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Abstract: When a natural or human disaster occurs, time is critical and often of vital importance.
Data from the incident area containing the information to guide search and rescue (SAR) operations
and improve intervention effectiveness should be collected as quickly as possible and with the
highest accuracy possible. Nowadays, rescuers are assisted by different robots able to fly, climb or
crawl, and with different sensors and wireless communication means. However, the heterogeneity
of devices and data together with the strong low-delay requirements cause these technologies not
yet to be used at their highest potential. Cloud and Edge technologies have shown the capability
to offer support to the Internet of Things (IoT), complementing it with additional resources and
functionalities. Nonetheless, building a continuum from the IoT to the edge and to the cloud is still
an open challenge. SAR operations would benefit strongly from such a continuum. Distributed
applications and advanced resource orchestration solutions over the continuum in combination with
proper software stacks reaching out to the edge of the network may enhance the response time and
effective intervention for SAR operation. The challenges for SAR operations, the technologies, and
solutions for the cloud-to-edge-to-IoT continuum will be discussed in this paper.

Keywords: search and rescue; robot operating system; Internet of Things; edge computing; cloud
continuum; orchestration; computer vision; wireless sensor networks; cloud robotics; distributed
applications

1. Introduction

When a natural or human disaster occurs, the first 72 hours are particularly critical to
locate and rescue victims [1]. Although advanced technological solutions are being investi-
gated by researchers and industry for search and rescue (SAR) operations, rescue teams and
first responders still suffer from limited situational awareness in an emergency. The main
motivation for this is a generalized lack of modern and integrated digital communication
and technologies. Relying only on direct visual or verbal communication is indeed the
root cause of limited situational awareness. First responders have very limited, sparse,
non-integrated ways of receiving information about the evolution of an emergency and its
response (e.g., team members and threat locations). A real-time visual representation of the
emergency response context would greatly improve their decision accuracy and confidence
on the field. “The greatest need for cutting-edge technology, across disciplines, is for devices that
provide information to the first responders in real-time” [2].

Mobile robot teams comprising possibly robots with heterogeneous sensory (cameras,
infrared cameras, hyperspectral cameras, light detection and ranging—LiDARs, radio
detection additionally, ranging—RADARs, etc.) and mobility (land, air) capabilities have
the potential of scaling up first responders’ situational awareness [3]. They are, therefore,
an important asset in the response to catastrophic incidents, such as wildfires, urban fires,
landslides, and earthquakes as they also offer the possibility to generate 3D maps of a
disaster scene with the use of cameras and sensors. However, in many cases, robots used
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by first responders are remotely teleoperated, or they can operate autonomously only in
scenarios with good global positioning system (GPS) coverage. Furthermore, 3D maps
cannot be provided in low-visibility scenarios, such as when smoke is present, in which
remote operation is also very complicated. Operating robots in scenarios such as large
indoor fires requires the robots to be able to navigate autonomously in environments with
smoke and/or where GPS is not available.

Other advanced technologies, such as artificial intelligence (AI) and computer vision
are also gaining momentum in SAR operations to fully exploit the information available
through cameras and sensors and by this enable smart decision-making and enhanced
mission control. On the other hand, these technologies are often very resource-demanding
in time and computation. Therefore, the computational power in the cloud and at the edge
of the infrastructure has shown great potential to strongly support them. Edge comput-
ing is where devices with embedded computing and “hyper-converged” infrastructures
integrate and virtualize key components of information technology (IT) infrastructure
such as storage, networking and computing. It is also the first step towards a computing
continuum that spans from network-connected devices to remote clouds. To leverage this
continuum, the seamless integration of capabilities and services is required. Advanced
connectivity techniques such as 5G (fifth generation) mobile networks and software-defined
networking (SDN) offer unified access to the edge and cloud from anywhere. Workloads
can potentially run wherever it makes the most sense for the application to run. At the same
time, the different environments along the continuum will work together to provide the
right resources for the task at hand. The range of applications and workloads with unique
cost, connectivity, performance, and security requirements will demand a continuum of
computing and analysis at every step of the topology, from the edge to the cloud, with new
approaches to orchestration, management, and security being required.

In this context, there are several open research and technological questions that need
to be addressed. On the one side, there is a need to reduce the computational and storage
load on the physical device to perform timely actions, but simply offloading to the edge
may not improve as the edge also has limited resources. On the other side, how to use all
the technologies and devices available to improve situational awareness for first responders
is nontrivial due to heterogeneity in communication protocols, semantics and data formats
(e.g., generating a collaborative map of the area using the information from drones and
robots considering that data fusion from heterogeneous data sources is a challenging
task). In this paper, we will investigate how the cloud-to-edge-to-IoT continuum can
support and enable post-disaster SAR operations, and we will propose solutions for the
challenges and technological/research questions introduced above. Indeed, distributed
applications paired with advanced resource orchestration solutions over the continuum
reaching out to the edge of the network can enhance the response time and effective
intervention for SAR operation [4–6]. The challenges will be discussed, and the possible
solutions will be described as part of the Horizon Europe NEPHELE project (NEPHELE
project website: https://nephele-project.eu/ (accessed on 19 January 2023)). This project
proposes a lightweight software stack and synergetic meta-orchestration framework for
the next-generation compute continuum ranging from the IoT to the remote cloud, which
perfectly matches the needs of SAR operations.

The paper is organized as follows. Section 2 reports the related work on the main
related technologies in cloud computing, sensor networks, the Internet of Things (IoT),
robotic applications and cloud robotics. Section 3 describes the reference use case for SAR
operations, with its requirements. Section 4 describes the proposed solutions based on the
approach followed in the NEPHELE project. Section 5 concludes the paper.

2. Related Work

In this section, we will go over the main technologies that we believe can and should
be considered to best cope with SAR scenarios and enhance the situational awareness of
first responders.

https://nephele-project.eu/
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2.1. Cloud and Edge Robotics for SAR

The idea of utilizing a “remote brain” for robots can be traced back to the 90s [7,8].
Since then, attempts to adopt cloud technologies in the robotics field have seen a constantly
growing momentum. The benefits deriving from the integration of networked robots and
cloud computing are, among others, powerful computation, storage, and communication
resources available in the cloud which can support the information sharing and processing
for robotic applications. The possibility of remotely controlling robotic systems further
reduces costs for the deployment, monitoring, diagnostics, and orchestration of any robotic
application. This, in turn, allows for building lightweight, low-cost, and smarter robots,
as the main computation and communication burden is brought to the cloud. Since
2010, when the cloud robotics term first appeared, several projects (e.g., RoboEarth [9],
KnowRob [10], DAVinci [11], Robobrain [12]) investigated the field, pushing forward
both research and products to appear on the market. Companies started investing in
the field as they recognized the large potential of cloud robotics. This led to the first
open-source cloud robotics frameworks appearing in recent years [13]. An example of this
is the solution from Rapyuta Robotics (Available online: https://www.rapyuta-robotics.
com/ (accessed on 19 January 2023)). Similarly, commercial solutions for developers have
seen the light such as Formant (Available online: https://formant.io/ (accessed on 19
January 2023)), Robolaunch (Available online: https://www.robolaunch.io/ (accessed on
19 January 2023)) and Amazon’s Robomaker [14]. Additionally, for key features such as
navigation and localization in indoor environments, commercial products exist on the
market. Adopting commercial solutions, however, leads to additional costs that might
threaten the success of offering a low-cost product/service to the market. Open source
offers customizable solutions with production and maintenance costs kept low, whereas
ad hoc designed solutions allow us to deploy customized technology solutions in terms
of services and features envisioned for the final product. With the advances in edge [15]
and fog computing [16] in the last few years, robotics has seen an even greater potential as
higher bandwidth and lower latencies can be achieved [17]. With computing and storage
resources at the edge of the infrastructure, applications can be executed closer to the
robotic hardware which generally improves the performance [17] and enables advanced
applications that pure cloud-based robotics would not be able to support [18–20].

Multiple research and development (R&D) projects have investigated the adoption of
robotic solutions in SAR operations. For instance, the SHERPA project [21] developed a
mixed ground and aerial robotic platform with human–robot interaction to support search
and rescue activities in real-world hostile environments; RESPOND-A [22] developed
holistic solutions by bringing together 5G wireless communications, augmented and virtual
reality, autonomous robot and unmanned aerial vehicle coordination, intelligent wearable
sensors and smart monitoring, geovisual analytics and immersive geospatial data analy-
sis, passive and active localization and tracking, and interactive multi-view 360-degrees
video streaming. These are two examples of several projects that have investigated and
demonstrated the use of robotic applications in SAR and disaster scenarios. Whereas the
adoption of cloud and edge robotics for SAR has gained interest in recent years [20,23,24],
how the cloud and edge computing frameworks can support SAR operations at their best
is still an open challenge. Nonetheless, we believe that the cloud-to-edge-to-IoT continuum
can strongly support and enable the widespread use of cloud robotics in a large set of
application domains.

2.2. Cloud Continuum

With the term cloud continuum, we intend the edge computing extension of cloud
services towards the network boundaries [25] reaching out to end devices (i.e., the IoT
devices). Edge computing revealed itself as a valid paradigm to bring cloud computation
and data storage closer to the data source of applications. On the one hand, edge computing
provides better performance for delay-sensitive applications, whereas, on the other hand,
applications with a high computational cost have access to more processing resources

https://www.rapyuta-robotics.com/
https://www.rapyuta-robotics.com/
https://formant.io/
https://www.robolaunch.io/
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distributed along the continuum. This continuum reaches out to the IoT devices as sensors
are the source of massive amounts of data that are challenging for infrastructure, data
analysis, and storage. The Cloud-Edge-IoT computing continuum has been explored in
various areas of research. For instance, it has been investigated to provide services and
applications for autonomous vehicles [26], smart cities [27], UAV cooperative schemes [28]
and Industry 4.0 [29], where most of the data require real-time processing using machine
learning and artificial intelligence.

One of the main challenges of the cloud continuum is the orchestration between the
components of the system, which includes computational resources, learning models, al-
gorithms, networking capabilities and edge/IoT device mobility. Context awareness is
required in the continuum to decide when and where to store data and perform computa-
tion [30]. For IoT environments, context information is generated by processing raw sensor
data to make decisions in order to reduce energy consumption, reduce overall latency and
message overload [31], achieve a more efficient data transmission rate in large-scale scenar-
ios using caching [32], and store and process placement across the continuum [33,34]. The
mobility-aware multi-objective IoT application placement (mMAPO) method [25] proposes
an optimization model for the application placement across the continuum considering the
edge device mobility to optimize the completion time, energy consumption and economic
cost. Task offloading from ground IoT devices to UAV (unmanned aerial vehicle) coop-
erative systems to deploy edge servers is explored in [35], where authors also present an
energy allocation strategy to maximize long-term performance.

The use of the cloud continuum for SAR operations has the potential to extend the
capabilities and resources available and by this enhance the situational awareness of first
responders. The orchestration process of the different systems, including robots and rescue
teams, is a challenging aspect that might obtain support from models from industry, health
and military systems [36].

2.3. Sensor Networks and IoT for SAR Operations

Sensor networks have seen broad application in areas such as healthcare, transporta-
tion, logistics, farming, and home automation, but even more in search and rescue op-
erations. Sensors capture signals from the physical world and increase the information
available to make decisions. The IoT as an extension of the sensor network includes any
type of device and system such as vehicles, drones, machines, robots, human wearables
or cameras with a unique identifier that can gather, exchange and process data without
explicit human intervention. The use of IoT systems has been widely explored to extend
the capabilities of SAR teams in disaster situations. Drone and UAV capabilities allow
access to remote areas in less time, deploy communications systems, improve area visibility
and transport light cargo if necessary [37]. Acoustic source location based on azimuth esti-
mation and distance was proposed to estimate the victim’s location [38,39]. Image/video
resources in drone-based systems are also used for automatic person detection by applying
deep convolutional neural networks and image processing tools [40]. SARDO [41] is a
drone-based location system that allows locating victims by locating mobile phones in the
area without any modification to the mobile phones or infrastructure support.

Collaborative multi-robots have a high impact on SAR operations. providing real-time
mapping and monitoring of the area [42]. The multi-robot systems in SAR operation have
been explored for urban [43], maritime [44] and wilderness [45] operational environments.
Several types of robots are involved in multi-robot systems such as UAVs, unmanned
surface vehicles (USVs), unmanned ground vehicles (UGVs) or unmanned underwater
vehicles (UUVs). Serpentine robots are useful in narrow and complex spaces [46]. The
snake robot proposed in [47] has a gripper module to remove small objects and a camera
to move the eyes and look in all directions without moving the body. There are also more
flexible and robust ground units with long-term autonomy and the capacity to carry aerial
robots to extend the coverage area using an integrated vision system [48]. Maritime SAR
operations are supported by UAVs, UUVs and USVs, where the UUV includes seafloor
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pressure sensors, hydrophones for tsunami detection and a sensor for measuring water
conditions such as temperature, the concentration of different chemicals, depth, etc. [49].

Other fundamental elements in SAR operations are personal devices such as smart-
phones and wearables [23]. One of the constraints during a disaster is infrastructure failure
where electricity is off or communications equipment is destroyed, damaged or saturated.
COPE is a solution to exploit the multi-network feature of mobile devices to provide an
alert messages delivery system based on smartphones [50]. COPE considers several en-
ergy levels to use the technologies available in smartphones nowadays (Bluetooth, Wi-Fi,
cellular) for alert diffusion in the disaster area. Drones are used to collect emergency
messages from smartphones and take the messages to areas where there is connectivity.
This approach is explored in [51] to propose a collaborative data collection protocol that
organizes wireless devices in multiple tiers by targeting fair energy consumption in the
whole network, thereby extending the network lifetime. Wearables are also important in
SAR operations because they can monitor the vital signs such as temperature, heart rate,
respiration rate and blood pressure of the victims and rescuers [51]. This information can
be collected by the rescuer or the robot-based system to determine the victim’s status and
provide a more convenient treatment depending on the conditions [52].

SAR dogs have also been involved in disaster events to locate victims even in limited
vision and sound scenarios. A wearable computing system for SAR dogs is proposed
in [53], where the dog uses a deep learning-assisted system in a wearable device. The
system incorporates inertial sensors, such as a three-axial accelerometer and gyroscope,
and a wearable microphone. The computational system collects audio and motion signals,
processes the sensor signals, communicates the critical messages using the available net-
work and determines the victim’s location based on the dog’s location. Incorporating IoT
systems into SAR operations increases rescue teams’ capabilities, saving time by receiving
information in real time. The development of autonomous systems allows the integration
of machines precisely and reduces the risks for victims and rescuers.

2.4. Situation Awareness and Perception with Mobile Robots

Mobile robot teams with heterogeneous sensors have the potential of scaling up first
responders’ situational awareness. Being able to cover wide areas, these are an important
asset in the response to catastrophic incidents, such as wildfires, urban fires, landslides, and
earthquakes. In their essence, robot teams make possible two key dimensions of situation
awareness: space distribution and time distribution [54]. Although the former means
the possibility of multiple robots perceiving simultaneously different (far) locations of
the area of interest, the latter arises from the fact that multiple robots, possibly endowed
with complementary sensor modalities, can visit a location at different instant times, thus
coping with environments’ evolution over time, i.e., with dynamic environments. Together
with space and time distribution, robot teams also potentially provide efficiency, reliability,
robustness and specialization [55]; efficiency because they allow building in fewer time
models of wide areas, which is of utmost importance to provide situational awareness
within response missions to catastrophic scenarios; reliability and robustness because the
failure of individual robots in the team does not necessarily compromise the overall mission
success; specialization because robots have complementary, i.e., heterogeneous, sensory
and mobility capabilities, thus increasing the team’s total utility.

Although distributed robot teams potentially allow for persistent, long-term per-
ception in wide areas, i.e., they allow for cooperative perception, fulfilling this potential
requires solving two fundamental scientific sub-problems [56]: (i) data integration for
building and updating a consistent unified view of the situation, eventually over a large
time span; (ii) multi-robot coordination to optimize the information gain in active percep-
tion [57,58]. The former sub-problem deals with space and time distribution and involves
data fusion, i.e., merging partial perceptual models of individual robots into a globally
consistent perceptual model, so that robots can update percepts in a spot previously visited
by other robotic teammates. The latter sub-problem involves the use of partial information
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contained in the global perceptual model to decide where either a robot or the robot team
should go next to acquire novel or more recent data to augment or update the current per-
ceptual model, thus closing the loop between sensing and actuation. In order to optimize
the collective performance and take full advantage of space distribution provided by the
multi-robot system, active perception requires action coordination among robots, which
usually is based on sharing some coordination data among robots (e.g., state information).
In both sub-problems, devising distributed solutions that do not rely on a central point
of failure [55] is a key requirement to operate in the wild, e.g., in forestry environments
or in large urban areas, so that adequate resiliency and robustness are attained in harsh
operational conditions, including individual robots’ hardware failures and communication
outages.

Cooperative perception has been studied in specific testbeds [55] or several robotics
application domains, such as long-term security and care services in man-made environ-
ments [57], monitoring environmental properties [58–63], the atmospheric dispersion of
pollutants monitoring [64], precision agriculture [65,66] or forest fire detection and monitor-
ing [67,68]. However, the research problem has been only partially and sparsely solved (i.e.,
usually tackling only a specific dimension of cooperative perception), and it is still essen-
tially an open research problem. Especially in field robotic applications, including robotics
to aid first responders in catastrophic incidents, which involve a much wider diversity of
robots in terms of sensory capabilities and mobility and strict time response constraints, a
more thorough and extensive treatment is needed to encompass all the dimensions of the
cooperative perception problem, thus being able to fulfill the requirements posed by those
complex real scenarios.

2.5. Simultaneous Localization and Mapping

Operating robots in scenarios such as large indoor fires or collapsed buildings requires
the robots to be able to navigate in environments with smoke and/or where GPS is not
available. This involves using simultaneous localization and mapping (SLAM) techniques.
SLAM consists of the concurrent construction of a model of the environment (the map that
can be used also for navigation) and the estimation of the position of the robot moving
within it and is considered a fundamental problem for robots to become truly autonomous.
As such, over the years, a large variety of SLAM approaches have been developed, with
methods based on different sensors (camera, LiDAR, RADAR, etc.), new data representa-
tions and consequently new types of maps [69,70]. Similarly, various estimation techniques
have emerged inside the SLAM field. Nonetheless, it is still an actively researched problem
in robotics, so much so that the robotics research community is only now working towards
designing benchmarks and mechanisms to compare different SLAM implementations. In
recent years, there has been particularly intense research into VSLAM (visual SLAM) [71].
Specifically, the focus is on using primarily visual (camera) sensors to allow robots to
track and keep local maps of their relative positions also in indoor environments (where
GPS-based navigation fails). Extracting key features from images, the robot can determine
where it is in the local environment by comparing features to a database of images taken
of the environment during prior passes by the robot. As this latter procedure quickly
becomes the bottleneck for its applicability, solutions are being explored to offload the
processing to the cloud [72] and to the edge [56]. Additionally, in this context, we believe
the cloud-to-edge-to-IoT continuum will sustain these advanced technologies.

2.6. ROS Applications

With robots coming out of research labs to interact with the real world in several
domains comes the realization that robots are but one of the many components of “robotic
applications”. The distributed nature of such systems (i.e., robots, edge, cloud, mobile
devices), the inherent complexity of the underlying technologies (e.g., networking, arti-
ficial intelligence—AI, specialized processors, sensors and actuators, robotic fleets) and
the related development practices (e.g., continuous integration/continuous development,
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containerization, simulation, hardware-in-the-loop testing) pose high entry barriers for
any actor wishing to develop such applications. With new features and robotic capabilities
being constantly developed in all main five elements of modern advanced robotics (i.e.,
perception, modeling, cognition, behavior and control) and AI solutions expanding what
is possible each day, software updates will become frequent across all involved devices,
requiring development and operation (DevOps) practices to be adapted to the specific na-
ture of robotic applications and their lifecycle (e.g., mobile robots, frequent disconnections,
over-the-air updates, safety).

ROS (robot operating system) is an open-source framework for writing robotic soft-
ware that was conceived with the specific purpose of fostering collaboration. In its relatively
short existence (slightly more than ten years) it has managed to become the de facto stan-
dard framework for robotic software. The ROS ecosystem now consists of tens of thousands
of users worldwide, working in domains ranging from tabletop hobby projects to large
industrial automation systems (see Figure 1).
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Figure 1. The ROS ecosystem is composed of multiple elements: (i) plumbing: a message-passing
system for communication; (ii) tools: a set of development tools to accelerate and support application
development; (iii) capabilities: drivers, algorithms, user interfaces as building blocks for applications;
(iv) community: a large, diverse, and global community of students, hobbyists and multinational
corporations and government agencies.

Open Robotics (Available online: https://www.openrobotics.org (accessed on 19
January 2023)) sponsors the development of ROS and aims to generally “support the devel-
opment, distribution, and adoption of open-source software for use in robotics research,
education, and product development”. Currently, ROS is the most widely used frame-
work for creating generic and universal robotics applications. It aims to create complex
and robust robot behaviors across the widest possible variety of robotic platforms. ROS
achieves that by allowing the reuse of robotics software packages and creating a hardware-
agnostic abstraction layer. This significantly lowers the entry threshold for non-robotic-field
developers who want to develop robotic applications.

On the other hand, from the architectural point of view, ROS still treats the robot as
a central point of the system and relies on local computation. This limitation makes the
task of creating large-scale and advanced robotics applications much harder to achieve.
The current state of cloud platforms does not support the actual robotic application needs
off the shelf [13–17]. It includes bi-directional data flow, multi-process applications or
exposing sockets outside the cloud environment. These hurdles make them less accessible
for robotics application developers. By creating a cloud-to-edge-to-IoT continuum which
provides the needs of such robotic environments, we can lower the hurdle for an application
developer to use or extend robots’ capabilities.

3. Challenges for Risk Assessment and Mission Control in SAR Operations in
Post-Disaster Scenarios

When a natural or human disaster occurs, the main objective is to rescue as many
victims as possible in the shortest possible time. To this aim, the rescue team needs to
(1) locate and identify victims, (2) assess the victims’ injuries and (3) assess the damages
and comprehend the remaining risks to prioritize rescue operations. All these actions
are complementary and require a different part of the data collected in the area. On the
data coming from sensors, cameras and other devices, image recognition, AI-powered
decision-making, path planning and other technological solutions can be implemented
to support the rescue teams in enhancing their situational awareness. Today, only part

https://www.openrobotics.org
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of the available data can be collected, and robots, although a great support, are not fully
autonomous and just act as relays to the rescuers. The main technical challenges are linked
to the heterogeneity of devices and strict time requirements. Data should be filtered and
processed at different levels of the continuum to guarantee short delays while maintaining
full knowledge of the situation. Devices are heterogeneous in terms of CPU, memory,
sensors and energy capacities. Some of the hardware and software components are very
specific to the situation (use-case specific), whereas others are common to multiple scenarios.
Different complementary applications can be run on top of the same devices but exploit
different sets of data, potentially incomplete. The network is dynamic because of link
fluctuations, the energy depletion of devices and device mobility (which can also be
exploited when controllable).

The high-level goal for this scenario is to enhance situational awareness for first
responders. Sensor data fusion built on ROS can help provide precise 3D representations
of emergency scenarios in real time, integrating the inputs from multiple sensors, pieces
of equipment and actors. Furthermore, collecting and visually presenting aggregated
and processed data from heterogeneous devices and prioritizing selected information
based on the scenario is an additional objective. All the information that is being collected
should improve the efficiency of decision-making and responses and increase safety and
coordination.

Robotic platforms have features that are highly appreciated by first responders, such
as the possibility to generate 3D maps of a disaster scene in a short time. Open-source
technologies (i.e., ROS) offer the tools to aggregate sensor data from different coordinate
frameworks. To achieve this, precise localization and mapping solutions in disaster sce-
narios are needed, together with advanced sensor data fusion algorithms. The envisaged
real-time situation awareness is only possible through substantial research advancement
with respect to the state of the art in localization, mapping, and cooperative perception in
emergency environments. The ability to provide information from a single specialized de-
vice (e.g., drone streaming) has been demonstrated, whereas correctly integrating multiple
heterogeneous moving data sources with imprecise localization in real-time is still an open
challenge. We can summarize the main technical requirements and challenges as follows:

1. Dynamic multi-robot mapping and fleet management: the coordination, monitoring
and optimization of the task allocation for mobile robots that work together in building
a map of unknown environments;

2. Computer vision for information extraction: AI and computer vision enable people
detection, position detection and localization from image and video data;

3. Smart data filtering/aggregation/compression: a large amount of data is collected
from sensors, robots, and cameras in the intervention area for several services (e.g.,
map building, scene and action replay). Some of them can be filtered, and others
can be downsampled or aggregated before sending them to the edge/cloud. Smart
policies should be defined to also tackle the high degree of data heterogeneity;

4. Device Management: some application functionalities can be pre-deployed on the
devices or at the edge. The device management should also enable bootstrapping and
self-configuration, support hardware heterogeneity and guarantee the self-healing of
software components;

5. Orchestration of software components: given the SAR application graph, a dynamic
placement of software components should be enabled based on service requirements
and resource availability. This will require performance and resource monitoring at
the various levels of the continuum and dynamic component redeployment;

6. Low latency communication: communication networks to/from disaster areas to-
wards the edge and cloud should guarantee low delays for a fast response in locating
and rescuing people under mobility conditions and possible disconnections.
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4. Nephele Project as Enabler for SAR Operations

NEPHELE (NEPHELE project website: https://nephele-project.eu/ (accessed on 19
January 2023)) is a research and innovation action (RIA) project funded by the Horizon
Europe program under the topic "Future European platforms for the Edge: Meta Operating
Systems" for the duration of three years (September 2022–August 2025). Its vision is
to enable the efficient, reliable and secure end-to-end orchestration of hyper-distributed
applications over a programmable infrastructure that is spanning across the compute
continuum from IoT to edge to cloud. In doing this, it aims at removing the existing
openness and interoperability barriers in the convergence of IoT technologies against cloud
and edge computing orchestration platforms and introducing automation and decentralized
intelligence mechanisms powered by 5G and distributed AI technologies. To reach this
overall objective, the NEPHELE project aims to introduce two core innovations, namely:

1. An IoT and edge computing software stack for leveraging the virtualization of IoT
devices at the edge part of the infrastructure and supporting openness and inter-
operability aspects in a device-independent way. Through this software stack, the
management of a wide range of IoT devices and platforms can be realized in a unified
way, avoiding the usage of middleware platforms, whereas edge computing function-
alities can be offered on demand to efficiently support IoT applications’ operations.
The concept of the virtual object (VO) is introduced, where the VO is considered
the virtual counterpart of an IoT device. The VO significantly extends the notion
of a digital twin as it provides a set of abstractions for managing any type of IoT
device through a virtualized instance while augmenting the supported functionali-
ties through the hosting of a multi-layer software stack, called a virtual object stack
(VOStack). The VOStack is specifically conceived to provide VOs with edge com-
puting and IoT functions, such as, among others, distributed data management and
analysis based on machine learning (ML) and digital twinning techniques, autho-
rization, security and trust based on security protocols and blockchain mechanisms,
autonomic networking and time-triggered IoT functions taking advantage of ad hoc
group management techniques, service discovery and load balancing mechanisms.
Furthermore, IoT functions similar to the ones usually supported by digital twins will
be offered by the VOStack;

2. A synergetic meta-orchestration framework for managing the coordination between
cloud and edge computing orchestration platforms, through high-level scheduling
supervision and definition. Technological advances in the areas of 5G and beyond
networks, AI and cybersecurity are going to be considered and integrated as addi-
tional pluggable systems in the proposed synergetic meta-orchestration framework.
To support modularity, openness and interoperability with emerging orchestration
platforms and IoT technologies, a microservices-based approach is adopted where
cloud-native applications are represented in the form of an application graph. The
application graph is composed of independently deployable application components
that can be orchestrated. Such components regard application components that can be
deployed at the cloud or the edge part of the continuum, VOs and IoT-specific virtual-
ized functions that are offered by the VOs. Each component in the application graph
is also accompanied by a sidecar -based on a service-mesh approach for supporting
generic/supportive functions that can be activated on demand. The meta-orchestrator
is responsible for activating the appropriate orchestration modules to efficiently man-
age the deployment of the application components across the continuum. It includes
a set of modules for federated resources management, the control of cloud and edge
computing cluster managers, end-to-end network management across the continuum
and AI-assisted orchestration. The interplay among VOs and IoT devices will allow for
exploitation functions even at the device level in a flexible and opportunistic fashion.
The synergetic meta-orchestrator (SMO) interacts with a set of further components for
both computational resources management (federated resources manager—FRM) and
network management across the continuum, by taking advantage of emerging net-

https://nephele-project.eu/
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work technologies. The SMO makes use of the hyper-distributed applications (HDA)
repository, where a set of application graphs, application components, virtualized IoT
functions and VOs are made available to/by application developers (see Figure 2).
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Figure 2. NEPHELE’s high-level architecture. Three layers are foreseen: a physical devices layer,
with all the IoT devices (e.g., robots, drones, and sensors) connected over a wireless network to the
platform; a virtual objects layer at the edge, with the virtual representation of the physical devices
as a VO; edge-to-cloud continuum with a set of logic blocks for cloud and networking resource
management and the orchestration of the application components.

The NEPHELE outcomes are going to be demonstrated, validated and evaluated
in a set of use cases across various vertical industries, including areas such as disaster
management as presented in this paper, logistic operations in ports, energy management in
smart buildings and remote healthcare services.

4.1. The Search and Rescue Use Case in NEPHELE

For the specific use case discussed in this paper, we foresee a service provider which
defines the logic of a SAR application to be deployed and executed over the NEPHELE
platform. The application logic is represented as an HDA graph which will be available
on the NEPHELE HDA repository (see Figure 2). The application logic will define the
high-level goal and the key performance indicator (KPI) requirements for the application.
To run and deploy the HDA represented by the graph, some input parameters will be
given, such as the time, zone, and area to be covered. The application graph will foresee
the use of one or more VOs as representative of IoT devices such as robots or sensors and
one or more generic functions to support the application (see Figure 3). This latter will
support the SAR operations with movement, sensing and mapping capabilities and may be
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provided through the service mesh approach that enables managed, observable and secure
communication across the involved microservices. The VO description required by the
SAR HDA graph to be deployed at the edge of the infrastructure will also be available on
the NEPHELE repository. In Figure 3, we also see highlighted the different levels of the
VOStack and their matching to the SAR application components/microservices.
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of multiple components that are either use-case specific or generic or reconfigurable. These com-
ponents are placed on different levels of the IoT-to-edge-to-cloud continuum and based on their
functionalities are part of the different layers of the VOStack.

We foresee a service consumer (e.g., a firefighter brigade) owning a set of physical
devices (robots, drones and sensors). These devices are ready to be used with some basic
software components running and connected to a local network, e.g., a 5G access point.
As for the software components already deployed on the robots, we foresee the ROS
environment correctly set up, with some basic ROS components already running. The
sensors can be either pre-deployed in the area or carried by firefighter personnel. When a
SAR mission is started, the Service Consumer connects to the NEPHELE HDA repository
and looks for the HDA to deploy and provides the input data that are required. Then, the
following operations will have to be initiated by the NEPHELE platform (see Figure 2 for
reference of the building blocks):

1. The synergetic meta-orchestrator (SMO) receives the HDA graph, the set of parame-
ters for the specific instance of the SAR application, the VO descriptors needed for the
application and a descriptor of the supportive functions to be deployed in the contin-
uum. The supportive functions are provided by the VOStack and can be, for instance,
risk assessments, mission control with task prioritization and optimized planning,
health monitoring based on AI and computer vision, predictions of dangerous events,
the localization and identification of victims, and so on. The SMO will interact with
the federated resources manager and the compute continuum network manager to de-
ploy the networking, computing and storage resource over the continuum according
to the requirements derived from the HDA graph, the VO descriptors and the input
parameters given by the service consumer;

a. The federated resources manager (FRM) orchestrator will ensure that the appli-
cation components will be deployed either on the edge or on the cloud based on
the computational and storage resources needed for the application components
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and the overall resource availability. For instance, large data amounts used to
replay some actions from robots paired with depth images of the surroundings
(e.g., using rosbags) can be stored on the remote cloud. On the other hand,
maps to be navigated by the robot could be stored at the edge for further action
planning. Similarly, computation can be performed on the edge for identifying
imminent danger situations or planning a robotic arm movement so that low
delay is guaranteed, whereas complex mission optimization and prioritization
computations can be performed in the cloud, and the needed resources should
be allocated. The FRM will produce a deployment plan that will be provided to
the compute continuum network manager;

i. The cloud computing cluster manager (CCCM) is responsible for the
cloud deployments and interaction with the edge computing cluster
manager (ECCM) (e.g., reserve resources, create tenant spaces at the
edge and compute offloading mechanisms);

ii. The edge computing cluster manager (ECCM) is responsible for the
edge deployments, providing feedback on the application component
and resource status; it receives inputs for compute offloading. Moreover,
the ECCM will orchestrate the VOs that are part of the HDA graph and
synchronize the device updates from IoT devices to edge nodes and vice
versa.

b. The compute continuum network manager (CCNM) will receive the deploy-
ment plan from the FRM to set up the network resources needed for the differ-
ent application components for end-to-end network connectivity and meet the
networking requirements for the application across the compute continuum.
Exploiting 5G technologies, a network slice based on the bandwidth require-
ments for each robotic device will be the output of the CCNM. Each network
slice will ensure it meets the QoS requirements and service level agreements for
the given application.

2. Once the VOs are deployed, a southbound interface for VO-to-IoT device interactions
will be used to interoperate with the physical devices (i.e., robots, drones and sensor
gateways). The VO will have knowledge on how to communicate with the IoT devices
(i.e., robots, sensor gateways), as this will be stored and available on the VO storage.
We assume the IoT devices to be up and running with their basic services and to be
connected to the network;

3. Physical robots and sensor networks will communicate with each other through the
corresponding VOs using a peer interface, whereas the application component that
will use the data stream from the VOs will use the Northbound interface. Application
components such as map merging, decision-making, health monitoring, etc., will
interact with the VOs to exchange relative information;

4. The deployed VOs will use the Northbound interface to interact with the orchestrator
for monitoring and scaling requests when, for instance, more robots are needed to
cover a given area.

The SAR HDA application will have a classic three-tier architecture with a presentation
tier, an application tier and a data tier all implemented with a service mesh approach
for the on-demand activation of generic/supportive functions for the hyper-distributed
application.

Presentation tier: the application will foresee a frontend for visualization and mission
control by the end-user. A mission-specific dashboard will provide real-time situational
awareness (i.e., a 3D map with the location of robots, rescue team members, victims and
threats) to take well-informed confident decisions. The dashboard integrates data coming
from heterogeneous sensors and equipment (e.g., drones, mobile robots). This will be
accessible through a web browser or a graphical user interface (GUI) remotely and enable
the service consumer to interact with the application tier to take mission decisions, trigger
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tasks that have been suggested by the automized application tier and analyze historic data
for further information collection and situational awareness.

Application tier: the inputs and requests coming from the presentation tier are col-
lected and the application components are activated to execute mission tasks. All applica-
tion components for supporting the application logic are foreseen and run on the different
layers of the continuum. As an example, localization functions and camera streaming will
run directly on the robots/drones. Three-dimensional SLAM solutions and video analysis
will run on the edge in cases where the IoT devices (i.e., robots and drones) do not have
the required resources. Other more advanced and computationally demanding functions
and components will instead run on the cloud (or edge) through VO-supportive functions.
Examples of these are AI algorithms for mission control, risk assessment, danger prediction,
optimization problems for path planning, and so on. In all of these components, new data
can be produced, and old data can be accessed from the data tier.

Data tier: this foresees a storage element for storing processed images or historical
data about the SAR mission. The data produced by the IoT devices (drones, robots, sensors)
will be compressed, downsampled and/or secured before being stored for future use
by the application tier. These functions on the data will be running, if possible, on the
drones and robots themselves, to reduce the data transmissions. Data analysis and complex
information extraction will be offered by support functions from the VO. The data can be
either stored on the VO data storage or on remotely distributed storage.

4.2. NEPHELE’s Added Value

The implementation of the described use case will demonstrate several benefits ob-
tained with the NEPHELE innovation and research activities. Most importantly, they will
help in coping with the identified challenges for the SAR operations and take important
steps in meeting the overall high-level goal of improving situational awareness for first
responders in cases of natural or human disasters. The benefits deriving from the solutions
proposed in NEPHELE can be summarized in the following points.

1. Reduced delay in time-critical missions: by exploiting compute and storage re-
sources at the edge of the networks, with the possibility of the dynamic adaptation of
the application components deployment over the continuum, lower delays will be
expected for computationally demanding tasks on a large amount of data. This will
be of high importance as it will strongly enhance first responders’ effectiveness and
security in their operations;

2. Efficient data management: a large amount of data available and collected by sensors,
drones and robots will be filtered, compressed and analyzed by exploiting supportive
functions made available by the VOStack in NEPHELE. Only a subset of the produced
data will be stored for future reuse based on data importance. This will reduce the
bandwidth needed for communications from the incident area to the applications
layers that introduce intelligence into the application and by this reduce the delay in
communication and the risk of starvation in terms of networking resources;

3. Robot fleet management and trajectory optimization: exploiting the IoT-to-edge-to-
cloud compute continuum, smart decisions will be taken and advanced algorithms
will be provided for optimal robot and drone trajectory planning in multi-robot
environments. Solutions will rely on AI techniques able to learn from what fleets
robots see in their environment and enable semantic navigation with time-optimized
trajectories;

4. Rescue operations prioritization: AI techniques and optimization algorithms can
elaborate the high amount of data and information collected from the intervention area
to support rescue teams in giving priorities to the intervention tasks. The compute
continuum will enable computationally heavy and complex decisions in a dynamic
environment where risk prediction and assessment, victims’ health monitoring and
victim identification may produce new information continuously and new decisions
should be triggered;
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5. HW-agnostic deployment: the introduction of the VO concept and the multilevel
meta-orchestration open for device-independent deployment and bootstrapping using
generic HW. Different software components of an HDA can be deployed at every level
of the IoT-to-edge-to-cloud continuum, which reduces the HW requirements (e.g., in
computation and storage) at the IoT level for enabling a given application;

6. AI for computer vision and image processing: advanced AI algorithms can be de-
ployed as part of the supportive functions made available through the VOSstack
innovation from NEPHELE. These can then be enabled on demand and deployed
over the compute continuum for image and analysis and computer vision to locate
and identify victims and perform risk assessments and predictions;

7. End-to-end security: IoT devices and HDA users will benefit from the security and
authentication, authorization, and accounting (AAA) functionalities offered by the
NEPHELE framework. These functions will be offered as support functions for the
VOs representing the IoT devices and will help in controlling access to the services,
authorization, enforcing policies and identifying users and devices;

8. Optimal network resource orchestration: based on the HDA requirements, an op-
timized network resource allocation policy will be enforced over the IoT-to-edge-
to-cloud continuum. Here, the experience in network slicing and software-defined
networking (SDN) will be exploited to be able to support time-critical applications
such as the SAR operations presented in this paper.

To summarize, the NEPHELE framework will enable and support the integration of
different technologies and solutions over the cloud-to-edge-to-IoT continuum. Indeed,
combining all these elements into a single framework represents a breakthrough advance in
the cloud-to-edge-to-IoT continuum-based applications. Better performance and enhanced
situational awareness in SAR operations are nicely paired with advanced technological
solutions offering smart decision-making and optimization techniques for mission control
and robotic applications in mobile environments.

5. Conclusions

In this paper, it has been discussed how the cloud-to-edge-to-IoT compute continuum
can support SAR operations in cases of natural and human disasters. Augmented com-
puting, networking, and storage resources from the “remote brain” in the edge/cloud can
strongly enhance the situational awareness of the first responders. An analysis of current
challenges with respect to the technology used in SAR operations has been presented with
an overview of advanced solutions that may be adopted in these scenarios. The NEPHELE
project and its main concepts were introduced as an enabler for cloud/edge robotics ap-
plications with low delay requirements and mission control to enhance the situational
awareness of first responders. With the proposed solutions, network, storage, and computa-
tion resources can be dynamically allocated through advanced techniques such as network
slicing. The orchestration and smart placement of application components exploiting AI
models will enable adaptation to current status and dynamics factors. The VOStack in
the NEPHELE project will enable the elaboration of data effectively and efficiently with
supportive functions tailored to the specific use-case requirement.

Our future work will consist of the implementation of a hyper-distributed application
that demonstrates the benefits described in the paper for a post-earthquake scenario in
a port. In such a scenario, we can imagine that the network infrastructure is down, the
map of the port is not reliable due to collapsed infrastructure and buildings and several
dangerous factors (e.g., containers with dangerous materials or at risk of collapsing) are
of high risk for the SAR operations. It will be an ROS application for multiple robots
and drones that enables the dynamic mapping of an unknown area. AI and computer
vision models will be used for object detection and victim identification in the area and to
update the map of the post-disaster scenario. Advanced data aggregation solutions will
be investigated including consensus-based solutions as proposed, e.g., in [73] to extract
information from a wide set of different sources in an efficient and effective manner. The
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extracted information will be used for mission control purposes, for priority definition in
the SAR tasks and the assessment of risks and the health of victims. For integration with
the NEPHELE framework, virtualization techniques and cloud-native technologies will
be adopted.

Author Contributions: Conceptualization, L.M., G.T. and N.M.; writing—original draft preparation,
L.M. and A.A.; writing—review and editing, L.M., A.A., G.T. and N.M.; funding acquisition, L.M.,
N.M. and G.T. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the European Union’s Horizon Europe research and inno-
vation program under grant agreement No 101070487. Views and opinions expressed are however
those of the authors only and do not necessarily reflect those of the European Union. The European
Union cannot be held responsible for them.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ochoa, S.F.; Santos, R. Human-Centric Wireless Sensor Networks to Improve Information Availability during Urban Search and

Rescue Activities. Inf. Fusion 2015, 22, 71–84. [CrossRef]
2. Choong, Y.Y.; Dawkins, S.T.; Furman, S.M.; Greene, K.; Prettyman, S.S.; Theofanos, M.F. Voices of First Responders—Identifying

Public Safety Communication Problems: Findings from User-Centered Interviews; National Institute of Standards and Technology:
Gaithersburg, MD, USA, 2018; Volume 1.

3. Saffre, F.; Hildmann, H.; Karvonen, H.; Lind, T. Self-swarming for multi-robot systems deployed for situational awareness. In
New Developments and Environmental Applications of Drones; Springer: Cham, Switzerland, 2022; pp. 51–72.

4. Queralta, J.P.; Raitoharju, J.; Gia, T.N.; Passalis, N.; Westerlund, T. Autosos: Towards multi-uav systems supporting maritime
search and rescue with lightweight ai and edge computing. arXiv 2020, arXiv:2005.03409.

5. Al-Khafajiy, M.; Baker, T.; Hussien, A.; Cotgrave, A. UAV and fog computing for IoE-based systems: A case study on environment
disasters prediction and recovery plans. In Unmanned Aerial Vehicles in Smart Cities; Springer: Cham, Switzerland, 2020;
pp. 133–152.

6. Alsamhi, S.H.; Almalki, F.A.; AL-Dois, H.; Shvetsov, A.V.; Ansari, M.S.; Hawbani, A.; Gupta, S.K.; Lee, B. Multi-Drone Edge
Intelligence and SAR Smart Wearable Devices for Emergency Communication. Wirel. Commun. Mob. Comput. 2021, 1–12.
[CrossRef]

7. Goldberg, K.; Siegwart, R. Beyond Webcams: An Introduction to Online Robots; MIT Press: Cambridge, MA, USA, 2002.
8. Inaba, M.; Kagami, S.; Kanehiro, F.; Hoshino, Y.; Inoue, H. A Platform for Robotics Research Based on the Remote-Brained Robot

Approach. Int. J. Robot. Res. 2000, 19, 933–954. [CrossRef]
9. Waibel, M.; Beetz, M.; Civera, J.; D’Andrea, R.; Elfring, J.; Gálvez-López, D.; Haussermann, K.; Janssen, R.; Montiel, J.; Perzylo, A.;

et al. Roboearth. IEEE Robot. Autom. Mag. 2011, 18, 69–82.
10. Tenorth, M.; Beetz, M. KnowRob: A knowledge processing infrastructure for cognition-enabled robots. Int. J. Robot. Res. 2013, 32,

566–590. [CrossRef]
11. Arumugam, R.; Enti, V.R.; Bingbing, L.; Xiaojun, W.; Baskaran, K.; Kong, F.F.; Kumar, A.S.; Meng, K.D.; Kit, G.W. DAvinCi: A

Cloud Computing Framework for Service Robots. In Proceedings of the 2010 IEEE International Conference on Robotics and
Automation, Anchorage, AK, USA, 3–7 May 2010; pp. 3084–3089.

12. Saxena, A.; Jain, A.; Sener, O.; Jami, A.; Misra, D.K.; Koppula, H.S. Robobrain: Large-scale Knowledge Engine for Robots. arXiv
2014, arXiv:1412.0691.

13. Ichnowski, J.; Chen, K.; Dharmarajan, K.; Adebola, S.; Danielczuk, M.; Mayoral-Vilches, V.; Zhan, H.; Xu, D.; Kubiatowicz,
J.; Stoica, I.; et al. FogROS 2: An Adaptive and Extensible Platform for Cloud and Fog Robotics Using ROS 2. arXiv 2022,
arXiv:2205.09778.

14. Amazon RoboMaker. Available online: https://aws.amazon.com/robomaker/ (accessed on 29 November 2018).
15. Shi, W.; Cao, J.; Zhang, Q.; Li, Y.; Xu, L. Edge Computing: Vision and Challenges. IEEE Internet Things J. 2016, 3, 637–646.

[CrossRef]
16. Mouradian, C.; Naboulsi, D.; Yangui, S.; Glitho, R.H.; Morrow, M.J.; Polakos, P.A. A Comprehensive Survey on Fog Computing:

State-of-the-Art and Research Challenges. IEEE Commun. Surv. Tutor. 2017, 20, 416–464.
17. Groshev, M.; Baldoni, G.; Cominardi, L.; De la Oliva, A.; Gazda, R. Edge Robotics: Are We Ready? An Experimental Evaluation of

Current Vision and Future Directions. Digit. Commun. Netw. 2022; in press. [CrossRef]
18. Huang, P.; Zeng, L.; Chen, X.; Luo, K.; Zhou, Z.; Yu, S. Edge Robotics: Edge-Computing-Accelerated Multi-Robot Simultaneous

Localization and Mapping. IEEE Internet Things J. 2022, 9, 14087–14102. [CrossRef]
19. Xu, J.; Cao, H.; Li, D.; Huang, K.; Qian, H.; Shangguan, L.; Yang, Z. Edge Assisted Mobile Semantic Visual SLAM. In Proceedings of

the IEEE INFOCOM 2020—IEEE Conference on Computer Communications, Toronto, ON, Canada, 6–9 July 2020; pp. 1828–1837.

http://doi.org/10.1016/j.inffus.2013.05.009
http://doi.org/10.1155/2021/6710074
http://doi.org/10.1177/02783640022067878
http://doi.org/10.1177/0278364913481635
https://aws.amazon.com/robomaker/
http://doi.org/10.1109/JIOT.2016.2579198
http://doi.org/10.1016/j.dcan.2022.04.032
http://doi.org/10.1109/JIOT.2022.3146461


Future Internet 2023, 15, 55 16 of 18

20. McEnroe, P.; Wang, S.; Liyanage, M. A Survey on the Convergence of Edge Computing and AI for UAVs: Opportunities and
Challenges. IEEE Internet Things J. 2022, 9, 15435–15459. [CrossRef]

21. SHERPA. Available online: http://www.sherpa-fp7-project.eu/ (accessed on 19 January 2023).
22. RESPOND-A. Available online: https://robotnik.eu/projects/respond-a-en/ (accessed on 19 January 2023).
23. Delmerico, J.; Mintchev, S.; Giusti, A.; Gromov, B.; Melo, K.; Horvat, T.; Cadena, C.; Hutter, M.; Ijspeert, A.; Floreano, D.; et al. The

Current State and Future Outlook of Rescue Robotics. J. Field Robot. 2019, 36, 1171–1191. [CrossRef]
24. Bravo-Arrabal, J.; Toscano-Moreno, M.; Fernandez-Lozano, J.; Mandow, A.; Gomez-Ruiz, A.J.; García-Cerezo, A. The Internet of

Cooperative Agents Architecture (X-IoCA) for Robots, Hybrid Sensor Networks, and MEC Centers in Complex Environments: A
Search and Rescue Case Study. Sensors 2021, 21, 7843. [CrossRef] [PubMed]

25. Kimovski, D.; Mehran, N.; Kerth, C.E.; Prodan, R. Mobility-Aware IoT Applications Placement in the Cloud Edge Continuum.
IEEE Trans. Serv. Comput. 2022, 15, 3358–3371. [CrossRef]

26. Peltonen, E.; Sojan, A.; Paivarinta, T. Towards Real-time Learning for Edge-Cloud Continuum with Vehicular Computing. In
Proceedings of the 2021 IEEE 7th World Forum on Internet of Things (WF-IoT), New Orleans, LA, USA, 14 June–31 July 2021;
pp. 921–926.

27. Mygdalis, V.; Carnevale, L.; Martinez-De-Dios, J.R.; Shutin, D.; Aiello, G.; Villari, M.; Pitas, I. OTE: Optimal Trustworthy EdgeAI
Solutions for Smart Cities. In Proceedings of the 2022 22nd IEEE International Symposium on Cluster, Cloud and Internet
Computing (CCGrid), Taormina, Italy, 16–19 May 2022; pp. 842–850.

28. Hu, X.; Wong, K.; Zhang, Y. Wireless-Powered Edge Computing with Cooperative UAV: Task, Time Scheduling and Trajectory
Design. IEEE Trans. Wirel. Commun. 2020, 19, 8083–8098. [CrossRef]

29. Bacchiani, L.; De Palma, G.; Sciullo, L.; Bravetti, M.; Di Felice, M.; Gabbrielli, M.; Zavattaro, G.; Della Penna, R. Low-Latency
Anomaly Detection on the Edge-Cloud Continuum for Industry 4.0 Applications: The SEAWALL Case Study. IEEE Internet Things
Mag. 2022, 5, 32–37. [CrossRef]

30. Wang, N.; Varghese, B. Context-aware distribution of fog applications using deep reinforcement learning. J. Netw. Comput. Appl.
2022, 203, 103354–103368. [CrossRef]

31. Dobrescu, R.; Merezeanu, D.; Mocanu, S. Context-aware control and monitoring system with IoT and cloud support. Comput.
Electron. Agric. 2019, 160, 91–99. [CrossRef]

32. Zhao, X.; Yuan, P.; Li, H.; Tang, S. Collaborative Edge Caching in Context-Aware Device-to-Device Networks. IEEE Trans. Veh.
Technol. 2018, 67, 9583–9596. [CrossRef]

33. Tran, T.X.; Hajisami, A.; Pandey, P.; Pompili, D. Collaborative Mobile Edge Computing in 5G Networks: New Paradigms,
Scenarios, and Challenges. IEEE Commun. Mag. 2017, 55, 54–61. [CrossRef]

34. Lee, J.; Lee, J. Hierarchical Mobile Edge Computing Architecture Based on Context Awareness. Appl. Sci. 2018, 8, 1160. [CrossRef]
35. Cheng, Z.; Gao, Z.; Liwang, M.; Huang, L.; Du, X.; Guizani, M. Intelligent Task Offloading and Energy Allocation in the

UAV-Aided Mobile Edge-Cloud Continuum. IEEE Netw. 2021, 35, 42–49. [CrossRef]
36. Rosenberger, P.; Gerhard, D. Context-awareness in Industrial Applications: Definition, Classification and Use Case. In Proceedings

of the 51st Conference on Manufacturing Systems (CIRP), Stockholm, Sweden, 16–18 May 2018; pp. 1172–1177.
37. Waharte, S.; Trigoni, N. Supporting Search and Rescue Operations with UAVs. In Proceedings of the 2010 International Conference

on Emerging Security Technologies, Canterbury, UK, 6–7 September 2010; pp. 142–147.
38. Sibanyoni, S.V.; Ramotsoela, D.T.; Silva, B.J.; Hancke, G.P. A 2-D Acoustic Source Localization System for Drones in Search and

Rescue Missions. IEEE Sens. J. 2018, 19, 332–341. [CrossRef]
39. Manamperi, W.; Abhayapala, T.D.; Zhang, J.; Samarasinghe, P.N. Drone Audition: Sound Source Localization Using On-Board

Microphones. IEEE/ACM Trans. Audio Speech Lang. Process. 2022, 30, 508–519. [CrossRef]
40. Sambolek, S.; Ivasic-Kos, M. Automatic Person Detection in Search and Rescue Operations Using Deep CNN Detectors. IEEE

Access 2021, 9, 37905–37922. [CrossRef]
41. Albanese, A.; Sciancalepore, V.; Costa-Perez, X. SARDO: An Automated Search-and-Rescue Drone-Based Solution for Victims

Localization. IEEE Trans. Mob. Comput. 2021, 21, 3312–3325. [CrossRef]
42. Queralta, J.P.; Taipalmaa, J.; Can Pullinen, B.; Sarker, V.K.; Nguyen Gia, T.; Tenhunen, H.; Gabbouj, M.; Raitoharju, J.; Westerlund,

T. Collaborative Multi-Robot Search and Rescue: Planning, Coordination, Perception, and Active Vision. IEEE Access 2020, 8,
191617–191643. [CrossRef]

43. Chen, X.; Zhang, H.; Lu, H.; Xiao, J.; Qiu, Q.; Li, Y. Robust SLAM System Based on Monocular Vision and LiDAR for Robotic
Urban Search and Rescue. In Proceedings of the 2017 IEEE International Symposium on Safety, Security and Rescue Robotics
(SSRR), Shanghai, China, 11–13 October 2017; pp. 41–47.

44. Murphy, R.; Dreger, K.; Newsome, S.; Rodocker, J.; Slaughter, B.; Smith, R.; Steimle, E.; Kimura, T.; Makabe, K.; Kon, K.; et al.
Marine Heterogeneous Multi-Robot Systems at the Great Eastern Japan Tsunami Recovery. J. Field Robot. 2012, 29, 819–831.
[CrossRef]

45. Silvagni, M.; Tonoli, A.; Zenerino, E.; Chiaberge, M. Multipurpose UAV for search and rescue operations in mountain avalanche
events. Geomat. Nat. Hazards Risk 2016, 8, 18–33. [CrossRef]

46. Konyo, M. Impact-TRC Thin Serpentine Robot Platform for Urban Search and Rescue. In Disaster Robotics; Springer: Cham,
Switzerland, 2019; pp. 25–76.

http://doi.org/10.1109/JIOT.2022.3176400
http://www.sherpa-fp7-project.eu/
https://robotnik.eu/projects/respond-a-en/
http://doi.org/10.1002/rob.21887
http://doi.org/10.3390/s21237843
http://www.ncbi.nlm.nih.gov/pubmed/34883848
http://doi.org/10.1109/TSC.2021.3094322
http://doi.org/10.1109/TWC.2020.3019097
http://doi.org/10.1109/IOTM.001.2200120
http://doi.org/10.1016/j.jnca.2022.103354
http://doi.org/10.1016/j.compag.2019.03.005
http://doi.org/10.1109/TVT.2018.2858254
http://doi.org/10.1109/MCOM.2017.1600863
http://doi.org/10.3390/app8071160
http://doi.org/10.1109/MNET.010.2100025
http://doi.org/10.1109/JSEN.2018.2875864
http://doi.org/10.1109/TASLP.2022.3140550
http://doi.org/10.1109/ACCESS.2021.3063681
http://doi.org/10.1109/TMC.2021.3051273
http://doi.org/10.1109/ACCESS.2020.3030190
http://doi.org/10.1002/rob.21435
http://doi.org/10.1080/19475705.2016.1238852


Future Internet 2023, 15, 55 17 of 18

47. Han, S.; Chon, S.; Kim, J.; Seo, J.; Shin, D.G.; Park, S.; Kim, J.T.; Kim, J.; Jin, M.; Cho, J. Snake Robot Gripper Module for Search
and Rescue in Narrow Spaces. IEEE Robot. Autom. Lett. 2022, 7, 1667–1673. [CrossRef]

48. Liu, K.; Zhou, X.; Zhao, B.; Ou, H.; Chen, B.M. An Integrated Visual System for Unmanned Aerial Vehicles Following Ground
Vehicles: Simulations and Experiments. In Proceedings of the 2022 IEEE 17th International Conference on Control & Automation
(ICCA), Naples, Italy, 27–30 June 2022; pp. 593–598.

49. Jorge, V.A.M.; Granada, R.; Maidana, R.G.; Jurak, D.A.; Heck, G.; Negreiros, A.P.F.; dos Santos, D.H.; Gonçalves, L.M.G.; Amory,
A.M. A Survey on Unmanned Surface Vehicles for Disaster Robotics: Main Challenges and Directions. Sensors 2019, 19, 702.
[CrossRef] [PubMed]

50. Mezghani, F.; Mitton, N. Opportunistic disaster recovery. Internet Technol. Lett. 2018, 1, e29. [CrossRef]
51. Mezghani, F.; Kortoci, P.; Mitton, N.; Di Francesco, M. A Multi-tier Communication Scheme for Drone-assisted Disaster Recovery

Scenarios. In Proceedings of the 2019 IEEE 30th Annual International Symposium on Personal, Indoor and Mobile Radio
Communications (PIMRC), Istanbul, Turkey, 8–11 September 2019; pp. 1–7.

52. Jeong, I.C.; Bychkov, D.; Searson, P.C. Wearable Devices for Precision Medicine and Health State Monitoring. IEEE Trans. Biomed.
Eng. 2018, 66, 1242–1258. [CrossRef]

53. Kasnesis, P.; Doulgerakis, V.; Uzunidis, D.; Kogias, D.; Funcia, S.; González, M.; Giannousis, C.; Patrikakis, C. Deep Learning
Empowered Wearable-Based Behavior Recognition for Search and Rescue Dogs. Sensors 2022, 22, 993. [CrossRef]

54. Arkin, R.; Balch, T. Cooperative Multiagent Robotic Systems. In Artificial Intelligence and Mobile Robots; Kortenkamp, D., Bonasso,
R.P., Murphy, R., Eds.; MIT Press: Cambridge, MA, USA, 1998.

55. Rocha, R.; Dias, J.; Carvalho, A. Cooperative multi-robot systems: A study of vision-based 3-D mapping using information theory.
Robot. Auton. Syst. 2005, 53, 282–311. [CrossRef]

56. Singh, A.; Krause, A.; Guestrin, C.; Kaiser, W.J. Efficient Informative Sensing using Multiple Robots. J. Artif. Intell. Res. 2009, 34,
707–755. [CrossRef]

57. Schmid, L.M.; Pantic, M.; Khanna, R.; Ott, L.; Siegwart, R.; Nieto, J. An Efficient Sampling-Based Method for Online Informative
Path Planning in Unknown Environments. IEEE Robot. Autom. Lett. 2020, 5, 1500–1507. [CrossRef]

58. Fung, N.; Rogers, J.; Nieto, C.; Christensen, H.; Kemna, S.; Sukhatme, G. Coordinating Multi-Robot Systems Through Environment
Partitioning for Adaptive Informative Sampling. In Proceedings of the 2019 International Conference on Robotics and Automation
(ICRA), Montreal, QC, Canada, 20–24 May 2019.

59. Hawes, N.; Burbridge, C.; Jovan, F.; Kunze, L.; Lacerda, B.; Mudrova, L.; Young, J.; Wyatt, J.; Hebesberger, D.; Kortner, T.; et al.
The STRANDS Project: Long-Term Autonomy in Everyday Environments. IEEE Robot. Autom. Mag. 2017, 24, 146–156.

60. Singh, A.; Krause, A.; Guestrin, C.; Kaiser, W.; Batalin, M. Efficient Planning of Informative Paths for Multiple Robots. In
Proceedings of the 20th International Joint Conference on Artificial Intelligence, Hyderabad, India, 6–12 January 2007.

61. Ma, K.; Ma, Z.; Liu, L.; Sukhatme, G.S. Multi-robot Informative and Adaptive Planning for Persistent Environmental Monitoring.
In Proceedings of the 13th International Symposium on Distributed Autonomous Robotic Systems, DARS, Montbéliard, France,
28–30 November 2016.

62. Manjanna, S.; Dudek, G. Data-driven selective sampling for marine vehicles using multi-scale paths. In Proceedings of the 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017.

63. Salam, T.; Hsieh, M.A. Adaptive Sampling and Reduced-Order Modeling of Dynamic Processes by Robot Teams. IEEE Robot.
Autom. Lett. 2019, 4, 477–484. [CrossRef]

64. Euler, J.; Von Stryk, O. Optimized Vehicle-Specific Trajectories for Cooperative Process Estimation by Sensor-Equipped UAVs. In
Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May 2017–3 June 2017.

65. Gonzalez-De-Santos, P.; Ribeiro, A.; Fernandez-Quintanilla, C.; Lopez-Granados, F.; Brandstoetter, M.; Tomic, S.; Pedrazzi, S.;
Peruzzi, A.; Pajares, G.; Kaplanis, G.; et al. Fleets of robots for environmentally-safe pest control in agriculture. Precis. Agric. 2016,
18, 574–614. [CrossRef]

66. Tourrette, T.; Deremetz, M.; Naud, O.; Lenain, R.; Laneurit, J.; De Rudnicki, V. Close Coordination of Mobile Robots Using Radio
Beacons: A New Concept Aimed at Smart Spraying in Agriculture. In Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 7727–7734.

67. Merino, L.; Caballero, F.; Martinez-de-Dios, J.R.; Maza, I.; Ollero, A. An Unmanned Aerial System for Automatic Forest Fire
Monitoring and Measurement. J. Intell. Robot. Syst. 2012, 65, 533–548. [CrossRef]

68. Haksar, R.N.; Trimpe, S.; Schwager, M. Spatial Scheduling of Informative Meetings for Multi-Agent Persistent Coverage. IEEE
Robot. Autom. Lett. 2020, 5, 3027–3034. [CrossRef]

69. Cadena, C.; Carlone, L.; Carrillo, H.; Latif, Y.; Scaramuzza, D.; Neira, J.; Reid, I.; Leonard, J.J. Past, Present, and Future of
Simultaneous Localization and Mapping: Toward the Robust-Perception Age. IEEE Trans. Robot. 2016, 32, 1309–1332. [CrossRef]

70. Bresson, G.; Alsayed, Z.; Yu, L.; Glaser, S. Simultaneous Localization and Mapping: A Survey of Current Trends in Autonomous
Driving. IEEE Trans. Intell. Veh. 2017, 2, 194–220. [CrossRef]

71. De Jesus, K.J.; Kobs, H.J.; Cukla, A.R.; De Souza Leite Cuadros, M.A.; Tello Gamarra, D.F. Comparison of Visual SLAM Algorithms
ORB-SLAM2, RTAB-Map and SPTAM in Internal and External Environments with ROS. In Proceedings of the 2021 Latin American
Robotics Symposium (LARS), 2021 Brazilian Symposium on Robotics (SBR), and 2021 Workshop on Robotics in Education (WRE),
Natal, Brazil, 11–15 October 2021.

http://doi.org/10.1109/LRA.2022.3140812
http://doi.org/10.3390/s19030702
http://www.ncbi.nlm.nih.gov/pubmed/30744069
http://doi.org/10.1002/itl2.29
http://doi.org/10.1109/TBME.2018.2871638
http://doi.org/10.3390/s22030993
http://doi.org/10.1016/j.robot.2005.09.008
http://doi.org/10.1613/jair.2674
http://doi.org/10.1109/LRA.2020.2969191
http://doi.org/10.1109/LRA.2019.2891475
http://doi.org/10.1007/s11119-016-9476-3
http://doi.org/10.1007/s10846-011-9560-x
http://doi.org/10.1109/LRA.2020.2974715
http://doi.org/10.1109/TRO.2016.2624754
http://doi.org/10.1109/TIV.2017.2749181


Future Internet 2023, 15, 55 18 of 18

72. Benavidez, P.; Muppidi, M.; Rad, P.; Prevost, J.J.; Jamshidi, M.; Brown, L. Cloud-based Real Time Robotic Visual SLAM. In
Proceedings of the 2015 Annual IEEE Systems Conference (SysCon) Proceedings, Vancouver, BC, Canada, 13–16 April 2015.

73. Wu, J.; Wang, S.; Chiclana, F.; Herrera-Viedma, E. Two-Fold Personalized Feedback Mechanism for Social Network Consensus by
Uninorm Interval Trust Propagation. IEEE Trans. Cybern. 2022, 52, 11081–11092. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1109/TCYB.2021.3076420

	Introduction 
	Related Work 
	Cloud and Edge Robotics for SAR 
	Cloud Continuum 
	Sensor Networks and IoT for SAR Operations 
	Situation Awareness and Perception with Mobile Robots 
	Simultaneous Localization and Mapping 
	ROS Applications 

	Challenges for Risk Assessment and Mission Control in SAR Operations in Post-Disaster Scenarios 
	Nephele Project as Enabler for SAR Operations 
	The Search and Rescue Use Case in NEPHELE 
	NEPHELE’s Added Value 

	Conclusions 
	References

