7 7
47 6 6 97 6 6
48 8 7 98 9 8
49 10 8 99 10 7
50 8 8 100 8 8

Figure 8.1: Comparison between the average number of iterations for the two approaches: when using sensitivity data and for
minimum number of feedback for sequencing and decomposition algorithm.

Overall, for each test case the number of iterations decreased or remained the same with the utilization of
sensitivity data, as will be outlined consequently. The average number of iterations for all 100 test cases is 6.97
when using sensitivity data and 7.66 when using the minimum number of feedback connections approach. To
further evaluate the results, the convergence history for all the test cases was analyzed. Specifically, test cases
number four and nine were evaluated, as test case four showed a large decrease in the number of iterations
and test case nine had the same number of iterations. The FPGs for the fourth test case are compared in Figure
8.2 and the convergence history is shown in Table 8.2. Both problems had the same partitioning, as disciplines
D2 and D3 are grouped together and disciplines D5, D4, and D1 formed another partition. However, the
sequencing is different in both problems. With the utilization of the sensitivity data, the problem converged
in six iterations. Whereas, when using the minimum number of feedback approach, the problem converged
in nine iterations. Overall, it allowed to decrease the number of iterations by three and this signifies the
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benefits of using sensitivity information within the sequencing and decomposition algorithms.

(a) Minimum number of feedback. (b) Implementation with sensitivity data.

Figure 8.2: Comparison of the FPGs for test case 4 for the two different approaches.

Table 8.2: Comparison of the convergence history for test case 4.

Iteration
Convergence history

for minimum feedback
Convergence history
with sensitivity data

1 6.20090294 1 5.68651852 1
2 1.72987797 0.278971947 1.55896226 0.274150564
3 0.150493292 0.0242695772 0.0567439262 0.00997867605
4 0.0181905039 0.00293352501 0.0024884629 0.000437607455
5 0.00277842969 0.000448068567 8.25818839e-05 1.45223978e-05
6 0.000427604298 6.89583924e-05 3.65264372e-06 6.42333918e-07
7 4.37851055e-05 7.06108544e-06 - -
8 6.71355469e-06 1.08267373e-06 - -
9 1.09620066e-06 1.76780812e-07 - -
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During the evaluation of the 100 test cases, some of the test cases did not show a reduction in the number
of iterations. Such an example is test case number nine. The FPGs and the convergence history for both
approaches are shown in Figure 8.3 and in Table 8.3, respectively. The FPGs show that both problems have
the same partitioning and only a slight difference in sequencing, as disciplines D4 and D5 are switched. The
convergence history also shows that the approach with sensitivity data converged slightly faster compared
to the approach with minimum number of feedback. However, due to the fixed convergence tolerance, the
number of iterations did not change. Overall, for all the cases which had the same number of iterations, the
sequencing and partitioning only changed slightly.

(a) Minimum number of feedback. (b) Implementation with sensitivity data.

Figure 8.3: Comparison of the FPGs for test case 9 for the two different approaches.

Table 8.3: Comparison of the convergence history for test case 9.

Iteration
Convergence history

for minimum feedback
Convergence history
with sensitivity data

1 4.98660736 1 5.45412979 1
2 1.01684993 0.203916181 1.3243012 0.242807056
3 0.101155962 0.0202855277 0.100404439 0.0184088834
4 0.0115598517 0.00231817965 0.0102515098 0.00187958669
5 0.000747468644 0.000149895227 0.000156580793 2.87086664e-05
6 6.34026768e-06 1.27145917e-06 1.03201958e-05 1.89218009e-06
7 8.65216336e-07 1.73508013e-07 8.32730184e-07 1.52678835e-07

Furthermore, it was also investigated how a change in number of disciplines affects the number of iter-
ations. 100 test cases were again generated for the variable complexity problem with seven disciplines and
with nine disciplines. The test cases were solved using both approaches and the results are shown in Figure
8.4 and in Table 8.4. Figure 8.4 shows the average number of iterations for the different amount of disciplines
and Table 8.4 also includes the values for the confidence interval. The results indicate that using sensitivity
information within the sequencing and decomposition algorithms allows to reduce the number of iterations.
An increase in number of disciplines leads to a similar result as discussed above.
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Figure 8.4: Comparison between the average number of iterations when using sensitivity information and for minimum number of
feedback in the sequencing and decomposition algorithm.

Table 8.4: Average number of iterations and confidence level.

With sensitivity
analysis

Min. feedback
connections

With sensitivity
analysis

Min. feedback
connections

With sensitivity
analysis

Min. feedback
connections

No. of
disciplines

5 5 7 7 9 9

Average no.
of iterations

6.97 7.66 7.90 8.71 8.85 9.65

Confidence
interval

6.97 ± 0.432 7.66 ± 0.454 7.90 ± 0.441 8.71 ± 0.449 8.85 ± 0.421 9.65 ± 0.439





9
CONCLUSION & RECOMMENDATIONS

The increasing complexity of aeronautical systems and the prevailing focus to develop sustainable techno-
logical innovations for future aircraft configurations and technologies have emphasized a particular demand
on advancing the Multidisciplinary Design Analysis and Optimization (MDAO) technique. MDAO perfectly
addresses the complex synergy within aircraft design where multiple coupled disciplines and domains need
to be efficiently analyzed and optimized. Considerable developments within MDAO, like the introduction
of the software KADMOS (Knowledge-and graph-based Agile Design for Multidisciplinary Optimization Sys-
tem) have already generated a significant time reduction for setup and solving of an MDAO problem and
consequently in lead time and costs of aircraft design.

The aims of this thesis are to further enhance the current application of MDAO for aircraft design and to
alleviate the significant computational expense of MDAO problems through the consideration of sensitivity
data during the MDAO formulation phase. Therefore, two approaches where the generation and evaluation of
sensitivity information play a key role, were evaluated within this thesis, with the subsequent goal to shorten
the MDAO execution time. Through the development and the following implementation of a sensitivity anal-
ysis tool into the sequencing and decomposition algorithms of KADMOS, this thesis demonstrated a new
contribution to investigate on how to adjust the MDAO problem formulation. Furthermore, sensitivity infor-
mation was used to identify the non-influential design variables respective to the objective during the MDAO
problem formulation. Thus, during this thesis two independent methodologies were created in which the
first methodology used a global sensitivity method to identify non-influential design variables, while the sec-
ond methodology used a local sensitivity method to enhance the sequencing and decomposition algorithms
of KADMOS.

Anyhow, performing sensitivity analysis, the evaluation of the corresponding sensitivity data, and the
subsequent adaptation of the used design variables, respectively an adaptation of sequencing and decom-
position algorithms will lead to an elevated set-up time for the MDAO problem formulation. Therefore, one
additional goal of this thesis was to analyze if the consideration of sensitivity data will represent a beneficial
task in terms of optimizing the MDAO problem formulation, respectively in terms of consequently reducing
the time that is needed for MDAO execution. Furthermore, this thesis evaluated if integrating sensitivity anal-
ysis could provide an efficient tool to further enhance the MDAO development process. Based on the results
of this thesis, several conclusions can be drawn:

• Firstly, non-influential design variables were able to be determined with the use of a global sensitiv-
ity method. This was demonstrated on an aircraft design problem where two non-influential design
variables were identified using the Morris method. The two design variables were removed from the
MDAO problem formulation and lead to a reduction in evaluation time of the optimization with only
slightly impacting the accuracy of the results (the value of the objective had a percentage difference of
0.37%). However, due to the computational cost of the sensitivity analysis, the total computation time
increased by 134 minutes.

• Secondly, performing sensitivity analysis concurrently on more than one objective variable during the
MDAO problem formulation allowed for time savings, as the sensitivity analysis did not need to be
repeated and could be applied simultaneously. The total computation time, consisting of the MDAO
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problem evaluation and the time needed to conduct the sensitivity analysis, was reduced by approxi-
mately 180 minutes. This was demonstrated by performing the sensitivity analysis on an aircraft design
problem where one objective was to minimize the MTOM and the other objective was to concurrently
minimize the fuel mass.

• Thirdly, the sequencing and decomposition algorithms of KADMOS were successfully enhanced with
the use of a local sensitivity method, the finite-difference method. Before this thesis, the goal of these
algorithms was to minimize the number of feedback connections. This was altered such that the goal
now is to determine a sequence where the variables with a low sensitivity are placed in the feedback.
The improved algorithms were verified and validated on a variable complexity problem.

• Fourthly, it was shown that a feedback loop containing low sensitivities will lead to fewer iterations
compared to a feedback loop with higher sensitivities, thus leading to a reduction in computational
time. This was confirmed by testing it on numerous MDAO problems by utilizing a variable complexity
problem. 100 different test cases, using the VCP, were evaluated and on average it led to a reduction of
iterations of 0.69 iterations when compared to the original sequencing and decomposition algorithms.

• Fifthly, although the benefits of using sensitivity analysis are many, like to ascertain the key design
variables for a specific design question, its use in practice is limited given the computational time asso-
ciated with it. Nonetheless, the application of sensitivity analysis becomes a valuable procedure for the
next iteration and optimization of a conceptual design problem with the same objective. Ultimately,
with a subsequent number of optimizations the implementation of sensitivity analysis then would de-
liver a substantial reduction in time.

This thesis achieved to provide a new contribution to scientific literature as this thesis integrated sensitiv-
ity analysis into the sequencing and decomposition algorithms of KADMOS. In addition, the thesis demon-
strated how to use sensitivity analysis to identify non-influential design variables which then additionally
allowed to adjust the MDAO problem formulation. However, the following recommendations for future re-
search were identified:

• Implement a database that contains all the sensitivity information
When applying the developed methodologies on the aircraft design problem, a great amount of sensi-
tivity data is generated. Thus, further research could be the implementation of a database that stores
all the sensitivity data into a storage repository. This repository can contain what the sensitivity data
are and with what method they were computed. Having such a database available will help for future
repetitions of a conceptual design and may reduce the need to repeat sensitivity analysis.

• Investigate the approach of calculating the sensitivity information for a multidisciplinary problem based
on disciplinary sensitivity analysis
In this thesis, a global sensitivity analysis was performed on the entire system to identify non-influential
design variables. However, a different approach could be to perform several disciplinary sensitivity
analyses with fewer design variables as the number of design variables is a crucial aspect of the compu-
tational expense of sensitivity analysis. In addition, this could provide disciplinary sensitivity analysis
information allowing the user to decide to refine disciplinary models with large influences on the sys-
tem performances. However, there are several challenges with this approach. For example, if separated
discipline sensitivity analyses are executed, then the sensitivity in the coupling variables between dif-
ferent disciplines are unknown. Another issue is when the disciplines share common design variables,
the resulting coupling variables are not independent.

• Implementation of constraint aggregation methods within the problem formulation
In engineering problems, design constraints such as performance boundaries and safety limits, need
to be incorporated and handled during the optimization process. However, the vast numbers of con-
straints have a significant effect on the optimization cost and convergence behavior. Thus, future re-
search could be conducted to explore how constraint aggregation methods could be implemented in
the problem formulation to reduce the computational cost.



A
VERIFICATION & VALIDATION

A.1. XDSM OF THE VARIABLE COMPLEXITY PROBLEM

Figure A.1: XDSM of the MDA to be converged for the variable complexity problem with the approach of minimizing the number of
feedbacks.
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Figure A.2: XDSM of the MDA to be converged for the variable complexity problem with the approach of using sensitivity information.



B
INITIATOR SENSITIVITY ANALYSIS

B.1. INITIATOR INPUTS FOR SENSITIVITY ANALYSIS USING THE LHS STRAT-
EGY

B.2. INITIATOR INPUT FILE
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B.3. INITIATOR OUTPUT FILE



C
COMPLETE XDSM OF INITIATOR

OPTIMIZATION
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