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1. Introduction 

When the author of this article was trying to compute the multiple summations of a geometric 

series [1-12], a new idea stimulated his mind to create a new type of geometric series. As a 

result, a combinatorial geometric series [12-20] was developed with new idea of binomial 

coefficients.  

 

2. System of Binomial Coefficients   
The combinatorial geometric series is derived from the multiple summations of geometric series. 

The coefficient of each term in the combinatorial geometric series [17-31] refers to the binomial 

coefficient [28-40]. 
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denotes  the combinatorial geometric series and  𝑉𝑛
𝑟  the binomial coefficient. 
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Let us show that 𝑉𝑛
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              ∴  𝑉𝑛
𝑟 belongs to the set of natural numbers, 𝑖. 𝑒. 𝑉𝑛

𝑟 ∈ 𝑁. 
 

Trigonometric Equations and Series   
Let us construct a trigonometric equation with binomial coefficients defined in the combinatorial 

geometric series. 

𝑉𝑚
𝑛 sin 𝜃1 + 𝑉𝑝

𝑞 cos 𝜃2 = 𝑐, where 𝑐 is a constant. 

 

If we know the values of  𝑉𝑚
𝑛, 𝑉𝑝

𝑞 , 𝜃1, and 𝜃2, then we can find the value of c. 

For example,  

𝑉0
1 sin 90° + 𝑉2

3 cos 0° = 𝑐 ⟹ 𝑐 = 11. 
 

Note that we can use csc 𝜃 , sec 𝜃 , tan 𝜃 , and cot 𝜃 in the place of sin 𝜃1  and cos 𝜃2. 
 

Let us construct a general trigonometric series for the application of computing and 

cybersecurity. 

∑(𝑉𝑖
𝑃𝑖 sin 𝜃1 + 𝑉𝑖

𝑞𝑖 cos 𝜃2)

𝑛

𝑖=0

= 𝑑, where 𝑑 is a constant. 

The following trigonometric series with binomial coefficients is equivalent to the Fourier series. 
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∞

𝑛=0

. 

If the above trigonometric series (Fourier series) is finite and x=0, then 

 

𝑓(0) = ∑(𝑉𝑖
𝑎 sin 𝑛𝜋0 + 𝑉𝑖

𝑏 cos 𝑛𝜋0)

𝑡

𝑛=0

= 𝑉𝑡
𝑏+1 ⟹ ∑ 𝑉𝑛

𝑏

𝑡

𝑛=0

= 𝑉𝑡
𝑏+1. 

 

3. Conclusion  
In this article, we have introduced the trigonometric equations and series (Fourier series) with 

binomial coefficients defined in the combinatorial geometric series. These trigonometric 

equations and series can be used in the research areas of computing and cybersecurity. 
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