

NEANIAS is funded by European Union under Horizon 2020 research and
innovation programme via grant agreement No. 863448

NEANIAS
Novel EOSC services for Emerging Atmosphere,

Underwater and Space Challenges

Deliverable Report

Deliverable: D6.1 Core Services Architecture, Design Principles and

Specifications

30/04/2020

Ref. Ares(2020)2558892 - 14/05/2020

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 2 of 107

Document Info

Project Information

Acronym NEANIAS

Name Novel EOSC Services for Emerging Atmosphere, Underwater & Space Challenges

Start Date 1 Nov 2019 End Date 31 Oct 2022

Program H2020-EU.1.4.1.3. - Development, deployment and operation of ICT-based e-
infrastructures

Call ID H2020-INFRAEOSC-2018-
2020

Topic H2020-INFRAEOSC-2019-1

Grant No 863448 Instrument RIA

Document Information

Deliverable No D6.1

Deliverable Title Core Services Architecture, Design Principles and Specifications

Due Date 30-APR-2020 Delivery Date 12-MAY-2020

Lead Beneficiary INAF

Beneficiaries (part.) ATHENA, ALTEC, MEEO, JUCOBSUNI, UNIMIB, UOP, CITE, CORONIS, SZTAKI,
INAF, NKUA, GARR

Editor(s) Eva Sciacca (INAF), Georgios Kakaletris (CITE)

Authors (s) Eva Sciacca (INAF), Georgios Kakaletris (CITE), Georgios Papanikos (CITE),
Nikos Chondros (NKUA), Michalis Konstantopoulos (NKUA), Claudio Pisa
(GARR), Eugenio Topa (ALTEC), Rosario Messineo (ALTEC), Angelo Fabio
Mulone (ALTEC), Mel Krokos (UoP), Giuseppe Vizzari (UNIMIB), Gabor Kertesz
(SZTAKI), Jozsef Kovacs (SZTAKI), Attila Farkas (SZTAKI), Robert Lovas
(SZTAKI), George Papastefanatos (ATHENA), Christina Peraki (ATHENA)

Contributor (s) Cristobal Bordiu, Ugo Becciani (INAF), Diamantis Tziotzios (CITE), Boutsis
Spyridon (CITE), Konstantinos Kakaletris (CITE), Josep Quintana (CORONIS),
Ricard Campos (CORONIS)

Reviewer(s) Paul Wintersteller (UBREMEN), Christian Dos Santos Ferreira (UBREMEN)

Workpackage No WP6 Core Services Foundation and Implementation

Version V1.0 Stage Final

Version details Revision: 14 . Last save: 2020-05-13 , 18:39

Pages: 104 . Characters: 160.706

Distribution Public Type Report

Keywords Services; Architecture; EOSC; Service Oriented Architecture;

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 3 of 107

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 4 of 107

Change Record

Version Date Change Description Editor Change
Location

(page/section)

1.0 12/5/2020 Document version submitted to
EC

Eva Sciacca, Georgios
Kakaletris

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 5 of 107

Disclaimer

NEANIAS is a Research and Innovation Action funded by European Union under Horizon 2020
research and innovation program, via grant agreement No. 863448.

NEANIAS is project that comprehensively addresses the ‘Prototyping New Innovative Services’
challenge set out in the ‘Roadmap for EOSC’ foreseen actions. It drives the co-design, delivery,
and integration into EOSC of innovative thematic services, derived from state-of-the-art
research assets and practices in three major sectors: underwater research, atmospheric
research and space research. In each sector it engages a diverse set of research and business
groups, practices, and technologies and will not only address its community-specific needs but
will also enable the transition of the respective community to the EOSC concept and Open
Science principles. NEANIAS provides its communities with plentiful resource access,
collaboration instruments, and interdisciplinary research mechanisms, which will amplify and
broaden each community’s research and knowledge generation activities. NEANIAS delivers a
rich set of services, designed to be flexible and extensible, able to accommodate the needs of
communities beyond their original definition and to adapt to neighboring cases, fostering
reproducibility and re-usability. NEANIAS identifies promising, cutting-edge business cases
across several user communities and lays out several concrete exploitation opportunities.

This document has been produced receiving funding from the
European Commission. The content of this document is a
product of the NEANIAS project Consortium and it does not
necessarily reflect the opinion of the European Commission.
The editor, author, contributors and reviewers of this
document have taken any available measure in order for its
content to be accurate and lawful. However, neither the
project consortium as a whole nor the individual partners

that implicitly or explicitly participated in the creation and publication of this document may
be held responsible for any damage, financial or other loss or any other issue that may arise
as a result of using the content of this document or any of the project outputs that this
document may refer to.

The European Union (EU) was established in accordance with the Treaty on the European
Union (Maastricht). There are currently 28 member states of the European Union. It is based
on the European Communities and the member states’ cooperation in the fields of Common
Foreign and Security Policy and Justice and Home Affairs. The five main institutions of the
European Union are the European Parliament, the Council of Ministers, the European
Commission, the Court of Justice, and the Court of Auditors (http://europa.eu.int/).

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 6 of 107

Table of Contents

Document Info ... 2

Change Record ... 3

Disclaimer .. 4

Table of Contents ... 5

Tables of Figures & Tables ... 8

Abstract ... 9

1. Introduction ... 10

1.1. Context .. 10

1.2. Contents and Rationale ... 10

1.3. Structure of the document .. 11

2. Design Principles .. 12

2.1. Service Oriented Architecture ... 12

2.2. Minimum service requirements .. 13

2.3. REST paradigm ... 14

2.4. Pluggability & Extensibility .. 15
2.5. Interoperability.. 16

2.6. Standards ... 17

2.7. F.A.I.R. principles ... 18

2.7.1. C1 core services... 18

2.7.2. C2 core services... 19

2.7.3. C3 core services... 20

2.7.4. C4 core services... 20

2.8. Operation .. 20

2.9. Security .. 20

2.9.1. NEANIAS AAI Concepts ... 21

2.9.2. Policy ... 24
2.10. User Interfaces / User Experience ... 24

2.11. Portability .. 25

2.12. Technology .. 26

2.12.1. Programming languages .. 26

2.12.2. Development frameworks .. 26

2.12.3. Data Management frameworks ... 26
2.12.4. AI/ML frameworks .. 27

2.12.5. Visualization Frameworks... 27

2.12.6. Major Background Systems .. 27

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 7 of 107

3. System Architecture ... 29

3.1. Architecture overview ... 29

3.2. Logical architecture ... 30

3.3. Fundamental building blocks .. 32

3.4. NEANIAS reference service ... 34
3.5. Physical architecture ... 37

4. Fundamental resource abstractions in NEANIAS .. 40

4.1. Storage .. 40

4.2. Computation.. 40

4.3. Other resources ... 41

5. C1 Open-Science lifecycle support services & Components reference 42
5.1. The role of C1 services in NEANIAS ... 42

5.2. NEANIAS Service Catalogue ... 42

5.3. NEANIAS Research Product Catalogue .. 43

5.4. Data Validation Service ... 44

5.5. Common User Interface Components .. 45

5.6. NEANIAS Access Gate .. 46
5.7. OpenDMP / Argos.. 47

5.8. Data Publishing Service ... 48

5.9. Persistent Identifier Service / Zenodo ... 49

6. C2 EOSC hub, RIs and cloud integration enabling services reference 50

6.1. The role of C2 services in NEANIAS ... 50
6.2. NEANIAS AAI .. 50

6.3. Configuration Management Service ... 53

6.4. Service Instance Registry ... 54

6.5. Log Aggregation Service .. 56

6.6. Accounting Service .. 57

6.7. Notification Service ... 60
6.8. Data Depositing service ... 62

6.9. Data Sharing service .. 63

6.10. Data Transfer service ... 64

6.11. Data exploration service.. 66

6.12. Computational resources access service .. 67

7. C3 Artificial Intelligence services reference .. 73
7.1. The role of C3 services in NEANIAS ... 73

7.2. C3.1 AI Science Gateway: service for development of ML models using Jupyter Hub......... 73

7.3. C3.2 Serving trained ML models ... 75

7.4. C3.3 Distributed Multi-GPU training of large ML models using Horovod 77

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 8 of 107

7.5. C3.4 Distributed Machine Learning using SparkML .. 78

8. C4 Visualisation services reference .. 80

8.1. The role of C4 services in NEANIAS ... 80

8.2. C4.1 Framework for Visual Discovery (VD) ... 81

8.3. C4.2 Visualisation Gateway (VG) ... 85
8.4. C4.3 Toolkit for Cross Realities (XR) .. 88

8.5. C4.4 Spatial Data Stores (DS)... 90

9. Workplan – Timeline .. 93

10. Conclusions ...101

List of acronyms ..102

Appendix 1 – Service Description Template ..103

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 9 of 107

Tables of Figures & Tables

Document Figures

Figure 1: Logical layering of NEANIAS service clusters 30
Figure 2: Logical architecture diagram 32
Figure 3: Reference service instantiation lifecycle 35
Figure 4: Reference servicing lifecycle 37
Figure 5: Hypothetical deployment of NEANIAS services 38

Document Tables

Non è stata trovata alcuna voce dell'indice delle figure.

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 10 of 107

Abstract

The objective of deliverable D6.1 is to report on architecture, specifications and software
development plan of the Core Services that will be developed in WP6. This document reports
on the general design principles, the overall system architecture and fundamental resources.
Then it presents the foreseen core services related to manage Open Science lifecycle (C1),
EOSC integration (C2), Artificial Intelligence processing (C3) and, finally, Visualization (C4).

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 11 of 107

1. Introduction

1.1. Context

The NEANIAS WP6 “Core Services Foundation and Implementation” establishes generic, cross-
community services that amplify the potential of thematic services delivered by WP2-5,
enabling Open Science, and facilitating the migration to the EOSC concepts, by streamlining
access to cloud resources.

In particular Task 6.1 “Service gap analysis and specifications” builds on the requirements
delivered by the community sector WPs (WP2, WP3 and WP4) and those delivered by
innovation cases in WP5. It also utilizes the information gathered by WP8 on EOSC hub
landscape and trends and consortium knowledge and acquaintance with Research
Infrastructures (RIs). It locates and highlight the gap from Open Science principles as
augmented by the vision of NEANIAS, and deliver specifications that bridge the gap. The task
is also responsible for drafting an implementation roadmap with consolidated contribution
from all other tasks of the WP, aligned to the milestones and to the research sector
development plans, able to achieve delivery of software artefacts in due time for service
delivery by WP7.

Task 6.2 “Architecture and interoperability approach design and validation” builds on
outcomes of T6.1 and input coming from other work packages and yields the architecture of
NEANIAS framework and the set of its service set, covering both, core and thematic ones,
towards a holistic architectural alignment of its services. It sets the principles for
interoperability of services, both internally as well as externally. With a strong preference in
well-established standards, it presents options that services shall adopt for maximising their
interoperability and reuse opportunities. Core service implementation tasks will be based on
outputs of T6.1 and T6.2, aligning TRL6 existing services or EOSC Hub services to the NEANIAS
framework.

Two core services (C1 and C2) are dictated by the needs and opportunities raised in EOSC. C1
includes research lifecycle empowering services, providing essential tools for registering,
locating, inspecting, sharing data and services and C2 allows for EOSC/RIs Integration services
for the exploitation of EOSC and RIs offerings in a unified manner for NEANIAS services,
including access to storage and computation and mechanisms for authentication and
authorization. Abstracting on thematic service concepts and analyzing the opportunities of
innovation on EOSC, the other two services (C3 and C4) will be the arrowhead of NEANIAS
generic service offerings: C3 includes AI services, that enclose also capacities for Machine
Learning and C4 offers Visualisation services that deliver state-of-the-art visualization as a
service.

1.2. Contents and Rationale

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 12 of 107

This deliverable D6.1 reports the core services design principles architecture, and
specifications led by Tasks 6.1 and 6.2 including a detailed description and implementation
plan for C1/C2/C3/C4 core services developed in Tasks 6.3, 6.4, 6.5 and 6.6.

1.3. Structure of the document

In Section 2 the services design principles are presented, those include the Service Oriented
Architecture paradigm guidelines, REST paradigm, Standards and Interoperability guidelines.
Section 3 describes the overall NEANIAS System Architecture including the logical
architecture, a generic service processing lifecycle and the proposed physical deployment.
Section 4 focuses on the NEANIAS fundamental resources abstractions, namely storage and
computation. Chapters 5, 6, 7, 8 presents the Core Services C1, C2, C3 and C4 respectively,
detailing, in tabular format, all the main information regarding e.g. technologies adopted,
dependencies with other core services, licensing etc. A work plan of the services delivery
together with a proposed timeline is presented in Section 9. Finally, Section 10 provides
conclusions and plans for the future activities.

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 13 of 107

2. Design Principles

This section reports the design principles of the Core Services and overall NEANIAS
architecture based on Service Oriented Architecture (including the list of minimum services
required), REST (REpresentational State Transfer) paradigm, FAIR principles (to make data
Findable, Accessible, Interoperable, and Reusable) and User Interface guidelines. This section
also details on main aspects regarding pluggability, extensibility, interoperability, portability,
security, operation and technology.

2.1. Service Oriented Architecture
Service Oriented Architectures (SOA) are driven by several principles that although varying in
number have a core notion of service reuse, separation, discoverability, interoperability etc.

NEANIAS adopts the Service Oriented Architecture paradigm guidelines, with varying degree
of enforcement and the addition of microservices. Furthermore, it adds its own principles for
services matured and delivered in the context of NEANIAS.

Essential motivations behind the adopted approach are the following:

- NEANIAS builds on existing services of substantial maturity that act in coordination
with other systems, implying a completely different paradigm of software
architecture.

- Services in the context of NEANIAS and EOSC do not adhere to the notion of services
as expressed in the SOA paradigm. As such their granularity, model of operation and
interaction is quite different than in common SOA services.

- A subset of NEANIAS infrastructure requires a level of integration among specific
services which in cases may compromise the loosely coupling and isolation principles.

- NEANIAS policy with respect to service dependencies promote standards vs custom
service contracts and attempts to isolate services sustainability risks with a number
of techniques that drive the technological choices behind specific lower level
infrastructure services.

In the following we briefly present the SOA principles adopted in NEANIAS:

- Contracts: Services will present clear definitions of their interfaces and their expected
interaction patterns that they will respect. In NEANIAS the following policies shall be
respected:

o The primary candidate interface form for services shall be compliant with
REST, although reasonable exceptions may apply.

o Services shall respect their interface contracts and apply to the best of
abilities backwards compatibility among their versions. Compatibility shall be
clearly declared in their contract

o Where well known or defacto standards apply for interfaces of specific
services, those will be adopted.

- Discoverability: NEANIAS services shall be registered in central repository so that they
can be found and invoked by other services. The principle is enforced for top level
services or services that are enabling the infrastructure; however, it is not imposed
for microservices that might be supporting a service. Furthermore, static and dynamic

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 14 of 107

registration are both valid approaches due to the assumptions of specific services. All
services will start from 0-point assumptions declared in their base configuration. In
NEANIAS there will be the following classes of services with respect to discoverability:

o Fixed EndPoint Services: Services that respond to a predefined endpoint.
Registration may be performed statically and is optional.

o Dynamic EndPoint Services: Services that register themselves into the
infrastructure service instance catalogue upon instantiation and need to be
discovered in order to be exploited.

- Loose Coupling: Services shall not be making any further assumption on their
dependencies other than the ones declared in their interaction contract, so that the
services may be substituted by other services. The principle is suggested yet not
enforced in NEANIAS as there are several services that make deep assumptions on
microservices they utilize, which themselves may be independent services. Loose
coupling is a strong asset for service sustainability as it helps reduce risks. However,
in NEANIAS it is also assumed that most services will conform to a few internal
behavioral contracts. Those relate to security, accounting, logging etc

- Encapsulation: Services should not be exposing to their consumers details on how
they perform their tasks. However, this is not a strongly imposed principle as services
may be assuming specific features of services they depend on. It is suggested that
services expose their internal features that clients may wish to depend on, in the
registration service, so that they can be explored by clients.

- Reusability: Services in NEANIAS are suggested to be defined in a manner that
maximizes reusability. This is essential for all major identified services of the
ecosystem; however, it is not enforced for microservices underlying those which may
be tailored to specific tasks.

- Statelessness: Services, to the best of their efforts shall assume no state maintenance
among their invocations. However, this may not be semantically feasible as services
may be depending on data that grow via subsequent invocations and although
stateless in their interface, they are not stateless internally. Supporting services will
also need to handle state in more than few examples. Thus, although a good practice
statelessness is not enforced. In technical terms NEANIAS promotes the REST
paradigm for service interactions which further supports this directive.

- Autonomy: Services have control on the logic they encapsulate and define their terms
of operation. The principle is not generally adopted by NEANIAS but may be followed
by specific services for their specific mission critical and, in exceptional occasions,
sustainability reasons.

- Composability: Services should be allowing callers to compose them into larger logic
workflows to carry out composite tasks. The principle is not only strongly suggested
in NEANIAS, but it is also supported by several architecture design choices that allow
services to be composed building on assumptions on fundamental concepts, such as
security.

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 15 of 107

2.2. Minimum service requirements

All NEANIAS services must conform with the following requirements:

- Present their users with a clear and definite Terms of Use text that defines intended
use and clarifies how the service may be used, presents its SLA and the data protection
rules applied, and if applicable exemplifies and discourages potential malicious use.

- Adopt the Authentication Authorization Infrastructure (AAI) policies and protocols
established in NEANIAS core AAI and conform to one of the AuthN/AuthZ models
introduced in this report and follow its evolution in the course of project’s agile design
and development activities.

- Generate all accounting information required for the infrastructure, among others, to
evaluate the use of resources, calculate KPIs and potentially, in the future, apply
quotas to resource usage.

- Take all security measures to:
o Comply with the General Data Protection Regulation (GDPR) and the policies

settled by the project.
o Respect and enforce data protection assumptions made and declared to end

users.
o Prevent infrastructure from malicious use, especially from its own internal

logic and to its best effort by its users.
o Utilize resources placed at their disposal in compliance with resource

provider’s policies.
- Respond to handling any major direct or indirect (i.e. dependencies) security defects

identified by other partners and 3rd parties.

Furthermore, NEANIAS services are encouraged to:

- Provide standard logging information that ships to central log analysis facility for
consolidated log analysis and troubleshooting.

- Seek and adopt official or de fact standards for
o data they generate and/or consume
o any interaction with other services, unless such specifications are outdated

and do not comply with modern technologies and service needs.
- Publish their output data in the catalogues of the infrastructure:

o Register metadata in catalogues, presenting enough evidence for discovery
but also identification the origin and process of the data they refer to.

o Register data in long term data repositories suggested by the project
- Adopt the most portable supported model suitable for their operation and needs.

2.3. REST paradigm
NEANIAS services as well as the existing EOSC services are employing well-established web
technologies, i.e. HTTP REST for the implementation of their API methods. An API (Application
Programming Interface) is a protocol intended to be used as an interface by software
components to communicate with each other. REpresentational State Transfer (REST) is an
architectural style, or design pattern, for APIs. REST specifies a few architectural constraints
that must be satisfied for an API to be referred to as RESTful. These constraints, such as client-

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 16 of 107

server stateless interactions, cacheable resources, layered system and uniform interface,
when applied to a web service induce desirable properties, such as performance, scalability,
and modifiability, that enable services to work best on the Web.

In the REST architectural style, data and functionality are considered resources and are
accessed using Uniform Resource Identifiers (URIs), typically links on the Web. When a RESTful
API is called, the server will transfer to the client a representation of the state of the requested
resource. The resources are acted upon by using a set of simple, well-defined operations. In
the REST architecture style, clients and servers exchange representations of resources by
using a standardized interface and protocol. The REST architectural style is designed to use a
stateless communication protocol, typically HTTP. HTTP defines a set of request methods to
indicate the desired action to be performed for a given service resource. Each of these
methods (referred to as HTTP verbs) implements a different action. The primary or most-
commonly-used HTTP verbs are POST, GET, PUT, PATCH and DELETE. These correspond to
create, read, update, and delete (or CRUD) operations.

Some common design best practices used when designing REST APIs are:

• Use of the JSON standard for transferring data. There are other ways to transfer data
as for example XML, however they are not as widely supported by frameworks.

• Use of nouns instead of verbs for defining resources that make sense from the
perspective of the API consumer. This is preferred because HTTP request methods
already include verbs. For example, a resource could be called “users” and the action
GET /users could retrieve a list of all users.

• Use of standard HTTP error codes as response codes when an error occurs.

• Use of SSL/TLS for security for the REST APIs to communicate over secure channels
and protect information exchanged.

• Use of API versioning for API updates in order to make the transition to new versions
smoothly and prevent invalid requests to updated endpoints.

• Use of data caching to improve performance.

• Use of data filtering, sorting and pagination to improve performance especially when
there is too much data to be returned all at once.

2.4. Pluggability & Extensibility
Pluggability and extensibility are key design principles for building EOSC services for NEANIAS.
For the long-term development strategy of a service, the capability for functional updates and
extensions must be provided in order to implement the newly arising users' demands in a
seamless way.

While extensibility enables developers to expand or add capabilities of a service without
modifying the original source code, pluggability is one of the possible approaches to support

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 17 of 107

it via a pluggable framework and plugins. The two together are the capability to add new
modules to a service without recompiling or even restarting a running service.

Modularity is an important aspect of the service architecture in order to serve pluggability and
extensibility with low development effort. In order to provide this, the application of
microservices architecture design is highly recommended. In microservice architecture,
multiple loosely coupled services work together. Each service focuses on a single purpose and
has a high cohesion of related behaviors and data.

The main motivations for microservices architecture to support pluggability and extensibility
are as follows:

• Modularity: Each microservice represents a logically cohesive, lightweight and
independent business functionality with well-defined boundaries. By design,
microservices are highly granular, and independently built and deployed.

• Loose coupling: Microservices are designed to be loosely coupled with minimal
dependency on other services and libraries.

• Extensibility: Microservices can be leveraged to create an extensible solution by
quickly onboarding newer ones.

• Communication: Microservices can be effectively built by using communication
standards such as REST.

Communication between microservices and with client applications has to happen fast with
low overhead (e.g. no server-side session management and lean message structure) and
network latency, REST APIs are a good fit. Beyond performance, applying RESTful API is also
a key factor to support the aforementioned key features. For details on REST API, please see
Section 2.3.

2.5. Interoperability

Interoperability is usually considered as the ability to interconnect data and e-infrastructures.
The key to exchange data among components in an e-infrastructure is the utilization of
standards in communication and data format.

Interoperability is one of the most important aspects in EOSC, where the aim is to build a huge
European-wide e-infrastructure for scientists to exchange data, services and resources. In
order to realize this goal, the EOSC Pilot1 project investigated the most typical reasons for non-
interoperability happening in e-infrastructures (see link below). The reasons are identified and
named by 6 different gaps along with 6 risks behind the gaps. To lower the risks preventing
infrastructures' interoperability the EOSC pilot project defined 14 recommendations to ensure
infrastructure's interoperability. Finally, 6 recommendations were stated to adapt FAIR data
principles for the EOSC.

1 https://eoscpilot.eu/

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 18 of 107

The FAIR Data Principles are guidelines to make data findable, accessible, interoperable and
reusable. However, concerning EOSC, it is important to complement the FAIR principles with
further recommendations that improve the availability of research data to users and services
through an open cloud infrastructure. These recommendations can be found at
https://eoscpilot.eu/eoscpilot%E2%80%99s-contributions-eosc-interoperability. Section 2.7
will detail how these principles will be implemented in the core services.

2.6. Standards
All core services will be delivered according to standards, on the direction to support the
targeted research sectors (WP2, WP3, WP4) and communities as well as the targeted
additional business cases (WP5).

NEANIAS vision on EOSC is the full compliance with capable and prominent standards and
widely adopted specifications, as the only road towards wide and undoubtable
interoperability means. Thus, it plans to not only adopt but also, where needed, to propose
augmentation of models and specifications, promote the use by engaged stakeholders and
where ground is found to propose new approaches capable of being standardized in the
future. The establishment of strategic synergies with relevant national, European and
international initiatives, is essential element to achieve this impact; those synergies will target
both the reuse of tools and services from EOSC hub, Research Infrastructures and other
domains, based on commonly agreed protocols, and the establishment/expansion of working
groups in areas of interest. Research Data Alliance (RDA) participation in areas such as Array
Database Assessment, Data Management Plan (DMP) Common Standards, as well as groups
dealing with data identification, description, provenance and quality will be actively followed.

As already mentioned in Deliverable D9.1, NEANIAS partners are significantly linked to several
standardization consortium and organizations toward sustainability and interoperability, such
as the Open Geospatial Consortium (OGC), the Open Navigation Surface (ONS), the
International Virtual Observatory Alliance (IVOA), the Internet Engineering Task Force (IETF)
and the OpenID Foundation (OIDF).

Some of the standards that will be adopted in NEANIAS services are as listed below, but the
list is not meant to be exhaustive and is expected to be extended during the development:

• IETF OAuth2: An open standard for authentication / authorization.

• OpenID: An open standard for authentication.

• OGC WMS: An open standard for rendering of digital maps composed of raster and
vector data.

• OGC WFS: A standard interface allowing requests for geographical features across the
web using platform-independent calls.

• OGC WCS: An Interface Standard that defines Web-based retrieval of digital geospatial
information representing space/time-varying phenomena.

• OGC WPS: An Interface Standard that provides rules for standardizing inputs and
outputs, and relative requests and responses, for geospatial processing services.

https://eoscpilot.eu/eoscpilot%E2%80%99s-contributions-eosc-interoperability

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 19 of 107

• OGC WMTS: A standard protocol for serving pre-rendered or run-time computed
georeferenced map tiles.

• OGC GeoTIFF: An open standard managing the Tagged Image File Format (TIFF) for
the exchange of georeferenced or geocoded imagery.

• OGC GeoPackage: An open, non-proprietary, platform-independent and standards-
based data format for geographic information system implemented as SQLite
database container.

• OGC 3D Tiles: A standard for streaming and rendering massive 3D geospatial data
using tiled hierarchical data structures.

• IVOA SAMP: An open standard messaging protocol that enables astronomy software
tools to interoperate and communicate.

• IVOA TAP: An open standard interface providing a general access mechanism for
tabular data, including but not limited to astronomical catalogs.

• IVOA VOTable: An XML based standard for the interchange of data represented as a
set of tables, with particular emphasis on astronomical tables.

• FITS: An open standard format and transport system used in astronomy data.

• OSGeo TMS: A specification for tiled web maps.

• ONS BAG: A file format designed to store and exchange bathymetric data.

• Unidata NetCDF: A community standard for sharing array-oriented scientific data.

• OAI-PMH: A protocol for harvesting metadata descriptions of records in an archive so
that services can be built using metadata from many archives.

• EOSC-EDMI2: a minimum information metadata guideline defined by EOSCpilot to
help users and services to find and access datasets reusing existing data models and
interfaces.

And many other standards related to the W3C recommendations and protocols such as
HTML5/JavaScript/CSS3, JSON, XML, HTTP(S) and FTP.

2.7. F.A.I.R. principles

This section describes how the principles to make data Findable, Accessible, Interoperable and
Re-usable (FAIR) will be supported by each of the NEANIAS core services belonging to C1, C2,
C3, and C4. Those details complement information included in D1.5 presenting the overall
NEANIAS Data Management Plan.

2.7.1. C1 core services
FAIR data principles will be followed by all C1 core services.

Findable data. Access to the service catalogue and service metadata will be provided through
the NEANIAS service catalogue portal. The NEANIAS portal will offer browsing and keyword
search functionality to enable users to discover and find services in an intuitive manner. The
service catalogue and each service entity will be described by a clear set of metadata
(schema), the Service Description Template (SDT) provided by the EOSC Portal onboarding
team, and more specifically the EOSC Enhance project which is responsible for operating and
implementing the current phase of EOSC portal. The data catalogue will be provided through

2 https://eosc-edmi.github.io/

https://www.eosc-portal.eu/enhance

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 20 of 107

OpenAIRE’s Zenodo platform (https://zenodo.org/). Zenodo's metadata is compliant with
DataCite's Metadata Schema (https://schema.datacite.org/) minimum and recommended
terms, with a few additional enrichements. Metadata of each record is indexed and searchable
directly in Zenodo's search engine. Metadata of each record is sent to DataCite servers during
DOI registration and indexed there. Both the service and data catalogues will support
versioning. A globally unique and persistent ID (PID) will be assigned to every resource via
Zenodo.

Accessible data. The NEANIAS portal will provide continuous access to the service and data
catalogues via the web. The NEANIAS service catalogue will also provide continuous access to
the catalogue via standard APIs that are HTTP REST APIs. The description of the Service Model
is documented in the API documentation page and is available for download in JSON formats
(https://github.com/eInfraCentral/docs). The data catalogue will be provided through
OpenAIRE’s Zenodo platform. All metadata in Zenodo for individual records as well as record
collections is harvestable using the OAI-PMH protocol by the record identifier and the
collection name. Metadata is also retrievable through the public REST API. Data and metadata
in Zenodo will be retained for the lifetime of the repository.

Interoperable data. Each service collected in the NEANIAS service catalogue will be stored in
the Service Data Model as a separate XML/JSON file. For metadata interoperability, service
schema will reuse terms from widely known vocabularies and ontologies such as the Dublin
Core terms and Simple Knowledge Organization System (SKOS), including taxonomies and
classifications for enumerated attributes of a service. Similarly, Zenodo uses JSON Schema as
internal representation of metadata and offers export to other popular formats such as Dublin
Core or MARCXML. Interoperability will be supported by the provision of dedicated APIs that
allow the import and export of the content in standard formats (XML, JSON) and standard
data models.

Re-usable data. The public content within the NEANIAS catalogue and services will be
available for download and re-use with no restrictions or embargo. The content will be
available under permissive licenses, (CC-BY 4.0, CC-0 or comparable) but certain conditions
(e.g. Noncommercial use=NC) and/or exceptions may also apply. The NEANIAS service
catalogue will be built based on the eInfraCentral software which is available under the GPL/A
license. In the cases where specific service information cannot be publicly shared, the reasons
will be mentioned in their metadata descriptions (e.g. ethical, rules of personal data,
intellectual property, commercial, privacy-related, security-related). In Zenodo, the code is
open source, and built on the foundation of the Invenio digital library (https://invenio-
software.org/) which is also open source. The work-in-progress, open issues, and roadmap are
shared openly in GitHub. All meta data is openly available under CC0 license, and all open
content is openly accessible through open APIs. License is one of the mandatory terms in
Zenodo's metadata and is referring to an Open Definition license
(https://opendefinition.org/). Data downloaded by the users is subject to the license specified
in the metadata by the uploader.

https://zenodo.org/
https://github.com/eInfraCentral

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 21 of 107

2.7.2. C2 core services

Most of C2 Services are infrastructure level services and are not directly handling data at the
level to impose data FAIRness policies. C2 services shall be open to operate on all data policies
that may be employed by higher level services, including those of selected business cases.

Nevertheless, services provided are able to support the FAIR principles applied by other core
services, especially C1 services, as well as C3 and C4 and all thematic services. Mostly related
to those are services that allow data depositing, transfer and sharing that will allow carrying
out NEANIAS policies related to the preservation and access to data.

2.7.3. C3 core services

As data is the main element in C3 AI services, and data is mostly handled by C1 services,
FAIRness is supported indirectly through the policies of C1 core services.

As the result of machine learning algorithms, trained models are produced, which are served
(C3.2), and models will also be made accessible for re-use purposes, such as transfer learning.

2.7.4. C4 core services

C4 Visualization services will implement FAIR principles by employing open file formats and
the use of metadata, including persistent identifiers, to describe the data thus making data
findable and will provide searchable metadata as well. In doing this, standards and
recommendations from e.g. OGC and IVOA organizations (see Section 2.6 for more details)
and C1 data services will be employed making data accessible for open source tools and
services to process the data.

2.8. Operation

The delivery and operation of the NEANIAS services adhere to the recommendations reported
in Deliverable D7.1 of Neanias, which stem from well-known and established practices as well
as from preliminary results of a survey among the involved partners:

• service management processes follow the FitSM standards family, which aim at
achievable IT service management;

• software implementation is supported by tools available to NEANIAS service
developers and which allow automatic software building, testing and deployment,
possibly using Continuous Integration and Delivery (CI/CD) workflows;

• software documentation has a single access point for all NEANIAS services and relies
on the popular Read The Docs (readthedocs.org) document sharing environment;

• software, where applicable, should use free and open source licenses and should be
published to online code sharing platforms (such as GitHub);

• operational service-related issues and feedback from both NEANIAS internal sources
and external users will be collected through specific tools, already deployed as part of
the activities of task T7.2;

• operational services will be monitored, the related quality metrics will be collected
and, where applicable, automatically reported to the EOSC facilities;

• the development, delivery and operation of NEANIAS services can rely on the
infrastructures operated by consortium members;

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 22 of 107

• paradigms such as high availability and Infrastructure as Code (IaC) should be adopted
when designing, developing and operating the NEANIAS services.

2.9. Security

Security in NEANIAS is based of 3 elements:

- The user: the user is defined, authenticated, informed and granted various forms of
access and has a central role in the definition and enforcement of security.
Abstractions such as “groups” or “roles” may be present still referring to the user.

- The service: the service has the main responsibility of applying a security policy to
resources that it manages (data, cpu, logic, storage etc). This security policy is defined
on a per service basis and is not unique per service. Yet NEANIAS project will define a
set of policies that services will opt to follow for simplifying the interpretation of each
service commitment.

- The infrastructure, that offers the glue among users and services. It translates, in a
trustworthy manner, users, roles, groups into elements that can be consumed by
services in order to apply their policies. It also supplies support to link users to those
policies on a per resource basis.

2.9.1. NEANIAS AAI Concepts

In this section the infrastructure perspective is presented, and through this the representation
of users and the instruments offered to services for application of their respective policies.

With respect to security, NEANIAS will offer a horizontal solution that can be utilized by all the
underlying NEANIAS services. This solution will focus on the aspects of Authentication and
Authorization. Another important aspect that the security considerations can propose and
facilitate alternative approaches is that of request delegation.

With respect to authentication, the identity federation paradigm
(https://openid.net/specs/openid-connect-federation-1_0.html#rfc.section.1) will be used to
facilitate the authentication and registration to the NEANIAS catalog of users, principals that
are authenticated through external identity providers. Comprising the identity federation, the
following cases can be identified:

• NEANIAS Single Sign On (SSO) – Users registered through the NEANIAS Consortium
Single Sign On solution can be authenticated through the respective identity provider
and are part of the user federation (https://sso.neanias.eu/)

• EOSC AAI – Users authenticated through the European open Science Cloud
Authentication & Authorization Infrastructure (EOSC AAI) (https://eosc-portal.eu/)
will also be authenticated to access the NEANIAS infrastructure. Through this identity
federation scheme, users with access to a wide variety of identity providers gain
access to the NEANIAS services. Some of these providers include:

o EDUGain Access Check
o EGI Check-In
o B2Access
o OpenAIRE
o ORCID

https://openid.net/specs/openid-connect-federation-1_0.html#rfc.section.1
https://sso.neanias.eu/
https://eosc-portal.eu/

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 23 of 107

• OpenID Connect Identity Providers – The authorization solution employed by
NEANIAS is based on the OpenID Connect protocol (OIDC)
(https://openid.net/specs/openid-connect-core-1_0.html). Identity providers that
expose OIDC compatible endpoints can be registered and used to authenticate users

• Social platforms – In addition to all other identity providers, if required, widely used
social providers such as Google, Microsoft, Facebook, Linked In, etc could be used to
authenticate users

• Local users – Beyond external identity providers, the option to authenticate users
through local user accounts will also be available. It is expected that this method will
primarily be used for maintenance and administration accounts

With respect to the supported grant flow through which the requestor identity is federated
and subsequently propagated to servicing endpoints, the following mechanisms can be
identified:

• Authorization Code Grant Flow (https://tools.ietf.org/html/rfc6749#page-24) – This
flow is usually the preferred method to authenticate users via Open Id Connect. In the
first request, the user is redirected to the external identity provider where he is
authenticated and then redirected back to the identity consumer site with an
authorization code. Subsequently, another request is made to exchange the
authorization code with a token set containing information such as access, refresh
and id token. This flow will be utilized to authenticate users through external identity
providers.

• Client Credentials Grant Flow – This flow can be used for machine to machine
authentication. In this grant, a specific user is not authorized but rather the
credentials are verified and a generic access token is returned. This flow will be
utilized to authenticate NEANIAS services in order to interoperate with other NEANIAS
services

• API Keys – This method is not part of the Open ID Connect specification and will not
be centrally managed. It is rather an option for services that will require a simpler
approach to authenticate client requests, whether these are within the NEANIAS
ecosystem, or to external services.

The authentication flow that passes through the centrally managed NEANIAS AAI service will
expose suitable user info endpoints (https://openid.net/specs/openid-connect-core-
1_0.html#UserInfo) through which the respective id tokens can be used to retrieve the caller’s
claims. This information will be provided in the form of a JWT token (JSON Web Token)
(https://tools.ietf.org/html/rfc7519) containing information to be utilized by servicing
components.

With respect to authorization, the following alternatives can be made available and can be
utilized based on specific service needs. It should be noted that these alternatives are not
necessarily mutually exclusive, and a combination can be used by some service as seems most
fitting.

• Role based – The mechanisms to define roles within the NEANIAS AAI Single Sign On
(SSO) solution will be provided. These roles can be subsequently assigned to
authenticated users and the information flow down to services with each request as

https://openid.net/specs/openid-connect-core-1_0.html
https://tools.ietf.org/html/rfc6749#page-24
https://openid.net/specs/openid-connect-core-1_0.html#UserInfo
https://openid.net/specs/openid-connect-core-1_0.html#UserInfo
https://tools.ietf.org/html/rfc7519

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 24 of 107

the respective caller claims. The roles can be defined with a global application scope,
or they can be client specific. This way, each service can define a set of roles that do
not clash in semantics with other service needs. In addition to roles, user groups can
be employed and semantics on group membership can be utilized by the services or
even be used as an administration utility to easily propagate affective roles to groups
of users

• Resource based – A mechanism to define ad hoc resources within the NEANIAS AAI
service can be investigated. The purpose of such a construct would be to allow
NEANIAS services, through respective exposed API endpoints to autonomously define
resources and manage user authorization over them. The scope of these resources
can be determined in an ad hoc fasion by each service, although it is expected that
coarse grain resources would be used

• Service Specific – it is expected that each service will have diverse authorization
requirements. For this reason, in addition to the Role and Resource based
authorization that could be offered horizontally, each service could employ fine
grained authorization policies within its own business logic. For this case, the
horizontal NEANIAS solution would be limited to providing consistent client subject
identifiers and any origin information it has available to facilitate in-service solutions,
possibly, ranging from access control lists (ACL) to custom business rules

With respect to request delegation, the approach taken can be differentiated depending on
the caller and recipient requirements. The initial recipient receiving a user request will have
all the tracking and identification information of the caller through the respective JWT token.
In case this recipient requires, in the flow of normal execution, to invoke other services to
complete or forward the service request, two cases can be distinguished:

• Service Identification – The underpinning service may only require that the caller
service is authenticated, and any authorization checks are handled at the level of
service requestor. Tracking and accounting actions are handled by the recipient at the
level of caller service and further bindings with respect to the request originator is
accounted by the caller

• User Identification – The underpinning service requires complete knowledge of the
request originator to handle aspects of its operation such as accounting,
authorization, and any other business logic rules.

Depending on the use case, different alternatives can be examined.

• Instead of requesting a new access token for a service to service authentication,
services that need to delegate user information to other services can use the access
token send from the user. In this case the initial access token requested by the user,
should have access to all the scopes required to finish the initial as well as subsequent
request

• When performing service to service communication, apart from the access token
services can also include in the API invocation enough information on the user that
they are acting on behalf of. This can be in the form of a direct API parameter or even
through some request header. The receiving service must be aware of this header and
able to propagate it to potential subsequent requests

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 25 of 107

In the latter case caution needs to be applied to make sure that the propagated information
is not tampered with over untrusted network and unsecure communication channels.
Countermeasures against this could include trusted networks, transfer level encryption as well
as signing the propagated information through well-established standards (public-private key
encryption and signing). To facilitate the full lifecycle of service development, the security
environment can be sandboxed to differentiate between production, staging and
development environment. Different users and federation identity providers can be
supported in each of the environment specific sandboxes.

2.9.2. Policy

Security policy is applied on a per service basis. However, the following general policy shall be
applied in NEANIAS:

• Each service presents a terms of use document where its precise policy regarding
security is presented.

• Each service may opt to pick one of predefined data security policies that will be
presented by the project in subsequent stages.

• Services should clearly present to the user any risks for exposing data uploaded or
utilized by the service to 3rd parties, defining those 3rd parties.

• Services should prevent unauthenticated access to their end-points, unless those
endpoints are intended for public use, in which case the endpoints should employ
throttling or another protective mechanism to prevent misuse of infrastructure
resources and should avoid consuming substantial network, storage or network
resources.

• Services should apply some mechanism to prevent unauthorized data access. The
granularity this is applied should be evident to the provider of data.

• All services must avoid placing sensitive or otherwise protected data in their logs and
accounting records, if this is not strictly required for performing their activity. Any
such data use should be made evident to their user and get her consent.

• Services should avoid profiling of users unless necessary. In such case they should
present the user with relevant information and need and get her consent.

• Services shall preserve user consent statements according to GDPR guidelines.

• Services shall preserve any sensitive information according to GDPR guidelines.

2.10. User Interfaces / User Experience
NEANIAS portal and services will be offering web-based graphical user interfaces to allow
users to perform various actions. These interfaces will be designed based on the basic
principles of web design in order to offer users a frictionless and engaging user experience.

These basic principles include the following guidelines:

Usability: any design element of the user interface should have a purpose. A less-is-more
approach could help emphasize simplicity as opposed to clutter.

Simplicity: simple language that is clear and concise should be used as it can be easily
understood by different types of users and helps reduce ambiguity at the same time.

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 26 of 107

Consistency: the user interface should be consistent by making the visual presentation of the
same type of information and behavior of the same interactive elements predictable, thus
ensuring continuity of previously acquired knowledge.

Narrativity: users should be able to understand the relationship between specific actions and
why they happen, what happens afterwards, and how that affects future events, all based on
the flow of time.

Feedback: the user interface should have an interactive design that responds to user actions
and encourages communication. For example, a clicked icon could change color or shape.

Intuitive and user-friendly interface: a friendly user interface should allow only for an
appropriate set of actions and prevent situations that result in errors as for example warn
users for actions where they might damage data. At the same time the use of familiar and
recognizable concepts widely understood by all types of users could help users navigate more
easily without having to follow a learning process.

Compatibility: the user interface should make use of technology widely available to users.

Responsiveness: the web design should be responsive in order to render well on a variety of
devices and window or screen sizes used by different users.

Accessibility (optional): the user interface design should be usable by as many people as
possible including people with disabilities.

Although NEANIAS user interfaces will be implemented by different service providers using a
variety of technologies, a general NEANIAS web toolkit will be offered with optional elements
and guidelines to enable all services’ user interfaces to have a similar and recognizable look
and feel. This toolkit will include coloring guidelines, texts, html elements, proposals for
menus, generic icons, possibly dynamic widgets and is analyzed in more detail in section 5.5.

2.11. Portability
NEANIAS service portability approach attempts to capture the existing landscape of services
that are initially onboarded the project, their targeted evolution and the constraints that may
underly those.

Implementation-wise, NEANIAS strongly suggests that services are implemented adopting
portable technologies and rely on open standards for their interactions and dependencies so
that they can be ported to different infrastructures. Furthermore, NEANIAS suggests that
services are packaged in forms that can be ported across cloud infrastructures avoiding vendor
lock-in. Examples of portable implementation technologies are java, python, .net core etc.
while portable packaging technologies are war, jar, docker images etc.

Yet, service portability in NEANIAS may follow any of the following approaches, assuming that
there are solid justifications to deviate from the optimal maximum portability case:

- Portable Service: A service that can be deployed in any major cloud infrastructure
with minimal assumptions. Services may have preferences due to data/service locality
exploitation patterns, however those are not technically limiting the deployment of
the service in any other infrastructure that satisfies its limited restrictions of
requirements.

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 27 of 107

- Bound Service: A service that is bound to an infrastructure or technology and needs
to be deployed to it due to a number of reasons such as fixed local dependencies,
security etc. (e.g. a service that requires internal access to a long-term storage tape
facility, a specific version or flavor of operating system). Although bound to the
infrastructure or technology the service is still a dynamic in terms of instantiation.

- Fixed Service: A fixed service is the most limited type of service as it is tightly bound
with an infrastructure and/or technology and is expected to be a fixed point of
reference with substantial static features. For instance, the servicing API of a large
datastore is such a service, tightly bound to the technology and the physical resources
that underlie the service.

Admittedly the boundaries among the three classes of service may not be sharp, however the
classification will greatly help service providers shape their service provisioning pattern.

2.12. Technology

The following technologies, frameworks and systems are used for the implementation of
NEANIAS Core Services:

2.12.1. Programming languages

− Java: A general-purpose, object-oriented and strongly typed programming language.
Along with other technologies that compose the Java Platform (e.g. the Java Virtual
Machine), it is widely adopted for cross platform service implementation.

− C#: A multi-paradigm, object-oriented and strongly typed language developed by
Microsoft. It is used worldwide for implementing desktop applications, web
applications and web services.

− Python: An interpreted, loosely typed, general-purpose programming language. Its
constructs and object-oriented approach aim to help programmers write clear, logical
code for small and large-scale projects.

− JavaScript: An interpreted, prototype-based programming language specifically
optimized for developing client applications.

2.12.2. Development frameworks

− .Net Core: A free open source, state-of-the-art framework for portable services
implementation that builds upon the Microsoft .NET framework, enabling several
computing languages, including C#. It will be used for the implementation of several
Core services.

− Angular: A widely adopted state of the art framework for cross browser web
applications delivered under the SPA paradigm, building on the MVC design pattern
for empowering structured, rich, client applications.

− NodeJS: An asynchronous event-driven JavaScript runtime, designed to build scalable
network applications.

− Jupyter: An open-source project to support interactive data science and scientific
computing across all programming languages.

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 28 of 107

2.12.3. Data Management frameworks

− ADAM: The Advanced geospatial Data Management platform is a tool to access a large
variety and volume of global environmental data. ADAM allows you extracting global
as well as local data, from the past, current time, as well as short term forecast and
long-term projections. Most of the data are updated daily to allow users having always
the most recent data to play with.

− Rasdaman: A data management and analytics system for massive multi-dimensional
arrays ("datacubes") such as sensor, image, simulation, and statistics data appearing
in domains like Earth, Space, and Life sciences; in particular its main features include
flexibility, performance, scalability, and open standards support.

− GeoServer: open source server for managing, visualizing and sharing geospatial data.

− PostgreSQL: a powerful, open source object-relational database system that uses and
extends the SQL language combined with many features that safely store and scale
the most complicated data workloads.

− CKAN: an open source metadata and basic data management system to support data
registration, discovery and sharing.

2.12.4. AI/ML frameworks

− Tensorflow: An open-source platform for machine learning; it provides a
comprehensive, flexible ecosystem of tools, libraries and community resources that
lets researchers push the state-of-the-art in ML.

− Keras: A high-level, open-source, neural networks API, written in Python and capable
of running on top of different back-end platforms, among which Tensorflow; it is
designed with a focus on enabling fast experimentation.

− Spark Mlib: a distributed machine-learning framework on top of Spark Core that, due
in large part to the distributed memory-based Spark architecture, is faster than most
disk-based implementations.

− DeepLearning4J: Eclipse Deeplearning4j is the first commercial-grade, open-source,
distributed deep-learning library written for Java and Scala. Integrated with Hadoop
and Apache Spark, DL4J brings AI to business environments for use on distributed
GPUs and CPUs.

− Streamlit.io: an open-source app framework for Machine Learning and Data Science
teams able to quickly turn python code into a dynamic web app.

2.12.5. Visualization Frameworks

− Dash: a productive Python framework for building web applications.

− Plotly: an interactive, open-source plotting library that supports over 40 unique chart
types covering a wide range of statistical, financial, geographic, scientific, and 3-
dimensional use-cases.

− VTK: open-source, freely available software system for 3D computer graphics,
modeling, image processing, volume rendering, scientific visualization, and 2D
plotting. It supports a wide variety of visualization algorithms and advanced modeling
techniques, and it takes advantage of both threaded and distributed memory parallel
processing for speed and scalability, respectively.

https://github.com/plotly/plotly.py

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 29 of 107

2.12.6. Major Background Systems

The following systems are utilized in the background as technologies in NEANIAS Core
Services:

− OpenStack: a free open standard cloud computing platform, mostly deployed as
infrastructure-as-a-service (IaaS) in both public and private clouds where virtual
servers and other resources are made available to users. The platform consists of
interrelated components that control diverse, multi-vendor hardware pools of
processing, storage, and networking resources throughout a data center. Users either
manage it through a web-based dashboard, through command-line tools, or through
RESTful web services.

− Kubernetes: an open-source container-orchestration system for automating
application deployment, scaling, and management.

− ELK Stack: a system including three open source projects: Elasticsearch, Logstash, and
Kibana. Elasticsearch is a search and analytics engine. Logstash is a server‑side data
processing pipeline that ingests data from multiple sources simultaneously,
transforms it, and then sends it to a "stash" like Elasticsearch. Kibana lets users
visualize data with charts and graphs in Elasticsearch.

− Docker: a popular Linux-based containerization system, which allows to ship
applications already bundled with their runtime dependencies.

− Apache Spark: An open-source distributed general-purpose cluster-computing
framework. Spark provides an interface for programming entire clusters with implicit
data parallelism and fault tolerance. In particular, it supports Spark MLib, a distributed
machine-learning framework that will be employed by AI services.

− Keycloak: an open source Identity and Access Management solution. It provides
support for User Identity Federation and Single Sign On scenarios through widely used
protocols such as Open ID Connect 1.0 and SAML 2.0.

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 30 of 107

3. System Architecture

In this section of the report the overall architectural perspective of NEANIAS is presented, in
order to allow the reader to comprehend the full breadth and depth of services and
capabilities to be offered by the arising services ecosystem.

At first, a diagrammatic overview of the ecosystem is given, in the form of logical layered
architecture. Although the precise architectural approach is a mix of microservices and service
layers, it is assumed that the layered visualization allows easier visualization of the concepts.
To support the reader, brief descriptions of the elements presented in the diagrams are
provided. Complementing the architecture, a reference service lifecycle is presented, so that
the notion of a “NEANIAS service” emerges, as a piece of software that loosely conforms to
some principles.

Through those two major diagrammatic and textual descriptions, one can comprehend the
application of various principles of SOA, Open Science and EOSC architecture in general. One
can also envisage how core services are brought together to yield reusable generic services
and empower the thematic services delivered by the research sectors.

Finally, an indicative hypothetical physical architecture is introduced, in order to present
concrete deployment options allowed by the presented architecture and its principles.

3.1. Architecture overview

NEANIAS architecture follows the distributed, n-tier architecture model. In this architecture
NEANIAS Services are logical architecture blocks that cover specific functional or technological
requirements of the infrastructure and are exposed to other NEANIAS or 3rd parties' services
via their contracts. NEANIAS services themselves may, and usually are, composite multi-tier
systems encapsulating microservices and protocols for their internal operation. In few cases
those internal components may be robust, well defined and exposable on their own into the
infrastructure, however they will not be presented as essential building block of the overall
architecture presented here, so as to allow the document to focus on the notion of NEANIAS
ecosystem of services.

NEANIAS services fall under 8 major groups, which can be logically clustered in 3 clusters

• Base Core Services, a cluster of generic services that provide basic tooling for
NEANIAS ecosystem services.

o Open Science Lifecycle support services (C1)
o EOSC hub Research infrastructures and cloud integration enabling services

(C2)

• Advanced Core Services, a cluster of services that build on base ones to deliver higher
level generic yet focused in a specific domain services to be exploited by thematic
services, which include:

o Artificial intelligence Services (C3)
o Visualisation Services (C4)

• Thematic Services, a cluster of services that includes top-level services for:
o Underwater research sector services (Ux), emerging from the requirements

and work of WP2.

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 31 of 107

o Atmospheric research sector services (Ax), emerging from the requirements
and work of WP3.

o Space research sector services (Sx), emerging from the requirements and
work of WP4.

o Business innovation sector Services, i.e. services that may emerge to fulfill
the business sector needs, which remain to be identified and designed in next
stages of the project.

Although not strict, the diagram in Figure 1 coarsely depicts the stack of those service clusters
and groups in NEANIAS.

Figure 1: Logical layering of NEANIAS service clusters

3.2. Logical architecture

Figure 2 depicts the coarse logical architecture of NEANIAS.

In this diagram 5 layers of abstractions are depicted:

- Level 0: Physical resources of the infrastructure, such as compute, store, network,
users etc

- Level 1: Abstractions of physical resources, such as virtual machines, standard storage
APIs, user identities etc

- Level 2: Services that act close to resource abstractions and mainly orchestrate access
to those resources adding higher level features.

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 32 of 107

- Level 3: Services that provide facilities that may reach up to the end user offering
functional features, however they are mainly intended for composition of higher-level
services rather than standalone ones.

- Level 4: Services that are targeting specific use cases. Might form applications (i.e. sets
of services, usually with rich user interfaces that collectively serve some use) or
standalones services that provide specific tools to their users.

Apart from those services, there are two sets of services that reside outside or at the
boundaries of NEANIAS infrastructure:

- Boundary services, that are defined by NEANIAS, support the provisioning of NEANIAS
services but may be residing on or be integrated in external infrastructures to offer
their features.

- External services, that are provided by infrastructures not controlled by NEANIAS on
their own terms and specifications.

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 33 of 107

Figure 2: Logical architecture diagram

3.3. Fundamental building blocks

In the logical architecture presented in Figure 2, one can identify the following fundamental
elements that support the definition of NEANIAS services:

- NEANIAS Gateway: The area where the user meets the NEANIAS service and data
offerings. It offers general information on NEANIAS services as well as view of the
service and data catalogue and access points to user-oriented services.

- AuthN/AuthZ (AAI): The service is a gateway to Identity providers that will be linked
to NEANIAS and will allow the authentication of local users. It also supports service
authentication and provides fundamental instruments to support client authorization,
yet NEANIAS services may opt for different means for the latter.

- Digital identity: is the representation of a user in the virtual landscape.

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 34 of 107

- Service Catalogue: A human accessible catalogue of service offerings of NEANIAS,
compliant with the EOSC hub/marketplace directives, where users may locate
project’s offerings.

- Service Instance Registry: A machine accessible catalogue to register and locate
active service endpoints via their metadata, essential for supporting a dynamic SOA
ecosystem.

- Research Product Catalogue (aka Data Catalogue): A metadata repository listing
datasets of NEANIAS. Services may publish and retrieve dataset descriptions from the
catalogue, and locate the endpoints where those datasets reside. Federation is
supported via well-known protocols.

- Data Depositing Service (aka Data Repository): A data storage abstraction a store to
deposit data for later use. Data may be mostly deposited in object forms which in
cases may even be not directly usable by consumer services, and response times may
be inferior compared to a to data type-specific store.

- Data-type specific stores: Datastores specialized to manage data via services that
comprehend the internal structure of the datasets. Such may be relational databases,
geospatial data stores etc.

- Configuration Management: a distributed redundant service for storage of
configuration information and secrets required by services instances to perform their
operations.

- Long Term Store: a backend storage abstraction that can be trusted for long term
preservation of datasets. The service may be even offline, resulting in response times
substantially inferior compared to other store technologies.

- AI Service: an umbrella service that encloses a number of technologies for Artificial
Intelligence related tasks execution, which start from selection of algorithms, cover
algorithm training and subsequently application in various tasks (e.g. prognosis) and
feedback integration. The service will encapsulate training datasets.

- Visualisation Service: an umbrella service that encloses a number of technologies for
visualizing and exploring specific data types. It may be coupled with specific clients
that deliver the visualization the end-user

- Compute Management: An abstraction for management of infrastructure containers
that may apply policies for optimizing the performance and resilience of the system,
if services and infrastructure allow it. It provides specific CPU and memory
abstractions.

- Container: The main carrier of service executable elements, packaged and configured
by service publisher. At least one is being defined by NEANIAS, but more may emerge
in the course of the project, if compliant with infrastructures available.

- EOSC AAI: The AAI of EOSC which will be one of the main IdPs engaged by NEANIAS
AAI.

- EOSC Compute: An abstraction for computation offered by EOSC service marketplace,
that may be utilized on demand by NEANIAS services. EGI compute may be one of
those.

- EOSC Storage: An abstraction for storage offered by EOSC, that may be utilized on
demand by NEANIAS services. EUDAT B2Store is one example of such storage service.

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 35 of 107

- 3rd Party Data Catalogue: Other catalogues, such as OpenAIRE, Zenodo etc that may
be linked to NEANIAS data catalogue, to draw dataset descriptions for further
promotion of open science.

- EOSC marketplace: The area where all NEANIAS services are listed for discovery by
researchers and scientists.

3.4. NEANIAS reference service
In Figure 3 an indicative lifecycle of a service starting up to serve its users in NEANIAS is
presented. In this flow, the following steps may be present:

- Initialization: any work performed by the service before starting interaction with
NEANIAS services. May refer to container handling, point 0 configuration application
etc.

- Configuration discovery / access: the service discovers the configuration options
needed for its operation. Those might be drawn from local store (i.e. container
defined) or from infrastructure services. Configuration may refer to default operation
parameters, fixed dependency endpoints, secrets etc.

- Service dependency discovery: the service may access the catalogue or other
technologies in order to discover the services it will depend on, in order to provide its
features to its users. In this stage the access points of services that satisfy the
requirements of the service are located.

- Data discovery: the service may discover datasets that might be fundamental for its
operation. Examples might be a training set of an AI service, or map terrain data for a
mapping service.

- Store allocation: in case the service will need pre-allocated store, at this point it checks
to acquire it.

- Compute allocation: in case the service will need some allocated computational
power or memory size, it could ask for it before staring up.

- Data fetch: following store allocation, the service might request the transfer of data
it needs to use in the allocated storage.

- Process: when prerequisite data and relevant resources are ensured, the service may
process those in order to initiate its servicing lifecycle. Processing may range from
simple validation to calculation of complex structures that will allow the service to
respond to its client’s requests.

- Registration: At this point the service is ready to start responding to requests from
clients, thus it registers itself to the instance registry, for others to be able to discover
it.

- Listening / monitoring: The service is listening to client servicing requests,
management requests (if supported) and monitoring requests.

- Un-registration: As a respond to a specific request posed by the hosting infrastructure
or a privileged caller, the service unregisters itself

- Cleanup: The service cleans up any allocations it might have performed.

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 36 of 107

Figure 3: Reference service instantiation lifecycle

In Figure 4 an indicative lifecycle of a service serving a client request in NEANIAS is presented.
There, one can identify the following steps:

- The client invokes the service
- Authentication of the client is performed under one of the supported models.
- Initial authorization is performed, which filters out whether the specific client may be

invoking the particular endpoint, potentially analyzing the parameters of the

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 37 of 107

invocation in case a resource-dependent authorization model is supported by the
service (e.g. ACLs)

- In case additional configuration needs to be discovered at this point the service
accesses either local or central configuration. One example could be the access to
specific secrets due to specific users invoking the service etc.

- Late service discovery may take place at this point for services that may need to react
to a fast-changing environment. However, this should take into account that the
active discovery cost needs to be justified to the caller.

- Depending on the request, the service may need to locate and access specific data.
Those may be explicitly or implicitly defined by the caller, or the service may be acting
on dynamically located data that need to be sought for.

- The service may need storage to move discovered data or data to be generated. Such
storage may need to be allocated, or ensured at this point, before data fetch or
generation is initiated.

- If data need to be fetched close to the service, then those are transferred at this point.
The process may be an asynchronous or incremental one, changing substantially the
service lifecycle, according to its design needs.

- Similarly, the service may depend on computational power or memory that need to
be allocated in the local or other infrastructures.

- Once all resources are present the service may invoke a processing cycle which may
generate new data or prepare existing data for exploration.

- Data generation although not technically separate from processing is a “semantic
stage” when new data are generated by a process.

- Persistence may follow data generation stage, if those data may serve further uses.
Persistence may take place in mid/long term service storage areas of the project, i.e.
escape the local storage of a virtual node.

- Exploration of data, via a service specific approach, may follow any of the previous
optional stages, i.e. processing, generation or persistence.

- Last step may be the publication of data to catalogues and public data repositories.

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 38 of 107

Figure 4: Reference servicing lifecycle

3.5. Physical architecture

In Figure 5, a potential deployment scenario for NEANIAS services is presented.

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 39 of 107

Figure 5: Hypothetical deployment of NEANIAS services

In the presented physical architecture scenario, the following assumptions are made:

1. A core infrastructure provider for NEANIAS is present, hosting services:
a. NEANIAS Gateway
b. NEANIAS AAI
c. Service Instance Registry
d. Data Catalogue
e. Service Catalogue
f. Storage Services (group of services)
g. Computation Services (group of services)
h. A portable Thematic Service Z that depends on storage and computation

offered by the infrastructure provider.
2. OpenAIRE is present with two services.

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 40 of 107

a. The OpenAIRE data catalogue, that harvests metadata from NEANIAS Data
Catalogue, following the validation of the service and the compliance with
OAI-PMH protocol.

b. The OpenAIRE data repository that is hosting data (and metadata) pushed to
it by services, which is directly utilized by Thematic Service X of the scenario.

3. EOSC is present with 3 services:
a. The EOSC Service Catalogue, which includes information from NEANIAS

Service Catalogue
b. The EOSC Computation Services (offered by a 3rd party) that is used by

Thematic Service X
c. EOSC AAI service that is linked to NEANIAS AAI.

4. A NEANIAS Large Data Provider, which hosts a large data volume that may be
infeasible to be moved for practical reasons, or a data volume that is locked behind
access policies, that hosts:

a. Local storage exposed via protocols that match the data type managed and
facilities offered on top of those. Those data themselves may be well a portion
or replica of data present in another infrastructure (External RI C).

b. Local computation services, that allow computation to run next to data.
c. Thematic Service Y, which is a service bound to the data and computation

services of NEANIAS Large Data Provider.
5. An External Research Infrastructure C that hosts primary or replicas of primary

observation / modeling data, which usually consists of petabytes of digital objects in
sector specific formats.

6. A NEANIAS X service provider, that offers
a. minimal local computational capacity to instantiate its service X
b. Thematic Service X, which is mostly relying on external EOSC provided

computational resources (e.g. EGI) to deliver is computation bound results
and data storage services provided by OpenAIRE Data Repository.

7. A NEANIAS Cloud Provider B that hosts
a. Core Service B, which depends on data managed by the NEANIAS Core

Infrastructure Provider.
b. Local computation to allow execution of Core Service B.

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 41 of 107

4. Fundamental resource abstractions in NEANIAS

4.1. Storage

The MTA SZTAKI Cloud, introduced in D7.1 of Neanias, based cloud environment3The MTA
Cloud provides storage abstraction via the OpenStack Cinder API. Cinder provides volumes,
which are raw unformatted virtual block devices that can be attached to a virtual machine
instance. These can then be used as a traditional hard drive by the instance's operating
system. Cinder also provides Snapshot functionality. These snapshots are a read-only, point-
in-time copy of a volume's contents. A snapshot can be created from a volume that is currently
in use or in an available state. The snapshot can be used to create a new volume, too. Cinder
also provides backup functionality to create compressed, archived file of a volume's contents
and store in a Swift object storage container, or at another third-party object store provider.
These volumes rely on a distributed Ceph cluster (https://docs.ceph.com) in the background.
Operating System images, from which Virtual Machines can be created, are instead managed
by the Glance OpenStack component, from which Virtual Machines can be created, are
instead managed by the Glance OpenStack component.

The GARR Cloud Platform, also described in Deliverable D7.1 of Neanias , and thus provides
the same storage abstractions as the MTA Cloud. In addition, the GARR Cloud Platform
provides an S3 compatible RESTful API to manage objects and object containers. Although not
exposed to the end users, all the storage in the GARR Cloud Platform is provided through
Ceph, which abstracts the hardware layer and implements data redundancy.

The GARR Container Platform is instead based on Kubernetes, a container orchestration PaaS
system. Kubernetes volumes, which in the GARR Container Platform are provided by Ceph,
are used for data persistence.

4.2. Computation

The MTA Cloud and the GARR Cloud Platform provide computational resources as virtual
machines via the OpenStack Nova component. Nova is a collection of daemons that work
together to orchestrate availability of compute resources, leveraging virtualization features
on compute nodes. Nova works with a variety of existing hypervisor technologies and
abstracts available CPU (vCPUs) and memory resources on compute nodes to create
“instances”, i.e. virtual machines. To this aim, the MTA Cloud and the GARR Cloud Platform
use the QEMU-KVM technology. OpenStack provides pre-defined virtual machines templates
to create virtual machines via the Nova API or the Horizon dashboard as well.

Concerning datacentre level abstractions, in the GARR Cloud Platform, resources located in
different geographical regions (which correspond to different datacentres) can be employed
through the same API endpoints.

3 https://www.openstack.org/

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 42 of 107

On top of the GARR Cloud Platform, GARR provides DaaS, i.e. Deployment as a Service, which
automates the deployment of applications in OpenStack and which is based on Canonical’s
Juju4.

In Kubernetes, and thus in the GARR Container Platform, computational resources (including
GPUs) are abstracted through “pods”, which are groups of Docker containers sharing the same
networking stack, and which can be deployed on “workers”, i.e. server abstractions.
Kubernetes provides also deployment abstractions, which allow to scale and upgrade pods.

Moreover, the GARR Container Platform allows the easy deployment of Jupyter notebooks
through Helm.

4.3. Other resources

The MTA Cloud and the GARR Cloud Platform provide SDN (Software Defined Networking) for
the virtual machine communication via the OpenStack Neutron component. Neutron is a
networking service that manages the OpenStack environment's virtual networks, subnets, IP
addresses, routers, firewall rules, and more. Neutron allows users to create the necessary
virtual resources not only to ensure that their instances obtain internal IP addresses (also
known as fixed IPs), but also to have the ability to map external IP addresses (also known as
floating IPs) to instances. This allows applications residing in OpenStack instances to be
externally accessible. Neutron also provides firewall functionality for the externally accessible
services with Security Groups. With Neutron, users can view their own networks, subnet,
firewall rules, routers, and load balancers, all through the Horizon dashboard or the Neutron
API.

In OpenStack resources are assigned to projects, to which many users can be added with a
role (e.g. Member or Admin).

In Kubernetes, resources are instead grouped into namespaces. Moreover, Kubernetes
provides the service abstraction, which in turns relies on other abstractions such as load
balancers, deployments and pods.

4 Juju - How it works: https://jaas.ai/how-it-works

https://jaas.ai/how-it-works

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 43 of 107

5. C1 Open-Science lifecycle support services &
Components reference

C1 services, the Open Science lifecycle support services, enable the integration of NEANIAS
thematic services with EOSC hub and offer providers, services and users the ability to publish,
present and locate resources.

In these section C1 services are described. First, the role of C1 services is briefly outlined and
then each service is presented based on the Service Description template guidelines of the
project.

5.1. The role of C1 services in NEANIAS

C1 services will provide the necessary tools for NEANIAS services to be discoverable and
accessible and integrated with EOSC hub. The NEANIAS Portal and NEANIAS service catalogue
built on eInfraCentral5, will enable service providers to register and present their services.
Through the NEANIAS portal and service catalogue users will be able to browse, search and
discover all thematic and core services available. At the same time, the NEANIAS data
catalogue will enable providers to publish their data while the NEANIAS PID service will allow
the generation of PIDs for digital assets making them unambiguously cited and therefore
uniquely discoverable. As part of the NEANIAS C1 services, providers will also be able to
validate datasets via automated or human driven processes and create actionable Data
Management Plans with the use of the Argos service provided by OpenAIRE.

5.2. NEANIAS Service Catalogue

Short Name Catalogue Service Lead partner ATHENA

Type Web service (REST API) Contributors -

Title NEANIAS Catalogue Service

Master element Open-Science lifecycle support services implementation

Description NEANIAS catalogue service will offer the necessary service catalogue
REST APIs for

a. NEANIAS service providers to register and update the service
metadata in the NEANIAS catalogue of services as well as monitor
the usage (e.g., pageviews) regarding their services.
b. 3rd party systems including EOSC portal to synchronize the
service metadata with the service catalogue of NEANIAS.

Technical details Web service built JAVAEE and PostgreSQL offering a list of REST methods
for managing a catalogue of EOSC compliant services. Based on
the eInfraCentral FOSS https://github.com/eInfraCentral.

Core integration It needs the following integration

5 https://einfracentral.eu/

https://github.com/eInfraCentral

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 44 of 107

• Authentication / Authorisation for authenticated users to login
and update service metadata.

Depends on EOSC AAI

Use cases a. NEANIAS service providers use APIs to programmatically update
the catalogue and also to publish services into EOSC
• 3rd party systems may use the APIs to access the content of the
catalogue

EOSC services
integration

EOSC AAI
EOSC portal, www.eosc-portal.eu

EOSC Service No

Start TRL TRL6 Target TRL TRL8

IPR NKUA \ ATHENA RC License Apache License

First availability 2020-08 Planned month of preliminary release to support NEANIAS
outreach and engagement plan and brief reference of what may be
usable at the point. No significant integration is expected.

MS4 expectation Prototype deployment. Not populated with NEANIAS service metadata.
EOSC integration is not mandatory for EOSC services yet.

MS6 expectation Deployed and populated with metadata of all NEANIAS services.

MS7 expectation Issue fixing and improvements.

5.3. NEANIAS Research Product Catalogue

The NEANIAS Research Product Catalogue (RPC) is the service that will store all products of
the NEANIAS project, along with datasets that the users of the NEANIAS services which will
make available online.

Research products of the NEANIAS project include:

• Publications

• Software

• Datasets used as input to NEANIAS services

• Datasets produced by the NEANIAS services that the users wish to make available to
others

For the research product catalogue, the NEANIAS project will use the OpenAIRE’s Zenodo
platform (https://zenodo.org/). Zenodo is an open data repository provided by CERN. In their
own words: “Zenodo is an open repository for all scholarship, enabling researchers from all
disciplines to share and preserve their research outputs, regardless of size or format. Free to
upload and free to access, Zenodo makes scientific outputs of all kinds citable, shareable and
discoverable for the long term.” (https://www.openaire.eu/zenodo-guide).

We plan to create a NEANIAS community in Zenodo, so that all published datasets are grouped
under this community. Zenodo supports basic metadata attributes (Dublin Core, see
https://dublincore.org/) necessary to create a “record”, i.e. an entry in the metadata

https://aai.eosc-portal.eu/proxy/module.php/discopower/disco.php?entityID=https%3A%2F%2Faai.eosc-portal.eu%2Fproxy%2Fmodule.php%2Fsaml%2Fsp%2Fmetadata.php%2Fsso&return=https%3A%2F%2Faai.eosc-portal.eu%2Fproxy%2Fmodule.php%2Fsaml%2Fsp%2Fdiscoresp.php%3FAuthID%3D_d84a4d0924cfa82482ed517b668dfeceda4f0b57f9%253Ahttps%253A%252F%252Faai.eosc-portal.eu%252Fproxy%252Fsaml2%252Fidp%252FSSOService.php%253Fspentityid%253Dhttps%25253A%25252F%25252Faai.eosc-portal.eu%25252Foidc%2526cookieTime%253D1584545751%2526RelayState%253D42ab84d2-383a-434c-a5e1-62e8b1971a26&returnIDParam=idpentityid
http://www.eosc-portal.eu/
https://zenodo.org/
https://www.openaire.eu/zenodo-guide

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 45 of 107

repository of Zenodo. It also supports some extra metadata attributes, specific to certain
record types. For example, a journal publication record may contain the volume number. Each
published upload should contain a DOI (persistent identifier), thus Zenodo assigns a DOI to
each upload, if not provided by the user. Finally, Zenodo offers a REST search API for the user’s
own records (https://developers.zenodo.org/#rest-api), and also harvesting functionality
through the OAI-PMH protocol (https://developers.zenodo.org/#oai-pmh).

The Zenodo service is already fully operational and at TRL9.

5.4. Data Validation Service

Short Name DVS Lead partner NKUA

Type Web service / Web app Contributors

Title NEANIAS Data Validation Service

Master element N/A

Description The Data Validation Service (DVS) is a service used by the NEANIAS
thematic services (and via them, by their end-users) to rate (grade) the
datasets they use and obtain the ratings of datasets. The identifier of a
dataset is its DOI. This service has an administrative interface that allows
its administrators to define the dimensions for the rating and view all
registered ratings.

Additionally, this service is accessible by the thematic NEANIAS services
via a REST API, allowing the calling services to create new dimensions for
rating, to register ratings for datasets, and to obtain aggregate ratings
for datasets.

Finally, we will investigate the potential for automatic rating of datasets,
wherever this is possible, after consulting with the corresponding users
of each dataset format.

Technical details The service will provide a web UI for initialization, and for assisting in
technical support. Its main usage is via its REST API. Consuming services
will need to authenticate themselves first, and also pass along the
authenticated end-user credentials that DVS will verify.

Core integration It needs the following integration

• Authentication service, to identify the logged in user
• Service instance registry, to register itself

Depends on -

Use cases a. A service creates a new “dimension” (subject) for rating
datasets.

b. A service retrieves all registered dimensions.
c. A service registers a new rating for a dataset.

https://developers.zenodo.org/#rest-api
https://developers.zenodo.org/#oai-pmh

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 46 of 107

d. A service retrieves the aggregate rating of a dataset.
b. Support personnel logs in the UI of the service to view all
registered ratings and response to support requests.

EOSC services
integration

Eventually, EOSC AAI

Potentially, EOSC portal, if service is deemed publishable

EOSC Service Potentially

Start TRL TRL6 Target TRL TRL8

IPR NKUA License Apache License

First availability 2020-08 First version deployed with a local database, REST interface
only, provided to support integration with other services.

MS4 expectation Prototype deployment, REST interface operational, without automated
rating, integrated with NEANIAS AAI.

MS6 expectation Both Web UI and REST interfaces deployed and operational, without
automated rating.

MS7 expectation If deemed publishable to EOSC, it will be fully integrated to EOSC at this
point. Additionally, if automated rating proves viable, it will be
operational at this point.

5.5. Common User Interface Components

Short Name NEANIAS web toolkit Lead partner CITE

Type UI Component Contributors INAF

Title NEANIAS web UI toolkit and template

Master element N/A

Description A template for all services UI to be reused by all partners exposing UIs
in the context of NEANIAS (look-and-feel, logo, CSS, menus, etc.)

Technical details NEANIAS spans UIs from several independent service providers. Those
may be implemented in different technologies however their web
aspect, wherever present, will be utilizing standard technologies, such
as HTML5/JS/CSS.

NEANIAS web toolkit will offer optional elements and guidelines for all
other services’ web UIs to adopt in order to homogenize their look,
and if possible, feel. The toolkit will include coloring guidelines, texts,
html elements, proposals for menus, generic icons and, if needed,
widgets for consistently exposing some backend services features.

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 47 of 107

The components will be based on existing mature web technologies,
restyled and adapted to NEANIAS needs.

Core integration No general core integration is foreseen. Independent components
may opt to communicate with specific backend services.

Depends on None

Use cases The toolkit elements will be usable by all users interacting with
NEANIAS services via their web interfaces. However, their exploitation
is targeted for service UI implementers. Examples of supported cases
are:

- Adopt the color guidelines for the NEANIAS service UI.
- Include a common area for project information and NEANIAS

gateway exploration
- Adopt a specific set of icons for use by service UI.
- Adopt a generic menu behavior and style.

Etc

EOSC services
integration

None

EOSC Service NO

Start TRL TRL9 Target TRL TRL9

IPR CITE License FOSS (MIT, Apache or
other similar)

First availability 2020-05 Generic stylesheet and color guidelines.

MS4 expectation Generic components for information presentation

MS6 expectation Specific components for service exposure.

Additional UI elements, such as buttons and menus.

MS7 expectation Fine-tuned UI elements.

5.6. NEANIAS Access Gate

Short Name Catalogue Portal (C1.1) Lead partner ATHENA

Type UI web app Contributors -

Title NEANIAS Catalogue Portal

Master element Open-Science lifecycle support services implementation

Description NEANIAS catalogue portal will offer to users a single-entry point to all
NEANIAS list of services, including core, thematic services as well as
datasets and other resources. The catalogue portal will offer

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 48 of 107

functionality for users to browse the available services, search and
filter along EOSC compliant classification, such scientific domain or
category a service is most relevant to, the maturity of the service, the
intended use, etc., as well as to compare NEANIAS service offerings.

Technical details Web portal built with AngularJS. Usage Analytics are collected
in Matomo6. It integrates with EOSCoo AAI for authentication and it
communicates with the catalogue service (c1.2) with
rest api. https://github.com/eInfraCentral.

Core integration It needs the following integration
• Authentication / Authorization for authenticated users to login
and update service metadata.
• Logging is needed for web analytics. Matomo FOSS is used for
this reason.
• It is already integrated (via REST API with Catalogue service
C1.2)

Depends on Catalogue service C1.2
EOSC AAI

Use cases e. End users access the catalogue to find, access and browse
services, datasets and other NEANIAS research resources
c. NEANIAS service providers access the catalogue to add and
update service metadata.

EOSC services
integration

EOSC AAI
EOSC portal, www.eosc-portal.eu

EOSC Service No

Start TRL TRL6 Target TRL TRL8

IPR NKUA \ ATHENA RC License Apache License

First availability 2020-08. Planned month of preliminary release to support NEANIAS
outreach and engagement plan and brief reference of what may be
usable at the point. No significant integration is expected.

MS4 expectation Prototype deployment. Not populated with NEANIAS service metadata.
EOSC integration is not mandatory for EOSC services yet.

MS6 expectation Deployed and populated with all NEANIAS service metadata.

MS7 expectation Issue fixing and improvements.

5.7. OpenDMP / Argos

Short Name OpenDMP Lead partner CITE

Type UI Web App / Web Service Contributors ATHENA, OpenAIRE

Title OpenDMP Software

6 https://matomo.org/

https://github.com/eInfraCentral
https://aai.eosc-portal.eu/proxy/module.php/discopower/disco.php?entityID=https%3A%2F%2Faai.eosc-portal.eu%2Fproxy%2Fmodule.php%2Fsaml%2Fsp%2Fmetadata.php%2Fsso&return=https%3A%2F%2Faai.eosc-portal.eu%2Fproxy%2Fmodule.php%2Fsaml%2Fsp%2Fdiscoresp.php%3FAuthID%3D_d84a4d0924cfa82482ed517b668dfeceda4f0b57f9%253Ahttps%253A%252F%252Faai.eosc-portal.eu%252Fproxy%252Fsaml2%252Fidp%252FSSOService.php%253Fspentityid%253Dhttps%25253A%25252F%25252Faai.eosc-portal.eu%25252Foidc%2526cookieTime%253D1584545751%2526RelayState%253D42ab84d2-383a-434c-a5e1-62e8b1971a26&returnIDParam=idpentityid
http://www.eosc-portal.eu/
https://matomo.org/

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 49 of 107

Master element N/A

Description OpenDMP is a software system that allows researchers to create and
distribute interoperable, actionable Data Management Plans. The
service is provided by OpenAIRE as Argos.

Technical details

Core integration OpenDMP may integrate NEANIAS AAI. Yet supported deployment will
be using EOSC AAI directly.

Depends on OpenDMP does not depend on other NEANIAS services.

Use cases NEANIAS researchers collaborate on the creation of Data Management
Plans on OpenDMP.

EOSC services
integration

OpenDMP may integrate with

- EOSC AAI
- EOSC PID services (Zenodo etc)
- EOSC repositories (Zenodo etc)
- OpenAIRE indexing services

EOSC Service No

Start TRL TRL8 Target TRL TRL9

IPR OpenAIRE License FOSS (MIT, Apache or
similar)

First availability 2020-02 Public release to accommodate observations of NEANIAS
users. Deployed on OpenAIRE as Argos.

MS4 expectation Integration with EOSC AAI.

MS6 expectation Integration with PID providers.

MS7 expectation Final release.

5.8. Data Publishing Service

The NEANIAS Data Publishing service is responsible for making research products available to
the public. For the Data Publishing Service (DPS) NEANIAS will use the OpenAIRE’s Zenodo
platform (https://zenodo.org/).

When creating a Zenodo “record”, a user may upload the research product (e.g., a dataset) to
the platform. While the metadata of a record is open to allow harvesting via the OAI-PMH
protocol, the data may be:

 1. open under Creative Commons licensing,

 2. embargoed under Creative Commons licensing,

 3. restricted with per request access,

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 50 of 107

 4. closed.

To support the case where a user aims to keep the data of the research product in a private
repository, while still making its existence public via the Research Product Catalogue, we also
propose the following convention. The user creates a Zenodo upload providing all necessary
metadata and uploads a single JSON file with two data fields: a URL and a SHA256 hash of the
file’s contents. This way, metadata are searchable via the Zenodo platform, but the data
remains private, possibly inside the NEANIAS Data Depositing Service. When a user wants to
access this dataset, after being authorized via the Data Sharing Service, the consuming service
can retrieve the URL from the metadata repository and verify the data is still intact, by
comparing the hash of the data with the published one.

The Zenodo service is already fully operational and at TRL9.

5.9. Persistent Identifier Service / Zenodo

The NEANIAS Persistent Identifier Service will enable the generation of PIDs for digital assets.
The goal of this service is to make NEANIAS digital assets citable and thus discoverable. The
service will be integrated with all NEANIAS services. The NEANIAS PID Service will be provided
by OpenAIRE’s Zenodo open access repository (https://zenodo.org/).

Zenodo offers a list of REST methods to upload and publish research outputs assigning a Digital
Object Identifier (DOI) to those outputs if they do not have one already. As already described
in paragraphs 5.3 and 5.8, all NEANIAS research and data outputs will be published in Zenodo
and thus be assigned a DOI that will allow them to be easily and unambiguously cited.

The Zenodo service is already fully operational and at TRL9.

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 51 of 107

6. C2 EOSC hub, RIs and cloud integration enabling
services reference

C2 services, often called “Infrastructure enabling services “, or “enabling” services in the
context of NEANIAS, form the lower level of services in the NEANIAS ecosystem and are the
ones that deliver access to various levels of resources that serve the use cases of the project.

In this section C2 group of services is presented. Following the brief presentation of their, each
service is presented in alignment with the Service Description template adopted by the
project.

6.1. The role of C2 services in NEANIAS
C2 cluster of services encloses a set of loosely coupled elements that enable the assembly of
a virtual infrastructure to serve other services, bringing closer to them resources and
processes EOSC hub, other Research and Cloud Computing Infrastructures. C2 services, along
with physical infrastructures and low-level resource abstractions, form the NEANIAS virtual
infrastructure fabric, upon which all other services build.

C2 services make heavy use of existing services and software, launching off from a high TRL,
and are re-engineered in order to adapt to the NEANIAS and EOSC information and service
model. In few cases service software is already present yet adaptation of its data models
and/or configuration is required in order to serve NEANIAS needs.

As a general observation C2 services are not expected to be exposed as end-user services in
EOSC Marketplace, however quite a few offer valuable toolkits for other infrastructures to
build upon, thus they will be openly shared with others, both in the form of services as well
as free and open source software.

Note: C2 service range has substantially been extended compared to DoA
presented ones, in order to respond to practical challenges raised by
other services requirements and infrastructures’ integration needs.

6.2. NEANIAS AAI

Short Name NEANIAS AAI Lead partner CITE

Type Web service / UI web app Contributors CITE

Title NEANIAS Authentication & Authorization Infrastructure Service

Master element N/A

Description The NEANIAS AAI service will offer a horizontal solution for all NEANIAS
services to cover the common requirements of authenticated access,
whether these come in the form of direct user requests or as cross
service invocations. Furthermore, provisions to support some degree
of the authorization of these requests will be offered. The solution will
be based on widely accepted protocols and standards to ensure wide
applicability of the approach.

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 52 of 107

Technical details The NEANIAS AAI Service will be backed by the Open Source Keycloak
(keycloak.org) application. The application will consist of a set of web
API accessible endpoints to complete the needed authentication
protocol interactions, as well as a set of web graphical user interfaces
to support login, profile managements and administrative operations.

To support the full lifetime of a service, three realms will be setup to
cover authentication and authorization needs for:

• Development

• Staging

• Production

At each one of these realms, different external identity providers can
be supported depending on needs.

With respect to Authentication, the identity federation paradigm
(https://openid.net/specs/openid-connect-federation-
1_0.html#rfc.section.1) will be used to facilitate the authentication
and registration to the NEANIAS catalog of users, principals that are
authenticated through external identity providers. Comprising the
identity federation, the following cases can be identified:

• NEANIAS Single Sign On (SSO)

• EOSC AAI

• eduGAIN

• OpenID Connect Identity Providers

• Social platforms

• Local users

For further information one IdPs supported, one may refer to D6.1
§Error! Reference source not found. “Error! Reference source not
found.”

With respect to the supported grant flow through which the requestor
identity is federated and subsequently propagated to servicing
endpoints, the following grant flows will be supported:

• Authorization Code Grant Flow
(https://tools.ietf.org/html/rfc6749#page-24).

• Client Credentials Grant

• API Keys.

For further information on grant flows, one may refer to D6.1 §Error!
Reference source not found. “Error! Reference source not found.”

The authentication flow that passes through the centrally managed
NEANIAS AAI service will expose suitable user info endpoints
(https://openid.net/specs/openid-connect-core-1_0.html#UserInfo)
through which the respective id tokens can be used to retrieve the
caller’s claims. This information will be provided in the form of a JWT

https://openid.net/specs/openid-connect-federation-1_0.html#rfc.section.1
https://openid.net/specs/openid-connect-federation-1_0.html#rfc.section.1
https://tools.ietf.org/html/rfc6749#page-24
https://openid.net/specs/openid-connect-core-1_0.html#UserInfo

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 53 of 107

token (JSON Web Token) (https://tools.ietf.org/html/rfc7519)
containing information to be utilized by servicing components.

With respect to authorization, the following alternatives will be
offered through the NEANIAS AAI Service. It should be noted that these
alternatives are not necessarily mutually exclusive, and a combination
can be used by some service as seems most fitting.

• Role based

• Resource based

• Service Specific.

For further information on authorization options, one may refer to
D6.1 §Error! Reference source not found. “Error! Reference source
not found.”

Core integration The NEANIAS AAI Service will integrate with a set of other core services
to facilitate primarily monitoring and accounting of its usage.
Integration with these services will be in a decoupled form, making this
integration optional in setups that do not require such functionality:

- Accounting – Accounting information on users registered,
logins, user organization provenance, etc.

- Logging – Logging information on low level troubleshooting as
well as higher level action auditing

Depends on - External IdPs (optional)

Use cases - A NEANIAS service interact with the service to obtain user
identification information

- A NEANIAS service interacts with the service to obtain
authorization assertions for a specific user

EOSC services
integration

EOSC AAI Service – The NEANIAS AAI Service will integrate with the
respective EOSC AAI service and act as an Identity Consumer. Users
registered and trusted by the EOSC AAI will be authenticated by the
respective NEANIAS AAI service.

EOSC Service No

Start TRL TRL7 Target TRL TRL9

IPR CITE License Apache 2.0

First availability 2020-04: At this preliminary release, it is expected that at a minimum
the dev and staging realms will be supported. Role based authorization
will be available at the realms and at the client level. Federated users
will be limited to NEANIAS AAI

https://tools.ietf.org/html/rfc7519

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 54 of 107

MS4 expectation Production realm will be made available. Alpha integration with
NEANIAS Logging and NEANIAS Accounting services will be available.

MS6 expectation EOSC AAI integration will be available. Enhancements on the
integration with the NEANIAS Accounting Service. Alpha availability of
fine-grained resource level authorization will be evaluated.

MS7 expectation Final version of selected fine-grained authorization capabilities,
documentation, Accounting and Logging integration

6.3. Configuration Management Service

Short Name NEANIAS Configuration
Service

Lead partner CITE

Type Software library / Web
service / UI web app

Contributors CITE

Title NEANIAS Configuration Management Service

Master element N/A

Description The NEANIAS Configuration Management Service will provide a key
value storage for storing configurations that will be used by NEANIAS’s
services. Configurations will be created or updated using an HTTP API
that will be available.

Technical details The NEANIAS Configuration Management Service will be backed by a
distributed, highly available system. The storage will be replicated
across multiple nodes of the service to guarantee data redundancy.
NEANIAS Configuration Management Service will operate as a key /
value store. Data will be stored using a unique key and will be accessed
using the same key.

Restricted access will be offered (ACLs) in order to restrict the actions
(read/write) clients can perform.

The main interface to NEANIAS Configuration Management Service
will be a RESTful HTTP API. All requests will require authentication. The
API will be able to perform updates to specific keys. Multi-key updates
will be able using a transactional mechanism.

NEANIAS Configuration Management Service will provide a User
Interface for Administrator to easily review and monitor the usage of
the service.

Core integration The NEANIAS Configuration Management Service will integrate with a
set of other core services to facilitate primarily monitoring and
accounting of its usage. Integration with these services will be in a

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 55 of 107

decoupled form, making this integration optional in setups that do not
require such functionality:

- Accounting – Accounting information on storage usage, etc.
- Logging – Logging information on low level troubleshooting as

well as higher level action auditing

Depends on - Accounting Components

Use cases - A NEANIAS service contacts the configuration management
service in order to detect base configuration information, such
as: the endpoint and database name to connect to and the
accounts to use to access it.

- A NEANIAS service contacts the configuration management
service in order to detect the model of operation it applies

EOSC services
integration

-

EOSC Service No

Start TRL TRL7 Target TRL TRL8

IPR CITE License Apache 2.0

First availability 2020-07 Initial service delivery dependable for services to store and
retrieve public configuration

MS4 expectation Major service delivery, integrated with AAI.

MS6 expectation Major service update supporting secrets.

MS7 expectation Minor fixes and updates if required – no functional changes

6.4. Service Instance Registry

Short Name NEANIAS Service Registry Lead partner CITE

Type Software library / Web
service / UI web app

Contributors CITE

Title NEANIAS Service Instance Registry

Master element N/A

Description The NEANIAS Service Instance Registry will provide a list of all NEANIAS
services among with information regarding their location and health
status. NEANIAS’s Services will be registered dynamically, creating list
of all available services and their instances. Service Discovery HTTP API
will be available to provide real-time list of services, their location, and
their health.

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 56 of 107

Technical details The NEANIAS Service Instance Registry will be backed by a distributed,
highly available system. There will be multiple master and client nodes.
All communications between master and client nodes will be
encrypted.

Master nodes are where data is stored and replicated. Multiple master
node instances will be used to avoid data loss in failure scenarios.

Client nodes will be responsible for monitoring the health status of the
services that run in the node, and the also the node itself. Usage of
client nodes will be optional, as services will be able to register directly
as master nodes. They will be used then fine-grained information is
needed to be monitored in order to determine the health status of the
node.

The main interface to NEANIAS Service Instance Registry will be a
RESTful HTTP API. Authenticated services will be able to register, while
others will be able to discover instances via this API. The API will be
able to perform basic CRUD (create, read, update and delete)
operations on services, and health checks. Discover queries will be
executed and results will be responded in JSON format.

NEANIAS Service Instance Registry will provide an administrative User
Interface to browse the registered services and provide health check
information for each service.

Core integration The Service Instance Registry will integrate with a set of other core
services to facilitate primarily monitoring and accounting of its usage.
Integration with these services will be in a decoupled form, making this
integration optional in setups that do not require such functionality:

- Accounting – Accounting information on queries executed,
etc.

- Logging – Logging information on low level troubleshooting as
well as higher level action auditing

Depends on -

Use cases A service

EOSC services
integration

-

EOSC Service No

Start TRL TRL6 Target TRL TRL8

IPR CITE License Apache 2.0

First availability 2020-07 Initial service delivery dependable for services to store and
retrieve targeted service entries

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 57 of 107

MS4 expectation Major service delivery, integrated with AAI with preliminary service
instance model.

MS6 expectation Major service with final service model.

MS7 expectation Minor fixes and updates if required – no functional changes

6.5. Log Aggregation Service

Short Name NEANIAS Logging Lead partner CITE

Type Software library / Web
service / UI web app

Contributors CITE

Title NEANIAS Log Aggregation Service

Master element N/A

Description The NEANIAS Logging service will provide an aggregation functionality
through which NEANIAS services can accumulate logs that are
generated in a distributed fashion in a single centralized repository
through well-defined endpoints and library utilities facilitating the
transformation, enrichment and indexing of the log entries. The
central repository can be searched and further aggregated to produce
meaningful traces of user activity and facilitate troubleshooting and
action auditing.

Additionally, the service will present specific client technologies for
service implementers to easily generate accounting information
records.

Technical details The NEANIAS Logging Service will be backed by an ELK stack. The ELK
stack consists of an ElasticSearch
(https://www.elastic.co/elasticsearch/) index backend that stores
data and makes them searchable, Logstash
(https://www.elastic.co/logstash/) that facilitates the transformation
of log entries extraction of additional metadata and homogenization
of logged entries, Kibana (https://www.elastic.co/kibana) that offers
visualization, aggregation and filtering graphical user interface over
the indexed entries.

To facilitate the aggregation of log, the Beats
(https://www.elastic.co/beats/) framework for data shipping will be
used. Specifically, beats modules for both file as well as http transfer
will be provided with supportive configuration to lower the integration
barrier for all NEANIAS Service Providers.

Templates for log entry formats will be provided along with the
respective Logstash transformation templates that will extract a

https://www.elastic.co/elasticsearch/
https://www.elastic.co/logstash/
https://www.elastic.co/kibana
https://www.elastic.co/beats/

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 58 of 107

limited common set of information. This way, a homogenized set of
information will be available for log browsing and aggregation
operations.

A Kibana dashboard will be provided that will offer browsing, filtering
and visualization capabilities. Access to the Kibana graphical
application will be subject to authorization enforced by relevant access
management plugins and a level of integration with the NEANIAS AAI
will facilitate some degree of global policy enforcement through the
central AAI service.

Core integration The NEANIAS Logging Service is largely an independent, core service
offering its functionality orthogonally from other services. Still, it is
possible to integrate it with a limited number of other NEANIAS Core
services to enhance the usability of the service within the NEANIAS
ecosystem. Integration with these services will be in a decoupled form,
making this integration optional in setups that do not require such
functionality:

- Authentication / Authorization – Authentication for user and
Service access can take place through the NEANAIS AAI
service. Based on access token role mappings, the respective
operations and data access will be made available

Depends on Type-specific Storage services.

Use cases In the occurrence of an incident, an administrator, inspects the
aggregated logs of the service to identify the issue occurring to a
distributed, potentially not controlled by her, service component.

EOSC services
integration

When EOSC presents a service for accounting information gathering,
the service will adopt the interface and information model in order to
supply the required accounting information.

EOSC Service No (decision may be
revised)

Start TRL TRL7 Target TRL TRL8

IPR CITE License Mixed (Apache 2.0,
Elastic License)

First availability 2020-06: At this preliminary release, it is expected that basic
configuration will be available to allow for direct aggregation of
messages. No user interface to browse the logs will be available

MS4 expectation File and http beats configuration to support distributed log
aggregation, basic transformations to extract key characteristics

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 59 of 107

MS6 expectation Graphical user interface to browse and analyze log entries through a
Kibana interface with direct access to the underlying index

MS7 expectation Integration with the NEANAIS AAI to facilitate federated user role
based mapping to visualization and possibly administrative operations

6.6. Accounting Service

Short Name NEANIAS Accounting Lead partner CITE

Type Software library / Web
service / UI web app

Contributors CITE

Title NEANIAS Accounting Service

Master element N/A

Description The NEANIAS Accounting service will provide an aggregation
functionality through which NEANIAS services can centrally log
accounting information as it is gradually accumulated by their usage
from the respective authorized clients. Different accumulation policies
and granularity of information can be supported depending on the
respective services. The information model will consist of globally
defined key point indicators and the aggregation and reports
generated based on these will be available for further usage, as
appropriate.

Although it is possible to foresee use cases where the aggregated
information can be used for run time decision making, throttling or
altering the scope of user requests to consulting services, the primary
focus of the service is to aggregate and report on the information.

Technical details The NEANIAS Accounting Service will be backed by a high performant
NoSQL data store to aggregate and track the aggregated accounting
information.

The information model that will be supported will be progressively
refined. In order to comply with emerging suggestions within the EOSC
environment, the following aspects of accounted information will be
investigated. This list is comprised of a set of Service / Resource Level
Targets and Performance Indicators towards which, relevant
information can be gathered or be assisted in calculate by the
respective service providers:

• Cost

• Requests

• Users

• Usage

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 60 of 107

• Capacity

• Coverage

• Availability

• Reliability

• Serviceability/Durability

• Other Performance Indicator Name/Value

During the lifetime of the services, relevant indicators will be
accumulated with different granularity and time frames. During this
process, information will gradually be eligible to be folded to create
aggregations that will facilitate in the long-term performance and
maintainability of the Accounting Service data structures.

To visualize and report on the aggregated information, dedicated
reporting utilities will be made available through a graphical user web
interface. Access and authorization on the reported content will be
limited based on the NEANIAS AAI service.

The Accounting Service will offer only aggregating and reporting
functionality. The option to expose endpoints to cater for run time
decision making logic will be evaluated, based on rule templates and
threshold setting logic. Calculated fields can be made available based
on specific accounting model semantics.

Core integration The NEANIAS Accounting Service is largely an independent, core
service offering its functionality orthogonally from other services. It
mostly acts as an aggregator of information. Still, it is possible to
integrate it with a limited number of other NEANIAS Core services to
enhance the usability of the service within the NEANIAS ecosystem.
Integration with these services will be in a decoupled form, making this
integration optional in setups that do not require such functionality:

- Authentication / Authorization – Authentication for user and
Service access can take place through the NEANAIS AAI
service. Based on access token role mappings, the respective
operations and data access will be made available

- Logging – Logging information on low level troubleshooting as
well as higher level action auditing

Depends on Type-specific Storage services

Use cases A service provider wants to identify how much CPU time a particular
user activity has occupied in the system.

A service provider wants to know how many invocations per day were
performed by a particular user.

A service provider wants to know how much short-term storage is used
by a user of a particular service.

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 61 of 107

EOSC services
integration

If EOSC releases an Accounting Service API and data model, the service
will comply with its specification and interoperate with it.

EOSC Service No

Start TRL TRL6 Target TRL TRL8

IPR CITE License FOSS approved
license

Mixed (Apache 2.0,
Elastic License) / CITE
Permissive License /
Other

First availability 2020-10 At this preliminary release, it is expected that basic ability to
register accounting information according to NEANIAS accounting
model will be provided. Visualization of the information will be at the
level of record.

MS4 expectation Refinements on common accounting models. Aggregation utilities to
ship data efficiently. Basic user interface without reporting
functionality

MS6 expectation Extended accounting model and basic reporting functionality

MS7 expectation Full accounting model and reporting functionality available

6.7. Notification Service

Short Name NEANIAS Notification Lead partner CITE

Type Web service / UI web app /
UI Component

Contributors CITE

Title NEANIAS Notification Service

Master element N/A

Description The NEANIAS Notification service will act as a generic notification
provider for services that want to incorporate some sort of notification
mechanism in their workflows. It will allow generic configuration and
parametrization of notification templates, give configuration options
for selected notification channels to users and allow easy integration
with other services that want to use its functionality

Technical details The NEANIAS Notification service will offer its functionality as a
backend service, accepting notification events from other services.
These events will be interpreted through a set of pre-configured

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 62 of 107

notification flows and will be delivered to its recipients based on the
respective profile enabled.

A descriptive list of the available features as well as corresponding
technical implications, are listed below:

• Notification Channels
o In-App Notification
o Mail
o SMS

• Notification Policies
o Global policies matching notification flows to

acceptable notifier channels
o User level policies based on ordered user preferences
o Fall through available options depending on whether

respective profile information is available

• Notification Tracking
o Depending on channel features
o Track delivery status of notification

• Retries
o Configuration number of retries per notification flow
o Probabilistic retry intervals with progressive

configurable delays
o Options to omit retries after long period of time

• Notification Templates
o Different templates per notification channel
o Support multiple locale
o Configurable and easily upgradable

• Interface
o Web API integration endpoints
o Asynchronous / Queue messages
o Administration Web App
o User Interface widget to display in-app notifications

Core integration The NEANIAS Notification Service is largely an independent, core
service offering its functionality orthogonally from other services. It
mostly acts as an event consumer from other services that want to use
its functionality. Still, it is possible to integrate it with a limited number
of other NEANIAS Core services to enhance the usability of the service
within the NEANIAS ecosystem. Integration with these services will be
in a decoupled form, making this integration optional in setups that do
not require such functionality:

- Authentication / Authorization – Authentication for user and
Service access can take place through the NEANAIS AAI
service. Based on access token role mappings, the respective
operations and data access will be made available

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 63 of 107

- Logging – Logging information on low level troubleshooting as
well as higher level action auditing

- Accounting – Accounting information will be maintained and
shipped to the Accounting Service to account for the usage of
the service resources and operations

Depends on -

Use cases Upon the completion of a long running task, a client service may
request notifications to be sent to users to retrieve their results.

EOSC services
integration

-

EOSC Service No

Start TRL TRL7 Target TRL TRL8

IPR CITE License CITE Permissive
License / Other

First availability 2020-07: Initial version offering single channel communication.
Integration entry points through subset of available channels.

MS4 expectation Extended notification templates. User profiling endpoints and
notification preferences. Notification context

MS6 expectation Additional notification channels including mail and in-app
notifications. Web user interface widget for in-app notification
browsing

MS7 expectation User profile integrations for automated profiling

6.8. Data Depositing service

Short Name GARR Cloud Platform
Object Store

Lead partner GARR

Type Web service / storage
service

Contributors GARR

Title NEANIAS Object Storage Service

Master element N/A

Description The GARR Cloud Platform Object Storage Service will provide a RESTful
API to store and retrieve objects (files) over the network and to
manage object containers.

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 64 of 107

Technical details The GARR Cloud Platform Object Storage Service is provided through
the OpenStack platform and offers a RESTful interface to store,
retrieve and manage objects and containers (i.e. file and directory
abstractions) and their metadata (a key=value format is supported).
The GARR Cloud object storage service is based on Ceph, which
provides the Rados Gateway daemon and implements transparent
data redundancy and hardware failover.

The GARR Cloud infrastructures are connected to the facilities of the
international research community through the high-performance
network links of the GÉANT network.

Core integration The GARR Cloud Platform Object Storage Service is an independent
core service offering its functionality orthogonally from other services.
It mostly acts as a consumer from other services that want to use its
functionality.

Depends on -

Use cases - A user deposits or retrieves data contained in one or more files
in consortium storage

- A service deposits or retrieves data contained in one or more
files in consortium storage

EOSC services
integration

-

EOSC Service No

Start TRL TRL8 Target TRL -

IPR Ceph authors License LGPL, GPL, BSD

First availability 2019-11 The service is already available at the GARR Cloud Platform
premises https://cloud.garr.it

MS4 expectation Service is present. If required configuration/allocation changes may
occur.

MS6 expectation Service is present. If required configuration/allocation changes may
occur.

MS7 expectation Service is present. If required configuration/allocation changes may
occur.

6.9. Data Sharing service

https://cloud.garr.it/

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 65 of 107

Short Name DaShaS Lead partner NKUA

Type Web service Contributors

Title NEANIAS Data Sharing Service

Master element N/A

Description The Data Sharing Service (DaShaS) is a service used by the NEANIAS
thematic services (and via them, by their end-users) to allow data stored
internally in the NEANIAS Data Storage Service (DSS) to be shared
between the end users. It is an authorization service for data objects,
that is expected to be consulted before servicing/using objects from the
DSS.

Technical details The service will provide a REST API via which, consuming services will
register grant/revocation of access rights on objects in the DSS.

Consuming services will need to authenticate themselves first, and also
pass along the authenticated end-user credentials that DVS will verify.

Core integration It needs the following integration

• Authentication service, to identify the logged in user
• Service instance registry, to register itself
• In needs to be injected in the pipeline of obtaining an object
from the NEANIAS Data Depositing Service, as an authorization step.

Depends on -

Use cases a) A service registers, on behalf of user A, the authorization
for user B to use/read/write data object O stored in the
NEANIAS DSS.

b) A service registers, on behalf of user A, the revocation of a
previously granted authorization for user B to use/read/write
data object O.

c) A service queries the access rights of user B for object O.

EOSC services
integration

Eventually, EOSC AAI

Potentially, EOSC portal, if service is deemed publishable

EOSC Service Potentially

Start TRL TRL6 Target TRL TRL8

IPR NKUA License Apache License

First availability 2020-08 First version deployed with a local database, provided to
support integration with other services.

MS4 expectation Prototype deployment, integrated with NEANIAS AAI.

MS6 expectation Deployed and operational.

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 66 of 107

MS7 expectation If deemed publishable to EOSC, it will be fully integrated to EOSC at this
point.

6.10. Data Transfer service

Short Name Data Avenue Lead partner SZTAKI

Type GUI / Web Service/ REST-
API

Contributors ALTEC

Title Data Avenue

Master element N/A

Description Data Avenue is a data storage access tool developed by SZTAKI. Data
Avenue aims at simplifying handling data residing on remote storages
of various types, such as FTP servers, Amazon S3, Hadoop Distributed
File System (HDFS), OpenStack's Swift, etc. Data Avenue is not a
storage, it does not persist any data at all (neither access credentials),
but it allows to upload, download, organize data (create
folders/containers/buckets, delete files or entire directories, etc.), and
even transfer data between any of the supported storage types, e.g.
from S3 to HDFS.

Technical details Data Avenue offers a uniform and easy-to-use interface to access all
the supported storage types. E.g., directory creation can be done in
the same way regardless it happens on a GridFTP server or on Amazon
S3 - from the user's point of view. There is lightweight, pure javascript-
based graphical user interface (GUI) that can be used in any web
browser, and there is a clean REST application programming interface
(API).

Core integration This service needs integration with the following components:

- Authentication / Authorisation
- Accounting
- Logging
- Notification
- Storage access (temporary / permanent)

Depends on - Storage Access
- AAI

Use cases - User requests that data, residing on a repository (storage)
covered by Data Transfer Service protocols, are transferred to
another repository of compliant technology.

- User requests that data from a personal repository (storage)
are uploaded in the infrastructure for processing by a service.

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 67 of 107

- A service requests that data residing on the infrastructure are
fetched next to a service for local processing in case the service
has its compliant storage.

- A service requests that data are uploaded to a storage service
from the local storage of a service.

EOSC services
integration

- (research data repositories)
- (AAI)

EOSC Service No

Start TRL TRL6 Target TRL TRL8

IPR SZTAKI License Apache 2.0

First availability 2020-08 Deployed on NEANIAS infrastructure. The software is already
available at https://github.com/SZTAKI-LPDS/data-avenue

MS4 expectation Initial deployment on GARR cloud and integration to Swift object store
on GARR cloud happens.

MS6 expectation Integration to some of the core services such as AAI, Logging is
available in the service.

MS7 expectation Final deployment; Integration to further core services such as
Accounting, Notification and to all other necessary services. EOSC
integration happens.

6.11. Data exploration service

Short Name Data Exploration Lead partner MEEO

Type GUI / Web Service / API Contributors JACOBSUNI

Title Data Exploration service

Master element N/A

Description The service allows the researchers to discover and explore a large
variety and volume of geospatial datasets including Earth Observation
and Planetary Science products driven by community needs. The
service offers the following user interfaces:

- the Explorer, a web-based graphic user interface to allow
users to explore, access, process and download data. Explorer
integrates also data processing functionalities and a
dashboard for administrator to setup the application

- The adamapi Application Processing Interfaces (APIs), that
provide a python-library to directly access the ADAM data

https://github.com/SZTAKI-LPDS/data-avenue

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 68 of 107

access and processing capabilities directly integrated in the
user’s code and applications.

- the Jupyter Hub, a web-based processing environment to
allow users to import, write and execute code that runs close
to the data, exploiting the the adamapi functionalities on a
remote computation environment

The core services allow at performing essential operations on selected
data thanks to the advance user interfaces like Jupyter notebook and
REST/API. The standard data access will allow the implementation of
operational services, the notebook will allow to make basic and
advanced processing on-line.

Technical details OGC services and OpenAPI backends will be accessed via Desktop and
Jupyter/Python interfaces.

Core integration This service needs integration with the following components:

- NEANIAS AAI Authentication / Authorization
- Accounting

Depends on - Spatial data stores (C4.4)
- External access services

Use cases - Users search for datasets, data products based on metadata,
geographic location (S1, Ax)

- Users request data subsets and obtain (S2, S3, Ax)

EOSC services
integration

EOSC Service No

Start TRL TRL8 Target TRL TRL8

IPR MEEO License Proprietary Software

First availability 2020-08 Initial deployment on NEANIAS infrastructure, with a set of
data query able (e.g. Copernicus datasets)

MS4 expectation • Service setup, including integration with NEANIAS AAI
component

• Registration in the central service repository

MS6 expectation Showcase of data exploration. Logging available

MS7 expectation Final deployment

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 69 of 107

6.12. Computational resources access service

Computational resource access service provides a gateway to workflow, distributed
processing engines or other computational capacity abstractions that will allow computational
demands of NEANIAS to be spanned to other RIs, EOSC hub services or consortium resources
(Includes access to Apache Spark / Hadoop).

The functionalities of this service can be implemented based on existing cloud/container
orchestration tools. The service will be responsible to instruct the orchestration engine for
instantiating the necessary computational resource(s) on the target cloud and for building the
required infrastructure/ reference architecture on demand. Once the reference architecture
has been built, access to the reference architecture is provided for the user.

Short Name GARR Cloud Platform
Service

Lead partner GARR

Type Computational service, IaaS Contributors GARR

Title GARR Cloud Platform Service

Master element N/A

Description The GARR Cloud Platform Service will provide NEANIAS services with
computational facilities in the form of virtual machines.

Technical details The GARR Cloud Platform is based on OpenStack, an open source
software suite aimed at implementing cloud services in datacenters.

The GARR Cloud Platform is a multi-tenant environment spawning
three different geographical regions. It is federated through the
IDEM/eduGAIN AAI. The persistency layer relies on volumes backed by
the Ceph system, which provides enhanced performance and data
redundancy.

The GARR Cloud infrastructures are connected to the facilities of the
international research community through the high-performance
network links of the GÉANT network.

Core integration The GARR Cloud Platform Service is an independent core service
offering its functionality orthogonally from other services. It mostly
acts as a consumer from other services that want to use its
functionality.

Depends on -

Use cases - A user requests virtual machines for deployment of service.
- Increased load of services leads to increase of allocated

computational power.

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 70 of 107

- A service requests computational power to execute
computations.

EOSC services
integration

-

EOSC Service No

Start TRL TRL8 Target TRL -

IPR OpenStack Foundation License Apache License 2.0

First availability The service is already available at the GARR Cloud premises:
https://cloud.garr.it

MS4 expectation -

MS6 expectation -

MS7 expectation -

Short Name GARR Container Platform
Service

Lead partner GARR

Type Computational service,
PaaS

Contributors GARR

Title GARR Container Platform Service

Master element N/A

Description The GARR Container Platform Service will provide NEANIAS services
with the orchestration of computational facilities (CPU and GPU)
besides storage and networking resource abstractions.

Technical details The GARR Container Platform is based on Kubernetes, a popular open
source platform for container orchestration which automates the
deployment, management and scaling of applications.

The GARR Container Platform is a multi-tenant environment whose
authentication is managed by the GARR Cloud Platform OpenStack
identity service (Keystone). The GARR Container Platform is deployed
on bare metal to provide GPU resources which can be leveraged by
Docker containers.

The persistency layer relies on volumes backed by the Ceph system,
which provides enhanced performance and data redundancy.

The GARR Cloud infrastructures are connected to the facilities of the
international research community through the high-performance
network links of the GÉANT network.

https://cloud.garr.it/

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 71 of 107

Core integration Although the GARR Container Platform Service depends on the GARR
Cloud Service for user authentication, from the NEANIAS point of view
it is an independent core service offering its functionality orthogonally
from other services. It mostly acts as a consumer from other services
that want to use its functionality.

Depends on GARR Cloud Platform Service

Use cases - A user deploys a container-based service
- A service spawns containers to execute specific tasks

EOSC services
integration

-

EOSC Service No

Start TRL TRL8 Target TRL -

IPR Cloud Native Computing
Foundation

License Apache License 2.0

First availability The service is already available at the GARR Cloud premises:
https://cloud.garr.it/containers/

MS4 expectation -

MS6 expectation -

MS7 expectation -

Short Name GARR DaaS Lead partner GARR

Type Computational service,
PaaS

Contributors GARR

Title GARR Deployment as a Service

Master element N/A

Description The GARR DaaS will provide NEANIAS services with computational
facilities and application abstractions.

Technical details The GARR DaaS is based on Juju, an open source platform which can
be used to deploy, scale and manage applications implemented
through the composition of microservices.

GARR DaaS allows users to deploy a wide range of applications on top
of OpenStack through a web interface. These applications include tools
which are aimed at data processing, such as Apache Spark, Hadoop,
and Elasticsearch.

https://cloud.garr.it/containers/

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 72 of 107

The GARR Cloud infrastructures are connected to the facilities of the
international research community through the high-performance
network links of the GÉANT network.

Core integration Although the GARR DaaS depends on the resources provided by the
GARR Cloud Platform Service, from the NEANIAS point of view is an
independent core service offering its functionality orthogonally from
other services. It mostly acts as a consumer from other services that
want to use its functionality.

Depends on GARR Cloud Platform Service

Use cases - A user deploys an application
- A service deploys an application to execute a specific task

EOSC services
integration

-

EOSC Service No

Start TRL TRL7 Target TRL -

IPR Canonical Ltd. License GNU Adata

First availability The service is already available at the GARR Cloud premises:
https://cloud.garr.it/apps/daas/

MS4 expectation -

MS6 expectation -

MS7 expectation -

Short Name MiCADO Lead partner SZTAKI

Type Computational service,
PaaS

Contributors SZTAKI

Title MiCADO DaaS (Deployment as a Service)

Master element N/A

Description The MiCADO DaaS will provide NEANIAS services with computational
facilities and application abstractions.

Technical details The MiCADO DaaS is based on Terraform, Occopus, Kubernetes and
Prometheus, an open source platform which can be used to deploy,
auto-scale and manage applications implemented through the
composition of containers or virtual machines.

MiCADO DaaS allows users to deploy a wide range of applications on
top of various Cloud providers (AWS, GCE, Azure, Openstack, EGI

https://cloud.garr.it/apps/daas/

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 73 of 107

Cloud) through an API. The API can be utilized through Jupyter
notebook as well.

Core integration MiCADO DaaS Service is offering its functionality to allocate resources
and deploy complex applications on them. This service is therefore
independent from other services.

Depends on - AAI
- Accounting
- Notification
- Logging

Use cases - (Micro)Service deployment hosted by dynamically
instantiated virtual machines on GARR or other clouds.

- Set of interacting (micro)services deployed on GARR or other
clouds

- Automatic scaling of (micro)service(s) and virtual machines
running on GARR or other clouds including EGI

EOSC services
integration

-

EOSC Service No

Start TRL TRL6 Target TRL TRL8

IPR SZTAKI License Apache 2.0

First availability 2020-08 Deployed on NEANIAS infrastructure. The service is already
available at https://micado-scale.eu/.

MS4 expectation Initial deployment; MiCADO is deployed, several examples are
developed in order to demonstrate how MiCADO can be used to
automatically deploy and scale reference architecture

MS6 expectation Integrated showcasing; Integration to some of the core services such
as AAI, Logging is available in the service

MS7 expectation Final deployment; Integration to further core services such as
Accounting, Notification and to all other necessary services is available
in MiCADO. EOSC integration happens.

https://micado-scale.eu/

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 74 of 107

7. C3 Artificial Intelligence services reference

C3 Artificial Intelligence services form the upper level of core services in the NEANIAS
ecosystem and provide facilities that may reach up to the end user offering features of a
typical Machine Learning (ML) workflow lifecycle, and that are also intended for composition
of higher level services.

In this section overall role of C3 services in NEANIAS is presented, then each service is
described in alignment with the Service Description template adopted by the project.

7.1. The role of C3 services in NEANIAS

Each C3 service represents the elements of a typical ML workflow lifecycle: initially, the model
needs to be designed and implemented. In case the load of data exceeds the capabilities of a
single workstation, the training should be offloaded to a distributed computational cluster.
Depending on the model, different approaches for parallelization exist: parallel processing of
Deep Neural Networks is fundamentally different than the training of other machine learning
models, which could be efficiently decomposed to independent pieces. After a model is
trained, serving and deployment requires dedicated resources.

7.2. C3.1 AI Science Gateway: service for development of ML models
using Jupyter Hub

A development environment is necessary for the researchers to design, prototype, implement
and test AI powered solutions. To serve as a universal core service for multiple users, the
popular IPython based Jupyter Hub project is preferred, with TensorFlow and Keras libraries.

Researchers are able to prototype solutions, while computationally intense training can be
loaded to a computational cluster. Results can be visualized using the Visualization gateway
(C4.2).

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 75 of 107

Short Name Jupyter IDE (C3.1) Lead partner SZTAKI

Type Web service / UI web app Contributors INAF

Title AI Science Gateway: service for Development of Machine Learning
Model using Jupyter Hub

Master element

Description A web-based development environment for scientists to design,
develop and evaluate machine learning solutions. After development,
training of large models on big data can be done in a distributed
environment, refer to C3.3 and C3.4.

Technical details The core technology is Python, which is the most popular
programming language in machine learning and data science scenes.
Jupyter Hub is a multi-user development environment using the
IPython interface, allowing code implementation and interpretation
using a web interface. The kernel used will include TensorFlow and
Keras (www.keras.io), as the most popular libraries for neural network
development, and other relevant packages as well.

While the core is available as open source, some development on
integrating the authentication protocols, and integrating relevant
functions of other services of the machine learning lifecycle (design,
train, deploy).

Core integration Integration with the following is necessary:

- Authentication / Authorization
- Storage access (temporary / permanent)
- Computation access (direct or indirect)
- Visualization

http://www.keras.io/

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 76 of 107

Depends on C2 6.12 Data exploration service

C2 6.13 Computational resources access service

Use cases • Users of thematic services to access and develop machine
learning models

• Prototyping of machine learning algorithms

EOSC services
integration

To be investigated later

EOSC Service No (decision may be
revised)

Start TRL TRL6 Target TRL TRL8

IPR SZTAKI License FOSS, such as Apache

First availability 2020-06, initial version with core Python packages

MS4 expectation Prototype deployment for showcasing; basic IDE functionality

MS6 expectation Integrated showcasing; integration of some core services

MS7 expectation Final deployment

7.3. C3.2 Serving trained ML models

Accessing trained models as web services should be possible seamlessly, with low efforts. To
deploy a model as an API, large amount of memory is necessarily allocated and used
constantly. Technically, there are multiple approaches to implement model serving, user and
researcher-friendliness is prioritized.

The fundamental idea behind model serving is that authorized clients are able to access
prediction functionality without directly accessing the model, which would create a serious

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 77 of 107

overhead caused by data transfer and memory allocation. Instead, a RESTful API based
communication is preferred between a model server and the client. The server implements
the model, allocates memory to efficiently handle prediction, and listens for input parameters
on the interface. On request, prediction is done using the inner implementation, and the
results are responded to the client.

Short Name Model serving (C3.2) Lead partner ALTEC

Type Web service Contributors SZTAKI, UNIMIB, INAF

Title Serving trained ML models

Master element

Description Serving trained machine learning models as a web service.

Technical details A web interface with a REST API, which receives the input parameters
and replies with the prediction(s). Implementation using TensorFlow
Serve or Cortex currently seems suitable.

On designing, the service must fit to C3.1 (and possibly C3.3 & C3.4),
as the users should be able to deploy the designed and trained models
seamlessly.

Core integration This service will probably need integration with:

- Authentication / Authorisation
- Storage Access
- Computation Access

Depends on C3.1 Jupyter IDE

Might depend on C3.3, C3.4

C2 6.12 Data exploration service

C2 6.13 Computational resources access service

Use cases • Serving of trained models for production

EOSC services
integration

To be investigated later

EOSC Service No (decision may be
revised)

Start TRL TRL6 Target TRL TRL8

IPR ALTEC License FOSS, such as Apache

First availability 2020-09, initial version with core model serving capabilities based on
open source solution.

MS4 expectation Prototype deployment for showcasing; experiment level.

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 78 of 107

MS6 expectation Integrated showcasing; integration of some of the core services.

MS7 expectation Final deployment

7.4. C3.3 Distributed Multi-GPU training of large ML models using
Horovod

The training of deep neural networks on large amount of data requires a significant amount
of processing time, which could be reduced by using GPU accelerators. The next step in
increasing the performance is by using multiple GPU-enabled nodes in a distributed
environment. While the parallel processing of deep neural networks has its limitations,
Horovod (https://eng.uber.com/horovod/) is a robust tool which can be used to scale the
training of TensorFlow based network implementations.

Short Name Horovod cluster (C3.3) Lead partner SZTAKI

Type Web service Contributors INAF, UNIMIB

Title Distributed Multi-GPU training of large ML models using Horovod

Master element

Description The training of deep neural networks on big data takes significant time,
even on GPU-enabled workstations. To increase efficiency, a
distributed computation cluster should be used, where users can
define models to train and collect results.

Technical details A Horovod based architecture of GPU-accelerated nodes, where the
communication is based on the MPI protocol. The training jobs are
queued, resulting model parameters and training logs are served to
the user. Real-time tracking of the training process is possible, e.g.
using TensorBoard.

https://eng.uber.com/horovod/

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 79 of 107

Core integration - Data discovery / Data publication
- Storage access (temporary / permanent)
- Computation access (direct or indirect)

Depends on Might depend on C3.1

Use cases Scaled processing of computationally intense Deep Neural Network
training

EOSC services
integration

To be investigated later

EOSC Service No (decision may be
revised)

Start TRL TRL6 Target TRL TRL8

IPR SZTAKI License FOSS, such as Apache

First availability 2020-08, initial version

MS4 expectation Prototype deployment for showcasing; experiment level

MS6 expectation Integrated showcasing; integration of some of the core services

MS7 expectation Final deployment

7.5. C3.4 Distributed Machine Learning using SparkML

Scaling up machine learning solutions other than deep neural nets (both for sake of
classification, as well as for other tasks like regression and clustering) can be carried out using
Apache Spark framework. The communication method and the data processing toolkit is a
mature solution in distributed processing, and the ML library is built on these fundamental
blocks. The Spark ML lib has API to Python, Java and R.

The structure of this service will be analogous as service C3.3, in an attempt to provide a
uniform approach, programming interface and model to the developers employing these
services.

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 80 of 107

Short Name Spark cluster (C3.4) Lead partner UNIMIB

Type Web service Contributors SZTAKI

Title Distributed Machine Learning using SparkML

Master element

Description In addition to models based on neural networks (that can benefit from
a multi-GPU deployment, especially for learning phases) that are
managed through C3.3, other AI techniques for classification,
regression, or clustering tasks can however benefit from a deployment
and execution in a distributed and memory-based architecture such as
the one offered by Spark. In particular, C3.4 will support a variety of
machine learning models such as Support Vector Machines, Decision
Trees and ensemble models (Random Forests and Gradient Boosting)
for both classification and regression, clustering algorithms, and other
support functions that are useful in real-world, large scale, machine
learning pipelines. The set of basic ML algorithms and models can also
be extended by means of creative parallel computing approaches (e.g.
parallel implementations of DBSCAN algorithm on top of Spark, an
algorithm which is not natively provided by MLib, are known and
available).

Technical details Apache Spark cluster with MLlib, using a job queue, and transferring
results and logs back to the users similarly as in C3.3.

Core integration - Data discovery / Data publication / Data Transfer (/ Data
Exploration?)

- Storage access (temporary / permanent)
- Computation access (direct or indirect)

Depends on Might depend on C3.1

Use cases Scaled training of machine learning models, where the Horovod cluster
is not applicable

EOSC services
integration

To be investigated later

EOSC Service No (decision may be
revised)

Start TRL TRL6 Target TRL TRL8

IPR SZTAKI License FOSS, such as Apache

First availability 2020-08, initial version

MS4 expectation Prototype deployment for showcasing; experiment level

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 81 of 107

MS6 expectation Integrated showcasing; integration of some of the core services

MS7 expectation Final deployment

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 82 of 107

8. C4 Visualisation services reference

C4 services, namely “visualisation services“, in the context of NEANIAS, form the upper level
of core services in the NEANIAS ecosystem and provide facilities that may reach up to the end
user offering features of a typical visualisation workflow lifecycle, and that are also intended
for composition of higher level services.

In this section overall role of C4 services in NEANIAS is presented, then each service is
described in alignment with the Service Description template adopted by the project.

8.1. The role of C4 services in NEANIAS

Each C4 service represents the elements of a typical visualisation workflow lifecycle with focus
on visual discovery frameworks (C4.1, VD-section 8.2), science gateways (C4.2, VG-section
8.2), a cross realities framework to support VR/AR (C4.3, XR-section 8.3), and spatial data
stores (C4.4, DS-section 8.4). The spatial data stores service underpins the visual discovery
framework whose functionality is exposed via workflows through the science gateway or via
advanced interface mechanisms through the XR toolkit; the overall schema is as below.

C4 services schema

C4 activities will identify underlying common themes and synergies, and apply cross-cutting
glue and abstraction mechanisms, to realize a solid, modular, cross-sector, open-source, core
pool of methods and tools to support visualisation services, leveraging on the resources
available from RIs and EOSC-hub facilities. C4 will establish, implement and test such services
to underpin a range of multi-faceted visualisation workflows, spanning from 2D/3D spatio-
temporal to composite 2D/3D visuals of high dimensionality for computationally demanding
cross reality applications, e.g. supporting mechanisms for scalable visualisation or production

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 83 of 107

of assets for exploitation within game engines through VR headsets and advanced motion
tracking systems. When the load of data exceeds the capabilities of a single workstation, the
workflow computation will be offloaded to distributed computational clusters. Depending on
the tools deployed, different approaches for parallelization will be exploited, in order to
harvest optimally different types of underlying infrastructures, ranging from small-scale
clusters with or without GPUs to large-scale heterogeneous architectures. Although the core
functionalities developed in C4 services will allow customisation to serve specific needs of
NEANIAS end-user communities, they are also expected to be able to generalise sufficiently
over the core elements of thematic services to underpin demands of other EOSC end-user
communities to reach far beyond NEANIAS. At start, all services will be founded on existing
TRL6 software solutions, which are envisaged to be refined progressively to reach at least TRL
8 in the course of NEANIAS.

8.2. C4.1 Framework for Visual Discovery (VD)
C4.1 will provide tools to support data intensive computing for visual scientific discovery
(including research training and outreach) for observational data, theoretical simulations and
2D/3D tiling and maps. C4.1 will consist of three distinct high-performance services for visual
analytics from multidimensional data tables (VD-VisIVO), high-quality volume rendering of
particle-based datasets exploiting a variety of parallel programming models leveraging upon
heterogeneous infrastructures (VD-Splotch) and creation of interactive 2D/3D tilings and
maps (VD-Maps). Details on these services are summarised in the tables below.

C4.1 services diagram

Short Name VD-VisIVO (C4.1.1) Lead partner INAF

Type Software library /
Web Service /
Command Line
Interface

Contributors UoP

Title Visual Discovery Framework - VisIVO

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 84 of 107

Master element N/A

Description The service offers a framework for data intensive visual discovery
for experiments and data analysis (including support for training of
researchers and public outreach) tailored to the requirements of
NEANIAS while reaching out to other EOSC end-user communities.

Technical details The service will make available for data processing and visual
discovery the suite of tools provided by VisIVO. VisIVO is specifically
designed for distributed computing environments such as cloud
infrastructures and offers a framework for exploration of large-scale
scientific data-sets creating customized views of 3D renderings from
multi-dimensional data tables from various sources.

Core integration It may need the following integration:

• Catalogue service (monitoring)

• Common user interface components

• AAI Authentication & Authorization Infrastructure Service

• Notification service

• Data services (depositing, sharing, transfer, publishing,
exploration)

• Computational resources access service

Depends on It may depend on:

• C4.1.2 VD-Splotch

• C4.4 DS

Use cases • Within Neanias, all space thematic services (S1, S2, S3).

• General users with multi-dimensional data in tabular
formats (e.g. ASCII, CSV, VOTable, FITS, and others) wanting
to explore data into multi-dimensional visual renderings.

EOSC services
integration

The service may be integrated with EOSC Cloud Container
Computing services.

EOSC Service TBC

Start TRL TRL6 Target TRL At a minimum TRL8

IPR INAF/UoP License FOSS such as GNU
General Public
License (GPL).

First availability 2020-08 planned month of preliminary release to support NEANIAS
outreach and engagement plan. Release of the software as Docker
containers.

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 85 of 107

MS4 expectation First version for service showcasing deployed within NEANIAS
infrastructure (M14).

MS6 expectation Integrated showcasing (M25). Updates of software to provide
integration with other NEANIAS core/thematic services based on
use cases requirements updates.

MS7 expectation Final deployment (M32).

Short Name VD-Splotch (C4.1.1.2) Lead partner UoP

Type Software library /
Web Service /
Command Line
Interface

Contributors INAF, SZTAKI

Title Visual Discovery Framework - Splotch

Master element N/A

Description The service offers a framework for data intensive visual discovery
for experiments and data analysis (including support for training of
researchers and public outreach) tailored to the requirements of
NEANIAS while reaching out to other EOSC end-user communities.

Technical details The service will make available for data processing and visual
discovery the suite of tools provided by Splotch. Splotch supports
very large-scale datasets and an array of diverse parallelisation
models for fast, high-quality distributed particle volume rendering
of particles coming from simulations, e.g. smoothed-particle
hydrodynamics simulations and other sources.

Core integration It may need the following integration:

• Catalogue service (monitoring)

• Common user interface components

• AAI Authentication & Authorization Infrastructure Service

• Notification service

• Data services (depositing, sharing, transfer, publishing,
exploration)

• Computational resources access service

Depends on It may depend on:

• C4.4 DS

Use cases • Within NEANIAS, all space thematic services (S1, S2, S3).

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 86 of 107

• General users with cosmological simulation formats (e.g.
Binary, Gadget, HDF5, Tipsy, and others) wanting to explore
data into high-quality particle-based visual renderings.

EOSC services
integration

The service may be integrated with EOSC Cloud Container
Computing services.

EOSC Service TBC

Start TRL TRL6 Target TRL At a minimum TRL8

IPR UoP License FOSS such as GNU
General Public
License (GPL).

First availability 2020-08 planned month of preliminary release to support NEANIAS
outreach and engagement plan. Release of the software as Docker
containers.

MS4 expectation First version for service showcasing deployed within NEANIAS
infrastructure (M14).

MS6 expectation Integrated showcasing (M25). Updates of software to provide
integration with other NEANIAS core/thematic services based on
use cases requirements updates.

MS7 expectation Final deployment (M32).

Short Name VD-Maps (C4.1.1.3) Lead partner CORONIS

Type Web Service /
Command Line
Interface

Contributors JACOBS

Title Visual Discovery Framework - 2D/3D Tiling and Maps

Master element N/A

Description The service consists of a set of tools allowing the visualisation of
large-scale large-resolution maps, either 2D (images), 2.5D
(elevation/bathymetric maps) or 3D (3D meshes), in real-time on a
web app. First, a conversion service transforming common single-
file formats into multi-resolution tiled data structures will be
provided. Then, we will also provide a generic web viewer using the
created data structures.

Technical details The conversion service translating single file formats into a
hierarchical data structure will be provided in the form of a set of

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 87 of 107

command line tools within a container, and the resulting data
structures will comply with OGC standards. Then, the web app
allowing visualisation of such data structures will be implemented
using CesiumJS library (www.Cesium.com/cesiumjs/).

Core integration It may need the following integration:

• Catalogue service (monitoring)

• Common user interface components

• AAI Authentication & Authorization Infrastructure Service

• Notification service

• Data services (depositing, sharing, transfer, publishing,
exploration)

• Computational resources access service

Depends on It may depend on:

- C4.1.1 VD-VisIVO
- C4.1.2 VD-Splotch
- C4.4 DS

Use cases - Within NEANIAS, all underwater thematic services (U1, U2,
U3).

- General users with GIS data in common formats (GDAL-
compliant) wanting to convert their data into
multiresolution tiled data structures.

EOSC services
integration

The service may be integrated with EOSC Cloud Container
Computing services.

EOSC Service TBC

Start TRL TRL6 Target TRL At a minimum TRL8

IPR CORONIS License FOSS such as GNU
General Public
License (GPL).

First availability 2020-08 Functionality showcase for tiled maps creation from
2D/2.5D maps, with software released in a container.

MS4 expectation First deployment within NEANIAS infrastructure, integrated with
NEANIAS AAI, and also supporting 3D maps. (M14)

MS6 expectation Service integrated with all other core services of NEANIAS, first
version of Cesium web app (M25)

MS7 expectation Final deployment of the tile maps creation service and the Cesium
web app (M32)

http://www.cesium.com/cesiumjs/

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 88 of 107

8.3. C4.2 Visualisation Gateway (VG)

C4.2 will provide a development environment for designing, rapid prototyping, implementing
and fully testing complex visualisation solutions for realising common data exploration
workflows. To serve as a universal core service for multiple users, the popular IPython based
Jupyter Hub project has been selected. C4.2 will built upon this and the framework for visual
discovery developed in C4.1. C4.2 services are envisaged to be interconnected with C3.1 to
visualise AI powered solutions, C4.3 to underpin powerful VR/AR solutions and C4.4. to
facilitate end-user data accessibility. C4.2 are expected to be deployed in a way that is fully
embedded within the relevant workflows of end-user activities, while exploiting diverse
parallelisation models and infrastructure accelerator capabilities.

 C4.2 services diagram

Short Name VG (C4.2) Lead partner INAF

Type Web/Service UI Web
App

Contributors JACOBS, UoP

Title Visualization Gateway

Master element N/A

Description The service offers a web-based interactive environment for
designing, developing and evaluating complex, scalable
visualisation scenario solutions. Big data will be handled in a
distributed environment leveraging on heterogeneous
infrastructures and based on the services implemented in C4.1
while being interconnected with services in C4.3, C4.4. and C3.1 The
visualisation outcomes will be strictly integrated within the overall
scientific workflow seamlessly. Jupyter Hub was selected for

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 89 of 107

providing a multi-user development environment based on IPython,
using a web interface for code implementation and interpretation.

Technical details The service offers an interactive framework, based on Jupyter Hub
in connection with C3.1 AI gateway to enable efficient visualisation
of complex visualisation tasks (including AI models) with outcomes
being seamlessly integrated in the overall scientific workflows.

Core integration It may need the following integration:

• Catalogue service (monitoring)

• Common user interface components

• AAI Authentication & Authorization Infrastructure Service

• Notification service

• Data services (depositing, sharing, transfer, publishing,
exploration)

• Computational resources access service

Depends on It may depend on:

• C4.1.1 VD-VisIVO

• C4.1.2 VD-Splotch

• C4.1.3 VD-Maps

• C4.3 XR

• C4.4 DS

• C3.1 AI gateway (Jupyter Hub technology)

Use cases a) NEANIAS space research services for structure detection with
Machine Learning (S3)

b) Use Cases from C4.1.1 (VD-VisIVO), C4.1.2 (VD-Splotch) and
C4.1.3 (Maps)

EOSC services
integration

TBC

EOSC Service No

Start TRL TRL6 Target TRL At a minimum TRL8

IPR INAF License FOSS such as GNU
General Public
License (GPL).

First availability 2020-08 planned month of first release with core visualisation
Python packages to support NEANIAS outreach and engagement
plan.

MS4 expectation First version for service showcasing (M14).

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 90 of 107

MS6 expectation Integrated showcasing (M25). Updates of software to provide
integration with other NEANIAS core/thematic services based on
use cases requirements updates.

MS7 expectation Final deployment (M32)

8.4. C4.3 Toolkit for Cross Realities (XR)
C4.3 will provide a toolkit underpinning an environment for designing, implementing and
testing complex visualisation solutions exposed to end-users via Cross Realities (XR)
mechanisms, e.g. those based on Virtual Reality (VR) and Augmented Reality (AR). To serve as
a universal core service for multiple users, popular software frameworks and technologies
have been selected based on a set of components used by an existing TLR6 software solution
called Astro Data Navigator (ADN), e.g. the frameworks provided by the game engine Unity
and HTC Vive headset. Such components will support interactive data exploration and
navigation mechanisms e.g. for advanced comparisons in multidimensional and
multifrequency datasets for research and public outreach. C4.3 services will be built upon
extending components with a focus on providing services with enhanced realism, precision
and usability along a number of aspects relating to enriched user experiences covering e.g.
novel navigation mechanisms, advanced real-time tracking, VR/AR technologies and seamless
integration of large-scale catalogues. C4.3 will exploit the framework for visual discovery
developed in C4.1. C4.3 services are envisaged to be interconnected seamlessly with C4.2 to
furnish complex visualisation workflows and C4.4 to underpin advanced data access. The
components identified so far are a tracking system interface integrating with motion tracking,
a data connector for retrieving, in a generic way, data coming from different sources
(individual files or databases) and a positioning manager providing the capabilities to retrieve
specific data about position/rotation of particular objects for specific temporal instants. The
implementation of the later is envisaged to deploy cloud infrastructures to extract the
relevant information through Spice kernels. As part of the XR toolkit various VR/AR viewers
are expected to be realised visualising not only space objects but also 3D data of various
typologies of interest to other NEANIAS domains (e.g. atmospheric).

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 91 of 107

C4.3 services diagram

Short Name XR (C4.3) Lead partner ALTEC

Type Software / Web
Service

Contributors UoP

Title Toolkit for Cross Realities (XR)

Master element N/A

Description The service offers a cloud enabled toolkit facilitating interactive
data exploration and navigation to underpin VR/AR applications.

Technical details The service will be founded upon the Astro Data Navigator (ADN),
which is a 3D visualization environment within the Unity game
engine for large stellar catalogues. A number of services will be
targeted for data pre-processing to prepare VR/AR enabled assets
from a variety of sources focusing on realism, precision and usability
of the relevant workflows and covering sophisticated navigation,
real-time AR/VR tracking and seamless integration of large-scale
catalogues.

Core integration It may need the following integration:

• Catalogue service (monitoring)

• Common user interface components

• AAI Authentication & Authorization Infrastructure Service

• Notification service

• Data services (depositing, sharing, transfer, publishing,
exploration)

• Computational resources access service

Depends on It may depend on:

• C4.1.1 VD-VisIVO

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 92 of 107

• C4.1.2 VD-Splotch

• C4.1.3 VD-Maps

• C4.4 DS

Use cases • Within NEANIAS, all space thematic services (S1, S2, S3).

• Use cases of C4.1 services

EOSC services
integration

The service may be integrated with EOSC Cloud Container
Computing services.

EOSC Service TBC

Start TRL TRL6 Target TRL TRL8 as a minimum

IPR ALTEC/UOP License FOSS such as GNU
General Public
License (GPL).

First availability 2020-08 planned month of preliminary release to support NEANIAS
outreach and engagement plan.

MS4 expectation First version for service showcasing (M14).

MS6 expectation Integrated showcasing (M25). Updates of software to provide
integration with other NEANIAS core/thematic services based on
use cases requirements updates.

MS7 expectation Final deployment (M32).

8.5. C4.4 Spatial Data Stores (DS)
Spatial Data Stores providing a proper set of reference systems and data structures useful to
exploit the spatial features of catalogues and datasets.

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 93 of 107

C4.4 services diagram

Short Name Spatial data stores
(C4.4)

Lead partner JACOBS

Type DBMS Contributors ALTEC, INAF

Title Spatial data stores

Master element N/A

Description Spatial data stores allow data to be referenced, query and retrieved,
based on a given location (e.g. the globe, the Earth, planetary bodies
with a proper reference system or the sky).

Earth Observation data, including Copernicus datasets and
products, are referenced in the ADAM Data Access System (DAS), a
software module that manages a large variety of geospatial
information that feature different data format, geographic /
geometric and time resolution. It allows accessing, visualizing, sub-
setting, combining, processing, downloading all data sources
simultaneously. The DAS exposes OGC Open Search and Web
Coverage Service (WCS 2.x) interfaces that allow discovering
available datasets and subset them in any dimension with a single
query.

Planetary bodies differ from the sky on their concavity and
dimensions, bodies being concave surfaces of limited sizes whereas
the sky is convex and limitless. A coordinate reference system at the
interface layer on spatial data bases is responsible to translate user
requests in to internal data reference.

Technical details ADAM, Geoserver, MongoDB, PosgresSQL+PostGIS/PGSphere and
and Rasdaman are systems designed to handle spatial data storage
and the operations to query/retrieve such data sets.

ADAM provides seamless full data cycle management
functionalities to explore spatial distribution and temporal
evolution of various geophysical and geospatial information as well
as to integrate and execute data processing functionalities at scale.

Rasdaman is designed to handle raster data, it specifically works
with spatial arrays of two or more dimensions.

MongoDB, on the other hand, is designed to work with unstructured
data, text, numbers and vectors, it has applicability on spatial vector
data -- data representing polygons used to define observation
footprints, for example.

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 94 of 107

Geoserver can handle both kinds of data, raster and vectors, it is a
database system that offers wider applicability and simpler
implementation.

PostgreSQL+PostGIS/pgSphere. PostGIS provides support for
geographic objects allowing location queries to be run in SQL and
follows the Open Geospatial Consortium’s “Simple Features for SQL
Specification” and has been certified as compliant with the “Types
and Functions” profile. Furthermore, PostGIS enjoys wide support
from various third-party open source and proprietary tools as QGIS.
pgSphere, instead, is an extension for spherical geometry allowing
fast research in astronomical or geographical application.

The advantage of Rasdaman and MongoDB relies on performance.
MongoDB is designed for horizontal scalability

-- i.e., the system naturally works in a distributed environment, in
parallel -- making it a promising option for EOSC/NEANIAS. The
open, community version of Rasdaman does not work in parallel but
offers top performance and very little memory footprint which
makes it a stable option for highly demanding services. Geoserver
comes as a good alternative for small size, heterogeneous data sets,
as a volatile data storage system to publish high-level or temporary
user products.

Core integration a. Authentication and Authorization
b. Storage access services

Depends on • Data exploration services

Use cases a) Atmospheric (Ax) and Space research services (S1) to manage
space data

b) Provide OGC compliant services for data access (Ax, S1, S2)

EOSC services
integration

EOSC Service No

Start TRL TRL6 Target TRL TRL8

IPR JACOBS

MEEO

License GPL v3.0

proprietary software

First availability 2020-08 planned month of preliminary release to support NEANIAS
outreach and engagement plan.

MS4 expectation Service setup / First version for showcasing (M14)

MS6 expectation Integrated showcasing (M25)

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 95 of 107

MS7 expectation Final deployment (M32)

NEANIAS is funded by European Union under Horizon 2020 research and innovation programme via grant agreement No. 863448

9. Workplan – Timeline

The following section will overview the four stages of each service during the lifetime of the project. The four stages will represent four
milestones during the development and delivery of the services. The table below has the four stages/ milestones in columns for which each
service defines its expected status. The evolution of the services starts from standalone service till the fully integrated version.

Service Title First Availability MS4 Expectation (M14) MS6 Expectation (M25) MS7 Expectation (M32)

Catalogue Service

2020-08 Planned month of
preliminary release to support
NEANIAS outreach and
engagement plan and brief
reference of what may be
usable at the point. No
significant integration is
expected.

Prototype deployment. Not
populated
with NEANIAS service
metadata. EOSC integration
is not mandatory for EOSC
services yet.

Deployed and populated
with metadata of all
NEANIAS services.

Issue fixing and
improvements.

Research Product
Catalogue

Already available

Data Validation
Service

2020-08 First version deployed
with a local database, REST
interface only, provided to
support integration with other
services.

Prototype deployment,
REST interface operational,
without automated rating,
integrated with NEANIAS
AAI.

Both Web UI and REST
interfaces deployed and
operational, without
automated rating.

If deemed publishable to
EOSC, it will be fully
integrated to EOSC at this
point. Additionally, if
automated rating proves
viable, it will be operational
at this point.

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design Principles and Specifications

WP6 Core Services Foundation and Implementation Page 97 of 107

Web UI toolkit
and template

2020-05 Generic stylesheet and
color guidelines.

Generic components for
information presentation

Specific components for
service exposure.
Additional UI elements,
such as buttons and menus.

Fine-tuned UI elements.

Catalogue Portal

2020-08. Planned month of
preliminary release to support
NEANIAS outreach and
engagement plan and brief
reference of what may be
usable at the point. No
significant integration is
expected.

Prototype deployment. Not
populated with NEANIAS
service metadata. EOSC
integration is not
mandatory for EOSC
services yet.

Deployed and populated
with all NEANIAS service
metadata.

Issue fixing and
improvements.

OpenDMP
Software

2020-02 Public release to
accommodate observations of
NEANIAS users. Deployed on
OpenAIRE as Argos.

Integration with EOSC AAI.
Integration with PID
providers.

Final release.

Data Publishing
service

Already available

Persistent
Identifier Service

Already available

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design Principles and Specifications

WP6 Core Services Foundation and Implementation Page 98 of 107

Authentication &
Authorization
Infrastructure
Service

2020-04: At this preliminary
release, it is expected that at a
minimum the dev and staging
realms will be supported. Role
based authorization will be
available at the realms and at
the client level. Federated users
will be limited to NEANIAS AAI

Production realm will be
made available. Alpha
integration with NEANIAS
Logging and NEANIAS
Accounting services will be
available.

EOSC AAI integration will be
available. Enhancements on
the integration with the
NEANIAS Accounting
Service. Alpha availability of
fine-grained resource level
authorization will be
evaluated.

Final version of selected
fine-grained authorization
capabilities,
documentation, Accounting
and Logging integration

Configuration
Management
Service

2020-07 Initial service delivery
dependable for services to store
and retrieve public
configuration

Major service delivery,
integrated with AAI.

Major service update
supporting secrets.

Minor fixes and updates if
required – no functional
changes

Service Instance
Registry

2020-07 Initial service delivery
dependable for services to store
and retrieve targeted service
entries

Major service delivery,
integrated with AAI with
preliminary service instance
model.

Major service with final
service model.

Minor fixes and updates if
required – no functional
changes

Log Aggregation
Service

2020-06: At this preliminary
release, it is expected that basic
configuration will be available
to allow for direct aggregation
of messages. No user interface
to browse the logs will be
available

File and http beats
configuration to support
distributed log aggregation,
basic transformations to
extract key characteristics

Graphical user interface to
browse and analyze log
entries through a Kibana
interface with direct access
to the underlying index

Integration with the
NEANAIS AAI to facilitate
federated user role based
mapping to visualization
and possibly administrative
operations

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design Principles and Specifications

WP6 Core Services Foundation and Implementation Page 99 of 107

Accounting
Service

2020-10 At this preliminary
release, it is expected that basic
ability to register accounting
information according to
NEANIAS accounting model will
be provided. Visualisation of the
information will be at the level
of record.

Refinements on common
accounting models.
Aggregation utilities to ship
data efficiently. Basic user
interface without reporting
functionality

Extended accounting model
and basic reporting
functionality

Full accounting model and
reporting functionality
available

Notification
Service

2020-07: Initial version offering
single channel communication.
Integration entry points
through subset of available
channels.

Extended notification
templates. User profiling
endpoints and notification
preferences. Notification
context

Additional notification
channels including mail and
in-app notifications. Web
user interface widget for in-
app notification browsing

User profile integrations for
automated profiling

Object Storage
Service

2019-11 The service is already
available at the GARR Cloud
Platform premises
https://cloud.garr.it

Service is present. If
required
configuration/allocation
changes may occur.

Service is present. If
required
configuration/allocation
changes may occur.

Service is present. If
required
configuration/allocation
changes may occur.

Data Sharing
Service

2020-08 First version deployed
with a local database, provided
to support integration with
other services.

Prototype deployment,
integrated with NEANIAS
AAI.

Deployed and operational.

If deemed publishable to
EOSC, it will be fully
integrated to EOSC at this
point.

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design Principles and Specifications

WP6 Core Services Foundation and Implementation Page 100 of 107

Data Transfer
service

2020-08 Deployed on NEANIAS
infrastructure. The software is
already available at
https://github.com/SZTAKI-
LPDS/data-avenue

Initial deployment on GARR
cloud and integration to
Swift object store on GARR
cloud happens.

Integration to some of the
core services such as AAI,
Logging is available in the
service.

Final deployment;
Integration to further core
services such as Accounting,
Notification and to all other
necessary services. EOSC
integration happens.

Data exploration
service

2020-08 Initial deployment on
NEANIAS infrastructure, with a
set of data querable (e.g.
Copernicus datasets)

Service setup, including
integration with NEANIAS
AAI component.
Registration in the central
service repository

Showcase of data
exploration. Logging
available

Final deployment

GARR Cloud
Platform Service

The service is already available
at the GARR Cloud premises:
https://cloud.garr.it

- - -

GARR Container
Platform Service

The service is already available
at the GARR Cloud premises:
https://cloud.garr.it/containers/

- - -

GARR
Deployment as a
Service

The service is already available
at the GARR Cloud premises:
https://cloud.garr.it/apps/daas/

- - -

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design Principles and Specifications

WP6 Core Services Foundation and Implementation Page 101 of 107

MiCADO
Deployment as a
Service

2020-08 Deployed on NEANIAS
infrastructure. The service is
already available at
https://micado-scale.eu/

Initial deployment; MiCADO
is deployed, several
examples are developed in
order to demonstrate how
MiCADO can be used to
automatically deploy and
scale reference architecture

Integrated showcasing;
Integration to some of the
core services such as AAI,
Logging is available in the
service

Final deployment;
Integration to further core
services such as Accounting,
Notification and to all other
necessary services is
available in MiCADO. EOSC
integration happens.

AI Science
Gateway: service
for Development
of Machine
Learning Model
using Jupyter Hub

2020-06, initial version with
core Python packages

Prototype deployment for
showcasing; basic IDE
functionality

Integrated showcasing;
integration of some core
services

Final deployment

Serving trained
ML models

2020-09, initial version with
core model serving capabilities
based on open source solution.

Prototype deployment for
showcasing; experiment
level.

Integrated showcasing;
integration of some of the
core services.

Final deployment

Distributed Multi-
GPU training of
large ML models
using Horovod

2020-08, initial version
Prototype deployment for
showcasing; experiment
level

Integrated showcasing;
integration of some of the
core services

Final deployment

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design Principles and Specifications

WP6 Core Services Foundation and Implementation Page 102 of 107

Distributed
Machine Learning
using SparkML

2020-08, initial version
Prototype deployment for
showcasing; experiment
level

Integrated showcasing;
integration of some of the
core services

Final deployment

Visual Discovery
Framework -
VisIVO

2020-08 planned month of
preliminary release to support
NEANIAS outreach and
engagement plan. Release of
the software as Docker
containers.

First version for service
showcasing deployed within
NEANIAS
infrastructure(M14).

Integrated showcasing
(M25). Updates of software
to provide integration with
other NEANIAS
core/thematic services
based on use cases
requirements updates.

Final deployment (M32).

Visual Discovery
Framework -
Splotch

2020-08 planned month of
preliminary release to support
NEANIAS outreach and
engagement plan. Release of
the software as Docker
containers.

First version for service
showcasing deployed within
NEANIAS infrastructure
(M14).

Integrated showcasing
(M25). Updates of software
to provide integration with
other NEANIAS
core/thematic services
based on use cases
requirements updates.

Final deployment (M32).

Visual Discovery
Framework -
2D/3D Tiling and
Maps

2020-08 Functionality showcase
for tiled maps creation from
2D/2.5D maps, with software
released in a container.

First deployment within
NEANIAS infrastructure,
integrated with NEANIAS
AAI, and also supporting 3D
maps. (M14)

Service integrated with all
other core services of
NEANIAS, first version of
Cesium web app (M25)

Final deployment of the tile
maps creation service and
the Cesium web app (M32)

 www.neanias.eu

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design Principles and Specifications

WP6 Core Services Foundation and Implementation Page 103 of 107

Visualization
Gateway

2020-08 planned month of first
release with core visualisation
Python packages to support
NEANIAS outreach and
engagement plan.

First version for service
showcasing (M14).

Integrated showcasing
(M25). Updates of software
to provide integration with
other NEANIAS
core/thematic services
based on use cases
requirements updates.

Final deployment (M32)

Toolkit for Cross
Realities (XR)

2020-08 planned month of
preliminary release to support
NEANIAS outreach and
engagement plan.

First version for service
showcasing (M14).

Integrated showcasing
(M25). Updates of software
to provide integration with
other NEANIAS
core/thematic services
based on use cases
requirements updates.

Final deployment (M32).

Spatial data
stores

2020-08 planned month of
preliminary release to support
NEANIAS outreach and
engagement plan.

Service setup / First version
for showcasing (M14)

Integrated showcasing
(M25)

Final deployment (M32)

NEANIAS is funded by European Union under Horizon 2020 research and
innovation programme via grant agreement No. 863448

10. Conclusions

This deliverable aims a) to summarise the design principles for implementing the NEANIAS
core services b) to overview the architecture which will provide a framework for combining
the core services and c) to introduce the C1/C2/C3/C4 core services with their most important
attributes to be developed in the rest of the project.

Section on design principles is focusing on service-oriented architecture with high-degree of
interoperability through the utilisation of REST paradigm and standards in communication and
FAIR principles in data handling. Guidelines for operating services and for the most important
security aspects are also collected. The AAI security concept and policy have been introduced
in details since one of the most commonly used function in the core services will be
authentication/ authorisation/ identification. Similar importance is given for user interface
design where basic principles are declared. Finally, the most recommended technologies are
overviewed on the different fields such as programming languages, development/data
management/AI and other frameworks.

Section on system architecture is giving a detailed overview of the NEANIAS ecosystem being
developed within the framework of the NEANIAS project. The deliverable provides a top-to-
bottom overview. It starts with a high-level architecture diagram summarising the abstract
relation among the Basic / Advance core services and Thematical ones. Then a logical
architecture view with the fundamental building blocks is presented by specifying 5 levels of
abstraction. In order to support the common internal operation of the core services, an
internal lifecycle is proposed. Finally, the hypothetical deployment of the NEANIAS services is
presented to help the reader understand the overall architecture of the ecosystem.

Fundamental resources abstractions are specified and detailed by introducing three
categories, such as storage, compute and other. These sections summarise the identified
resources to be utilised for testing, development and operation of the services introduced in
the next section of the deliverable.

In the next 4 sections, the list of C1/C2/C3/C4 services are specified with their most important
attributes. C1 services provide the necessary tools for NEANIAS services to be discoverable
and accessible and integrated with EOSC hub. C2 services form the lower level of services in
the NEANIAS ecosystem and are the ones that deliver access to various levels of resources
that serve the use cases of the project. C3 services provide features of a typical Machine
Learning (ML) workflow lifecycle, while C4 services provide facilities that may reach up to the
end user offering features of a typical visualisation workflow lifecycle.

Finally, a workplan is given for overviewing the stages of the services evolving during the
project. From standalone running to different levels of integration the services will evolve
during the project through 4 milestones.

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 105 of 107

List of acronyms

Acronym Description

AAI Authentication Authorization Infrastructure

ACL Access Control List

API Application Programming Interface

CSS Cascading Style Sheet

DMP Data Management Plan

EOSC European Open Science Cloud

FAIR Findable, Accessible, Interoperable, and Reusable

FOSS Free and Open Source Software

GDPR General Data Protection Regulation

HTML Hypertext Markup Language

JS JavaScript

JVM Java Virtual Machine

MVC Model-View-Controller

ReST Representational State Transfer

RI Research Infrastructure

SOA Service Oriented Architecture

SKOS Simple Knowledge Organization System

SPA Single Page Application

VisIVO Visualization Interface for the Virtual Observatory

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 106 of 107

Appendix 1 – Service Description Template

Short Name Short name for the service Lead partner Partner responsible as
per DOA or post-DOA
agreement

Type Software library / Web
service / UI web app / UI
Component

Contributors Partners contributing
to the service

Title Full element name

Master element Service this element belongs to or specializes or extends (if applicable)

Description Brief description of the element oriented to the general public
covering objectives and main functional outcome.

Technical details Technical details about the service, w.r.t. techniques, protocols etc

Also describe whether the element is web-ui accessible or a
background service.

Core integration Describe integration of the service with fundamental core services of
NEANIAS, e.g.

- Authentication / Authorisation
- Accounting
- Logging
- Data discovery / Data publication
- Storage access (temporary / permanent)
- Computation access (direct or indirect)
- Visualisation
- other

Depends on Other services or components the element depends on, either in
NEANIAS or other infrastructures.

Use cases Use cases depending on the element (coming from thematic sectors
and business sectors, or fundamental requirements of NEANIAS
infrastructure)

EOSC services
integration

Services from EOSC the service may expect to use or integrate with

EOSC Service Is published in EOSC ?
(Yes/No)

Start TRL TRL6/TRL7/TRL8/TRL9 Target TRL TRL8/TRL9

IPR Name the main IPR holder
of the service (expected to

License Name the license
under which the code

D6.1 Core Services Architecture, Design Principles and Specifications

Core Services Architecture, Design Principles and SpecificationsCore Services Architecture, Design
Principles and Specifications

WP6 Core Services Foundation and Implementation Page 107 of 107

coincide with partner
responsible).

of the element may be
delivered

First availability yyyy-mm (planned month of preliminary release to support NEANIAS
outreach and engagement plan) and brief reference of what may be
usable at the point (no significant integration is expected)

MS4 expectation Describe expected status of the service at MS4, Prototype deployment
for showcasing (M14) (EOSC integration is not mandatory for EOSC
services yet)

MS6 expectation Describe expected status of the service at MS6, MS6 Integrated
showcasing (M25)

MS7 expectation Describe expected status of the service at MS7, final deployment
(M32) (EOSC integration is mandatory for services targeting EOSC)

	Document Info
	Change Record
	Disclaimer
	Table of Contents
	Tables of Figures & Tables
	Abstract
	1. Introduction
	1.1. Context
	1.2. Contents and Rationale
	1.3. Structure of the document

	2. Design Principles
	2.1. Service Oriented Architecture
	2.2. Minimum service requirements
	2.3. REST paradigm
	2.4. Pluggability & Extensibility
	2.5. Interoperability
	2.6. Standards
	2.7. F.A.I.R. principles
	2.7.1. C1 core services
	2.7.2. C2 core services
	2.7.3. C3 core services
	2.7.4. C4 core services

	2.8. Operation
	2.9. Security
	2.9.1. NEANIAS AAI Concepts
	2.9.2. Policy

	2.10. User Interfaces / User Experience
	2.11. Portability
	2.12. Technology
	2.12.1. Programming languages
	2.12.2. Development frameworks
	2.12.3. Data Management frameworks
	2.12.4. AI/ML frameworks
	2.12.5. Visualization Frameworks
	2.12.6. Major Background Systems

	3. System Architecture
	3.1. Architecture overview
	3.2. Logical architecture
	3.3. Fundamental building blocks
	3.4. NEANIAS reference service
	3.5. Physical architecture

	4. Fundamental resource abstractions in NEANIAS
	4.1. Storage
	4.2. Computation
	4.3. Other resources

	5. C1 Open-Science lifecycle support services & Components reference
	5.1. The role of C1 services in NEANIAS
	5.2. NEANIAS Service Catalogue
	5.3. NEANIAS Research Product Catalogue
	5.4. Data Validation Service
	5.5. Common User Interface Components
	5.6. NEANIAS Access Gate
	5.7. OpenDMP / Argos
	5.8. Data Publishing Service
	5.9. Persistent Identifier Service / Zenodo

	6. C2 EOSC hub, RIs and cloud integration enabling services reference
	6.1. The role of C2 services in NEANIAS
	6.2. NEANIAS AAI
	6.3. Configuration Management Service
	6.4. Service Instance Registry
	6.5. Log Aggregation Service
	6.6. Accounting Service
	6.7. Notification Service
	6.8. Data Depositing service
	6.9. Data Sharing service
	6.10. Data Transfer service
	6.11. Data exploration service
	6.12. Computational resources access service

	7. C3 Artificial Intelligence services reference
	7.1. The role of C3 services in NEANIAS
	7.2. C3.1 AI Science Gateway: service for development of ML models using Jupyter Hub
	7.3. C3.2 Serving trained ML models
	7.4. C3.3 Distributed Multi-GPU training of large ML models using Horovod
	7.5. C3.4 Distributed Machine Learning using SparkML

	8. C4 Visualisation services reference
	8.1. The role of C4 services in NEANIAS
	8.2. C4.1 Framework for Visual Discovery (VD)
	8.3. C4.2 Visualisation Gateway (VG)
	8.4. C4.3 Toolkit for Cross Realities (XR)
	8.5. C4.4 Spatial Data Stores (DS)

	9. Workplan – Timeline
	10. Conclusions
	List of acronyms
	Appendix 1 – Service Description Template

