
Linux for scientists
or:

What can I do at the black screen?

Dr. Lennart C. Karssen
PolyΩmica, The Netherlands

l.c.karssen@polyomica.com

June 2024 *

* Git information:
Hash: 3a86932
Date: 2024-06-27

mailto:l.c.karssen@polyomica.com

010
101

0101
010111

001011010101011110000001101011010010010101110111011101000010010110101111

01

01
010

101
0101

11001
01101010

1011110000001101011010010010101110111011101000010010110101111

01
01
01

010
101

011
100

1011
0101

010111
10000001101

011010010010101110111011101000010010110101111

01
01
01
01
01
01

01
110

010
110

101
010

111
100

0000
1101

0110
10010

01010
111011

1011101
0000100101

10101111

01
01
01
01
01
01
01
11
00
10
11

01
01
01
01
111

000
000

110
101

101
001

001
010

111
011

101
1101

0000
1001

0110
1011

11

01
01
01
01
01
01
01
11
00
10
11
01
01
01
01
11
10
00
00
01
10
10
11
01
00
10
01
01
01
11
01
11
01

11
01
00
00
10
01
01
10
101

111

010
10
10
10
10
10
11
10
01
01
10
10
10
10
11
11
00
00
00
11
01
01
10
10
01
00
10
10
11
10
11
10
11
10
10
00
01
00
10
11
01
01
11
1

010
10
10
10
10
10
11
10
01
01
10
10
10
10
11
11
00
00
00
11
01
01
10
10
01
00
10
10
11
10
11
10
11
10
10
00
01
00
10
11
01
01
11
1

010
10
10
10
10
10
11
10
01
01
10
10
10
10
11

11
00

00
00

11
01

01
10

10
01

00
10

10
11

10
11

10
11

10
10

00
01

00
10

11
01
01
11

1

010
10
10
10
10

10
11

10
01

01
10

10
10

10
11

11
00

00
00

11
01

01
10

10
01

00
10

10
11

10
11

10
11

10
10

00
01

00
10

11
01

01
11

1

Contents

Contents

iv

List of Tables x

1 Preface 3
1.1 About this book . 4
1.2 Acknowledgements . 5

2 What is Linux? 7

3 The basics 11
3.1 Logging in and out . 12

3.1.1 X11 forwarding: allowing application windows to
‘travel’ from the server to your PC 13

3.2 Editors . 14
3.3 The structure of Linux commands 16

3.3.1 Exercises . 18
3.4 Managing your account . 20
3.5 Getting help . 20
3.6 Working with files and directories 22

3.6.1 Directories . 25
3.6.2 Copying, moving, removing 26
3.6.3 Wildcards . 28
3.6.4 Exercises . 29

3.7 Transferring files from one Linux machine to another 32
3.8 Pagers, or how to look at the contents of a file 33

3.8.1 Exercises . 34
3.9 Using compressed archives like .zip and tar.gz files . . . 35

3.9.1 zip . 36
3.9.2 gzip . 36
3.9.3 tar . 37
3.9.4 Exercises . 37

3.10 File ownership and permissions 38
3.10.1 Ownership . 38
3.10.2 Permissions . 39

3.11 Process management . 40
3.11.1 Exercises . 41

3.12 Miscellaneous commands . 44
3.12.1 wget: downloading files to the server 44

iv

Contents

v

3.12.2 sort . 45
3.12.3 uniq . 48
3.12.4 wc: counting words and lines 48
3.12.5 date . 49
3.12.6 du: disk space usage 50
3.12.7 Differences between files 51

3.13 Input and output redirection 53
3.13.1 Redirecting to and from files 53
3.13.2 Redirecting output of one command to another . . . 55

3.14 Aliases and creating your own commands 57

4 Working with text files 63
4.1 Converting between Windows and Linux format 64

4.1.1 Exercises . 65
4.2 grep: finding text . 66

4.2.1 Exercises . 69
4.3 sed, the Stream EDitor . 70

4.3.1 Exercises . 72
4.4 cut: selecting columns . 72
4.5 GAWK: more fun with columns 73

4.5.1 Exercises . 78
4.6 Putting it all together . 79

4.6.1 Exercises . 79

5 Writing Bash scripts 85
5.1 A simple script . 86
5.2 Using variables . 89
5.3 Using shell variables in GAWK 93
5.4 Loops, for and while . 94
5.5 if-clauses and tests . 99
5.6 Arrays in Bash . 101
5.7 Dealing with errors in your script 104

6 Working with the SGE queue system 109
6.1 Submitting jobs to the SGE queues 110

6.1.1 Quick and dirty . 111
6.1.2 Using a submission script 111

v

Contents

vi

6.1.3 Refinements to the submission script 112
6.2 Monitoring progress . 113
6.3 Deleting jobs from a queue . 114
6.4 Getting info on a finished job 115
6.5 Interactive jobs . 117
6.6 Exercises . 117

7 Good scripting practices, structured programming and data
management 123
7.1 Code layout . 125

7.1.1 Indentation . 125
7.1.2 Line length . 126
7.1.3 Spaces . 127

7.2 Comments . 129
7.3 Variable names . 130
7.4 File and directory names . 130
7.5 Summary . 131

8 Where to go from here? 135
8.1 More advanced topics . 136
8.2 Further reading . 138

A Answers to the exercises 141

B Reference Card of Basic Linux Commands 163

C List of acronyms 169

Bibliography 174

Index 178

vi

010
101

0101
010111

001011010101011110000001101011010010010101110111011101000010010110101111

01

01
010

101
0101

11001
01101010

1011110000001101011010010010101110111011101000010010110101111

01
01
01

010
101

011
100

1011
0101

010111
10000001101

011010010010101110111011101000010010110101111

01
01
01
01
01
01

01
110

010
110

101
010

111
100

0000
1101

0110
10010

01010
111011

1011101
0000100101

10101111

01
01
01
01
01
01
01
11
00
10
11

01
01
01
01
111

000
000

110
101

101
001

001
010

111
011

101
1101

0000
1001

0110
1011

11

01
01
01
01
01
01
01
11
00
10
11
01
01
01
01
11
10
00
00
01
10
10
11
01
00
10
01
01
01
11
01
11
01

11
01
00
00
10
01
01
10
101

111

010
10
10
10
10
10
11
10
01
01
10
10
10
10
11
11
00
00
00
11
01
01
10
10
01
00
10
10
11
10
11
10
11
10
10
00
01
00
10
11
01
01
11
1

010
10
10
10
10
10
11
10
01
01
10
10
10
10
11
11
00
00
00
11
01
01
10
10
01
00
10
10
11
10
11
10
11
10
10
00
01
00
10
11
01
01
11
1

010
10
10
10
10
10
11
10
01
01
10
10
10
10
11

11
00

00
00

11
01

01
10

10
01

00
10

10
11

10
11

10
11

10
10

00
01

00
10

11
01
01
11

1

010
10
10
10
10

10
11

10
01

01
10

10
10

10
11

11
00

00
00

11
01

01
10

10
01

00
10

10
11

10
11

10
11

10
10

00
01

00
10

11
01

01
11

1

List of Tables

List of Tables

x

3.1 Basic Emacs keyboard shortcuts. 15

5.1 Operators for comparison in Bash. 102

x

1010
101

0101
010111

001011010101011110000001101011010010010101110111011101000010010110101111

01

01
010

101
0101

11001
01101010

1011110000001101011010010010101110111011101000010010110101111

01
01
01

010
101

011
100

1011
0101

010111
10000001101

011010010010101110111011101000010010110101111

01
01
01
01
01
01

01
110

010
110

101
010

111
100

0000
1101

0110
10010

01010
111011

1011101
0000100101

10101111

01
01
01
01
01
01
01
11
00
10
11

01
01
01
01
111

000
000

110
101

101
001

001
010

111
011

101
1101

0000
1001

0110
1011

11

01
01
01
01
01
01
01
11
00
10
11
01
01
01
01
11
10
00
00
01
10
10
11
01
00
10
01
01
01
11
01
11
01

11
01
00
00
10
01
01
10
101

111

010
10
10
10
10
10
11
10
01
01
10
10
10
10
11
11
00
00
00
11
01
01
10
10
01
00
10
10
11
10
11
10
11
10
10
00
01
00
10
11
01
01
11
1

010
10
10
10
10
10
11
10
01
01
10
10
10
10
11
11
00
00
00
11
01
01
10
10
01
00
10
10
11
10
11
10
11
10
10
00
01
00
10
11
01
01
11
1

010
10
10
10
10
10
11
10
01
01
10
10
10
10
11

11
00

00
00

11
01

01
10

10
01

00
10

10
11

10
11

10
11

10
10

00
01

00
10

11
01
01
11

1

010
10
10
10
10

10
11

10
01

01
10

10
10

10
11

11
00

00
00

11
01

01
10

10
01

00
10

10
11

10
11

10
11

10
10

00
01

00
10

11
01

01
11

1

Chapter 1
Preface

Chapter 1 Preface

4

1.1 About this book

This book was initially a collection of lecture notes written for the GE14
“Linux for Scientists” course given at the Erasmus University Medical
Centre (ErasmusMC), Rotterdam as part of the NIHES MSc programmes. It
focuses on using the Command Line Interface (CLI), if you are using Linux
on your desktop you will have noticed that tons of other programs that
use a Graphical User Interface (GUI) (i.e. the Firefox web browser) are
available also, so this course does not discuss the complete ecosystem
of applications for Linux.

This book is split up into several chapters, in roughly the same order as
presented in the lectures, ranging from basic file and directory manage-
ment to Bash scripting and working with the SGE batch queue system.
Some exercises are labelled with two or more stars indicating their dif-
ficulty level. Some use files and/or tools that are pre-installed on the
epib-genstat.erasmusmc.nl servers on which this course was initially
taught and are therefore less easy to do on other Linux (or Unix-like) sys-
tems, but in general these exercises should be quite portable.

Several exercises build on results of previous exercises (e.g. a previously
created directory structure, previously copied files, etc.), so it is advisable
to work through them in order. Answers to the questions are given at the
end of each section or chapter. Remember that there usually are more
ways to arrive at the same resulta) and that the solution presented in
the answers is not necessarily the best one. Also note that several of the
answers contain additional information and tips. Be sure to read those!

A $ at the beginning of a line in the output indicates the command line
prompt. You don’t have to type it, it should already be visible on the com-
mand line after logging in. The symbol ←↩ indicates that the command
(or the output) is continued on the next line but (in the case of input)
should be entered on one line.

a) People familiar with the Perl scripting language may know the abbreviation TIMTOWTDI
(pronounced Tim Toady), which stands for: “There is more than one way to do it”.

4

1.2 Acknowledgements

5

This document is licenced under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 Unported License. Please contact the
author if you would like to obtain a different license.

Please note that this document is under active development. Feel free to
contact the author for the latest edition or to report mistakes and typos
or other suggestions.

1.2 Acknowledgements

First and foremost: Aaron Isaacs, back in 2010 you asked me if I could
teach some Linux/command line tricks to the members of the Genetic
Epidemiology group at the ErasmusMC, where I was working at the time.
This gave me the final push to set up a practical, hands-on Linux course
for scientists.

Cornelia van Duijn, as head of the Genetic Epidemiology Group at the
ErasmusMC you allowed me to spend time working on this book. In the
course of the next three years the foundations of this book were laid.
Thank you for giving me this opportunity.

Other GenEpi group members, Najaf Amin, Maarten Kooyman, Elisa van
Leeuwen, Sara Willems, Ayşe Demirkan, Carla Ibrahim-Verbaas, thank you
for being part of my first audience, my test users, and for the examples
of real-world use cases you provided.

Finally, Yurii Aulchenko, colleague and business partner, your suggestion
to make this the first book published under the PolyΩmica umbrella was
what made me convert and expand the lecture notes to the book you are
now reading.

5

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

20101010101
010111

001011010101011110000001101011010010010101110111011101000010010110101111

01

01
010

101
0101

11001
01101010

1011110000001101011010010010101110111011101000010010110101111

01
01
01

010
101

011
100

1011
0101

010111
10000001101

011010010010101110111011101000010010110101111

01
01
01
01
01
01

01
110

010
110

101
010

111
100

0000
1101

0110
10010

01010
111011

1011101
0000100101

10101111

01
01
01
01
01
01
01
11
00
10
11

01
01
01
01
111

000
000

110
101

101
001

001
010

111
011

101
1101

0000
1001

0110
1011

11

01
01
01
01
01
01
01
11
00
10
11
01
01
01
01
11
10
00
00
01
10
10
11
01
00
10
01
01
01
11
01
11
01

11
01
00
00
10
01
01
10
101

111

010
10
10
10
10
10
11
10
01
01
10
10
10
10
11
11
00
00
00
11
01
01
10
10
01
00
10
10
11
10
11
10
11
10
10
00
01
00
10
11
01
01
11
1

010
10
10
10
10
10
11
10
01
01
10
10
10
10
11
11
00
00
00
11
01
01
10
10
01
00
10
10
11
10
11
10
11
10
10
00
01
00
10
11
01
01
11
1

010
10
10
10
10
10
11
10
01
01
10
10
10
10
11

11
00

00
00

11
01

01
10

10
01

00
10

10
11

10
11

10
11

10
10

00
01

00
10

11
01
01
11

1

010
10
10
10
10

10
11

10
01

01
10

10
10

10
11

11
00

00
00

11
01

01
10

10
01

00
10

10
11

10
11

10
11

10
10

00
01

00
10

11
01

01
11

1

Chapter 2
What is Linux?

Chapter 2 What is Linux?

8

Linux, or more precisely GNU/Linux, is an Operating System (OS) usually
combined with some additional programs. Other operating systems you
might know areMicrosoft Windows, ApplemacOS and Google’s Android.

GNU/Linux basically consists of two parts, the Linux kernel and the GNU
tools. A kernel is the piece of software at the heart of each OS, it gives
each program the memory it requires whilemaking sure that two pro-
grams don’t use the same piece of memory at the same time. It allots
each of the programs that are running on the computer their time slot on
the processor and also takes care of low-level communication between
the different peripherals of a computer. For example, if you press a key
on the keyboard, it is the kernel that stops the current program, takes
time to find out what key was pressed and sends that information to the
program you were running. Then the kernel allows the program to con-
tinue and process the key your pressed. The Linux kernel was started in
1991a) as a hobby project of Linux Torvalds, a Finnish computer science
student [2, 3]. He published his code under the GNU Public License (GPL),
a copyleft licence developed by the GNU project.

In the 1970’s the PC (Personal Computer) did not exist yet. Computers
were large machines occupying a complete room. Most of them used
Unix as OS, augmented by many programs written by the scientist using
the computers. Many of these programs were distributed by the authors,
but the core Unix programs were owned by companies like AT&T.

The GNU projectb) was started in 1984 by Richard Stallman. The project’s
goal was to create an OS that was freelyc) available. The GNU tools were
written to be compatible with (but not exact copies of) the Unix tools
known at the time, hence the meaning of the (recursive) GNU acronym:
GNU’s Not Unix. However, the GNU project never succeeded in writing its

a) A short video that commemorates the 20th anniversary of Linux can be found in Ref. [1].
b) http://www.gnu.org
c) Note that there are two definitions of “free”, free as in freedom and free as in “a free

beer”. The free Stallman referred to was the former one. As user of the software you
are free to do with it what you want. You can modify it, copy it and use it on as many
devices as you like. Basically the only restriction is that if you make a change to the
source code of the program and distribute that, you’ll need to make those changes
public as well.

8

http://www.gnu.org

9

own kernel. The rest should not come as a surprise. People using and
developing the Linux kernel needed tools to make their OS do something
useful, the GNU project needed a kernel, and, well, the rest is history.

Nowadays, Linux is all around you, even if you don’t immediately see it.
About 80% of all webservers runs on a Unix server, and about half of
those are powered by Linux [4]. All of the world’s supercomputers run
Linux [5], and it even has a small market share on desktop computers.
However, most people get in (indirect) contact with Linux through their
mobile phones: Google’s Android OS is also based on the Linux kernel
(but without the GNU tools).

Because Linux and the GNU tools both use the GPL, anybody can download
them, put them together, add their own customisations and redistribute
the new set of packages. This is exactly what happened. These sets of
packages are called distributions and there are many. Many companies
use Red Hat Enterprise Linuxd), and Ubuntu Linuxe) and Linux Mint f) are
used on many home computers and laptops.

Incidentally, Mac OS X is also based on a Unix derivative (called BSD) and
as a result many of the things you will learn in this course can also be ap-
plied to Apple’s OS. You normally don’t notice the CLI because it is hidden
by the GUI, but it is definitely there. Try looking for the Terminal applica-
tion.

d) http://www.redhat.com/rhel
e) http://www.ubuntu.com
f) http://linuxmint.com

9

http://www.redhat.com/rhel
http://www.ubuntu.com
http://linuxmint.com

3010101010101011100101101010101111000000110101101001001010111011101110100001001011010111101

01
010

101
0101

11001
01101010

1011110000001101011010010010101110111011101000010010110101111

01
01
01

010
101

011
100

1011
0101

010111
10000001101

011010010010101110111011101000010010110101111

01
01
01
01
01
01

01
110

010
110

101
010

111
100

0000
1101

0110
10010

01010
111011

1011101
0000100101

10101111

01
01
01
01
01
01
01
11
00
10
11

01
01
01
01
111

000
000

110
101

101
001

001
010

111
011

101
1101

0000
1001

0110
1011

11

01
01
01
01
01
01
01
11
00
10
11
01
01
01
01
11
10
00
00
01
10
10
11
01
00
10
01
01
01
11
01
11
01

11
01
00
00
10
01
01
10
101

111

010
10
10
10
10
10
11
10
01
01
10
10
10
10
11
11
00
00
00
11
01
01
10
10
01
00
10
10
11
10
11
10
11
10
10
00
01
00
10
11
01
01
11
1

010
10
10
10
10
10
11
10
01
01
10
10
10
10
11
11
00
00
00
11
01
01
10
10
01
00
10
10
11
10
11
10
11
10
10
00
01
00
10
11
01
01
11
1

010
10
10
10
10
10
11
10
01
01
10
10
10
10
11

11
00

00
00

11
01

01
10

10
01

00
10

10
11

10
11

10
11

10
10

00
01

00
10

11
01
01
11

1

010
10
10
10
10

10
11

10
01

01
10

10
10

10
11

11
00

00
00

11
01

01
10

10
01

00
10

10
11

10
11

10
11

10
10

00
01

00
10

11
01

01
11

1

Chapter 3
The basics

Chapter 3 The basics

12

To make an OS usable you do not only need a kernel, but, as mentioned
in § 2, you also need a set of tools. The most important one is a so-called
shell. The shell is a program that allows you to interact with the computer.
In fact, it is the part you are looking at most of the time, it is the black
screen in which you enter the commands. Most Linux distributions use
the Bash shell by default. Examples of other shells are the Z-shell (zsh),
the C-shell (csh) and the Korn shell (ksh). Most shells share the same set
of basic commands but differ in more advanced functionality. This course
assumes you use Bash.

3.1 Logging in and out

To log on to the server we make use of the Secure Shell (SSH) protocola).
On a Linux computer or an Apple Mac you would typessh

ssh username@servername.domain.nl

to connect to a server. On Windows the MobaXterm programb) does the
same thing. Putty is a popular alternative, but it lacks certain convenient
features, like tabs for multiple connections, etc.

Whichever way you choose to connect to a Linux machine, you will end up
with a screen (also referred to as the terminal) with the following text:
username@servername:~$

This is known as the prompt. It tells you who you are (remember that
Linux is a multiuser system), on which computer or server you are (handy
when you have multiple connections to different servers) and in which
directory. The ~ is a shortcut for your home directory. The final $ denotes
the end of the prompt. From here you can start typing commands.

And when you are tired of it all, the commands exit and logoutwill closeexit
logout the SSH connection to the server.

a) SSH encrypts the communication between your PC and the server. This way a malicious
hacker cannot intercept the commands you are typing. This is similar to the https
connection in your web browser.

b) You can download it from http://mobaxterm.mobatek.net/.

12

http://mobaxterm.mobatek.net/

3.1 Logging in and out

13

3.1.1 X11 forwarding: allowing application windows to ‘travel’
from the server to your PC

For some applications it may be handy to enable so-called X11 forward-
ing, which allows windows of applications that run on the server to be
shown on your local screen. Think, for example, of the plot window in R.
Most, if not all tools and utilities discussed in this course do not use X11
forwarding, so feel free to skip this section.

Whether or not X11 forwarding is enabled by default when you log in,
depends on how you connect to the Linux server. If you use MobaXterm
from Windows this is done automatically, with Putty this is not the case
and additional software is required. When connecting from another Linux
PC using the ssh command you need to add the -X option in order to
enable X11 forwarding: ssh -X

ssh -X username@servername.domain.nl

Those who connect from macOS using the ssh command need the -X
option as well, but most often also need to install additional software.

To test whether X11 forwarding works, try the following command: xclock

xclock

This should show a window with a clock on your local computer. Depend-
ing on the speed of the connection between your computer and the server
it may take some time (from a few seconds to a minute) for the clock to
show up. Note that the window may be hidden below other windows. As
long as the xclock application is running, you will not be able to type
new commands, in fact, the prompt with the $ symbol is not shown until
you close the xclock window. If, for some reason, the $ doesn’t show
up and neither does the xclock window you can type Ctrl-c to kill the
xclock command and return to the prompt.

13

Chapter 3 The basics

14

3.2 Editors

When working on a Linux system two programs are the most important:
the shell we just mentioned and your text editor. The better you get to
know them both, the more you will gain in terms of efficiency and power
over your data. This course focuses on working with the Bash shell, but
an editor is needed when writing scripts, README files, etc.

Most Linux systems have a range of editors installed. The most common
ones are

• emacs: A powerful editor, my personal choice. Runs R interact-emacs
ively, similar to Tinn-R on Windows. An Emacs reference card can be
found at https://www.gnu.org/software/emacs/refcards/pdf/
refcard.pdf, but one is also installed along with Emacsc).

• vim (or its family members vi and gvim): Another powerful editor. Itvimvi has two modes, one in which you type your text, the other for com-
mands like open file, save, search/replace, etc. A vi reference card
can be found at http://web.mit.edu/merolish/Public/vi-ref.
pdf.

• nano A very simple editor, easy to use. However, I strongly recom-nano
mend learning how to use one of the above.

You might wonder why I encourage you to learn how to use a text editor.
You could say “I can stick to Windows’ Notepad for editing my scripts,
input files and the like.” And indeed you could. However, that means
that you need to transfer every file you want to edit from the server to
your Windows PC, and why go through that extra effort? Also, Notepad is
very simple whereas Emacs and Vim have a lot of additional features like
syntax highlighting for various scripting languages, advanced search and
replace options, etc. Moreover, by creating files on two different systems
you have to keep an eye on your bookkeeping, “Am I running this script
on the latest file, or is that still on my Windows PC?”, as well as make

c) You can find it by typing locate refcard.pdf on the command line. Look for the one
simply called refcard.pdf in a directory that has emacs in its name. On my computer
it is located in /usr/share/emacs/24.2/etc/refcards/refcard.pdf

14

https://www.gnu.org/software/emacs/refcards/pdf/refcard.pdf
https://www.gnu.org/software/emacs/refcards/pdf/refcard.pdf
http://web.mit.edu/merolish/Public/vi-ref.pdf
http://web.mit.edu/merolish/Public/vi-ref.pdf

3.2 Editors

15

sure you won’t run into problems with differences in the way Windows
and Linux store files (as will be explained in § 4.1).

Both editors have a GUIwith buttons andmenus as well. If you useMobaX-
term you will be able to use these as well. This is especially handy in the
beginning when you haven’t mastered all the keyboard shortcuts yet (al-
though I urge you to learn those as well). Emacs checks to see if it can
open a GUI at start-up (if you want to run the non-GUI version explicitely,
then start Emacs with the -nw option (which stands for ‘no windows’):
emacs -nw filename). The GUI version of Vim is called gvim. emacs -nw

gvimIncidentally, Vim and Emacs can run on Windows as well (in case the key-
board shortcuts of your editor have become ingrained in you spinal cord
and you never want to see Notepad again).

Table 3.1 lists some of the basic keyboard shortcuts for Emacs that will
get you through this course.

Action Shortcut
“find” file i.e. open/create a file C-x C-f
save the file C-x C-s
write the file with alternate name (Save as) C-x C-w
exit Emacs C-x C-c
cancel a command C-g
undo C-/
go to beginning of line (Home) C-a
go to end of line (End) C-e
search forward C-s
search backward C-r
use the menu’s at the top (File, Edit, etc.) F10 or M-`

Table 3.1: Basic Emacs keyboard shortcuts. Note that C stands for the Ctrl key,
and M is the Meta key (on modern keyboards you can use either the
Alt key or the Esc key). The combination C-xmeans pressing both the
Ctrl and x key at the same time and M-` means pressing the Esc key
and the ` key (that is the backtick character, usually found on the same
key as the ~).

15

Chapter 3 The basics

16

3.3 The structure of Linux commands

In general Linux commands have the following structure:

command option(s) arguments

Options are keywords that modify the way the command works. Argu-
ments usually indicate what (e.g. which file or directory) the command
has to operate upon.

Options are preceded by two dashes. For example, to list all files (i.e. in-
cluding the hidden ones) on the present directory you can use the fol-
lowing commandls

$ ls --all

For those of you that have used the plink tool before, the following com-
mand will be familiar. It shows three options, two of which have an argu-
ment:

$ plink --file inputfile --freq --out newfile

Here --file, --freq and --out are options, they modify the default be-
haviour of plink. inputfile is the argument for the --file option and
newfile is the argument for the --out option. In most cases the order
in which the options as listed does not matter, as long as you keep the
arguments together with their respective options. The command

$ plink --freq --out newfile --file inputfile

is OK and identical to the previous one, whereas

$ plink --out --freq --file newfile inputfile

will result in error messages.

Some programs allow short forms of their options as well (this can save
you a lot of typing!). Short options consist of a single dash followed by
a single letter. For example, the --all option to the ls command can
be abbreviated as -a. Consequently, the following two commands are
identical:

16

3.3 The structure of Linux commands

17

$ ls --all
$ ls -a

In most cases the order of the options is not important and multiple
single-letter options can be strung together. Again, the following two
commands result in the exact same output:

$ ls -a -h -l
$ ls -ahl

Arguments usually tell the command to operate on certain files or direct-
ories:

$ ls *.pdf
$ ls /var/log/

The first line lists only the files ending in .pdf in the current directory
(cf. § 3.6.3 for an explanation of the *) and the second line lists all files
and directories in the directory /var/log.

Since a space is used to separate commands, options and arguments,
it needs to be ‘escaped’ by using the \ character when used in a file or
directory name, or by enclosing the whole name in double quotes. This
means that if you want tomake a directory with the name My scripts ←↩
are in here it has to be done in either of the following two ways:

$ mkdir My\ Scripts\ are\ in\ here
$ mkdir "My Scripts are in here"

Furthermore, it is important to remember that commands and file and
diretory names are case sensitive in Linux (unlike in Windows where
C:\Program Files is equal to C:\program files).

One very important feature of the shell is Tab-completion. The concept
is very simple: you can use the [TAB] key to complete file names and
several commands while working on the commands line. This saves an
enormous amount of typing! For example, if you have a directory called
MyWork and you want to use ls to list all the files in that directory, simply
type

17

Chapter 3 The basics

18

ls M

and hit the [TAB] key. The shell will try to complete the directory name as
far as possible. If MyWork is the only directory that starts with an M it will
complete it fully. If, however, you also have a directory called MyPapers,
then the result of hitting the [TAB] key will be

ls My

Hitting [TAB] again will show all possible completions (in this example
MyWork and MyPapers). Add a W to what you have typed and hit [TAB]
again to complete the directory name.

As we move further through this course you will find that the commands
will grow longer and longer. To keep an overview while typing a long
command you can insert a \ followed by [ENTER] at any point between
a command and its options to continue typing on the next line:

$ some_command --option1 \
> --another-option some_argument \
> --yet-another-option another_argument

Note that the > should not be typed. It will is inserted by the shell to
inform you that you haven’t finished the command yet.

3.3.1 Exercises

Exercise E3.1 Long and short options
In this section we saw that the ls command accepts options in both long
and short form.

a) What is the difference between running

$ ls --all

and

$ ls -all

18

3.3 The structure of Linux commands

19

Exercise E3.2 Working with the command history

With so many commands to remember, working on the command line
can seem to be daunting. Luckily there is a sort of memory. A history of
your past commands is saved and ready for you to use.

a) Use the historyhistory command to list the recent commands you typed.
Use the up and down arrow keys to cycle through some of your
recent commands. Once you have found an interesting command
you can try to edit it and run it again. Note that the history does
not remember in which directory you were when you executed a
command.

b) Using the up and down arrow keys is fine if you are looking for a re-
cently used command. For commands that are higher up in the his-
tory list this becomes too cumbersome. For those situations you
can search through the history with the Ctrl-r (reverse search)
shortcut. Simply hit Ctrl-r (i.e. press and hold the Ctrl key and
then press the r key and release both) and start typing some part
of the command that you remember. For example, if you are look-
ing for the command

$ ls /storage/imputations/ERF3_HM2_Mach_2010.10.01/Results/

that you typed some time ago, you can hit Ctrl-r followed by typ-
ing ERF3. However, if after typing the above command you had
typed mkdir ERF3 than this entry would show up first. Hit Ctrl-r
again to cycle through all entries that contain ERF3 until you reach
the one you are looking for or continue typing your search criterion
until it becomes unique. Once you have found the command you
want to reuse you can either press the Enter key to rerun the com-
mand or change the command according to your whishes. To can-
cel your search simply press Ctrl-c.

19

Chapter 3 The basics

20

3.4 Managing your account

By now you have hopefully logged into a Linux system. Since many Linux
servers can be directly accessed from the Internet it is important to keep
your account information (user name and password) secret. Changing
your password regularly (at least once a year) is a good security measure.
To change your password use the passwd command.passwd

In order to make sure that no single user can use up all disk space (acci-
dentally or not), every user on a server has a certain disk quota allotted
for his/her files. You can check your quota status with the quota com-quota

quota -s mand:
$ quota -s
Disk quotas for user lennart (uid 1305):

Filesystem blocks quota limit grace files quota limit grace
/dev/md0 206G 250G 255G 4800 0 0

The interesting columns are columns 2, 3, 4 and 5 (you can forget about
the last four columns). The blocks column shows your current usage
(206GB in this case), the quota column shows your maximum. You will
be notified by e-mail if you exceed it.

After exceeding this maximum disk space you will have 7 days of ‘grace’
(the number of days left is noted in the grace column), in which you can
still use some more space (up to the value in the limit column, 255GB
in this example). Once the grace period has expired you will not be able
to create any more files. This can even prevent you from logging in!

3.5 Getting help

Most human beings won’t be able to remember all the options for all the
commands they use on a regular basis. And what about the commands
you only use once in a while? How do you find out which options are
available, what the actual use of a certain command is, what does it ex-
pect as input, etc.?

20

3.5 Getting help

21

To remind you of the most commonly used options as well as expected
input and outputmost commands have a --help option. This is the (trun-
cated) output for ls, for example:
$ ls --help
Usage: ls [OPTION]... [FILE]...
List information about the FILEs (the current directory by default).
Sort entries alphabetically if none of -cftuvSUX nor --sort.

Mandatory arguments to long options are mandatory for short options too.
-a, --all do not ignore entries starting with .
-A, --almost-all do not list implied . and ..

--author with -l, print the author of each file
-b, --escape print C-style escapes for nongraphic characters

--block-size=SIZE use SIZE-byte blocks. See SIZE format below
-B, --ignore-backups do not list implied entries ending with ~

The first line explains the usage of the command, i.e. what to type on the
command line, followed by a short two-line description. After that a list
of most of the options, mentioning both the long and the short form (if
available).

For more detailed information most commands also have a manual page
which is shown on screen by the man command. This is the start of the man
man page for ls:
LS(1) User Commands LS(1)

NAME
ls - list directory contents

SYNOPSIS
ls [OPTION]... [FILE]...

DESCRIPTION
List information about the FILEs (the current directory by ←↩

default).
Sort entries alphabetically if none of -cftuvSUX nor --sort.

Mandatory arguments to long options are mandatory for short options
too.

-a, --all
do not ignore entries starting with .

21

Chapter 3 The basics

22

-A, --almost-all
do not list implied . and ..

--author
with -l, print the author of each file

-b, --escape
print C-style escapes for nongraphic characters

To browse through the man pages use the arrow keys, PgUp, PgDn, etc.
To quit the man page browser use the q keyd).

And, of course, the Internet is a great resource. If you are struggling with
a command Google Is Your Friend (GIYF).

3.6 Working with files and directories

On Windows and GNU/Linux systems files are ordered in directories. In
contrast to Windows with its drive letters (C:, D:, etc.), directories on a
Linux system are ordered in a single tree starting at the root, indicated
by /:

d) In fact, the program used to view these man pages is less, a so-called pager that will
be discussed in more detail in §3.8

22

3.6 Working with files and directories

23

/

bin

etc

home

user1

user2

user3

Project1

MyPapers

tmp

usr

bin

local

As mentioned in § 3.3, the ls command is used to list the contents of ls
directories. If entered without arguments it simply lists the contents of
the present working directory (pwd). The following options will get you by
most of the time:

-a list all files, i.e. including hidden filese) ls -a
-l long list, this listing shows the time and date a file was modified, its

size, permissions and the user and group of the owner of the file or
directory ls -l

-h usually used in combination with -l, it shows the file size in “human
readable” format, i.e. in MB, GB, etc. instead of in bytes ls -h

-d use when the arguments are only directories, not files, list inform-
ation on the directory itself, not its contents (see below) ls -d

-t sorts the entries by modification time ls -t

e) On a Unix system all files and directories whose name starts with a dot are hidden.

23

Chapter 3 The basics

24

If the argument of ls consists of only (one or more) directories, ls shows
only the information of the files in that directory, not of the directory
itself. The -d option changes this behaviour:
$ ls dir1 dir2
dir1:
dir1_2 file1 file2 file3

dir2:
file11 file12 file13
$ ls -l dir1 dir2
dir1:
total 16
drwxr-x--- 2 lennart genepi 4096 2011-10-12 11:09 dir1_2
-rw-r----- 1 lennart genepi 4 2011-10-12 11:12 file1
-rw-r----- 1 lennart genepi 7 2011-10-12 11:12 file2
-rw-r----- 1 lennart genepi 614 2011-10-12 11:13 file3

dir2:
total 12
-rw-r----- 1 lennart genepi 201 2011-10-12 11:13 file11
-rw-r----- 1 lennart genepi 603 2011-10-12 11:14 file12
-rw-r----- 1 lennart genepi 340 2011-10-12 11:14 file13
$ ls -d dir1 dir2
dir1 dir2
$ ls -ld dir1 dir2
drwxr-x--- 3 lennart genepi 4096 2011-10-12 11:09 dir1
drwxr-x--- 2 lennart genepi 4096 2011-10-12 10:59 dir2

The output of the -l option also warrants some more explanation. Con-
sider the following:

1 lennart@server:~/ErasmusMC$ ls -l
2 total 712
3 drwxr-xr-x 6 lennart genepi 4096 2011-09-29 18:57 Articles
4 drwxr-x--- 6 lennart genepi 4096 2011-07-06 09:07 Conferences
5 drwxr-x--- 5 lennart genepi 4096 2011-08-29 18:18 Courses
6 drwxr-x--- 2 lennart genepi 4096 2010-11-29 19:26 Graphics
7 drwxr-x--- 7 lennart genepi 4096 2011-09-27 18:26 MeetingNotes
8 -rw-r----- 1 lennart genepi 50231 2011-09-02 14:57 notes.org

24

3.6 Working with files and directories

25

9 drwxr-xr-x 3 lennart genepi 4096 2011-05-23 16:21 PaperReviews
10 drwxr-x--- 18 lennart genepi 4096 2011-09-27 18:14 Projecten
11 drwxr-x--- 4 lennart genepi 4096 2011-06-21 01:21 R-dev
12 drwxr-x--x 14 lennart genepi 4096 2011-09-02 14:58 ServerBeheer
13 drwxr-x--- 2 lennart genepi 4096 2010-07-28 13:44 snipextract
14 -rw-r--r-- 1 lennart genepi 753 2011-05-12 18:07 todo.txt

The output consists of eight columns, the last one being the file or direct-
ory name. Column one shows the permissions (which will be discussed
in § 3.10.2), columns three and four show the owner and group of the file
(§ 3.10.1). Column five shows the size of the file in bytes (unless the -h op-
tion is also used). Finally, columns six and seven show the modification
time and date, respectively.

3.6.1 Directories

Each user has a home directory for his/her own files. All home directories
are subdirectories of /home and are named after the user’s user name,
i.e. /home/your_username. After logging in you will find yourself in your
home directory. You can check this by running the pwd command, which pwd
shows your present working directory (pwd). The tilde (~) is used as a
shortcut for the path to your home directory.

To move into another directory use the cd command, which stands for cd
change directory. The cd command can be followed by either a relative
path or an absolute path. An absolute path starts from the root (/) dir-
ectory, e.g. /home/lennart/Programming or /tmp. A relative path uses
the pwd as starting point to go up or down the directory tree and con-
sequently doesn’t start with a /. Take a look at the following examples
and notice that here the whole shell prompt is shown (instead of just $)
to indicate how the shell prompt changes to show your pwd:

1 lennart@server:~$ cd ErasmusMC/
2 lennart@server:~/ErasmusMC$ cd Courses
3 lennart@server:~/ErasmusMC/Courses$ cd /tmp
4 lennart@server:/tmp$ cd /home
5 lennart@server:/home$ cd /
6 lennart@server:/$ cd ~

25

Chapter 3 The basics

26

7 lennart@server:~$ cd ErasmusMC/Conferences/2011
8 lennart@server:~/ErasmusMC/Conferences/2011$ cd ..
9 lennart@server:~/ErasmusMC/Conferences/$

The paths used in lines 3, 4, 5 and 6 are absolute paths, the others are
relative paths. Line 8 shows a special kind of relative path, the .., which
means the parent directory (i.e. one level up in the tree). It can be used
just like any other relative path, so cd ../.. means go up two levels
in the directory hierarchy. The pwd also has a shortcut: . (i.e. a single
period), so the command cd . does nothing, since it just means “go to
the directory you are already in”. More interesting use of the . shortcut
is to explicitly indicate the pwd, for example when copying:

$ cp data_chr*.dat ./Project1/data/

which means “copy the files starting with data_chr and ending in .dat
to the directory Project1/data, which is a subdirectory of the pwd”. Note
that the following statement is equivalent:

$ cp data_chr*.dat Project1/data/

Another use case, running scripts from the pwd will be explained in
Chapter 5, page 87.

Directories can be created by the mkdir command and removed with themkdir
rmdir command. Both accept the name of one or more directories asrmdir
an argument. Note that the rmdir command only removes empty dir-
ectories, and will give a warning if the directory is not empty. Use the
-r option of the rm command to recursively remove a directory and its
contents (the rm command is explained in more detail in § 3.6.2).

3.6.2 Copying, moving, removing

Managing files and directories revolves around the concepts of copying,
moving and removing. Files and directories can be copied using the cpcp
command, which needs (at least) two arguments. The last one is always
the destination, the ones before that are the source files (or director-
ies).

26

3.6 Working with files and directories

27

For example, to copy file1 to a new file with name file2 type:

$ cp file1 file2

This copies files file1 and file2 to the directory dir1 (which must
already exist):

$ cp file1 file2 dir1

To copy file1 and file2 to the directory dir1, which is located at the
same level in the directory tree as our pwd type:

$ cp file1 file2 ../dir1 #

Be careful, by default the cp command doesn’t warn you when a file with
the same name exists in the destination, it simply overwrites it! If you
add the -i option when using the copy command you will be asked for cp -i
confirmation if the destination already exists.

The most used option for the cp command is the -r option, which allows cp -r
one to copy directories and files recursively. If you have tried to use a
directory as the first argument you have already noticed the following
error message:

$ cp dir1 dir2
cp: omitting directory `dir1/'

The -r option fixes this, as we can see with the ls command.

$ cp -r dir1 dir2
$ ls -ld dir1 dir2
drwxr-x--- 2 lennart genepi 4096 2011-10-12 10:57 dir1
drwxr-x--- 2 lennart genepi 4096 2011-10-12 10:59 dir2

Moving a file (or directory) is very similar to copying it, the command mv mv
is followed by at least two arguments: the source and the destination.

$ mv file1 dir1 # Move file1 into directory dir1
$ mv file1 file2 dir2 # Move file1 and file2 into dir2

Unlike cp, mv works recursively by default:

$ mv dir1 dir2

27

Chapter 3 The basics

28

moves dir1 (and it contents) into dir2, assuming dir2 exists. If dir2
does not exist, dir1 will effectively be renamed into dir2. The same
holds for files. If youmove one file and the destination file does not exist,
the effect of the move is that the file is renamed. Like the cp command,
mv also overwrites an already existing destination file without warning.
As in the case of cp use mv -i to get a prompt before overwriting.mv -i

And now we come to the more dangerous part: removing files and direct-
ories. It is very important to realise that Linux expects people to know
what they are doing. Consequently, there is no such thing like the Trash
folder on Windows, once a file is deleted, it is gone!! The command for
removing files is which accepts one or more file names as arguments.rm
Like cp rm does not work recursively by default, and like with cp, the -rrm -r
option enables it. Be careful as -r will also remove directories. Similarly,
the -i option asks for confirmation.rm -i

$ rm file1 file2 # file1 and file2 are deleted
$ rm dir1 # Won't work, whether dir1 is empty or not
rm: cannot remove `dir1': Is a directory
$ rm -r dir1

The last line removes dir1 and all the files and subdirectories within it!

3.6.3 Wildcards

Wildcards make it easier to manage multiple files at a time. These are the
two wildcards and their use:

*: replaces one or more characters
?: replaces one single character

The following examples show how to use wildcards.

• Show all files in the pwd:

$ ls *

• Show all files ending in pdf in the pwd:

$ ls *.pdf

28

3.6 Working with files and directories

29

• Show all files that start with chr and end with .dat:

$ ls chr*.dat

• Show all files that start with chr, have two characters in between
and end with .dat:

$ ls chr??.dat

• Copy all files ending in .dat to a Backups directory (which is located
in the pwd):

$ cp *.dat Backups/

Note that when using cp or mv wildcards can only be used in the first
argument (the source), not in the second (the destination). This makes
sense, of course, since most of the times you’d like to copy (or move) a
set of files to one directory and not one file to a set of directories.

Using wildcards, especially in combination with the rm command can be
dangerous. Before you know it you type

$ rm * old.pdf # DANGEROUS, DON'T DO THIS!

instead of

$ rm *old.pdf

In the last case you delete all the files ending in old.pdf, whereas in the
first case all files in the pwd are deleted first and then rm tries to delete
the file old.pdf (which it probably can’t find).

3.6.4 Exercises

Exercise E3.3 Some file and directory basics
In this exercise you will learn to work with directories, how to create

them, how to remove them and how to move from one to the other. Don’t
forget to use Tab-completion as much as possible.

a) Go to your home directory.

29

Chapter 3 The basics

30

b) Create a directory called LinuxCourse.

c) Go into that directory and create two other directories called tmp2
and tmp3.

d) Go into the tmp2 directory.

e) From the tmp2 directory, go into the tmp3 directory in one step.

f) Go to back your home directory (again in one step).

g) What is the shortcut to go to the previous directory? Use it.

h) What is the absolute path of your present directory? Which com-
mand will print it on the screen for you?

i) Go to the root of the file system (/) and list the files and directories
there.

j) Go into the /tmp directory and list its contents (although the con-
tents will not be very interesting).

k) Use a relative path to go back to the LinuxCourse directory (in one
step of course).

l) Check if the two directories tmp2 and tmp3 are still there and then
remove them.

Exercise E3.4 Copying files
What is wrong with the following command (try to think before typing it
in and trying the command)?

$ cp file1 file2 file3

Exercise E3.5** Creating a directory tree

30

3.6 Working with files and directories

31

a) Find out how to create a “branch” of directories in one command.
For example, make the following directory structure (starting in the
LinuxCourse directory):

dira

dirb

dirc

b) Standing in the parent directory of dira how would you remove
these three directories?

Exercise E3.6 Getting information on files and directories
The ls command lists files and directories (and their properties).

a) what is the size of a file with the name vmlinuz followed by some
numbers in the directory /bootg)?

b) Go to the directory /var and list the names of the user and group
that own the directories

mail
crash
local

Exercise E3.7** The dangers of wildcards
Wildcards in combination with rm can have devastating results!

a) Without entering the following commands (watch out, doing so is
EXTREMELY DANGEROUS!!), can you tell the difference in effect that
they have?

1 rm -r *~
2 rm -r * ~

g) A vmlinuz file is the Linux kernel (see § 2).

31

Chapter 3 The basics

32

3.7 Transferring files from one Linux machine to
another

Files can be copied to and from the server with the scp commandh). Ascp
copy action looks just like a regular cp command:

$ scp source destination

but with scp either source or destination consist of a username@server
part followed by a colon and the file(s) to copy from or to, respectively.
For example, the command

$ scp local_file ←↩
your_username@server.domain.nl:dir/on/the/server/

copies a local file to the server and puts it in the specified directory. Copy-
ing a file from the server to your own computer works similarly:

$ scp your_username@server.domain.nl:~/path/to/the/file ←↩
~/a/local/dir/

When copying directories including the files they contain the -r optionscp -r
must be used:

$ scp -r some_dir/ ←↩
your_username@server.domain.nl:the_target_directory/

For transfers of many and/or large files the rsync command is betterrsync
suited because if something goes wrong and the transfer is aborted i),
rerunning the scp command will start from scratch again. rsync is much
smarter about these cases and will transfer only (parts of) files that have
not been sent yet. An rsync command looks just like an scp command:rsync -azP

$ rsync -azP source destination

h) This works also when copying to and from an Apple computer with Mac OS X.
i) as mentioned in Chapter 6 tasks taking more than 10 minutes of processor time will be

killed unless the batch queue system is used.

32

3.8 Pagers, or how to look at the contents of a file

33

The -a option preserves file properties like dates, owner (if possible) etc.
and sets the recursive option for directories. The -z option turns on com-
pression of the data (which can decrease transfer times for some files)
and the -P option adds progress information and keeps partially trans-
ferred files. As with scp either source or destination can be a remote
location specified as username@servername:path/to/files.

3.8 Pagers, or how to look at the contents of a file

In Section 3.2 we discussed how to use an editor on the server to edit your
files. Sometimes, however, you are only interested in seeing the contents
of a file, without the need to edit it. In such a case loading the file into
an editor is of course an option, but there are faster options.

The simplest way to display the contents of a file is using the cat com- cat
mand:

$ cat timings.dat
nids t_1 t_2 t_3
50 0.5 1.4 4.63
100 0.62 0.21 18.19
200 0.9 0.4 10
500 2.4 5.19 171.09
1000 9.08 54.93 1653.25
1500 19.9 320.12 7201.39
2000 36.25 1086 18500.61
2715 74.95 2181.3 31432.52

Although cat is simple and straightforward it has some serious limita-
tions. If the contents is larger than the size of the screen you’ll need to
scroll back and for files that are larger than the terminal’s buffer size you
wouldn’t be able to scroll back all the way to the top.

To remedy this programs come to the rescue: more and less are the more
lesspagers that can be found on any Linux system. These programs are called

pagers, because they allow the user to view the contents of the file screen

33

Chapter 3 The basics

34

by screen i.e. page by page. To view a file called longfile using either of
these pagers simply give it as an argument:

$ more longfile

Use the space bar to scroll screen by screen and the q key to exit.

Usually less is to be preferred because it allows one to easily browse up
and down, as well as to search in the contents j). Again use the q key to
exit less. In § 3.9 you will learn how to deal with compressed (zipped)
files. To read the contents of a gzipped file it is not necessary to unzip it
first, simply use the zless program.zless

Two other commands also greatly help with getting a quick glimpse of
the contents of a file: head and tailk). Without additional options thesehead

tail commands show the first or the last ten lines of a file, respectively. A
different number of lines can be given as argument to the -n option:

$ head -n 1 timings.dat
nids t_1 t_2 t_3
$ tail -n2 timings.dat
2000 36.25 1086 18500.61
2715 74.95 2181.3 31432.52

3.8.1 Exercises

Exercise E3.8 Working with less

a) Open the man page of less.

You can browse through the man page with the up and down arrows,
[PgUp], [PgDn], etc. but if you have an idea of what you are looking for
it is easier to search for it. Searching in the forward direction is done by
j) The man command uses less to display the man page on screen.
k) The R language has similar functions: head() and tail().

34

3.9 Using compressed archives like .zip and tar.gz files

35

pressing the / key, then type your search term and hit [ENTER]. Hitting
the keys / [ENTER] key repeatedly will go to the next hit, etc.

b) Which key is used to search backward?

Exercise E3.9 “Seeing a file grow”

Imagine that you have an analysis that takes a long time to finish but
writes some output to a file at every step (e.g. a ProbABEL [6] run, which
writes the outcome for each SNP on a new line). To follow progress you
could open the file every once in a while to see where it is, but once
the file is loaded (in less, more or even your editor), the output would
continue to grow and you would need to reload the file constantly for the
updates to arrive. Another way would be to run tail every few minutes
to only show the last few lines l).

To save you time, tail has an option that follows the contents of a file
and shows you each line that is appended. Which option is that?

3.9 Using compressed archives like .zip and tar.gz
files

On a Linux system the following file formats are commonly used for com-
pressed archives:

.zip A regular zip file, also recognised on Windows without the need for
extra software.

.gz A compression format that only contains a single file.
.tar.gz A gzipped tar archive, which can contain multiple files. This

format is the most common.
l) Incidentally, the way to do this automatically is via the watch program.

35

Chapter 3 The basics

36

3.9.1 zip

Zip files are created and extracted using the zip and unzip commands re-zip

unzip spectively. In the following example the directory MyProjectDir (includ-
ing every file and subdirectory because of the -r option) is first zipped
into a file called my_archive.zip. Subsequently, the original directory is
removed, followed by the unzipping of the archive to restore the directory
and its contents.

$ zip -r my_archive.zip MyProjectDir
updating: MyProjectDir/ (stored 0%)
updating: MyProjectDir/testfile1 (stored 0%)
updating: MyProjectDir/testfile3 (deflated 54%)
updating: MyProjectDir/testdir1/ (stored 0%)
updating: MyProjectDir/testdir1/testdir2/ (stored 0%)
updating: MyProjectDir/testfile2 (stored 0%)
updating: MyProjectDir/testdir3/ (stored 0%)
$ rm -r MyProjectDir
$ unzip my_archive.zip
Archive: ../my_archive.zip

creating: MyProjectDir/
extracting: MyProjectDir/testfile1
inflating: MyProjectDir/testfile3
creating: MyProjectDir/testdir1/
creating: MyProjectDir/testdir1/testdir2/

extracting: MyProjectDir/testfile2
creating: MyProjectDir/testdir3/

3.9.2 gzip

To create a Gzipped .gz file use the gzip command and to unzip a .gzgzip
file use gunzip. The gzip compresses each file you specify as an argu-gunzip ment separately, unlike zip, which stores all files in one .zip file. Fur-
thermore, it removes the original uncompressed file. Similarly, gunzip
decompresses the file(s) you give as arguments, but removes the com-
pressed ones. To read gzipped text files use zless (see also § 3.8).zless

36

3.9 Using compressed archives like .zip and tar.gz files

37

3.9.3 tar

To circumvent Gzip’s limitation of compressing each file individually, most
people use the tar command. With tar multiple files and directories tar
can be stored in a single file, and it accepts additional options for com-
pression. The following command creates a compressed archive of files,
similar to the zip example above.

$ tar -czf my_archive.tar.gz MyProjectDir/

Here, the -c option stands for “create”, the -z option gzips the file and -f
specifies the filename of the archive. Extracting a tar.gz archive is very
similar:

$ tar -xzf my_archive.tar.gz

The -x options stands for “extract”.

3.9.4 Exercises

Exercise E3.10 Untar-ing an archive
For some of the exercises some pre-made files will be needed. A com-

pressed archive of the files can be found in /tmp/exercises_linux_course.tar.gz.

a) Copy the file to your LinuxCourse directory and extract it.

It is considered good practice that a tar.gz file always contains a direct-
ory with the same name as the tar.gz file itself. This way, when someone
extracts it, (s)he doesn’t end up with files lying around in the directory
where the extraction was done.

b) Check that the extraction has completed successfully by listing the
contents of the present directory.

37

Chapter 3 The basics

38

3.10 File ownership and permissions

Linux is a multi-user OS, which means that several people can access the
system at the same time. As result it is important for the OS to be able
to tell who is the owner of a certain file or directory as well as who else
might have access to that file or directory.

3.10.1 Ownership

Every user has his or her own user account with a user name given by the
system administrator. To find out your user name type the whoami com-whoami
mand. Furthermore, each user is also assigned to one or more groups.
The first group to which a user is assigned is his/her default group. The
command id shows your user ID (uid), group ID (gid) and all other groups
you are a member of:
$ id lennart
uid=1305(lennart) gid=10001(genepi) ←↩

groups=10001(genepi),100(users),10009(wikiusers),10010(gvnl),10011(svn)

Here you see that my user name is “lennart” and my default group is
“genepi”. The names that follow are other groups that I am a member of.
The numbers are not too important at this moment, suffice it to say that
each user or group ID has a unique number associated to it.

To see the user and group ownership of a file use ls -l:
$ ls -l
total 3529936
drwxr-xr-x 4 lennart genepi 4096 Nov 19 2010 BigGrid
drwxr-xr-x 4 lennart genepi 4096 Aug 22 18:01 bin
-rw-r----- 1 lennart genepi 1612 Oct 10 01:48 course_desc.txt
drwxr-x--- 6 lennart genepi 4096 Jul 12 17:38 Courses
drwxr-x--- 3 lennart genepi 4096 Nov 23 2010 CUDA
-rw-rw---- 1 lennart gvnl 2047780 May 4 15:59 M34d.zip
drwxr-x--- 34 lennart genepi 4096 Aug 24 17:41 Packages
drwxr-x--- 11 lennart genepi 4096 Oct 6 10:56 Projecten
drwxr-xr-x 4 lennart genepi 4096 Aug 30 15:56 public_html
drwxr-x--- 7 lennart genepi 4096 Mar 17 2011 R
drwxr-x--- 16 lennart genepi 4096 Oct 8 01:40 Rlibs

38

3.10 File ownership and permissions

39

drwxr-xr-x 5 lennart genepi 4096 Mar 2 2011 Scripts
drwxr-x--- 5 lennart genepi 4096 Mar 28 2011 ServerMaintenance
drwxr-x--- 2 lennart genepi 4096 Aug 29 13:26 SGE-test
drwxr-xr-x 8 lennart genepi 4096 Dec 13 2010 TeX
drwxr-xr-x 17 lennart genepi 4096 Sep 30 16:24 tmp
drwxr-x--- 3 lennart lennart 4096 Jun 24 2010 X-chromosome

Here you see that each file or directory is owned by me (column three)
and that the associated group for each of them is “genepi” (column four).
Only the file Z34d.zip has a different group: “gvnl”. Why this is important
will be explained in the next chapter.

3.10.2 Permissions

Closely related to the concept of ownership is the concept of permissions.
Each file or directory has a set of permissions associated with it, that
indicate who can read, write and/or execute the file. These are indicated
by the letters r, w and x, respectively. In its simplest form these three
permissions can be set for the “user”, the “group” and “others”m). The
meaning of the read permission is obvious. Write permission means that
the file or directory can be changed, moved and deleted. The execute
permission has different meanings for files and directories. For files it
means that Linux will try to run the file like a program or script. This
will be discussed in more detail in Chapter 5 on writing Bash scripts. For
directories the execute permission means that the user, group or others
can access that directory (via cd for example).

Let’s take a look again at some ls -l output which shows the permissions
on the first column:

1$ ls -l
2total 3529936
3drwxr-x--- 5 lennart genepi 4096 Mar 28 2011 ServerMaintenance
4drwxr-x--- 2 lennart genepi 4096 Aug 29 13:26 SGE-test
5drwxr-xr-x 8 lennart genepi 4096 Dec 13 2010 TeX
6drwxr-xr-x 17 lennart genepi 4096 Sep 30 16:24 tmp

m) For more fine-grained control of permissions the setfacl and getfacl can be used
to read and set ACLs (Access Control Lists) on files or directories. The usage of these
tools falls beyond the scope of this course.

39

Chapter 3 The basics

40

7drwxr-x--- 3 lennart genepi 4096 Aug 24 17:41 Packages
8-rw-rw---- 1 lennart gvnl 2047780 May 4 15:59 M34d.zip
9drwxr-x--- 11 lennart lennart 4096 Jun 24 2010 X-chromosome

The first column consists of four blocks. The first block is one character
wide and has a d if the entry is a directory. Then follow three blocks of
three permissions r, w and x, one for the owner, one for the group and
one for all other users. If one of the permissions is not set it is indicated
by a -.

So in this listing you seemostly directories, except for the entry M34d.zip
for on line 8. This file has the permissions read and write for the owner
as well as the group (gvnl), but other users have no access to the file. In
contrast, the TeX directory can be accessed and read by everybody, but
only the owner can write to it.

By default the permissions on a file are rw (read and write) for the owner,
r (read-only) for the group and others. This means that everyone can
read the file.

Permissions can be changed with the chmod command. Use of this com-chmod
mand falls beyond the scope of this course (although it will briefly show
up in Chapter 5).

When copying files from a Windows machine it is possible that the
permissions are set to rwx for all three groups. This is because the
Linux/Unix permission scheme is different from the way Windows
handles file permissions. You can safely change the parameters to the
default values (i.e. rw for the user, r for the group and none for others)
using the following command:

$ chmod 640 my_file_from_windows

3.11 Process management

Every program or command that you run on a Linux machine starts one
or more processes. In this section you will learn some basic commands

40

3.11 Process management

41

to manage them. Processes can be killed, sent to the background and be
brought back to the foreground.

3.11.1 Exercises

Exercise E3.11 Listing and killing processes
To find out whether the server is busy, you can use the programs top and

htophtop that show dynamically updated lists of processes (usually sorted by
processor (also known as Central Processing Unit (CPU)) usage).

a) Start the htop program (top basically does the same, although less
colourful). On the screen you can see that the server has 12 CPUs.
The amount of memory used is listed as well. In the lines below
a list of processes is shown, sorted by CPU usage. By pressing the
u key you can select a user and only see his/her processes. Other
options are available as well, use the h for help. To return to the
command line, press q.

While htop is fun to watch, sometimes you simply want to see which pro-
cesses you have running. For example, you have just started a large ana-
lysis, but discovered you forgot to add a certain piece of information.
Instead of letting the current analysis program run, using a lot of pro-
cessing power while you know you will throw away the results anyway,
you can use the ps command to find the process and the killkill command
to kill it.

b) Run psps -fu username (with your own user name) to find out
which processes you have running. Here is some example output:

1 $ ps -fu lennart
2 UID PID PPID C STIME TTY TIME CMD
3 lennart 4633 4631 0 17:49 ? 00:00:00 sshd: lennart@pts/8
4 lennart 4634 4633 0 17:49 pts/8 00:00:00 -bash
5 lennart 5841 31983 0 18:50 pts/6 00:00:00 sh jobscript.sh 1 100000
6 lennart 5842 5841 63 18:50 pts/6 00:00:00 /usr/lib64/R/bin/exec/R --slave
7 lennart 5844 4634 0 18:50 pts/8 00:00:00 ps -fu lennart
8 lennart 29273 29271 0 10:51 ? 00:00:00 sshd: lennart@pts/2
9 lennart 29274 29273 0 10:51 pts/2 00:00:00 -bash
10 lennart 31982 31980 0 13:25 ? 00:00:01 sshd: lennart@pts/6

41

Chapter 3 The basics

42

11 lennart 31983 31982 0 13:25 pts/6 00:00:00 -bash

In this example I have nine processes running. The ones in lines 3,
8 and 10 are my connections to the server (i.e. three in total). For
each connection one SSH process is started (lines 4, 9, 11), which
in turn starts the Bash shell so I can type my commands. In line 5
you see a Bash script that is running, and in line 6 you can see I
am running R. Line 7 shows the process of the ps command itself.

In this output, the column PID is an important one. Each process
gets a unique process ID, or PID. It is this PID that can be used to
kill a process. If, for example, I want to kill the R process, I simply
typekill

$ kill 5842

and R stops. You probably will not do this very often, but every
once in a while it can be handyn).

Exercise E3.12** Sending processes to the background (and getting
them back)
By default, a program that you start on the command line is run in the

foreground. This means that the prompt will not reappear until the pro-
gram has finished. So you will have to wait before you can type a new
command. If you don’t want to wait, you can type Ctrl-z to suspend the
program. A suspended program does nothing. It simply waits for you to
bring it back to life (i.e. to the foreground or the background) again.

a) Start R and type one or two simple commands like

> a <- "hello"
> ls()

Now suspend R by hitting Ctrl-z. You will see a message that
R has been stopped. Now you can type any other command, for
example look for a certain data file, edit an R script, etc. When

n) If you want to kill a job that is running in the batch queue (cf. Chapter 6), you can use
the qdel command.

42

3.11 Process management

43

you are ready to work in R again, type fgfg, which stands for “fore-
ground”. Nothing seems to happen, but you are back in R. Hit the
Enter key for example, or use the up arrow to redo one of your
previous commands.

b) It is possible to have multiple programs suspended at the same
time. Suspend R again and start htop. Suspend htop as well. Again
a message appears telling you that htop has stopped. Notice that
the number in between square brackets is now 2. This is the job
ID (which is not related to the job ID of a job that runs in the SGE
queue system that will be discussed in Chapter 6). You can list the
jobs in your current screen with the jobsjobs commands:

$ jobs
[1]- Stopped /usr/bin/R --no-save
[2]+ Stopped htop

You can check that both processes still exists by typing ps -fu ←↩
username, like we did before.

Typing fg now would bring the last job to the foreground: htop. To
bring R to the foreground instead type

$ fg 1

and exit R (type q()). Type fg to bring htop to the foreground and
exit it (or, instead of bringing htop to the foreground kill it).

Nowadays the possibility of suspending jobs and bringing them back is
not widely used anymore. You can simply open another connection to
the server. In the old days, however, this was a completely different mat-
ter. Before the availability of Personal Computers (PCs) on each desktop,
people connected to a server using a so-called terminal. Such a terminal
consisted of a screen and a keyboard. Both were connected to a bigmain-
frame computer somewhere down the hall. There were nomouses or win-
dows (in the computer sense of those words), only one command line. In
those days being able to suspend and run jobs in the background was
vital.

43

Chapter 3 The basics

44

Exercise E3.13** Starting processes directly in the background
If you use MobaXterm it is possible to run certain GUI applications on

the server. You could start Emacs for example. However, starting Emacs
in the normal way:

$ emacs some_kind_of_file

will keep the shell occupied until you have finished editing your file. In
this case you most likely want to start the process in the background so
that you can do both: use the editor and use the command line. Starting
a process in the background immediately can be achieved by ending the
command with an ampersand symbol (which generally looks like & or &,
depending in the font used):

$ emacs some_kind_of_file &
$

Notice how the shell prompt (the $) immediately returns to the screen,
allowing you to run another command (while Emacs is still running in the
background)o).

3.12 Miscellaneous commands

In this section several small but useful commands will be discussed
briefly. Use the man pages or the --help option to obtain more
information on how to use these commands.

3.12.1 wget: downloading files to the server

Downloading files is an often occurring task. Of course you could down-
load the file to your PC first and then useMobaXtermorWinSCP to transfer
o) This example assumes that you have X11 forwarding enabled when connecting to the

server, see §3.1.1 for more information.

44

3.12 Miscellaneous commands

45

the file to the server. As you can easily imagine this is inefficient, espe-
cially for large files. It’s a waste of time and bandwidth. The solution is
easy: look up the link of the file you want to download on your PC (right-
click on the link in the web page and click and click ‘Copy link location’).
Next, use wget to download the file on the server. For example, to down- wget
load the current version of ProbABELp) into your current directory run:
$ wget http://www.genabel.org/sites/default/files/software/probabel-0.4.1.tar.gz

3.12.2 sort

The sort command is used to sort the lines in a file: sort

$ more sort1.txt
1200
34
465
2340
Hello
Hello
1200
982
archive
1
Once upon a time
0001
$ sort sort1.txt
0001
1
1200
1200
2340
34
465

p) Shameless plug: ProbABEL [6] is a tool for doing genome-wide association studies, and
I am the current maintainer. See http://www.genabel.org/packages/probabel.

45

http://www.genabel.org/packages/probabel

Chapter 3 The basics

46

982
archive
Hello
Hello
Once upon a time

Notice how sort treats numbers as if they are words (2340 comes before
34 because a 2 is less than a 3). The -n option does a numerical sort:sort -n

$ sort -n sort1.txt
archive
Hello
Hello
Once upon a time
0001
1
34
465
982
1200
1200
2340

The numerical sort is not perfect, however, because it doesn’t recognise
numbers in scientific notation, like 1.4e-5. The -g option solves that (seesort -g
below for an example).

In case you don’t want to sort on the first column, use the -k option fol-sort -k
lowed by the column number:

$ more sort3.txt
rs5 23 c
rs150 10 a
rs23 1e2 d
rs10 0.2 b
rs3 4e-3 e
$ sort -k3 sort3.txt
rs150 10 a
rs10 0.2 b

46

3.12 Miscellaneous commands

47

rs5 23 c
rs23 1e2 d
rs3 4e-3 e
$ sort -gk2 sort3.txt
rs3 4e-3 e
rs10 0.2 b
rs150 10 a
rs5 23 c
rs23 1e2 d

Note that we used the -g option in the last command in order to sort
the second column using scientific notation. Here, the two options were
combined, but the above is equivalent to sort -g -k2 sort3.txt.

To specify a different column separator than a space, use the -t op- sort -t
tionq):
$ sort -g -k2 -t"," sort4.txt
rs3,4e-3,e
rs10,0.2,b
rs150,10,a
rs5,23,c
rs23,1e2,d

Recently, a new option was added to the sort command. The -u option sort -u
sorts first and then keeps all unique lines (i.e. it removes entries that
occur twice) r). For example, when sorting the sort1.txt file, only one of
the Hello and 1200 lines remains when using the -u option:
$ sort -u sort1.txt
0001
1

q) When thinking about grouping multiple short options, remember that if you have more
than one option that needs a argument, these cannot be combined. So, sort ←↩
-gk2t"," sort4.txt is incorrect, but sort -gk2 -t"," sort4.txt or sort -k2 ←↩
-gt"," sort4.txt are correct. However, in a case like this specifying all options
separately is the most readable solution.

r) Looking ahead at § 3.12.3 that deals with the uniq command and § 3.13.2 about using
the pipe to send output from one command to another, the command sort -u ←↩
some_file is identical to running sort some_file | uniq.

47

Chapter 3 The basics

48

1200
2340
34
465
982
archive
Hello
Once upon a time

3.12.3 uniq

The uniq command removes repeated lines from a file.uniq

$ uniq sort1.txt
1200
34
465
2340
Hello
1200
982
archive
1
Once upon a time
0001

Notice how only the repeated entry of “Hello” has been removed, but the
duplicate “1200” still in because the entries are not on subsequent lines.
In § 3.13.2 you will see how the sort and uniq commands can be chained
together to also get rid of one of the “1200” entries.

3.12.4 wc: counting words and lines

Counting words and lines are common tasks. For example, if you store
phenotype information in a file, with one line per individual, then count-
ing the number of lines in that file will tell you if the number of individuals

48

3.12 Miscellaneous commands

49

in the file corresponds to what you know to be the total number of people
in your study cohort. The wc (WordCount) command counts the number wc
of lines, words and characters for each file that you give it as input. Here
you see that the file sort1.txt has 12 lines, 15 words and 70 characters.

$ wc sort1.txt
12 15 70 sort1.txt

In our field we are mostly interested in the total number of lines, in which
case you can use the -l option. wc -l

3.12.5 date

To get today’s date and time use the date command. To change the way date
the date and/or time are printed use + followed by a so-called format
specifier. To use a different date than today, use the -d option. These are date -d
a few typical examples:

$ date
Thu Jun 4 12:36:45 CEST 2015
$ date +%F
2015-06-04
$ date +%H:%M
12:37
$ date +%H:%M-%Y-%m-%d
12:37-2015-06-04
$ date -d "15 November 2015 - 30 days"
Fri Oct 16 00:00:00 CEST 2015
$ date -d "15 November 2015 - 30 days" "+%d %B"
16 October

Notice the quotes around the + format specifier. They are necessary be-
cause of the space between %d and %B, without the quotes, only %d would
be seen as part of the format specifier and %B would be considered a
separate option (which doesn’t exist, so an error will be returned). The
output of the date command may be localised to your country. For ex-
ample, on a Dutch system the results of the first and last examples are:

49

Chapter 3 The basics

50

$ date
do jun 4 12:41:33 CEST 2015
$ date -d "15 November 2015 - 30 days" "+%d %B"
16 oktober

To override the language environment for a specific date command add
LANG=CC in front of it, for example on the Dutch system the result will be
English as expected:

$ LANG=CC date
Thu Jun 4 12:43:02 CEST 2015
$ LANG=CC date -d "15 November 2015 - 30 days" "+%d %B"
16 October

3.12.6 du: disk space usage

If you are getting close to your disk quota limit, the du command (whichdu
du -sh stands for “disk usage” will help you find files and directories that take

up a lot of space:

$ du -sh Projecten/
4.4G Projecten/
$ du -sh Projecten/*
1000M Projecten/GWAS
18M Projecten/GvNL
2.7G Projecten/ARA
104K Projecten/ergo
16K Projecten/RS3_2082_ids
300K Projecten/Comparison_polygenic_hglm
716M Projecten/Lipid_GxE_Prediction
2.0M Projecten/Suman_Prediction_Comparison
8.9M Projecten/Epiblaster

The -s option summarises the disk usage for each of the directories,
without it you will get a report for each subdirectory. The -h option works
like the -h option of ls, it prints the size in human readable format (MB,
GB, etc.) instead of in bytes.

50

3.12 Miscellaneous commands

51

3.12.7 Differences between files

Finding the differences between two text files is easy with the diff com- diff
mand. diff shows each line where a difference occurss). Consider the
following two files, file1 and file2:

$ more file1 file2
::::::::::::::
file1
::::::::::::::
Hello world,
I am a text file
living in a Linux world.

Bye bye
::::::::::::::
file2
::::::::::::::
Hello world,
I am a simple file
living in a Linux world.

Bye bye

This is the output of diff:

diff file1 file2
2c2
< I am a text file

> I am a simple file

which tells us that there is a difference on line 2 in the first as well as in
the second file and then prints the differing lines. The -u command shows diff -u
the differences within the context by adding a few lines before and after
the differing lines:

s) Note that sometimes this may only be a difference in white space.

51

Chapter 3 The basics

52

$ diff -u file1 file2
--- file1 2011-01-27 18:08:19.000000000 +0100
+++ file2 2011-01-27 18:08:19.000000000 +0100
@@ -1,5 +1,5 @@
Hello world,
-I am a text file
+I am a simple file
living in a Linux world.

Bye bye

For binary files it is more difficult to display the differences (do you un-
derstand why?) and diff will only tell you that the files differ. To check
whether two files are equal bit by bit use the md5sum command which cal-md5sum
culates a unique checksum based on the contents of the file. If the check-
sums are equal you can be assured that the files are exactly equal.

$ md5sum file1 file2
24adf0b0daed9b2b310c4e2117fcbdda file1
4b25f33b80a2514d524c3f5b60e13bd6 file2
$ cp file1 file4
$ md5sum file4
24adf0b0daed9b2b310c4e2117fcbdda file4

The checksums are different in the first run where file1 and file2 are
compared. Making a copy of file1 and checking that file’smd5sum shows
that they are exactly equal.

Themd5sum command is very useful to check files before and after trans-
fer to or from another server (cf. § 3.7) to make sure that all files are ex-
actly equal. Checking a lot of files by hand in this manner is not efficient.
The -c option helps here. It compares the md5sums of a set of files tomd5sum -c
those listed in a file. If the md5sums of a set of files is given (e.g. by sav-
ing the output of the md5sum command on the first machine) then after
transfer the files can be checked using this file:

$ more checksums
24adf0b0daed9b2b310c4e2117fcbdda file1

52

3.13 Input and output redirection

53

4b25f33b80a2514d524c3f5b60e13bd6 file2
$ md5sum -c checksums
file1: OK
file2: OK

Exercise E3.14 Disk space usage
Find out which subdirectory of your home directory takes up most

space.

Exercise E3.15 Downloading files to the server
When downloading large files, the transfer gets interrupted sometimes.

If the happens, you could start downloading from scratch again, of course.
But it’s more efficient to continue downloading where you left of.

a) Start downloading the CD image of the most recent Ubuntu Linux
Long Term Support version from this URL: http://releases.
ubuntu.com/16.04.3/ubuntu-16.04.3-desktop-amd64.iso.
Once the download starts, hit Ctrl-c to abort the transfer. Check
the size of the .iso file with ls.

b) Which wget option allows you to continue downloading a partially-
downloaded file? Try it.

3.13 Input and output redirection

3.13.1 Redirecting to and from files

When working on analyses that involve some repetitiveness (i.e. perform-
ing the same action for 22 chromosomes) it is easy to end up with several
files that you would like to have in one big output file. Or maybe you
want to store the screen output of a certain command because it might
be useful later. The > and >> are used to send the screen output of a >

>>

53

http://releases.ubuntu.com/16.04.3/ubuntu-16.04.3-desktop-amd64.iso
http://releases.ubuntu.com/16.04.3/ubuntu-16.04.3-desktop-amd64.iso

Chapter 3 The basics

54

command to a file, this is called output redirection.

For example, the output of the sort command that sorted some input file
infile normally goes to the screen. Sending it to an output file called
outfile goes like this:

$ sort infile > outfile

The > and >> behave differently in one important way: > always overwrites
the output file, whereas >> appends the new output to the output file if it
exists. For example, you can send the listings of several directories to an
output file dirlist (the cat commands simlpy print the output on the
screen so you can follow what happens):

$ ls -l dir1 > dirlist
$ cat dirlist
total 8
-rw-r----- 1 lennart genepi 492 2011-10-16 15:42 file1
-rw-r----- 1 lennart genepi 150 2011-10-16 15:42 file2
$ ls -l dir2 >> dirlist
$ cat dirlist
total 8
-rw-r----- 1 lennart genepi 492 2011-10-16 15:42 file1
-rw-r----- 1 lennart genepi 150 2011-10-16 15:42 file2
total 8
-rw-r----- 1 lennart genepi 129 2011-10-16 15:42 file21
-rw-r----- 1 lennart genepi 14 2011-10-16 15:42 file22

Input redirection is complementary to output redirection, it is however,
not used as much as its brother. With input redirection the contents of
a file is sent to a program, which then processes it. The symbol used for
input redirection is <. As an example, consider the following (useless) R<
script, saved in the file rinput.R:

print("Hello, you are now in R")
getwd()
1+1
10:1

One way to execute these lines in R is to use input redirection:

54

3.13 Input and output redirection

55

$ R --quiet < rinput.R
> print("Hello, you are now in R")
[1] "Hello, you are now in R"
> getwd()
[1] "/tmp"
> 1+1
[1] 2
> 10:1
[1] 10 9 8 7 6 5 4 3 2 1
>
$

Notice that we have ended at the bash prompt again, even though we
didn’t end the script with q().

3.13.2 Redirecting output of one command to another

So far we have sent the output of a command to a file, or taken the input
from a file. Things start to get interesting when the output of one com-
mand is used as input to the next. For this the pipe symbol | is used. |
It usually on the same key as \ and indicated by a vertical bar or two
vertical bars stacked like a colon).

You can use this for example when looking at the directory listing of a
directory withmany files and subdirectories. Instead of having the output
scroll off the screen you can pipe it to e.g. more:

$ ls -l | more

Or if you want to want to look at all processes that are running on the
system, screen by screen:

$ ps -ef | less

Technically using a pipe like

$ command1 | command2

is equal to

55

Chapter 3 The basics

56

$ command1 > tmpfile
$ command2 < tmpfile
$ rm tmpfile

In later chapters, after more commands have been introduced, more ex-
amples of the usage of pipes will be shown.

Exercise E3.16 Combining files

In this exercise you will use output redirection to concatenate (i.e. stitch
together) several files.

a) Create a new directory and cd into it. Use your editor to create
three files with a few lines of text. Save them as file1, file2 and
file3.

b) Use the catcat command and the > sign to send the contents of file1
to a new file called output.total

c) How would you add the contents of the other two files to the
output.total file?

d) How can you quickly check whether the files were merged cor-
rectly?

If the input files are large, don’t forget to delete them after you have are
satisfied with the result of the concatenated file. There is no reason to
let this duplicate information eat up disk space from your quota.

Exercise E3.17** Combining input and output redirection

How would you send the output of the R commands from the input
redirection example (R --no-save --quiet < rinput.R) to a file called
Routput?

56

3.14 Aliases and creating your own commands

57

Exercise E3.18*** Using the output of one command as input for an-
other
The pipe symbol (|) is used to send output from one command as in-

put to another. In this way many short commands can be chained into a
powerful “supercommand”.

a) Chain two commands together to show how many processes you
are running at the moment.

b) Go to your home directory and find out how much disk space (in
human readable format) each of the files and subdirectories use.
Sort the result in order of increasing size.

c) Use w wto list all users that are currently logged in. How many users
are currently logged in? Some people may be logged in more than
once. How many unique users are logged in?

3.14 Aliases and creating your own commands

We are almost at the end of this chapter and already you have gone
through many commands. How many times have you typed ls -l or
ls -lhp? Probably quite a few times. And more will follow! Wouldn’t
it be nice if you could save a command under a shorter name? Well, you
can! The alias commands lets you assign a command to a new name. alias
For example:

$ alias lsl='ls -lhp'

Once you have run this command you can simply type lsl, three charac-
ters instead of seven. That saves time! Chapter 6 the qstat command
will be discussed. This command accepts several options and typing
qstat -f -u * many times is a pain, so why not write an alias and ab-
breviate it to qs?

$ alias qs='qstat -f -u *'

57

Chapter 3 The basics

58

You may have noticed if you have more than one terminal window open
that aliases defined in one terminal session are not known in another.
Moreover, if you close a terminal all aliases will be forgotten the next
time you log in. Not a very nice thing, but, as in most cases, someone
already ran into that problem and has solved it for you. The solution
is to save your aliases in one of the two hidden files ~/.bashrc or
~/.bash_aliases. Notice the tilde (~) in the path, these two files reside
in your home directory. The .bashrc file in your home directory is the
default configuration file for Bash, it is read every time you start Bash
(i.e. when you open a terminal). This file is already present on most Linux
machines and you can simply add your aliases at the end of the file t).
Many default ~/.bashrc files also have a section that looks like

Alias definitions.
You may want to put all your additions into a separate ←↩

file like
~/.bash_aliases, instead of adding them here directly.
See /usr/share/doc/bash-doc/examples in the bash-doc ←↩

package.

if [-f ~/.bash_aliases]; then
. ~/.bash_aliases

fi

which basically means that every time you log in ~/.bashrc checks
whether the file ~/.bash_aliases exists and if that is the case it reads
its contentsu). So, as the comment says “You may want to put all your
additions into a separate file”.

After you have added your aliases to either of these files the present
Bash session doesn’t know about them yet. You could log out and back
in of course, but a more elegant way is to read the contents of the file
directly:

t) The .bashrc file is actually a Bash script, so everything you will learn in Chapter 5 can
be applied to this file as well.

u) Feel free to add these lines to your .bashrc file if they don’t exist and you want to
store your aliases in a separate file.

58

3.14 Aliases and creating your own commands

59

$ source ~/.bashrc

Do you remember from §3.6.2 that the -i option cp, mv and rm makes cp -i

mv -i
rm -i

these commands safer by asking for confirmation before overwriting or
deleting? If you’d like to be on the safe side this is the time to create
aliases for these commands:

alias cp='cp -i'
alias mv='mv -i'
alias rm='rm -i'

By giving the alias the name of the original command you “overwrite” the
original command with your aliasv).

In exercise E3.18 of this chapter we saw how we could use du and sort to
show the file and directories in the pwd sorted by file size, with the largest
files and directories at the bottom. The full command was

$ du -sh * | sort -h

If you are wondering which files and directories eat most of your precious
disk space quota you are probably interested in the top 5 largest ones in
a given directory. Let’s reverse the sort so the largest files and directories
are at the top and then select only the top five of them:

$ du -sh * | sort -rh | head -5

It makes sense to save this nice string of commands in an alias so we
don’t have to remember it exactly:

alias bigfiles='du -sh * | sort -rh | head -5'

You can run the alias command all by itself to see which aliases have
been defined. Here is a selection of my aliases:

$ alias
alias R='/usr/bin/R --no-save'
alias grep='grep --color=auto'

v) Of course the real commands are not overwritten, but when you give a command Bash
first looks in its list of aliases before looking in its set of default directories for ex-
ecutable files.

59

Chapter 3 The basics

60

alias lo='exit'
alias ls='ls --color=auto'
alias lsa='ls -lhA'
alias lsl='ls -lh'
alias qs='qstat -f -u *'

Exercise E3.19 Creating aliases
After reading/hearing all the warnings about cp, mv and rm overwriting

an existing destination file, you may want to decide to stop living on the
edge and use more safe alternatives for these commands.

a) If you haven’t already read about them in this book, find out which
option to add to the cp, mv and rm commands that will force those
commands to ask you a question before performing a (potentially)
dangerous operation

b) Use the alias command to “overwrite” each of these three existing
command with its safer alternative and test the alias.

c) Open the file ~/.bashrc or the ~/.bash_aliases file in an editor
and add the three aliases you created earlier.

60

401010101010101110010
11010101011110000001101011010010010101110111011101000010010110101111

01

01
010

101
0101

11001
01101010

1011110000001101011010010010101110111011101000010010110101111

01
01
01

010
101

011
100

1011
0101

010111
10000001101

011010010010101110111011101000010010110101111

01
01
01
01
01
01

01
110

010
110

101
010

111
100

0000
1101

0110
10010

01010
111011

1011101
0000100101

10101111

01
01
01
01
01
01
01
11
00
10
11

01
01
01
01
111

000
000

110
101

101
001

001
010

111
011

101
1101

0000
1001

0110
1011

11

01
01
01
01
01
01
01
11
00
10
11
01
01
01
01
11
10
00
00
01
10
10
11
01
00
10
01
01
01
11
01
11
01

11
01
00
00
10
01
01
10
101

111

010
10
10
10
10
10
11
10
01
01
10
10
10
10
11
11
00
00
00
11
01
01
10
10
01
00
10
10
11
10
11
10
11
10
10
00
01
00
10
11
01
01
11
1

010
10
10
10
10
10
11
10
01
01
10
10
10
10
11
11
00
00
00
11
01
01
10
10
01
00
10
10
11
10
11
10
11
10
10
00
01
00
10
11
01
01
11
1

010
10
10
10
10
10
11
10
01
01
10
10
10
10
11

11
00

00
00

11
01

01
10

10
01

00
10

10
11

10
11

10
11

10
10

00
01

00
10

11
01
01
11

1

010
10
10
10
10

10
11

10
01

01
10

10
10

10
11

11
00

00
00

11
01

01
10

10
01

00
10

10
11

10
11

10
11

10
10

00
01

00
10

11
01

01
11

1

Chapter 4
Working with text files

Chapter 4 Working with text files

64

Data files fall into two categories, files that store information in plain text
and those that store information in a binary format. Binary formats are in
general more space-efficient than text files, but have the drawback that
they can’t be opened with a regular text editor (cf. § 3.2) and can usually
only be read and written by the programs that created them. Examples of
binary files are .Rdata files, zip files and GenomeStudio’s project files, but
also the .doc and .xls files from MS Office. Plain text files, sometimes
also called ASCII files, are much easier to handle. As long as they are
small they can be edited easily, without the need of special programs.
However, as they grow in size, up to several GB for a file with imputed
data for chromosome 1 in ERF, things become problematic. For example,
to transfer a file of 10GB from the server to your office PC via the 100Mb/s
office network would take at least

10 × 1024MB
100Mbit/s × 8bits/byte = 819.2 s ≈ 14min

and then you would still need to do the editing, and you could run
into trouble there to, because the file is larger than the roughly 4GB
of memory (RAM) installed in your PC. And finally, you would need to
upload the file again after finishing the edit.

Even if you would try to edit the same file directly on the server using one
of the editors mentioned in § 3.2 (which would, of course be the smarter
thing to do), the loading time would be considerable. That is why in this
chapter you will learn to use several utilities for processing (large) text
files. Most of these utilities parse the files line by line, which solves the
memory problem described earlier.

4.1 Converting between Windows and Linux format

Some Linux programs may have difficulty reading plain text files created
with a text editor on Windows (e.g. Notepad). This is caused by the fact
that historically both operating systems use a different way to encode the
end-of-line. For example, opening a text file that was created in Linux
on a Windows PC (with Notepad, for example) will show all text on one

64

4.1 Converting between Windows and Linux format

65

long line. Conversely, a Windows file opened with e.g. less will show the
Windows end-of-lines as ^M. Two programs exist to solve this problem:
dos2unix and, for the reverse conversion, unix2dosa). dos2unix

unix2dos

4.1.1 Exercises

Exercise E4.1 Converting files from Windows format to Linux format

a) By default dos2unix does the conversion in place, i.e. the original
file is overwritten. Which command line option should be given to
write the converted output to a new file?

It is not possible to see the difference between a file created in the Win-
dows format and one in the Linux format when using paging tools like
more or less. Most Linux systems will display and use the Windows files
without problems.

The Linux command filefile tries to classify each file you give as an argu-
ment. For a .jpg image, for example it will give the following results:

$ file linux-penguin.jpg
linux-penguin.jpg: JPEG image data, JFIF standard 1.0

This is useful, because if I would make a simple text file and name it
text.jpg, having the .jpg extension alone does not automatically make
it an image. And the file command tells me so:

$ cat text.jpg
Hello there, this is a text file
$ file text.jpg
text.jpg: ASCII text

a) For those of you who are young: MS-DOS was the first OS created by Microsoft, back in
1981, way before they created the MS Windows family.

65

Chapter 4 Working with text files

66

b) Create a text file with your favourite editor. Use the file command
to check its type. Convert it to Windows/DOS format without over-
writing the old one and check the type of the new file.

4.2 grep: finding text

The grep command is used to quickly find lines containing a given textgrep
pattern in one or more files. The basic syntax is

$ grep searchpattern files

If searchpattern consists of more than one word it has to be enclosed
in quotes.

The most-used options for grep are:

-F treat the search text as fixed, litteral text, not as a pattern. By de-grep -F
fault the search text is a so-called basic regular expression, not just
litteral text (cf. § 8.1). This speeds up the grep process enormously,
something very useful given the enormous size of many of the files
used in the life sciences. So, unless you know what regular expres-
sions are and how to use them I strongly encourage you to always
add this option!

-w assume that the search text is a word (and thus should be sur-
rounded by white space (spaces, tabs)). Can be very important!grep -w
For example, if you are looking for a person with ID id10, using
grep id10 myfile.txt will also print lines containing id100,
id10a, fid10212, etc. The -w option will only return the lines you
are actually looking for.

-i makes the search case-insensitivegrep -i
-n adds the line number on which the match occured to the outputgrep -n
-c (count) don’t print the lines matching the search text, but only printgrep -c

the number of lines with a match
-v print all lines not matching the search textgrep -v

-An Print n lines after the matchgrep -A
-Bn Print n lines before the matchgrep -B

66

4.2 grep: finding text

67

-Cn Print n lines before and after (the C stands for “context”) the matchgrep -C

Let’s have a look at some examples with a slightly modified version of the
file used for sorting in § 3.12. First, print the contents of the file on the
screen:

$ cat grepexample.txt
1200 1234 4567
34 some text here
here is a number: 465
2340
Hello
Hello there
1200
982 id120 exm12312
the archive is lost
1
Once upon a time
0001

Now, print only the lines containing the text 34.

$ grep 34 grepexample.txt
1200 1234 4567
34 some text here
2340

Print the lines containing a 34 “on its own”, i.e. surrounded by white
space:

$ grep -w 34 grepexample.txt
34 some text here

Notice the difference between the last two outputs.

The -n option adds the line number on which the match was found:

$ grep -n 0 grepexample.txt
1:1200 1234 4567
4:2340
7:1200

67

Chapter 4 Working with text files

68

8:982 id120 exm12312
12:0001

If you just want to count how many times a certain text occurs, use the
-c option:

$ grep -c 0 grepexample.txt
5

The following examples show how to use the after, before and context
options:

$ grep -A2 archive grepexample.txt
the archive is lost
1
Once upon a time
$ grep -B2 archive grepexample.txt
1200
982 id120 exm12312
the archive is lost
$ grep -C1 archive grepexample.txt
1200
982 id120 exm12312
the archive is lost
1
$ grep -A2 1 grepexample.txt
1200 1234 4567
34 some text here
here is a number: 465
--
1200
982 id120 exm12312
the archive is lost
1
Once upon a time
0001

In the last example the -- are inserted to separate the output for the
first match (the line with 1200 1234 4567) and the second match (the

68

4.2 grep: finding text

69

line with only 1200). There is no -- between the second and the third,
fourth and fifth matches (the lines with id120, 1 and 0001, respectively),
because these overlap or are directly connected. , and

If you have more than one search term it is easiest to save them in a
file, one term per line, and feed that file to grep with the -f option. For grep -f
example, if you have a list of SNPs (e.g. their rs IDs) in a file called snplist
you can look up the information about these SNPs from the genotype
imputation files with

$ grep -Fwf snplist /path/to/your/imputation/*.info

I’ve added the options -F and -w as well to speed up the search and only
look for matches of the full word.

4.2.1 Exercises

Exercise E4.2 Searching for a given text in a file

a) Given a file in which the first column contains ID numbers of in-
dividuals and the second column contains the values for a given
phenotype for those individuals, how would you check whether a
certain individual ID is present?

b) Go to the directory with the extracted exercise files (cf. Exer-
cise E3.10 on page 37).

c) Which grep option allows you to recursively search in directories?
Use it to find all occurrences of the term “trait” in the subdirector-
ies.

d) In the output of the previous command there is also a line that has
the word “traits” (plural) in it. If you are only looking for the single
word “trait”, which grep option would you use?

69

Chapter 4 Working with text files

70

e) By default, grep is case sensitive. Find out how to do a case insens-
itive search and see whether there are occurrences of the word
“trait” with capital letters in them.

f) Spotting the exact location of the keyword in the output of
grep is sometimes difficult. Try the --color=auto option (or
--colour=auto if you are British) for a few of the previous grep
commands and see the difference.

4.3 sed, the Stream EDitor

An operation that occurs frequently is replacing a certain text in a file with
other text. The command sed, for Stream EDitor, can do this (and a lot ofsed
other things) very well. By default sed sends its output to the screen so
you have to used output redirection (cf. § 3.13) to send it to a file. The
structure of a sed search-replace operation looks like this:
$ sed 's/old text/new text/g' some_file

Here the s stands for “substitute” and the g for “global”, without g only
the first occurence of old text in each line is replaced. Sometimes you
need to substitute the / character itself (if you are changing a directory
path for example). This can be awkward with the normal sed substitution
command. Luckily the / symbol in the sed command can be replaced
with other symbols, for example a colon or semi-colon. The following
command is equal to the one above.
sed 's;old text;new text;g' some_file

By default sed sends its output to the screen. For this small file that is
not a problem, but for a large file your screen will soon be too small. It
would be much nicer to have this output in a separate file. There are two
ways to do this. The first one is obvious after the exercises in § 3.13: use
> to send the output to a new file. The second method will be discussed
in the exercises.

Another common use of sed is to remove a given line, say line 3, from a
file:

70

4.3 sed, the Stream EDitor

71

$ more some_file
This is a header
Line 2
Line 3
Line 4
Line 5
Line 6
This is the footer
$ sed '3d' some_file
This is a header
Line 2
Line 4
Line 5
Line 6
This is the footer

In the next two examples we first delete lines 2 to 4 and then show how
to delete all lines containing the text “This is”.

$ sed '2,4d' some_file
This is a header
Line 5
Line 6
This is the footer
$ sed '/This is/d' some_file
Line 2
Line 3
Line 4
Line 5
Line 6

To print only line 5 of a file use

$ sed -n '5p' some_file
Line 5

Without the -n option sed prints all lines in the file.

71

Chapter 4 Working with text files

72

4.3.1 Exercises

Exercise E4.3** Using sed for search-replace operations

a) Go to the directory that contains the exercise files you extracted
from the tar.gz file in Exercise E3.10. Go to the directory called
Exercise_sed. List the contents of the directory.

b) There should be one file called file.csv, a file with comma-
separated values. Show the contents of the file.

c) Some programs only accept tab-delimited files as input, so we
have to replace all comma’s with tabs. Tabs are indicated by \t
in many programs. Write a sed command to replace the commas
with tabs.

d) Asmentioned earlier, sed sends its output to the screen by default.
Send the output to a file called file.tsv using output redirection.

The second method is to edit the file “in place” instead of creating a new
file. This is especially handy for large files. The sed option -ised -i is used to
specify in-place editing. Be careful, there is no way back!

e) Write a sed one-liner that replaces all tabs in the .tsv file with
semi-colons. Use the -i option.

4.4 cut: selecting columns

A task you will come across often is selecting columns from a data file for
further processing. For example, one of the output files of genotype im-
putation programs is the so-called info file. This file contains information
on the imputed SNPs (one SNP per row), with the first column being the rs
ID or chromosome:position combination, the second and third columns
being the major and the minor allele, the fourth column being the MAF,

72

4.5 GAWK: more fun with columns

73

etc. The 7th column usually contains the R2 values, which are a measure
for the imputation quality.

To select for example only the SNP ID and the R2 value you can use the
cut command. A typical cut command looks like this: cut

$ cut options file

The most important command line option for cut is -f. The f stands for cut -f
“field” (a.k.a. column). This option is followed by one or more numbers
that tell cut which columns to print, for example

1 $ cut -f 1 file
2 $ cut -f 1,2,6 file
3 $ cut -f 6-10 file
4 $ cut -f 4- file

The first line prints the first field from file, the second example prints
columns one, two and six. The thrid example prints columns 6 to ten, and
the last example prints columns 4 and higher.

By default cut assumes that the columns are separated by a TAB, if that is
not the case in your file you have to specify the delimiter on the command
line using the -d option followed by the delimiter in double quotes. For cut -d
example, to tell cut that columns are separated by a space use cut ←↩
-d " ", if the values are separeted by comma’s (a .csv file), use cut ←↩
-d ",", etc.

4.5 GAWK: more fun with columns

GAWK is like a big brother of cut. It is a scripting language that is mostly
usedwith data that can be divided into records and fields. Thismay sound
a bit abstract but if you replace “records” with “lines” and “fields” with
“columns” (just like we did with cut) you’ll get the idea. In fact, you can
tell GAWK what to consider as a record and what as a field by telling it
which characters to use as record separators and which to use as field
separators. By default fields are separated by white space (spaces, tabs)
and records are separated by a newline characters.

73

Chapter 4 Working with text files

74

The name GAWK stands for GNU AWK. AWK is the original program from
before the 1980s and is named after its original authors: Al Aho, Peter
J. Weinberger and Brian Kernighan. GAWK extends the AWK language, but
for most common tasks the languages are the same. On modern Linux
systems the awk program is usually a link to the gawk program.

The basic structure of GAWK commands is as follows:gawk

$ gawk 'condition {action}' file

For each line (record) in the file GAWK will test the condition and if it is
true it will perform the action, usually modifying or printing a column
(field). In fact, the default action, i.e. if no action was specified, is to print
the whole record (line). Like so many other tools, gawk sends its output
to the screen, so use output redirection (§ 3.13) to send the output to a
file.

Fields in GAWK are noted by $1, $2, etc. (for the first and second field). The
last field is denoted by $NF and $0 denotes the whole record (line). Let’s
illustrate this with a couple of examples. In the sed exercises you created
a file called file.tsv with tab-separated columns, let’s print columns 2
and 4:

$ gawk '{print $2, $4}' file.tsv
field1 field3
12 14
22 24

There are a few things to note about this example. First, the “condition”
is missing in the gawk command. This is no problem, it simply means
that it should perform the “action” for every line. Second, the “action”
is print $2, $4 which means print columns two and four, notice the
comma, it is necessary (check what happens if you forget it)! The third
point to note is that the first line of the output seems to be wrong, you
would expect field2 field4, wouldn’t you? However, check the first line
of the input file:

$ head -n 1 file.tsv
field1 field2 field3 field4

74

4.5 GAWK: more fun with columns

75

By default gawk uses all forms of whitespace as field separator (and not
just tabs as you might have wanted), so $1 is the # and $2 is field1 and
therefore line 1 has a total of five fields. If you want gawk to use a different
field separator you can specify it with the -F option: gawk -F

$ gawk -F "\t" '{print $2, $4}' file.tsv
field2 field4
12 14
22 24

In the following example the “condition” will be used to only print lines
where the second column contains a 2:

$ gawk -F "\t" '$2 ~ "2" {print $0}' file.tsv
11 12 13 14
21 22 23 24

If you want to be more strict and only print lines that have exactly a 2 in
the second column use == instead of ~:

$ gawk -F "\t" '$2 == "2" {print $0}' file.tsv

You see: no result. If it doesn’t matter in which column the 2 appears
use

$ gawk -F "\t" '/2/ {print $0}' file.tsv
field1 field2 field3 field4
11 12 13 14
21 22 23 24

Of course this shows all lines in this case. Note that since we print the
whole line it would have been easier to use grep here.

If more than one condition needs to be satisfied before we want a line
to be printed, this can be done as well, for example by using the logical
operators “and” (&&) or “or” (||). For example, the following prints only
the lines where the value in the second column is larger than 10 and the
last column is less than 20:

$ gawk -F "\t" '$2 > 10 && $4 < 20 {print $0}' file.tsv
11 12 13 14

75

Chapter 4 Working with text files

76

GAWK can not only be used to extract text, but also to change it. The first
example below prints all columns except the second and third. It does
so by changing the value of these fields to an empty string ("") before
printing the whole line. The example after that uses the same technique
to change the third column to NA:

$ gawk '{$2=$3=""; print $0}' file.tsv
field3 field4
11 14
21 24
$ gawk '{$3="NA"; print $0}' file.tsv
field1 NA field3 field4
11 12 NA 14
21 22 NA 24

Notice that in both cases the header is also changed, which is probably
OK in the first example, but not in the second. To make GAWK ignore the
header we have to make use of the fact that GAWK partitions its input
into records and fields (by default lines and columns as discussed be-
fore). To make GAWK leave the header untouched we check the value of
the variable NR, which always contains the current record number (NR is
somewhat similar to NF which always contains the total number of fields
in the current record):

$ gawk '{if (NR!=1) {$3="NA"}; print $0}' file.tsv
field1 field2 field3 field4
11 12 NA 14
21 22 NA 24

The explanation of this command is: “For each line in file.tsv do the
following: If the record number (the line number in this case) is not equal
to one, set the third column to NA. Then (for all records) print the whole
line”. In a similar way a combination of record number and field number
can be used to print one element of the file, say the second column of
the third line:

$ gawk '{if (NR==3) print $2}' file.tsv
22

76

4.5 GAWK: more fun with columns

77

GAWK can also work on multiple files: just add more than one file name
on the command line. In this case, the variable NR runs over all records
(lines) of all files. The variable FNR contains the number of the current
record in the current file. In other words, NR starts at 0 and keeps in-
creasing, whereas FNR gets reset to 0 for each new file that is read in your
GAWK command.

One example of how to use these variables is the following. Say, you
have several files, each with a single header line that you would like to
concatenate. This looks similar to what you did in Exercise E3.16, where
cat was used to concatenate the files. However, in this case, the header
line in each of the files makes the cat approach non-trivial. With GAWK,
however, things become easy. Let’s say we have three files named file1,
file2 and file3, each with two lines. So if we would use cat we’d get:

$ cat file?
header
line in file 1
header
line in file 2
header
line in file 3

Using GAWK’s NR and FNR fields, we can do the following to not print the
headers from all but the first file:

$ gawk 'NR==1 {print $0}; FNR!=1 {print $0}' file?
header
line in file 1
line in file 2
line in file 3

Here, the first GAWK command, NR==1 {print $0}, means: if the record
number is equal to 1, print the whole line. Given that NR is a continuously
increasing number, this happens only once (and prints the header line).
The next GAWK command, FNR!=1 {print $0}, means: if the file record
number (i.e. the record number that restarts for every file that is read)
is not equal to 1, print the whole line. In other words, for each file that
is read by GAWK, we print all lines except the first one. Given that we

77

Chapter 4 Working with text files

78

already printed the first line of the first file with the NR==1 line, this gives
us exactly what we want. Actually, given that the default action of GAWK
is to print the entire record, the command can be written even shorter:

$ gawk 'NR==1; FNR!=1' file?

4.5.1 Exercises

Exercise E4.4*** Creating a phenotype file from .ped data
In this exercise you will learn how to extract data from a file and re-

format it for use by another program. Tasks like this are very common
because most programs restrict themselves to one particular task (the
UNIX philosophy for programs is “Write programs that do one thing and
do it well” [7, Chapter 1.6], which is why you have to learn about so many
small programs in this course).

a) Go to the directory that contains the exercise files you extracted
from the tar.gz file in Exercise E3.10 in § 3.9.4. Go to the directory
called Exercise_ped2phe.

b) Look for the file chr.ped.

The first six columns of this file in Merlinb) .ped format are FAMILY_ID,
PERSON_ID, FATHER_ID, MOTHER_ID, SEX and AFFECTED, the other columns
contain genotypes.

c) Show the first six columns of the first ten lines of the .ped file.

d) In your answer to the previous question you have probably made
use of the head command and the | symbol. Did you put head in
front of the pipe symbol or after (as in some command | head vs.
head chr.ped | some command)? What’s the difference?

b) See http://www.sph.umich.edu/csg/abecasis/merlin/tour/input_files.html
for more info on the file format.

78

http://www.sph.umich.edu/csg/abecasis/merlin/tour/input_files.html

4.6 Putting it all together

79

A simple .phe file as used by e.g. ProbABEL [6] consists of the following
header and the corresponding column data: id (the PERSON_ID from the
.ped file), sex, bt1; the last column is for a binary trait, in our case the
AFFECTED status.

e) Create a .phe file (without the headerc)) from the complete .ped
file (not only the first lines). Hint: use output redirection to create
the new file.

One problem remains, however. In .ped files women are coded as 2, men
as 1. ProbABEL expects 0 for women. GAWK can be used for more than
just printing columns, it is a script language of its own. In GAWK several
commands can be written on a single line by separating themwith a semi-
colon. Variables exist as well, as do if-clauses and for-loops. The one-
liner that fixes both the header and the sex is shown in the answers.

4.6 Putting it all together

4.6.1 Exercises

Exercise E4.5**** Filtering output using gawk (thanks to Najaf Amin)
In this exercise GAWK will be used to filter output of another program in
such a way that we end up with only the parts we are interested in.

So far GAWK has been used in so-called one-liners, relatively simple com-
mands that only do one or two things. For the task at hand we will take
a look at a GAWK script to get a glimpse of the full power of the GAWK
language.

a) If you haven’t downloaded and extracted the tar.gz file with ex-
ercise data yet (Exercise E3.10, page 37), do so now. The files for
this exercise can be found in the directory Exercise_gawk_snps.

c) It is possible to add the header in the same one liner as well, cf. the examples
in the GAWK manual at http://www.gnu.org/software/gawk/manual/gawk.html#
Print-Examples.

79

http://www.gnu.org/software/gawk/manual/gawk.html#Print-Examples
http://www.gnu.org/software/gawk/manual/gawk.html#Print-Examples

Chapter 4 Working with text files

80

Go to that directory and see which files are there. What is the file
size of the files?

The .awk file is the GAWK script. The file screen.1.out contains the out-
put of some quantitative trait analysis.

b) Use a pager to browse through the contents of the output file. After
a header of several lines the data is quite regular and consists of
tables for different SNPs for a number of traits.

GAWK is great when working with fields as has been shown in several
of the previous exercises. Fields are denoted by $1, $2, $3, etc.d) The
last field is indicated by $NF, where NF stands for “Number of Fields”.
Normally, fields are separated by white space but this can be changed.
In order to check whether a certain field contains a certain word use the
~ operator. For example:

$2 ~ /word/ {print $0}

c) Compare the differences between the following GAWK one-liners
and explain.

$ gawk '/trait/ {print $0}' screen.1.out
$ gawk '$2 ~ /trait/ {print $0}' screen.1.out

Back to the task at hand: writing a filter script for the output. Najaf
wanted to extract from this output only those SNPs that had a p-value
listed for allele 1. For each of those SNPs she wanted the both the F and
the p columns printed. The names of the traits should be listed as well.
A typical part of the screen.1.out file is reproduced here:

1 Testing trait: NRUWE
2 ===
3
4 Testing marker: rs884080
5 ---
6
7 Allele df(0) Rsq(0) df(I) Rsq(I) F p

d) Note the difference with Bash (Chapter 5) where these would refer to the command line
arguments.

80

4.6 Putting it all together

81

8 1 366 0.05 365 0.06 3.13 0.0776 (241/372 probands)
9 2 366 0.05 365 0.06 3.13 0.0776 (241/372 probands)
10
11 Testing marker: rs2017143
12 ---
13
14 Allele df(0) Rsq(0) df(I) Rsq(I) F p
15 1 408 0.04 407 0.04 0.62 (278/414 probands)
16 2 408 0.04 407 0.04 0.62 (278/414 probands)

The desired filtered output for this part should be

trait: NRUWE
rs884080 3.13 0.0776

d) Before starting to write a script it is always good to describe the
steps that need to be taken in a schematic way. Without thinking in
any programming or scripting language code, can you write down
which steps should be taken to generate such output?

This is the contents of the get_sign_snps.awk script (lines starting with
are comments):

1 # This is a GAWK script that summarises
2 # the output of QT analysis
3 $2 ~ /trait/ {print $2, $NF};
4 $2 ~ /marker/ {snp = $NF};
5 $1 ~ "1" { if ($7 != "(") {
6 print snp, $6, $7;
7 }

Let’s walk through it line by line. Lines one and two contain comments.
Like in Re) any line that starts with a # is treated as a comment and is
ignored by GAWK. On line three the first serious GAWK command is listed:
“If field 2 contains the word trait, print both the second and the last field”.
In the next line we look for the wordmarker in the second field. If that is
the case, we store the contents of the last field (the name of the marker)
in the variable snp so that it can be used later on. Lines 5 – 8 are a bit
e) As well as several other scripting languages like Bash (Chapter 5) and Perl.

81

Chapter 4 Working with text files

82

more complicated because the command that is executed if the pattern
is matched is not a simple print statement, but an if-clause. What these
lines say in plain English is this: “If field one contains the value 1, take a
look at field 7. If field 7 is not equal to the opening bracket ((that means
the p-value column is not empty), print the variable snp we have saved in
line 4, followed by fields 6 and 7 (containing the F and p-value).” Compare
this with the schema you have made previously.

e) Which command line option is needed to run a GAWK script instead
of the “normal” way where the GAWK commands are read from the
command line? Run the GAWK script and send the output to a file.

f) How many lines does your output file have?

g) How many traits were used for this analysis? And what where their
names?

82

5010101010101011100101101010101111000000110101101001001010111011101110100001001011010111101

01
010

101
0101

11001
01101010

1011110000001101011010010010101110111011101000010010110101111

01
01
01

010
101

011
100

1011
0101

010111
10000001101

011010010010101110111011101000010010110101111

01
01
01
01
01
01

01
110

010
110

101
010

111
100

0000
1101

0110
10010

01010
111011

1011101
0000100101

10101111

01
01
01
01
01
01
01
11
00
10
11

01
01
01
01
111

000
000

110
101

101
001

001
010

111
011

101
1101

0000
1001

0110
1011

11

01
01
01
01
01
01
01
11
00
10
11
01
01
01
01
11
10
00
00
01
10
10
11
01
00
10
01
01
01
11
01
11
01

11
01
00
00
10
01
01
10
101

111

010
10
10
10
10
10
11
10
01
01
10
10
10
10
11
11
00
00
00
11
01
01
10
10
01
00
10
10
11
10
11
10
11
10
10
00
01
00
10
11
01
01
11
1

010
10
10
10
10
10
11
10
01
01
10
10
10
10
11
11
00
00
00
11
01
01
10
10
01
00
10
10
11
10
11
10
11
10
10
00
01
00
10
11
01
01
11
1

010
10
10
10
10
10
11
10
01
01
10
10
10
10
11

11
00

00
00

11
01

01
10

10
01

00
10

10
11

10
11

10
11

10
10

00
01

00
10

11
01
01
11

1

010
10
10
10
10

10
11

10
01

01
10

10
10

10
11

11
00

00
00

11
01

01
10

10
01

00
10

10
11

10
11

10
11

10
10

00
01

00
10

11
01

01
11

1

Chapter 5
Writing Bash scripts

Chapter 5 Writing Bash scripts

86

Onmost GNU/Linux systems the default shell is Bash. Besides its “normal”
tasks as a shell (e.g. presenting the command line prompt to you, keeping
track of your foreground and background jobs as well as your command
history) it also allows you to write scripts. Scripts are an easy way to
automate repetitive or complex tasks. Any command you type on the
command line can appear in a script and vice versa, any command you see
in a script should work on the command line (although you have to take
care when using variables, making sure they have been defined, etc.).

5.1 A simple script

The standard ingredient of every Bash script is that it starts with the fol-
lowing line:

#! /bin/bash

The line helps the shell to understand in what kind of language the script
is writtena). A second ingredient in any script is the use of comments that
explain what the script does. In Bash comments are lines starting with
a hash (#). Writing output to the screen is a basic requirement of every
script in any language. Bash uses the echo command for that:echo

echo "This is my super script"

Lets make a small script with the information we have so far and call it
first_script.sh. It is custom to give shell scripts the .sh extension,
but unlike in Windows that does not mean that every file that has a name
ending in .sh will be run by Bash.

Here is the contents of a simple script:

$ cat first_script.sh
#! /bin/bash

This is my first script that prints text on the screen
echo "This is my super script"

a) Other languages like Perl have a similar first line.

86

5.1 A simple script

87

You can run a Bash script in several ways. The first one is perhaps the
most straight forward:

$ bash first_script.sh
This is my super script

The second way is used more often, it involves making the script execut-
able and then running it:

1 $ ls -l first_script.sh
2 -rw-r----- 1 lennart lennart 101 2011-10-25 09:24 first_script.sh
3 $ chmod a+x first_script.sh
4 $ ls -l first_script.sh
5 -rwxr-x--x 1 lennart lennart 101 2011-10-25 09:24 first_script.sh
6 $./first_script.sh
7 This is my super script

In line 2 the permissions of the script are shown. The execute permission
(cf. § 3.10) is not set, so in line 3 we set it. As a result we can run the script
as shown in line 6. Note the ./ in front of the file name of the script. As
you remember from § 3.6.1, the . shortcut (when talking about directories)
means the pwd, so here we explicitely state that we want to run the script
first_script.sh located in the present directory. Whithout an explicit
statement of the location of the script it won’t run. You can try to run

$ first_script.sh
first_script.sh: command not found

but as you can see, that doesn’t workb). The reason for this is that (un-
less you specify the path to an executable script of program explicitly)
the shell only looks for executables in a few pre-configured directories
and…the pwd (i.e. .) is not one of those directories. As a result you get
the command not found messagec).

b) As a matter of fact, you might have noticed that Tab-completion also didn’t work and
you had to type the full name of the script by hand.

c) The reason for not looking for executable programs in the pwd is a safety measure.
Imagine that you have an empty file called ls in the pwd. Had the pwd been in the
search path for executable files this empty ls would be found and running ls would
not give any results at all in that directory, while ls would have worked as expected
in all other directories. To find out the default search paths type: echo $PATH.

87

Chapter 5 Writing Bash scripts

88

As your script grows the probability that you make typo or some other
error also increases. To check where in the script the error occurs use
the -x option to bash. Take a look at the following (useless) script andbash -x
try to spot the mistake.

1 #! /bin/bash
2 # A script to show how 'bash -x' can help finding errors.
3
4 echo "Welcome to the test script"
5
6 time=5
7 echo "This script will wait two times for ${time} seconds"
8 sleep ${time}
9 sleep ${tine}
10 echo "Done"

Running this script in the normal way gives an error:

$./errortest.sh
Welcome to the test script
This script will wait two times for 5 seconds
sleep: missing operand
Try `sleep --help' for more information.
Done

From this it is already easy to see that the problem lies with one of the
sleep commands. Running it with bash -x will point out which one:

$ bash -x ./errortest.sh
+ echo 'Welcome to the test script'
Welcome to the test script
+ time=5
+ echo 'This script will wait for 5 seconds'
This script will wait for 5 seconds
+ sleep 5
+ sleep
sleep: missing operand
Try `sleep --help' for more information.
+ echo Done

88

5.2 Using variables

89

Done

The lines starting with + are the lines as they appear in the script, but
with all variables filled in. This output shows that the problem lies with
the second sleep command. Like the first one there should have been a
5 following it. Closer inspection shows that there is a typo in the variable
name. This process of finding a bug in a script is called “debugging”.

Exercise E5.1 A simple script
In this exercise you are going to write a script similar to the one in the

text to get used to the Bash language.

a) Go to ~/LinuxCourse/ and open a new file in your favourite editor.

b) Now use the echo command to print the text Hello World on the
screen. Save the file (in order to point out that the file is a shell
script, it is customary to use the extension .sh for a script file
name.)

c) In order to be able to run the script it should be made executable
by setting the executable bit. Find out what the permissions (read,
write and or execute) are set on your script file.

d) Set the executable bit with the chmod command and run the script
by typing its name preceded by ./, e.g.

$./myscript.sh

5.2 Using variables

With the knowledge of the previous section simple scripts can be written.
For example, you can write a Bash script that sets up a directory for a new
project by copying files and subdirectories from a template set and then
run a series of pre-tested commands, filter the output and finally remove
any intermediate results. One of the major things missing, however, is
how to use variables. That will be the topic of this section.

89

Chapter 5 Writing Bash scripts

90

The use of variables in a script is very important. Variables allow you
to make general, versatile scripts as well as saving you a lot of typing.
Moreover, the use of clear variable names can greatly help someone else
(or yourself, six months from now) to understand what the script does (or
is supposed to do).

In bash variables are defined in the following way:

var="Some text"

It is important to note that spaces are not allowed around the = sign. To
use a variable add a $ and (as a safety precaution) enclose the variable
name in curly braces ({}), like this:

echo "The contents of variable var is: ${var}."

Putting these steps in a complete script would look like this:

#! /bin/bash

var="I am a variable"

echo "The contents of variable var is: ${var}."

To put the output of a command into a variable use the $() construction.
This is how to put the number of lines of a certain file into a variable, for
example:

linecount=$(wc -l myfile.txt | gawk '{print $1}')

The pipe to GAWK is necessary because the output of wc -l not only
prints the number of lines, but also the file name, in which we are not
interested. Here is a complete script:

1 $ cat countMyLines.sh
2 #! /bin/bash
3 # This script counts the number of lines it contains
4
5 linecount=$(wc -l countMyLines.sh | gawk '{print $1}')
6
7 echo "This script contained ${linecount} lines."

90

5.2 Using variables

91

8 $./countMyLines.sh
9 This script contained 6 lines.

This script can be enhanced a bit, because as it is now the file name of the
script is hard coded, i.e. if the script is renamed, we need to change the
code in the script as well to make it work as expected. In Bash scripts the
variables ${1}, ${2}, etc. contain the arguments given on the command
line when calling the script and ${0} contains the name of the script
itself. Note that these variables have nothing to do with the variables
for fields/columns in GAWK, even though they follow a similar naming
scheme. Using this information in the script we get:

1 #! /bin/bash
2 # This script counts the number of lines it contains
3
4 echo "The name of this script is ${0}."
5 echo "The first two command line arguments are ${1} and ${2}."
6
7 linecount=$(wc -l ${0} | gawk '{print $1}')
8
9 echo "This script contained ${linecount} lines."

Running the script we get
$./countMyLines2.sh
The name of this script is ./countMyLines2.sh.
The first two command line arguments are is and .
This script contained 9 lines.
$./countMyLines2.sh arg1 arg2
The name of this script is ./countMyLines2.sh.
The first two command line arguments are is arg1 and arg2.
This script contained 9 lines.

The first time the script is called without arguments. As a result noth-
ing is filled in in the printed line. The second time the script is run two
arguments are given and the are printed as expected.

As shown above, when printing text with echo, characters like $ and {},
but also !, get interpreted by the shell and as a result are not printed
on the screen. To print text literally use single quotes instead of double
quotes:

91

Chapter 5 Writing Bash scripts

92

$ echo "Hello, ${}, #, !"
bash: Hello, ${}, #, !: bad substitution
$ echo 'Hello, ${}, #, !'
Hello, ${}, #, !

Exercise E5.2** Using variables

Add a variable to the script of the previous exercise. The variable name
should be greeting, because we would like the script to print Good ←↩
morning World if the variable has the value Good morning.

Exercise E5.3** Using command line arguments in your script

Scripts becomemuchmore useful when they accept command line argu-
ment. You could, for example, make a script that runs a certain analysis
for one chromosome. But then you would have to modify the script each
time you want to run it for another chromosome. By using command line
arguments the script can be run for any chromosome you want, for ex-
ample, for chromosome 16 you would run:

$./myscript.sh 16

a) In a shell script the command line arguments are automatically
saved in the variables ${1}, ${2}, etc. Write a script that print the
first three argument in reverse order.

b) Modify the script from exercise E5.2 in such a way that instead of
the “Good morning” greeting it uses the first argument as greeting.

c) Arguments are normally separated by spaces, you might have
come across this in the previous question. Can you think of a way
to work around this problem?

92

5.3 Using shell variables in GAWK

93

5.3 Using shell variables in GAWK

Since a Bash script is nothing more than a set of commands that can also
be run on the CLI, it is quite common to use other scripting languages
within a Bash script.

This section shows how to send the contents of a Bash variable to GAWK.
One reason to do this would be to make use of GAWK’s column filtering
capabilities, another would be the fact that doing arithmetic in Bash is
difficult, whereas it is easy to do in GAWK. Consider for example a script
that parses a set of files for a given SNP rs name and in one of the steps
we would like to print only a set of given columns from a ProbABEL GWAS
output. A schematic script might look like this:

1 #! /bin/bash
2 # This script does all kinds of stuff while looking for SNPs
3
4 # The first argument for this script is a SNP rs name
5 rsname=${1}
6 # The second argument for this script is a ProbABEL file name
7 filename=${2}
8
9 # Do other things here...
10
11 # Print only columns MAF, Rsq and loglik for the given SNP
12 gawk '$1==snpname {print $5, $7, $NF}' ${filename}

The question here is how to get the contents of the Bash variable rsname
into the GAWK variable named snpname in the last line. Because the dol-
lar signs mean different things in Bash and in GAWK some form of “trans-
lation” is necessary. This can be done using the -v option of GAWK. A gawk -v
simple example is to simply print the value of the variable on each of the
lines of the output:

$ gawk -v var="some text" '{print var, $1, $3}' file.tsv
some text # field2
some text 11 13
some text 21 23

93

Chapter 5 Writing Bash scripts

94

Here we used the tsv file created in one of the exercises on sed in § 4.3.
Alternatively, to print the third column of a file we could use the follow-
ing:

$ gawk -v col=3 '{print $col}' file.tsv
field2
13
23

Going back to the problem in line 12 of the example script above we can
now see that this line should read:
gawk -v snpname=${rsname} '$1==snpname {print $5, $7, $NF}' ${filename}

What is done here is that the contents of the shell variable S{rsname} is
copied to the GAWK variable snpnamed). In the “regular” part of the GAWK
command we check whether column 1 is equal to snpname and if so, we
print column 5, 7 and the last column.

5.4 Loops, for and while

A very powerful part of any scripting language is the use of loops. Loops
allow one to easily program repetitive tasks. One of the loops commonly
used in Bash scripts is the for-loop. A basic for-loop looks like this:for

1 for var in range; do
2 commands
3 done

Here, range lists the items that var steps through. For each item in range
the commands are executed. The easiest way to generate a sequence of
numbers is to use the notation {start..stop}. For example

for i in {1..22}; do
echo "This is chromosome ${i}"

done

d) You could have used the same names for both variables, but that’s not necessary. I
chose two different ones for clarity.

94

5.4 Loops, for and while

95

prints 22 messages on the screen. In this case the variable i is increased
by one each time the loop is run. In order to use a different step size
use {start..stop..step}. As an example, let’s print the odd numbers
between one and ten on a single line:

$ echo {1..10..2}
1 3 5 7 9

As you may have already noted, by default files are listed in alphabetical
order when using ls. As a result files with numbers in them are not always
sorted in the order you expect them:

$ ls -lh file*
-rw-r----- 1 lennart lennart 64 2011-01-27 18:08 file1
-rw-r----- 1 lennart lennart 12 2011-08-18 09:30 file10
-rw-r----- 1 lennart lennart 66 2011-01-27 18:08 file2
-rw-r----- 1 lennart lennart 7 2011-08-18 09:29 file20
-rw-r----- 1 lennart lennart 64 2011-01-27 18:08 file3

This is easily fixed by using one or more leading zeroes in your file
names:

$ ls -lh file*
-rw-r----- 1 lennart lennart 64 2011-08-18 09:35 file01
-rw-r----- 1 lennart lennart 66 2011-08-18 09:35 file02
-rw-r----- 1 lennart lennart 64 2011-08-18 09:34 file03
-rw-r----- 1 lennart lennart 12 2011-08-18 09:30 file10
-rw-r----- 1 lennart lennart 7 2011-08-18 09:29 file20

In order to use numbers formatted with leading zeroes in for-loops
simply add them to the curly braces:

for number in {01..22}; do
echo "This is number ${number}"

done

While the {start..stop..step} notation is very handy, you unfortu-
nately cannot use variables in it. For example, the following doesn’t
work:

95

Chapter 5 Writing Bash scripts

96

#! /bin/bash

linecount=$(wc -l ${0} | gawk '{print $1}')

for ln in {1..$linecount}; do
echo "${ln}"

done

For situations like this, the command seq can be used. Its syntax is similarseq
to but not exactly the sames as the {start..stop..step} notation:

$ seq 1 10
1
2
3
4
5
6
7
8
9
10
$ seq 1 2 10
1
3
5
7
9

So in contrast to the curly braces notation the step increment has to be
put in the middle.

Actually, there is a simpler way to loop over files in a given directory.
The following example shows how to loop over all csv files in the current
directory:

for fl in *.csv; do
echo "File: ${fl}"

96

5.4 Loops, for and while

97

done

Although using for-loops for this simple kind of problems where the same
analysis has to be repeated a given number of times is very handy, it is not
always the best way to do it on modern computers. The essence of the
for-loops above is that it runs the analyses one after the other. Modern
computers (both servers and desktops) havemultiple CPUs, allowing them
to run multiple programs at the same time. Consequently, with the serial
for-loops above the computer would be seriously under-used. There are
several ways to make thins more efficient. The preferred method on a
compute cluster will be discussed in Chapter 6, which discusses the SGE
batch queue system.

Most programming languages not only have for-loops, but also so-called
while-loops. Where a Bash for-loop usually runs over a set of variables,
a while-loop runs as long as a given condition is true:

1 while condition; do
2 commands
3 done

The most useful form of the while command is its use in reading in- while
put data in a script. Consider the following example: you have a file
called genelist that lists the chromosome, start and stop position (in
basepairs) of a set of genes, one line per gene. The three values on each
line are separated by spaces. The problem at hand is that you would like
to extract these regions from a VCF filee) for further analysis. VCF files
can be queried, modified, etc. using the VCFtools programs f). The com-
mand to extract the region starting at base position 123 400 and ending
at position 223 400 on chromosome 1 is:

$ vcftools --vcf myVCFfile.vcf --chr 1 --from-bp 123400 \
--to-bp 223400

To automate this extraction for each of the lines in our genelist file we
could write a for-loop that extracts each line, uses e.g. cut to put the vari-
ous columns in variables and proceeds to run the vcftools command.
e) VCF files are often used to store next-generation sequencing data.
f) http://vcftools.sourceforge.net

97

http://vcftools.sourceforge.net

Chapter 5 Writing Bash scripts

98

However, using while in combination with the read command this be-while
read comes much easier. Let’s create the following Bash script and save it as

extract_genes_vcf.sh:

1 #! /bin/bash
2 while read chr start stop; do
3 vcftools --vcf myVCFfile.vcf --chr ${chr} \
4 --from-bp ${start} --to-bp ${stop}
5 done

Line 2 is where the “magic” happens. The read command waits for
the user to type text and then it fills the variables following read with
whatever the user typed (spaces separate the values). For example

$ read var1 var2
$ echo "${var2} ${var1}"

waits until the user has typed two words, puts the first word in var1 and
the second one in var2 and then uses echo to print them in reverse or-
der.

So in our extract_genes_vcf.sh script we use while to keep reading
three values from the command line and then run vcftools to extract
these regions. Of course it would be stupid to type each line from the
genelist file by hand on the command line. This is where input redirec-
tion comes to the rescue. Remember from §3.13 that we can use < to send
the contents of a file to the input of a command. That is exactly what we
want here. Instead of running

$./extract_genes_vcf.sh

and having to type all the chromosomes and start and stop positions by
hand, we run

$./extract_genes_vcf.sh < genelist

and everything goes as smooth as butter.

Exercise E5.4** For-loops

98

5.5 if-clauses and tests

99

a) Write a script that uses a for-loop to run the fictitious command
analyse for a set of files called chr1.dat through chr22.dat.
However, we want to start at 22 and end with 1, because chro-
mosome 22 is the smallest, so we’ll quickly have some results to
work with.

b) If you haven’t done so already, modify the script in such a way that
the numbers in the sequence have a leading zero where neces-
sary. Having files like chr01.dat, chr02.dat etc. make sure that
files are ordered correctly when listing them (chr02.dat follows
chr01.dat, whereas chr2.dat follows chr22.dat). If you want to
see the difference, use the touch command instead of our ficti-
tious analyse command. touch touchsimply creates an empty file.

Exercise E5.5*** parallel for-loops
Asmentioned in the text, the for-loops created so far are serial in nature,
i.e. the tasks within the loop are started one after another and each task
waits until the next one has finished.

a) Using the information on background processes, as described in
§ 3.11, can you think of a way to parallelise the tasks of a for-loop?
Write a small piece of example code.

b) Assuming you haven’t taken the number of CPUs into account in
your previous answer, How take into account that you probably
have more tasks than CPUs? You don’t need to write code here.
Just think how you might achieve this.

5.5 if-clauses and tests

In order to make decisions in a Bash script the if-clause can be used.
If-structures are important when writing programs and scripts because
they allow your program to do different things depending on e.g. input or
the output of a certain command.

99

Chapter 5 Writing Bash scripts

100

Here is a basic if-clause in which the value of a variable is tested:

1 #! /bin/bash
2 # A simple if-test
3 var="no"
4 if ["${var}" = "yes"]; then
5 echo "The value of variable var was yes"
6 fi

In line 4 the test is written between square brackets. The value of the
string "${var}" was compared to the string "yes" to test whether they
are equal. Note the spaces after the opening bracket and before the clos-
ing bracket, they are mandatory. Also note the semicolon before the then
keyword. As in the case of the semicolon in front of the do keyword in a
for-loop it is mandatory.

When writing scripts that accept arguments on the command line, it is
good practice to check the arguments before starting the real work. The
variable ${*} is the list of all arguments and the variable ${#} contains
the number of arguments given on the command line. The following
script checks whether the number of arguments is correct, if not it exits
with an error message. If the number of arguments is correct it lists all
the arguments.

1 #! /bin/bash
2 # This script demonstrates the use of if tests for
3 # command line arguments of the script.
4
5 n_args=3
6
7 # Check if enough arguments are given, else exit the script.
8 if [${#} -ne ${n_args}]; then
9 echo "${n_args} arguments need to be specified, you gave ${#}."
10 echo "Exiting..."
11 exit
12 fi
13
14 # Print all arguments:
15 for arg in ${*}; do
16 echo "Argument: ${arg}"
17 done

100

5.6 Arrays in Bash

101

This is what happens if you execute the script with different numbers of
arguments:
$./check_args.sh a b c d e
3 arguments need to be specified, you gave 5.
Exiting...
$./check_args.sh a b
3 arguments need to be specified, you gave 2.
Exiting...
$./check_args.sh a b c
Argument: a
Argument: b
Argument: c

You may have noticed that for the comparison in line 8 -ne was used as
the “not equal to” operator instead of the != from the first example. In
Bash comparison of strings (of text) is handled differently than compar-
ison of numbers. Instead of comparing two strings or two numbers it is
also possible to test whether a certain file or directory exists, is writable,
is executable, etc. Table 5.1 on page 102 lists all comparison operators for
strings, numbers and files/directories.

Exercise E5.6*** if-clauses and tests

a) Write a script that tests if the script was run with a command line
argument. If that was the case, print the argument. Otherwise
print a goodbye message.

b) Write a script that checks if a directory with the name of today’s
date exists. If not, it should create it.

5.6 Arrays in Bash

Like most, if not all, scripting and programming languages, Bash has the
concept of arrays. Arrays are ordered lists, and for those versed in R,

101

Chapter 5 Writing Bash scripts

102

Strings:
equal =
not equal !=
string s1 is not empty -n s1
string s1 is empty -z s1
Numbers:
equal -eq
not equal -ne
less than (<) -lt
greater than (>) -gt
less than or equal to (≤) -le
greater than or equal to (≥) -ge
Files and directories:
Check for directory existence -d directory
Check for file existence -e file
Check for regular file existence not a directory -f file
Check if file is a readable -r file
Check if file is writable -w file
Check if file is executable -x file

Table 5.1: Operators for comparison in Bash. To check for the opposite of the file
and directory tests, add a ! before the test, e.g. to check if a file does
not exist use: if [! -e some_file].

102

5.6 Arrays in Bash

103

arrays are similar to R’s vectors. Arrays may contain either numeric or
text (string) data.

Initialisation of an array, i.e. the creation of an array is done in a way that
is very similar to regular assignment of variables:

arr[index]="value"

For example, the following example creates an array with student
names:

students[0]="Alicia"
students[1]="Tim"
students[2]="Pauline"
students[3]="Xue"

Note that Bash arrays are zero-based: the index starts at zerog)

Alternatively, arrays can be initialised in one command like this:

students=(Alicia Tim Pauline Xue)

Using elements from an array is similar to using regular variables, you
simply surround the element with ${...}, like this ${arr[index]}. The
following example prints the name of the third student:

$ echo "Name: ${students[2]}"
Pauline

To use the full array use either @ or * as index: ${arr[@]} or ${arr[*]},
for example:

$ echo "All students: ${students[*]}"
Alicia Tim Pauline Xue

The # symbol is used to get the length or size of an array: ${#arr[@]},
for example:

g) This is something to keep in mind whenever you are programming. Some languages
are zero-based (e.g. C, C++, numpy), others (e.g. R, FORTRAN) are one-based. This dif-
ference can lead to so-called off-by-one errors.

103

Chapter 5 Writing Bash scripts

104

$ echo "the nr of students is: ${#students[@]}"
the nr of students is: 4

The size of a single array element can be found like this ${#arr[index]}.
So if we want to know how many characters are in the third element of
the students array, we can do something along the following lines:

$ i=2
$ echo "the length of ${students[${i}]} is ${#students[${i}]}"
the length of Pauline is 7

The simplest way to extend an array is very similar to the way we initial-
ised an array in one command (see above): arr=(${arr[@]} new1 ←↩
new2), so the following adds two new names to the student array:

$ students=(${students[@]} Ivet Lauren)
$ echo "The students now are: ${students[@]}"
The students now are: Alicia Tim Pauline Xue Ivet Lauren

The most useful place to use arrays is in for-loops (see also §5.4 on
page 101):

$ for st in ${students[*]}; do
> echo "Student ${st}"
> done
Student Alicia
Student Tim
Student Pauline
Student Xue
Student Ivet
Student Lauren

5.7 Dealing with errors in your script

Writing bug-free scripts is everybody’s goal, but in real life this usually
doesn’t happen automatically. The following can help to detect bugs.

104

5.7 Dealing with errors in your script

105

One of the ways to improve Bash scripts in order to be warned about
errors early on is by adding the following line as the top of your script
(below the #!/bin/bash line and the introductory comments) as the first
command to be executed: set -e

set -e

By adding this command the script will stop with an error as soon as
a command in the script finishes with an error. Without this command
the script will continue until the end, even when one (or more) of the
commands in the scripts gives an error.

There is one case where set -e is not enough to stop a script if a com-
mand fails with an error, and that is when the erroring command is part
of a series of commands joined by pipes (the | symbol; see § 3.13.2). In
such a case the script will only exit with an error if the last command of
the pipeline fails. To abort the script also if one of the steps in a series
of commands fails, add the following to your Bash script: set -o pipefail

set -o pipefail

Another helpful option to set early in your script is: set -u

set -u

This options aborts the script when an uninitialised variable is used.
Without setting this option a script will continue and simply fill in an
empty value when an uninitialised variable is found. For example, take
the following script:

#!/bin/bash
A test script for set -u
set -u

echo "The value of the variable var is: ${var}."

In the script the variable ${var} is not initialised and without the set -u
option the script would simply print

The value of the variable var is: .

With the set -u option set, the following error will be shown:

105

Chapter 5 Writing Bash scripts

106

bash: var: unbound variable

Of course, this example isn’t a huge bug, but imagine a line where the
command would be a copy command:

cp files.* ~/${destdir}

If the ${destdir} variable is not set before, it will copy all files to your
home directory instead of in a subdirectory. This will leave a lot of mess.
Or, even worse, consider a similar line where you would remove files from
~/${destdir}. If the variable isn’t set, you would remove all files in your
home directory!

If you try to debug your script, running it in the following way will be
helpful:

$ bash -x my_script.sh

This will print every command that is executed, including the contents
of variables, etc. Testing your script like this and setting the two options
above will be a big help in achieving the goal of writing bug-free scripts.

106

6010101
0101

010111
001011010101011110000001101011010010010101110111011101000010010110101111

01

01
010

101
0101

11001
01101010

1011110000001101011010010010101110111011101000010010110101111

01
01
01

010
101

011
100

1011
0101

010111
10000001101

011010010010101110111011101000010010110101111

01
01
01
01
01
01

01
110

010
110

101
010

111
100

0000
1101

0110
10010

01010
111011

1011101
0000100101

10101111

01
01
01
01
01
01
01
11
00
10
11

01
01
01
01
111

000
000

110
101

101
001

001
010

111
011

101
1101

0000
1001

0110
1011

11

01
01
01
01
01
01
01
11
00
10
11
01
01
01
01
11
10
00
00
01
10
10
11
01
00
10
01
01
01
11
01
11
01

11
01
00
00
10
01
01
10
101

111

010
10
10
10
10
10
11
10
01
01
10
10
10
10
11
11
00
00
00
11
01
01
10
10
01
00
10
10
11
10
11
10
11
10
10
00
01
00
10
11
01
01
11
1

010
10
10
10
10
10
11
10
01
01
10
10
10
10
11
11
00
00
00
11
01
01
10
10
01
00
10
10
11
10
11
10
11
10
10
00
01
00
10
11
01
01
11
1

010
10
10
10
10
10
11
10
01
01
10
10
10
10
11

11
00

00
00

11
01

01
10

10
01

00
10

10
11

10
11

10
11

10
10

00
01

00
10

11
01
01
11

1

010
10
10
10
10

10
11

10
01

01
10

10
10

10
11

11
00

00
00

11
01

01
10

10
01

00
10

10
11

10
11

10
11

10
10

00
01

00
10

11
01

01
11

1

Chapter 6
Working with the SGE queue
system

Chapter 6 Working with the SGE queue system

110

Many, if not all, scientific compute clusters use some system to distrib-
ute compute jobs across their nodes. Even if your research group only
has a single server it is very worthwhile to have such a system installed.
This kind of functionality is not used by default on Linux servers, and
consequently this chapter is not generally applicable to other Linux serv-
ers. However, most servers or clusters in use in bioinformatics (and other
fields with computationally intensive tasks) have such a system.

One of the most commonly used job queuing systems is the Sun Grid En-
gine (SGE) system, which will be discussed in this chapter. The commands
for the PBS system, also very commonly used, are very similar.

On the epib-genstat cluster at the ErasmusMC, regular tasks (i.e. programs
not using the SGE queues) are killed after 10 minutes. So it is usually
of little use to start an R session or run ProbABEL [6] directly from the
command line.

After submitting a job to SGE it will be processed in a so-called queue.
Each queue has a certain number of slots. If there are more jobs than
slots in a queue the excess jobs will have to wait for a slot to become
available (cf. § 6.2 to find out the number of slots per queue or to see
whether your job is already running).

Each queue has specific properties and SGE uses these properties to de-
cide which queue to send your job to. In this cluster the queue named
all.q will be used most of the time.

6.1 Submitting jobs to the SGE queues

Suppose you want to run a certain R script myscript.R. Normally you
would either start R and then

> source("myscript.R")

or from the Linux command line you would run:

$ R --vanilla -q -f myscript.R

110

6.1 Submitting jobs to the SGE queues

111

6.1.1 Quick and dirty

The quickest way to submit such a task to an SGE queue is the following: qsub

$ qsub -cwd -b y R --vanilla -q -f myscript.R

Here qsub is the command to submit a job to the queue system. It is
followed by zero or more options (two in this case, -cwd and -b y) and
finally the actual command you want to run. The first option, -cwd, stands
for “use the current working directory” (this is the same as the present
working directory (pwd) mentioned in § 3.6). It tells SGE to look into the pwd
for the files you specify (myscript.R in this case) and to write its output
files there as well. The option -b y tells SGE that the command you want
to execute is not a script but a binary program (R in this case).

Each job that is sent to the queues receives a unique ID, the job ID. This
is useful for distinguishing between several jobs you might have waiting
in the queue, but is also necessary when you want to delete a job from
the queue (cf. § 6.3).

By default SGE will create two files for each job in the queue, one that
contains the output that would normally appear on the screen and one
that contains the errors that would normally be sent to the screen. These
files will have a name that starts with the name of the command you sent
to the queue followed by a period, the letter o or e for output and error,
respectively, and finally the job ID. For the R command that we submitted
earlier the files would be called

R.o2823
R.e2823

(where of course the number at the end is the job ID, which will be dif-
ferent in your case).

6.1.2 Using a submission script

The preferred way to send a job to the queue system is by using a sub-
mission script. Using a script has several advantages:

111

Chapter 6 Working with the SGE queue system

112

• you don’t have to remember all the command line options for the
qsub command, you simply copy your submission script from the
previous time you used it (or this website) and only change the pro-
gram that you want to run.

• All the standard Linux shell scripting tricks are at your disposal.

A simple example of a submission script for the example of the R
script myscript.R used earlier would be:
#! /bin/bash
This is a sample submission script. Lines starting with # are
comments. The first line (with #!) should be in every script.

Let's set some variables for SGE. Lines starting with #$ are
interpreted by SGE as if they were options to the qsub command
(don't remove the # from the lines starting with #$).
#$ -S /bin/bash
#$ -cwd

This is the command we would like to run in the queue
R --vanilla -q -f myscript.R

Save this submission script to the same directory as where
myscript.R is located and call it for example job.sh. Make sure
the script is executable by running

$ chmod a+rx job.sh

Now it can be submitted to the queues like this:

$ qsub job.sh

6.1.3 Refinements to the submission script

The script presented in the previous section is simple but sufficient for
basic tasks. Here we present some additions to the script that can make
life with SGE easier. A script file with all the suggested options can be
downloaded from http://epib-genstat.erasmusmc.nl/qscript.sh.
The only things that need to be changed are the e-mail address and the
last line where you fill in the command(s) you want to run.

112

http://epib-genstat.erasmusmc.nl/qscript.sh

6.2 Monitoring progress

113

• Start/stop e-mails
Since most jobs will take more than 10 minutes to complete (oth-
erwise you could have run them without using the queue system,
right?!) it would be nice to get an e-mail when the job is finished so
that you don’t have to run qstat all the time (cf. § 6.2). To get an
e-mail when a job begins and when it ends simply add the follow-
ing two lines after the #$ -cwd line in the aforementioned simple
script:

#$ -M your_address@your_domain.com
#$ -m be

If you only want an e-mail after the job has finished change the
#$ -m be option to #$ -m e.

• Output to a single file
As discussed at the end of Section 6.1.1 the output and error mes-
sages of a job are recorded in separate files. When running a large
amount of jobs this can lead to a proliferation of these files. By
adding

#$ -j y

to your submission script the output and error files will be joined
into one file of the form script.o2345.

6.2 Monitoring progress

The qstat command allows you to see whether your job is accepted by qstat
one of the queues, which jobs you have submitted so far, how many jobs
are waiting in the queues, etc. Simply running

$ qstat

will show your own running and waiting jobs. Running the command qstat -f

$ qstat -f

113

Chapter 6 Working with the SGE queue system

114

will give an overview of all queues, even the ones in which you don’t have
any jobs running. To show all jobs of all users in all queues use qstat -f -u

$ qstat -f -u *

This gives you an idea how busy the cluster is. A sample output on a quiet
day looks like this:
queuename qtype resv/used/tot. load_avg arch states

all.q@node01.polyomica.com BP 0/2/7 2.03 lx24-amd64

2843 0.56000 R user1 r 08/06/2010 10:16:42 1
2844 0.56000 R user1 r 08/06/2010 10:16:42 1

high_prio_q@node01.polyomica.c BP 0/0/4 2.03 lx24-amd64

int.q@node01.polyomica.com IP 0/0/2 2.03 lx24-amd64

It shows the user user1 has two jobs in the queue called all.q with job
IDs 2843 and 2844. Both jobs are running some R script. The queue called
high_prio_q is empty as is the queue called int.q, which is used for
interactive jobs only (because the q-type has the letter I, queues that
accept batch jobs (i.e. regular commandline programs or shell scripts)
have type B). The resv/used/tot. column show the number of reserved
and available slots in each queue as well as the total number of available
slots. So in this example all.q has no reserved slots and two slots are
in use out of a total of seven. If there are more jobs than slots in a queue
the excess number of jobs will have to wait until slots become available
again.

6.3 Deleting jobs from a queue

At some point you will find that you want to delete a job from the queue.
This may happen because you submitted five R jobs, for example, and the
first one finished early because you made a typing mistake in the R code.
Since the other jobs use the same R code they will finish with an error as
well so you decide to remove them from the queue. For this you use the
qdel command followed by the job ID. Use qstat (cf. § 6.2) to find the jobqdel
ID of your jobs. Running

114

6.4 Getting info on a finished job

115

$ qdel 2844

would kill the second job in the list shown in § 6.2. Of course a user can
only delete her/his own jobs.

6.4 Getting info on a finished job

To get information on a job that has finished, use the qacct command in qacct

qacct -jcombination with the job ID:

$ qacct -j 8765
==
qname all.q
hostname node01.polyomica.com
group genepi
owner some_user
project NONE
department genepi
jobname probabel.pl
jobnumber 8765
taskid undefined
account sge
priority 8
qsub_time Mon Mar 7 22:56:01 2011
start_time Mon Mar 7 22:56:15 2011
end_time Tue Mar 8 03:59:44 2011
granted_pe NONE
slots 1
failed 0
exit_status 0
ru_wallclock 18209
ru_utime 17362.282
ru_stime 816.388
ru_maxrss 0
ru_ixrss 0

115

Chapter 6 Working with the SGE queue system

116

ru_ismrss 0
ru_idrss 0
ru_isrss 0
ru_minflt 328576642
ru_majflt 2
ru_nswap 0
ru_inblock 0
ru_oublock 0
ru_msgsnd 0
ru_msgrcv 0
ru_nsignals 0
ru_nvcsw 12597
ru_nivcsw 443538
cpu 18178.669
mem 21867.259
io 170.594
iow 0.000
maxvmem 2.037G
arid undefined

The most interesting elements of the output are start_time, end_time,
for the time at which the job started and when it finished, respectively.
Note that the submit time has a separate entry. The value of cpu
shows you the number of seconds of CPU time the job used. The value
of ru_wallclock shows the total time (in seconds) that the job took
(i.e. CPU time, but also time used for reading/writing files etc.). The values
qname and hostname tell you in which queue and o which server the job
was run.

In order to find out how much time your jobs have spent in the queue
over the last 15 days run (with your own username, of course):
$ qacct -o lennart -d 15
OWNER WALLCLOCK UTIME STIME CPU MEMORY IO ←↩

IOW
===
lennart 96279 10798.155 1903.326 12701.481 3529.165 4165.959 ←↩

0.000

The WALLCLOCK time is the total time in seconds that your jobs have spent

116

6.5 Interactive jobs

117

running in the queue (in the last 15 days). The CPU column shows the time
(in seconds) the job was actively using a CPU, i.e. not waiting for other
things like reading or writing a file (which is listed in the IO column).

6.5 Interactive jobs

Although it is not the preferred way to run programs, sometimes it may
not be possible or efficient to write a complete script to submit to the
queue. For example, you’d like to start an R session and enter the com-
mands on the R command line because you are not sure whether a certain
construction works on the cluster.

In such a case the interactive queue (int.q) can be used. Starting a ses-
sion in the interactive queue is done like this: qrsh

$ qrsh -pty y command

where command is the program you’d like to run (R or solar are likely
examples). You will then be asked for your password and an interactive
session is started on either one of the servers in the cluster (if there are
slots available in the interactive queue of course).

Note that jobs running in an interactive queue will be killed after 48 hours
of CPU usage and they will run with a very low priority.

If, for some reason you can’t access your interactive queue session any-
more, you can kill the old one using the qdel command.

6.6 Exercises

Exercise E6.1** Working with Sun Grid Engine
In this exercise you will create a small script and submit it to the SGE

batch system. You will monitor its progress and then use a Bash script to
automate submission to SGE.

117

Chapter 6 Working with the SGE queue system

118

a) Create a new directory in the directory ~/LinuxCourse/ you cre-
ated in Exercise E3.3.

b) The sleepsleep command accepts one argument: the time to wait in
seconds. The whoami command prints your user name. Write a
Bash script that prints your user name and the current time (in-
cluding seconds), then goes to sleep for 10 seconds and repeats
this cycle 5 times. End the script with a final print of the current
date and time, followed by a line of dashes. Run the script to test
whether it works.

c) Now submit this script to the queue. Don’t forget to add the -cwd
option, otherwise the files generated by SGE will end up in your
home directory. Check to see that the script is either running or
waiting to be run. If your script is waiting, what command would
you use to find out how busy the batch system is?

d) After the script has run, inspect the two resulting output files.

e) Write a Bash for-loopa) to submit five instances of this script to
the queue. Monitor them and see how jobs of different users are
scheduled.

Exercise E6.2** SGE, R and command line arguments
Exercise E5.3 on page 92 explained how to use command line arguments
in Bash scripts. Wouldn’t it be fun if the could be done in R scripts as
well? This exercise will show you how.

To run an R script from the command line (so not in interactive mode),
use the -f option to specify which script to run. Usually the options -q
(for ’quiet’, to suppress the startup message), --slave (to be really quiet)
and --vanilla (see R --help for more info on this option) are specified
as well. For example:

$ R --vanilla --slave -q -f myscript.R

a) You don’t necessarily need to do that in a script. Simply writing a for-loop on the
command line is also OK.

118

6.6 Exercises

119

To pass arguments to the R script use the --args option as the last option,
followed by any arguments you want to send to the script. The number
1234 and the string "Hello there" can be passed like this:
$ R --vanilla --slave -q -f myscript.R --args 1234 "Hello there"

In order to use these arguments in an R script, use the commandArgs()
function like this:

args <- commandArgs(TRUE)

This stores all the arguments following the --args option in the array
args. The following R script gives you an idea how to use all this.

1 cat("Welcome to this simple R script.\n")
2 cat("These were the command line arguments:\n")
3 args <- commandArgs(TRUE)
4 args
5
6 cat("Now we will print the arguments one by one:\n")
7 for (i in 1:length(args)) {
8 cat(i, ": ", args[i], "\n", sep="")
9 }
10
11 # All arguments are treated as strings (text), so in
12 # order to use them in calculations they have for be
13 # converted to numbers:
14 number = as.integer(args[1]) + 2
15 cat("number = ", number, "\n")
16
17 cat("The end\n")

a) Write an R script that accepts command line arguments. The first
argument is a start value, the second one is a stop value (both are
integer numbers). The R script should use these values as start and
stop values in a for-loop. Since this example is purely didactic, you
can do something simple inside the loop, like printing the square
of the loop value. Verify that it works as expected.

The quick and dirty way to submit this script to SGE would be

119

Chapter 6 Working with the SGE queue system

120

$ qsub -cwd -b y R --slave --vanilla -q -f R_loop_script.R --args 1 5

And if you want to join the output of SGE (the .e and .o files) into one as
well as receive an e-mail when the job starts and when it ends, you will
have an even longer command:

$ qsub -cwd -b y -j y -m be \
-M your_email@your_domain.com \
R --slave --vanilla -q -f R_loop_script.R --args 1 5

This is toomuch to remember or type withoutmaking errors. The solution
is to write job scripts for tasks like this. In a job script you specify all the
SGE options you need as well as the command that is to be run in the
batch queue. Then, the next time you run a similar task you only need to
change the line that runs R (or whatever else you would like to run in the
queue).

To specify one of the SGE options in a job script (which is a normal Bash
script) you have to start the line with #$. The following script is an ex-
ample job script for the R script of this exercise. The -S option in line 5
makes sure that SGE understands this is a Bash script.

1 #! /bin/bash
2 # This is an example of a job submission script
3
4 # The following are options for qsub. Don't
5 # remove the # in front of them.
6 #$ -S /bin/bash
7 #$ -j y
8 #$ -cwd
9 #$ -M your_email@your_domain.com
10 #$ -m be
11
12 # Here comes the rest of your script that
13 # actually does something. In this case it runs R.
14 R --slave --vanilla -q -f R_loop_script.R --args 1 5

With this script submitting a job to SGE is simple:

120

6.6 Exercises

121

$ qsub jobscript.sh

b) Rewrite this example job script in such a way that it accepts two
command line arguments and uses those in the R command, in-
stead of the 1 and 5. Add some checks to see if the user really did
specify two command line arguments. If that is not the case, the
script should exit (use the exit command for that). Test the script
by submitting it to the queue.

121

7010
101

0101
010111

001011010101011110000001101011010010010101110111011101000010010110101111

01

01
010

101
0101

11001
01101010

1011110000001101011010010010101110111011101000010010110101111

01
01
01

010
101

011
100

1011
0101

010111
10000001101

011010010010101110111011101000010010110101111

01
01
01
01
01
01

01
110

010
110

101
010

111
100

0000
1101

0110
10010

01010
111011

1011101
0000100101

10101111

01
01
01
01
01
01
01
11
00
10
11

01
01
01
01
111

000
000

110
101

101
001

001
010

111
011

101
1101

0000
1001

0110
1011

11

01
01
01
01
01
01
01
11
00
10
11
01
01
01
01
11
10
00
00
01
10
10
11
01
00
10
01
01
01
11
01
11
01

11
01
00
00
10
01
01
10
101

111

010
10
10
10
10
10
11
10
01
01
10
10
10
10
11
11
00
00
00
11
01
01
10
10
01
00
10
10
11
10
11
10
11
10
10
00
01
00
10
11
01
01
11
1

010
10
10
10
10
10
11
10
01
01
10
10
10
10
11
11
00
00
00
11
01
01
10
10
01
00
10
10
11
10
11
10
11
10
10
00
01
00
10
11
01
01
11
1

010
10
10
10
10
10
11
10
01
01
10
10
10
10
11

11
00

00
00

11
01

01
10

10
01

00
10

10
11

10
11

10
11

10
10

00
01

00
10

11
01
01
11

1

010
10
10
10
10

10
11

10
01

01
10

10
10

10
11

11
00

00
00

11
01

01
10

10
01

00
10

10
11

10
11

10
11

10
10

00
01

00
10

11
01

01
11

1

Chapter 7
Good scripting practices,
structured programming and
data management

Chapter 7 Good scripting practices, structured programming and data
management

124

By now you should know your way around basic Bash scripts. Some of
you will also have done some scripting in R as well. Here I would like
to discuss some general principles that relate to good programming and
scriptinga) practices and how those relate to reproducible research.

In most sciences it has become impossible to work without writing some
form of computer code. Scripts help you analyse your data, run simula-
tions, etc. and form an integral part of your research. A person in a wet lab
has his/her lab journal in which each step of the protocol is meticulously
written down, and so do you have your directory structure, your data sets
and your scripts. As a scientist it is your responsibility to make sure that
you can always reproduce your results. This is one of the fundamentals
of the scientific method.

Some of the following tips may seem obvious, most will take a bit of ex-
tra time to implement. But rest assured, they are all worth it and have
proven themselves in practice. Most of them boil down to using descript-
ive names and comments in your code and directory structure. Remem-
ber that some projects take years to complete, and some get handed over
to colleagues.

Resist the temptation to skip the tips in this chapter because “this script
will only be used once”. Many scripts survive longer than that! And good
scripts will continue to be useful to you and maybe other people. They
will be used again and again, sometimes with some slight modifications.
What is the point of writing similar scripts from scratch all the time? If you
run into a situation similar to one you have encountered before it is better
to extend and generalise an existing script than to try and invent the

a) A quick note about the words scripting and programming. Although they may often be
used interchangeably, at least in our field, there is a difference. Examples of script-
ing languages are Bash (cf. § 5), R, sed (§ 4.3), gawk (§ 4.5) and Perl. Java, C, C++ and
FORTRAN are examples of programming languages. The difference between the two
groups is that scripting languages are interpreted on the fly. This means that the are
converted from human-readable language (your code) to machine language the mo-
ment you run them. Code written in a programming language is converted to machine
language once (this step is called compilation) and can then be run many times. As a
result, programs written in a scripting language are usually slower to run, but easier
to write and debug. Apart from that, there is not much difference between the two in
terms of writing code.

124

7.1 Code layout

125

wheel again. Furthermore, well written scripts with a good code layout
help you find mistakes (so-called debugging) much easier, saving you a
lot of time in the process.

7.1 Code layout

As Bradnam and Korf write in their chapter on code beautification: “Ap-
pearance matters” [8]. This is definitely true! Scripts in which the code is
laid out well are easier to understand and consequently easier to debug.
Consider the following examples of a piece of code shown earlier:

1 #! /bin/bash
2
3 if [-n "${1}"]; then
4 echo "The command line argument was ${1}"
5 else
6 echo "Goodbye!"
7 fi

and
1 #! /bin/bash
2 if [-n "${1}"]; then echo "The command line argument was ${1}"; else echo ←↩

"Goodbye!"; fi

Both are valid Bash code that produce the same output, but in terms of
understanding and maintaining the code, the first version definitely has
the upper hand.

7.1.1 Indentation

Indenting the lines of code in the if and else part of the previous ex-
ample clearly shows what the code is supposed to do. A good editor, like
Emacs or (g)vim helps you with the indentation. In Emacs, for example,
pressing the TAB key in a Bash or R script will automatically indent that
line correctly. Whether you choose to indent with a TAB, four spaces (most
common) or only two is not very important, as long as you are consistent.

125

Chapter 7 Good scripting practices, structured programming and data
management

126

A good editor also helps you by colouring the various parts of the code,
as shown hereb):

#! /bin/bash
This is a comment.

if [-n "${1}"]; then
echo "The command line argument was ${1}"

else
echo "Goodbye!"

fi

Note that in this syntax highlighting scheme comments are shown in
green, Bash keywords in blue and strings in purple. If, for example you
forget a quote, syntax highlighting will immediately show you something
is wrong:

#! /bin/bash
This is a comment.

if [-n "${1}"]; then
echo "The command line argument was ${1}

else
echo "Goodbye!"

fi

7.1.2 Line length

In the early days of computing the maximum length of a line was 80 char-
actersc). Many programmers still stick to this limit, and with good reason.
Consider the following VCFtools command:
vcftools --vcf myVCFfile.vcf --chr ${chr} --from-bp ${start} --to-bp ←↩

${stop} --plink-tped --recode --out geneselection

b) For those of you reading the PDF version of this document on screen or a colour print.
c) That was the width of the punch cards used to program a computer in those days.

126

7.1 Code layout

127

I hope you are convinced the following is easier to read (remember that
Bash needs a backslash (\) at the end of a line that hasn’t finished yet):

vcftools --vcf myVCFfile.vcf --chr ${chr} \
--from-bp ${start} --to-bp ${stop} \
--plink-tped --recode --out geneselection

and some of you would like the following even better:

vcftools --vcf myVCFfile.vcf \
--chr ${chr} \
--from-bp ${start} \
--to-bp ${stop} \
--plink-tped \
--recode \
--out geneselection

The same holds for R code, of course. Compare

data <- read.table("/path/to/file", header=TRUE, ←↩
sep=";", na.strings="0", stringsAsFactors=TRUE)

to

data <- read.table("/path/to/file",
header=TRUE,
sep=";",
na.strings="0",
stringsAsFactors=TRUE)

7.1.3 Spaces

Clean code makes good use of white space. Although Bash doesn’t allow
for a space between the variable name, the = sign and the value, other
languages do and it is good practice to surround your equal signs with a
space. The same holds for commas, semi-colons and pipes (|). Compare
the following lines of Bash code:

127

Chapter 7 Good scripting practices, structured programming and data
management

128

linecount=$(wc -l ${0} | gawk '{print $1}')
linecount=$(wc -l ${0}|gawk '{print $1}')

or the following GAWK one-liners:
$ gawk 'BEGIN{print "id sex bt1"}{if($5==2)sex=0;if($5==1)sex=1;print ←↩

$2,sex,$6}' chr.ped > chr.phe
$ gawk 'BEGIN {print "id sex bt1"} {if($5==2) sex=0; if($5==1) sex=1; print $2, ←↩

sex, $6}' chr.ped > chr.phe

or this piece of R code from which I intentionally removed the colours
used for syntax highlighting:

f2dna<-read.csv(paste(dir,"dna_f.csv",sep=""))
Read data from Excel sheet
library(gdata)
dbFile<-paste(dir,"db.xls",sep="")
db<-read.xls(dbFile,sheet=1)
Create a new data frame that combines the old data with
selected columns from the DB
cols<-cbind("Library","Sample.ID","Cov.X")
selectedData<-olddata[,cols]
cols<-cbind("nummer","trait","finaldiag")
selectedDataDB<-db[which(db$nummer %in% ←↩

selectedData$Sample.ID),cols]

versus

f2dna <- read.csv(paste(dir, "dna_f.csv", sep=""))

Read data from Excel sheet
library(gdata)
dbFile <- paste(dir, "db.xls", sep="")
db <- read.xls(dbFile, sheet=1)

Create a new data frame that combines the old data with
selected columns from the DB
cols <- cbind("Library", "Sample.ID", "Cov.X")
selectedData <- olddata[, cols]

128

7.2 Comments

129

cols <- cbind("nummer", "trait", "finaldiag")
selectedDataDB <- db[which(db$nummer %in%

selectedData$Sample.ID),
cols]

and decide for yourself.

Space in the formof empty lines can also be very helpful in understanding
a script. Use empty lines to separate parts of your script that do different
things, as shown in the R example above.

7.2 Comments

All scripts should have a header that explains the intended use. Right
now it is obvious what the script does (or is supposed to do), but in six
months time you will look at it again and guessing what a script does
simply from its file name or the directory it was in takes much more time
than writing a brief description.

It is good practice to also add your name and a date to the header. Good
scripts provide added value, also to other people. They tend to get dis-
tributed. It’s good to be able to tell who wrote the original script and, if
you run into two versions of a script, which one is newestd).

If your script accepts command line arguments describe them in the
header. This helps you if you need to run the script at a later time.

Write comments that describe the more intricate parts of your script.
They will help you (or you successor) to understand what (is supposed to)
happen(s). Especially if it took you quite some time to come up with an
elegant solution to a problem having a comment that describes it works
miracles when troubleshooting later on.

You can also use comments to separate parts of your code. Especially
with syntax highlighting they will stick out from the rest of the code.
d) If you are interested in a more professional and efficient way of storing different ver-

sions than simply adding a version number to the header or the file name, see the
item on revision control in Chapter 8.

129

Chapter 7 Good scripting practices, structured programming and data
management

130

#-------------------------------
Initialise all variables here
#-------------------------------

##
Read data from files
##

##########################
This is the main part
##########################

7.3 Variable names

Some people are tempted to use variable names like a, b, aa, thingy,
df, etc. These will make your life miserable! Looking back at a script in
a year’s time names like ERFgenotypes, IDs_no_meds or HM2_snpnames
are much more descriptive.

Try to find the balance between short non-descriptive variable names and
ones that are too long and only lead to typo’s. Try using underscores (_),
CamelCase, or periods to make variable names descriptive and easy to
read.

7.4 File and directory names

A well-organised directory tree is like a well-kept house. You immediately
know where to find things. Try to think of a logical structure for your dir-
ectories, e.g. along projects, data sets, etc. Give the directories inform-
ative names. Don’t be worried about having to type long names. You
haven’t forgotten TAB completion, have you? Also allow yourself some
time to clean your directories, just like most people do with their desks
before going on holiday.

130

7.5 Summary

131

It is also good practice to add a file called README to each directory in
which you briefly describe what you do, did, or plan to do there.

Give your output files sensible names. Having a directory with the fol-
lowing files is not very helpful (even one week from now).

output.1
output.2
output.data1.2
output.try2.txt

If you argue that the file with the latest date/time is the one you should
use, how can you be sure? What if you actually didn’t completely finish
the analysis? What if the output with the latest date was actually a run
that was discarded because you were trying an option that turned out not
to be correct?

7.5 Summary

• Begin your scripts with a header that documents its behaviour.

– Start your script with a comment that summarises the use of
the script.

– Add your name and the date you last edited the script to the
header.

– If your script needs (or accepts) command line arguments, give
a brief description of each of them in the header.

• Comments are good!

• Give variables a descriptive name.

• Split long lines into shorter ones.

• Use white space wisely.

• Create a new directory for each project.

• Give your output files a descriptive name.

131

Chapter 7 Good scripting practices, structured programming and data
management

132

• Be wary of massive scripts. As soon as scripts grow beyond, say,
the size of your screen, consider splitting parts off into separate
scripts. Or learn about the use of functionse). Again, this will help
you structure your code.

• Don’t ignore errors and warnings. Most of them are there for a
reason. You might consider them a nuisance, but make sure you
understand what they mean and where they come from or your re-
search results may be invalid.

• Don’t start tomorrow. Start following these guidelines today. To-
morrow there will be other high priority things.

e) In other languages like Perl functions are known as subroutines.

132

8010101
0101

010111
001011010101011110000001101011010010010101110111011101000010010110101111

01

01
010

101
0101

11001
01101010

1011110000001101011010010010101110111011101000010010110101111

01
01
01

010
101

011
100

1011
0101

010111
10000001101

011010010010101110111011101000010010110101111

01
01
01
01
01
01

01
110

010
110

101
010

111
100

0000
1101

0110
10010

01010
111011

1011101
0000100101

10101111

01
01
01
01
01
01
01
11
00
10
11

01
01
01
01
111

000
000

110
101

101
001

001
010

111
011

101
1101

0000
1001

0110
1011

11

01
01
01
01
01
01
01
11
00
10
11
01
01
01
01
11
10
00
00
01
10
10
11
01
00
10
01
01
01
11
01
11
01

11
01
00
00
10
01
01
10
101

111

010
10
10
10
10
10
11
10
01
01
10
10
10
10
11
11
00
00
00
11
01
01
10
10
01
00
10
10
11
10
11
10
11
10
10
00
01
00
10
11
01
01
11
1

010
10
10
10
10
10
11
10
01
01
10
10
10
10
11
11
00
00
00
11
01
01
10
10
01
00
10
10
11
10
11
10
11
10
10
00
01
00
10
11
01
01
11
1

010
10
10
10
10
10
11
10
01
01
10
10
10
10
11

11
00

00
00

11
01

01
10

10
01

00
10

10
11

10
11

10
11

10
10

00
01

00
10

11
01
01
11

1

010
10
10
10
10

10
11

10
01

01
10

10
10

10
11

11
00

00
00

11
01

01
10

10
01

00
10

10
11

10
11

10
11

10
10

00
01

00
10

11
01

01
11

1

Chapter 8
Where to go from here?

Chapter 8 Where to go from here?

136

The course for which this document was written was a two-day course. If
you have come this far within these two days then either you had quite
some Linux experience already or you picked it up really quickly, on which
I have to congratulate you!

8.1 More advanced topics

If you are interested to learn more, you can consider looking into the
following subjects (GIYF, but I’ll be happy to give you some hints):

• Using byobu or screen to access the same connection frommultiplebyobu
screen locations; With byobu or screen it is possible to continue working

with the same shell session from multiple locations.

• Shell expansions; In § 3.6.3 the use of wildcards was explained,
where characters like * were used to select multiple files. Using
so-called shell expansion allows you to work even more efficiently
on the CLI.

• Finding files and directories with the find utility. The syntax of thefind
find utility is not the easiest to understand, but using the basic
ones together with the xargs command makes for a powerful com-xargs
bination if you want to apply the same action to many files.

• Regular expressions; The search patterns of sed, gawk, grep and
other utilities are not just literal searches. In fact they are so-called
regular expressions. With regular expressions it is possible to do a
search like “Find every occurrence of word, but only if it is located
at the end of a line”, or “Find every occurrence of p, but only if it is
followed by several numbers, followed by an e, then a + or - and a
maximum three digits”.

• More advanced Bash scripting; The use of case structures, how to
let a script accept options in short and long form, making functions,
etc.

136

8.1 More advanced topics

137

• More advanced GAWK scripting; Making functions, associative ar-
rays, using other values than the newline character as a record sep-
arator, etc.

• Revision control; If you write scripts on a regular basis and re-use
them regularly, you will find that at some point you have quite a
library and maybe you want to reduce their number by reorgan-
ising them or making them more generalisable. A great idea, but
wouldn’t you want to be able go back a couple of versions every
once in a while to find out why something used to work, but doesn’t
anymore? Of course you could save every version with a differ-
ent file name, but that would make a big stack of files. With re-
vision control files (or complete directories) can be saved, easily
shared with others and you will always be able to find out what
changed between revisions. Several programs provide version con-
trol. Subversion (svn) was very commonly used, but has been su-
perseded by Git (git) [9]. GitHub (https://github.com) and GitLab
(https://gitlab.com) are popular web services where you can col-
laborate with other people on the same project using Git. More and
more open source tools developed by scientists can be found there.

• For those of you that like to learn another scripting language I can
suggest both Python and Perl. Python is themost “general purpose”
of the two, meaning that you can not only use it for automating
tasks, but also to do scientific analyses, or even write GUI programs.
Perl is traditionally more focused on text processing and used a lot
in bioinformatics.

• Reproducibility (or lack thereof) has been a major topic of
discussion in various areas of science in recent years. Using
so-called application containers is a good way to ensure you
can rerun an analysis with exactly the same software versions.
The idea of containerisation is that you store the software
you use, e.g. a given R version with the R packages required
for your analysis in a sort of “superpackage” that you can
then run and keep as is, independent of where or when you
(re-)run your analysis. Popular container platforms are Sin-
gularity (https://sylabs.io/singularity/) and Apptainer

137

https://github.com
https://gitlab.com
https://sylabs.io/singularity/

Chapter 8 Where to go from here?

138

(https://apptainer.org/), where the latter recently split off from
the former. Docker containers (https://www.docker.com) are also
popular, but less suitable for the needs of scientists (they are more
geared towards deploying web applications).

• Pipelines of software tools (a.k.a. workflows) are fundamental
to modern bioinformatics. Platforms like Nextflow (https:
//www.nextflow.io) help you to make your pipeline more robust
and more portable so that it can run on your personal com-
puter, but also in an efficient manner on a large cluster of cloud
computing platform.

8.2 Further reading

One of the most appropriate books on this subject is UNIX and Perl to the
Rescue by Bradnam and Korf [8], two bioinformaticians at UC Davis. This
book also teaches the basics of the Perl scripting language which is often
used in bioinformatics. If you would like to learn more on Bash scripting,
take a look at Refs. [10, 11]. To learn more about general programming
concepts, try [12] (it does require some knowledge of the C programming
language to really understand the text). Ref. [13] is both a good reference
and a good course book on Linux system administration (in case you want
to set up your own Linux server), since it trains you for the LPIC-1 exam
of the Linux Professional Institute. Those of you who want to learn how
to use their Emacs in a more efficient manner can read Ref. [14], which,
although a bit outdated (it discusses Emacs 22, whereas Emacs 28 is the
latest version), is still a good introduction to the core concepts. More re-
cently, Mickey Petersen wrote an excellent e-book on Emacs [15], which he
keeps up-to-date whenever a new major version of Emacs is released.

138

https://apptainer.org/
https://www.docker.com
https://www.nextflow.io
https://www.nextflow.io

A01010
1010

10101
11001011010101011110000001101011010010010101110111011101000010010110101111

01

01
010

101
0101

11001
01101010

1011110000001101011010010010101110111011101000010010110101111

01
01
01

010
101

011
100

1011
0101

010111
10000001101

011010010010101110111011101000010010110101111

01
01
01
01
01
01

01
110

010
110

101
010

111
100

0000
1101

0110
10010

01010
111011

1011101
0000100101

10101111

01
01
01
01
01
01
01
11
00
10
11

01
01
01
01
111

000
000

110
101

101
001

001
010

111
011

101
1101

0000
1001

0110
1011

11

01
01
01
01
01
01
01
11
00
10
11
01
01
01
01
11
10
00
00
01
10
10
11
01
00
10
01
01
01
11
01
11
01

11
01
00
00
10
01
01
10
101

111

010
10
10
10
10
10
11
10
01
01
10
10
10
10
11
11
00
00
00
11
01
01
10
10
01
00
10
10
11
10
11
10
11
10
10
00
01
00
10
11
01
01
11
1

010
10
10
10
10
10
11
10
01
01
10
10
10
10
11
11
00
00
00
11
01
01
10
10
01
00
10
10
11
10
11
10
11
10
10
00
01
00
10
11
01
01
11
1

010
10
10
10
10
10
11
10
01
01
10
10
10
10
11

11
00

00
00

11
01

01
10

10
01

00
10

10
11

10
11

10
11

10
10

00
01

00
10

11
01
01
11

1

010
10
10
10
10

10
11

10
01

01
10

10
10

10
11

11
00

00
00

11
01

01
10

10
01

00
10

10
11

10
11

10
11

10
10

00
01

00
10

11
01

01
11

1

Appendix A
Answers to the exercises

Appendix A Answers to the exercises

142

Answer to Exercise E3.1. Long and short options
The --all (long form) option lists all files and directories (both normal
ones and hidden ones). The second command will also show a list of
files and directories. The reason for that is, that -all is interpreted as
the contraction of the short options -a -l -l.

Therefore, the second form, with only one dash is probably a typing
mistake where the user either forgot the second dash or the last l
should have been an h (which means show file sizes in human readable
format).

Answer to Exercise E3.3. Some file and directory basics
In the following answers I did not include all the output of each command
in order to save some space.

Running cd without arguments brings you to your home directory. Of
course cd ~ and cd /home/your_username are also correct.

$ cd
$ mkdir LinuxCourse
$ cd LinuxCourse
$ mkdir tmp2
$ mkdir tmp3

Note that the last two lines can be written as one: mkdir tmp2 tmp3.

$ cd tmp2
$ cd ../tmp3 # or: cd ~/LinuxCourse/tmp3
$ cd

The shortcut to go to the previous directory you visited is cd -. The pwd
command will print your present working directory on the screen.

$ cd /
$ ls
$ cd /tmp
$ ls
$ cd ../home/lennart/LinuxCourse

142

143

Of course, you have to replace my user name with yours in the last line.

In the following I did include all the output of the commands.

$ ls
tmp2 tmp3
$ rmdir tmp2 tmp3
$ ls
$

Answer to Exercise E3.4. Copying files
The last argument of the cp command is always the destination, which
means in this case that you are trying to copy file1 and file2 to another
file file3, which does not make sense. So, either you forgot to add a
destination directory to the cp command, or youmade a typo and the last
argument should not have been file3, but the name of the destination
directory f).

Answer to Exercise E3.5. Creating a directory tree
Both mkdir --help and man mkdir will tell you that the -p option or its
long version --parents allows to create missing parent directories:

$ mkdir -p dira/dirb/dirc

Removing directories can be done in two ways. If the directories are
empty, the rmdir command will do the job. Since dira is not empty (it
contains dirb and dirc), rmdir dira will not work. One solution is then
to first go to directory dirb and start from there:

$ cd dira/dirb
$ rmdir dirc
$ cd ..
$ rmdir dirb
$ cd ..

f) Or, but this seems very unlikely, you created a directory with the misleading name
file3, in which case the command succeeds and the first two files are indeed copied
into this ill-named directory.

143

Appendix A Answers to the exercises

144

$ rmdir dira

This takes way too much typing. In this case, the rm command will help,
the option -r will remove files and directories recursively, reducing the
above to a single (but more dangerours) command (run from the parent
directory of dira)

$ rm -r dira

Answer to Exercise E3.6. Getting information on files and directories

On my Linux system I found the following files in /boot:
$ ls -lh /boot/
total 304M
-rw-r--r-- 1 root root 233K jul 9 2021 config-5.4.0-80-generic
-rw-r--r-- 1 root root 233K jan 6 22:56 config-5.4.0-94-generic
-rw-r--r-- 1 root root 233K jan 12 16:16 config-5.4.0-96-generic
drwxr-xr-x 5 root root 4,0K jan 21 06:30 grub
-rw-r--r-- 1 root root 84M dec 26 07:38 initrd.img-5.4.0-80-generic
-rw-r--r-- 1 root root 84M jan 14 06:21 initrd.img-5.4.0-94-generic
-rw-r--r-- 1 root root 84M jan 20 06:24 initrd.img-5.4.0-96-generic
drwx------ 2 root root 16K feb 26 2016 lost+found
-rw------- 1 root root 4,6M jul 9 2021 System.map-5.4.0-80-generic
-rw------- 1 root root 4,6M jan 6 22:56 System.map-5.4.0-94-generic
-rw------- 1 root root 4,6M jan 12 16:16 System.map-5.4.0-96-generic
-rw------- 1 root root 12M jul 9 2021 vmlinuz-5.4.0-80-generic
-rw------- 1 root root 14M jan 7 00:07 vmlinuz-5.4.0-94-generic
-rw------- 1 root root 14M jan 12 17:22 vmlinuz-5.4.0-96-generic

So on my computer there currently are three files with vmlinuz in their
name, one is 12MB and the second and third are 14MB. Note that on your
system a different number of files with different version numbers may be
present.

The users and groups of the three directories are can be found also using
the ls -l command. The following lines list user, group and directory
name:

root root crash
root staff local

144

145

root mail mail

Again, this may be slightly different on your machine. These are the steps
I took to get that information (check the 3rd and 4th columns):

$ cd /var
$ ls -lh
total 130K
lrwxrwxrwx 1 root root 9 feb 26 2016 adm -> /var/log/
drwxr-xr-x 2 root root 4,0K jan 22 07:13 backups
drwxr-xr-x 22 root root 24 feb 6 2021 cache
drwxrwxrwt 2 root root 4,0K jan 13 06:25 crash
drwxr-xr-x 81 root root 81 okt 27 06:43 lib
drwxrwsr-x 2 root staff 4,0K nov 27 2015 local
lrwxrwxrwx 1 root root 9 feb 26 2016 lock -> /run/lock
drwxrwxr-x 20 root syslog 4,0K jan 25 00:00 log
drwx------ 2 root root 16K feb 26 2016 lost+found
drwxrwsr-x 2 root mail 4,0K aug 2 2018 mail
drwxr-xr-x 2 root root 4,0K feb 26 2016 opt
lrwxrwxrwx 1 root root 4 feb 26 2016 run -> /run
drwxr-xr-x 8 root root 4,0K sep 16 05:30 snap
drwxr-xr-x 7 root root 4,0K nov 28 2016 spool
drwxrwxrwt 294 root root 303 jan 25 00:00 tmp

A more “focused” approach would have been to ask ls to only show the
information for the directories we are interested in (note the -d option):

$ ls -lhd mail crash local
drwxrwxrwt 2 root root 4.0K Oct 15 06:25 crash
drwxrwsr-x 2 root staff 4.0K Apr 21 2011 local
drwxrwsr-x 2 root mail 4.0K Oct 18 01:34 mail

Answer to Exercise E3.7. The dangers of wildcards

The first rm command removes all files and directories ending in ~ (usu-
ally files ending with a tilde (~) are backup files), the second rm removes
all files and directories in the present directory and all (!) files and dir-
ectories in your home directory. You most likely don’t want that.

145

Appendix A Answers to the exercises

146

Answer to Exercise E3.8. Working with less
Searching for “search” or “backward” will show that the ? key followed
by a search pattern will search backwards. Note that on most keyboards
this is conveniently located on the same key as /.

Answer to Exercise E3.9. “Seeing a file grow”
Either use the man page or the --help option of tail to find that the
option is -f (or --follow in the long form). tail -f

Answer to Exercise E3.10. Untar-ing an archive
Copying and extracting the file goes like this (assuming you are in the
LinuxCourse directory):

$ cp /tmp/exercises_linux_course.tar.gz .
$ tar -xzf exercises_linux_course.tar.gz
$ ls -p
exercises_linux_course/

In the last step the -p option was added to explicitely show that
exercise_data is a directory. Likewise, ls -l will show the same
because of the d in the first permission column:
$ ls -l
drwxr-x--- 3 lennart genepi 4096 2010-11-07 23:09 exercises_linux_course

Answer to Exercise E3.14. Disk space usage
Follow the example:

$ du -sh ~/*

Answer to Exercise E3.15. Downloading files to the server
When checking the size of the file, don’t forget to add the -l option (or
both -l and -h: ls -lh to your ls command, otherwise the size inform-
ation won’t be printed.

146

147

Adding the -c option to wget wget -ccontinues a download, as you can see from
reading the output of either of the following commands:

$ wget --help
$ man wget

Answer to Exercise E3.16. Combining files
The cat command simply prints the contents of a file on the screen.
Therefore,

$ cat file1 > output.total

will send that output to the output.total file. To add the contents of
the other files you need to use >>, because > will automatically overwrite
the output file if it exists, whereas >> appends to the end of the output
file.

$ cat file2 >> output.total
$ cat file3 >> output.total

The check whether the three files we merged you could try several things.
You could quickly browse through output.total with less or more (al-
though that isn’t efficient for large files). Or you can count the number of
lines for each file and see if they add up (wc -l).

Answer to Exercise E3.17. Combining input and output redirection
Input redirection can simply be combined with output redirection:

$ R --no-save --quiet < rinput.R > Routput
$ cat Routput
> print("Hello, you are now in R")
[1] "Hello, you are now in R"
> getwd()
[1] "/tmp"
> 1+1
[1] 2
> 10:1
[1] 10 9 8 7 6 5 4 3 2 1

147

Appendix A Answers to the exercises

148

>

The cat command is only used to check the contents of the Routput com-
mand.

Answer to Exercise E3.18. Using the output of one command as input
for another
The command ps -u your_username lists all your processes, one
on each line. To count the number of lines in the output use wc -l.
Combining these we get: ps -u your_username | wc -l. Don’t forget
that the output of ps has a header, so you have to subtract 1 from the
number you got to get the number of processes!

Usedu du to find the disk usage of each of the files and directories in your
home directory. The -h option of the sort commands allows you to sort
the output of the du -h command. Without the -s (summarize) option
du returns the disk usage of each individual file in each of the subdirect-
ories.

$ cd
$ du -sh * | sort -h

Notice that the output of w has a two-line header. So

$ w | wc -l

gives you the number of logged-in users plus two. In order to get the
number of unique users the uniq command can be used. However, uniq
only removes duplicate entries if they are on adjacent lines. Therefore it
is wise to use the sort command first. However, since every line is slightly
different (for example each connection gets a unique entry in the TTY
column) uniq will not find any unique lines. So, we must select only the
first colum (the one with the user names) and sort that before applying
uniq:

$ w | cut -f1 -d" " | sort | uniq | wc -l

Note that we still have to subtract 2 from the output of the line count.

148

149

Answer to Exercise E4.1. Converting files from Windows format to
Linux format
The command line option to write to a new file is -n. You could have
found this out by either of the following commands:

$ dos2unix --help
$ man dos2unix

Note the remark about the order of the option and the two file names!
First you specify -n, then the input file and then the output file.

The following commands run the file command on a text file, convert it
from Linux to DOS format and test the new file:

$ file file_in_linux_format
file_in_linux_format: ASCII text
$ unix2dos -n file_in_linux_format file_in_dos_format
unix2dos: converting file file_in_linux_format to file ←↩

file_in_dos_format in DOS format ...
$ file file_in_dos_format
file_in_dos_format: ASCII text, with CRLF line terminators

Answer to Exercise E4.2. Searching for a given text in a file
If the phenotype file is called file.phe and the individual ID we are look-
ing for is 1234, the command

$ grep 1234 file.phe

will show us the line if it is present. Be careful! This command will also
show lines containing 12341, 12345, a1234, etc. To make sure you only get
the person with ID 1234 add the -w option.

$ cd ~/LinuxCourse/exercises_linux_course

The option for recursive searching is -r grep -r(use man grep or grep --help
to find this). Therefore, the command

$ grep -r trait *

149

Appendix A Answers to the exercises

150

will look in all files and directories (starting in your present working dir-
ectory) for the text “trait”.

To look for single words only, use the -w option:

$ grep -rw trait *

The options could also have been written as separately: -r -w, but -rw
is shorter.

A case-insensitive search is done with -i. The man-page will tell you this,
as will grep --help. A nice way to quickly find this is using grep on grep
itself:

$ grep --help | grep case
-i, --ignore-case ignore case distinctions

Here, we looked for the word “case” in the output of grep --help.

This is how to add colour to your life with grep:

$ grep -ri --color=auto trait *

Answer to Exercise E4.3. Using sed for search-replace operations
If you followed Exercise E3.10 to the letter, the files should be here:

$ cd ~/LinuxCourse/exercises_linux_course/Exercise_sed/
$ ls
file.csv
$ more file.csv
field1,field2,field3,field4
11,12,13,14
21,22,23,24
31,32,33,34
41,42,43,44
51,52,53,54
61,62,63,64

This replaces all comma’s with tabs:

150

151

$ sed 's/,/\t/g' file.csv
field1 field2 field3 field4
11 12 13 14
21 22 23 24
31 32 33 34
41 42 43 44
51 52 53 54
61 62 63 64

To send the output to a file use output redirection:

$ sed 's/,/\t/g' file.csv > file.tsv
$ more file.tsv
field1 field2 field3 field4
11 12 13 14
21 22 23 24
31 32 33 34
41 42 43 44
51 52 53 54
61 62 63 64

Editing the original file directly is easy with sed’s -i option:

$ sed -i 's/\t/;/g' file.tsv
$ more file.tsv
field1;field2;field3;field4
11;12;13;14
21;22;23;24
31;32;33;34
41;42;43;44
51;52;53;54
61;62;63;64

Answer to Exercise E4.4. Creating a phenotype file from .ped data
The files are located in the directory Exercise_ped2phe:

$ cd ~/LinuxCourse/exercises_linux_course/Exercise_ped2phe

151

Appendix A Answers to the exercises

152

Different ways to show the first six columns of the first ten lines:
1 $ cut -f 1-6 -d " " chr.ped |head
2 $ head chr.ped | cut -f 1-6 -d " "
3 $ gawk '{print $1, $2, $3, $4, $5, $6}' chr.ped |head
4 $ head chr.ped | gawk '{print $1, $2, $3, $4, $5, $6}'

The commands that start with head are more efficient when working with
files that have many lines. In that case first ten lines are selected from
the file and subsequently piped to the other command. In the commands
on the odd lines of the previous output, first the requested columns are
selected for all lines and then only the first ten of those are printed on
the screen.

For the phenotype file we only need columns two, five and six. The first
two lines in the output below show different ways of creating the .phe
file. The last line shows how to add the header as well.
$ cut -f 2,5,6 -d " " chr.ped > chr.phe
$ gawk '{print $2, $5, $6}' chr.ped > chr.phe
$ gawk 'BEGIN {print "id sex bt1"} {print $2, $5, $6}' chr.ped > chr.phe

And, finally, the one-liner for the complete .phe file:

$ gawk 'BEGIN {print "id sex bt1"} {if($5==2) sex=0; ←↩
if($5==1) sex=1; print $2, sex, $6}' chr.ped > chr.phe

For better legibility the command can be split into several lines. The >
signs at the beginning of the lines are added by the shell and should
not be typed by you. Here they don’t indicate output redirection to a
file (except, of course, the second > on line 8, which we do have to type
ourselves).

1 $ gawk '
2 > BEGIN {print "id sex bt1"}
3 > {
4 > if($5==2) sex=0;
5 > if($5==1) sex=1;
6 > print $2, sex, $6
7 > }
8 > ' chr.ped > chr.phe

152

153

The BEGIN{} section is executed once before any other GAWK commands.
It prints the header. Then the main body of the GAWK command starts
(lines 3–7), it is repeated for each line in the .ped file. The body consists of
two if-clauses that set the variable sex depending on the value of column
five. Subsequently, in line 6 a print statement prints the data we want.

If this is a regularly recurring task it is of course better to save these lines
in a GAWK script, say ped2phe.awk and run it repeatedly like this:gawk -f

$ gawk -f ped2phe.awk chr.ped > chr.phe

Answer to Exercise E4.5. Filtering output using gawk
The directory contains two files, one of 163 bytes and one of 710 KB:
$ ls -lh
total 716K
-rw-r----- 1 lennart lennart 163 2010-10-13 18:35 get_sign_snps.awk
-rw-r----- 1 lennart lennart 710K 2010-10-13 18:35 screen.1.out

Comparing the two GAWK one liners, we see that in the first case the word
”trait” can occur anywhere on the line, in the second we specify that the
line should only be printed if the second field contains ”trait”.

These are the steps that schematically describe the filter. Because of the
format of the data I made the assumption to use some tool that allows
working with fields:

• The traits are listed on lines that begin with Testing trait:.
• SNP markers appear on lines that begin with Testing marker:.
• If white space (i.e. one or more spaces or tabs) is used to separate
the fields then the lines that contain the information on p and F
values that we are interested in have a 1 in the first field (i.e. the
field named “Allele”).

• The F values are in field 6 and the p-values are found in field 7 (still
assuming white space as field separator).

• However, if there is no p-value (as in line 15 of the output given in
the exercise), then field 7 is not the p-value but a (.

The command man gawk or gawk --help shows that the -f option in
combination with the script name is used to run a GAWK script.gawk -f

153

Appendix A Answers to the exercises

154

$ gawk -f get_sign_snps.awk screen.1.out > qt_output

To find the number of lines in the output file use the word count program
again:

$ wc -l qt_output
243 qt_output

Extracting the names of the traits becomes easy once you realise that
they appear on a line with the word “trait” in it. So grep comes to the
rescue:

$ grep trait qt_output
trait: NRUWE
trait: ERUWE
trait: ORUWE
trait: ARUWE
trait: CRUWE

Of course you don’t need to count the number of traits by hand! We’ve
got (at least) two ways to do that:

$ grep trait qt_output | wc -l
5
$ grep -c trait qt_output
5

Answer to Exercise E5.1. A simple script
The script should look like this:

1 #! /bin/bash
2
3 echo "Hello World"

The executable bit is set like this: chmod +x myscript.sh. To check if
the command did its job, run ls -l and look for the x in the permissions.
It should be there for (at least) the user. In the example below the x
permission is set for both the user and the group.

154

155

-rwxr-xr-- 1 lennart genepi 106 2010-11-02 10:28 myscript.sh

Answer to Exercise E5.2. Using variables
Variables are created like this:

variable_name="Some text"

Note that there are no spaces around the equal sign. To use a variable
use the construction:

${variable_name}

So our script will look like this:

#! /bin/bash

Create a variable
greeting="Good Morning"

echo "${greeting} World!"

Answer to Exercise E5.3. Using command line arguments in your
script
The following script prints the first three arguments in reverse order.

#! /bin/bash
This script prints the first three arguments
in reverse order.

echo "${3} ${2} ${1}"

The modified script that takes the first argument as greeting looks like
this:

1 #! /bin/bash
2
3 greeting=${1}
4

155

Appendix A Answers to the exercises

156

5 echo "${greeting} World!"

Of course the step in line 3 can be omitted, in which case ${1} goes dir-
ectly into line 5.

The simplest way to use text that contains a space as one variable is to
enclose it in quotes. If the above script would have been called args.sh
then the this is the expected output:

$./args.sh Good evening
Good World!
$./args.sh "Good evening"
Good evening World!

Answer to Exercise E5.4. For-loops
There are two points to note here. First, the semi-colon before do, it’s eas-
ily forgotten. Second, it’s easiest to construct the file name in a variable
and use that together with the fictitious analyse command.

1 #! /bin/bash
2 for number in {22..1..-1}; do
3 filename="chr${number}.dat"
4 analyse ${filename}
5 done

Of course lines 3 and 4 can be written as one as well:

analyse "chr${number}.dat"

Adding leading zeroes is easy:

for number in {22..01..-1}; do

Answer to Exercise E5.5. parallel for-loops
In order to start a process in the background you need to add an & after
the command. So an example script that would start each job in parallel
would look like this:

156

157

#! /bin/bash
This script runs all tasks at the same time

for i in {01..22}; do
my_analysis_script.sh ${i} &

done

As the question already hinted, this is not an ideal way to run things in
parallel of you havemore tasks than CPUs. In the ideal case you want each
CPU to be busy with only one task. So if you have 10 CPUs you need to split
the tasks up in surch a way that first the first 10 are run, then the second
10 and finally the remaining two. If you know that you always have 22
tasks you could simply write three for-loops with a waitwaitcommand after
each loop. The wait command was not discussed previously. It waits for
all jobs that were started previously in the script to end before continuing
with the next command.

Answer to Exercise E5.6. if-clauses and tests
First we have to check if a command line argument was given. Command
line arguments are stored in ${1} etc (cf. Exercise E5.3). From Table 5.1 we
see that we can use -n to test if this variable is an empty string.

1 #! /bin/bash
2 if [-n "${1}"]; then
3 echo "The command line argument was ${1}"
4 else
5 echo "Goodbye!"
6 fi

Checking whether a directory exists can be done with the -d test. To
negate that test (because if it is not there we must take action) use !.

1 #! /bin/bash
2
3 # First create a variable that contains today's date in
4 # an acceptable form for a directory name.
5 today=$(date +%F)

157

Appendix A Answers to the exercises

158

6
7 if [! -d ${today}]; then
8 echo "A directory with today's date does not exist."
9 echo "Creating it..."
10 mkdir ${today}
11 fi

Answer to Exercise E6.1. Working with Sun Grid Engine
The test script that will be submitted to the queue will look like this:

1 #! /bin/bash
2 for i in $(seq 1 5); do
3 whoami
4 date +%T
5 sleep 10
6 done
7 date
8 echo "--------------------"

If you want the user name and the time to appear on a single line, lines
3 and 4 can be replaced with

echo "$(whoami): $(data +%T)"

Note that $() needs to be used, otherwise it would print the literal com-
mands instead of their output.

If the script is called simplejob.sh, then it can be submitted with this
command:

$ qsub -cwd simplejob.sh

To check the status of your jobs use the qstat command. The usual
reason for a job not being run immediately is the fact that the maximum
number of active slots has filled up (at present a maximum of 7 jobs is
allowed to run at the same time). Use

$ qstat -f -u *

158

159

to show all jobs in all queues for all users. This will also give you an
indication of the priority of your job compared to others. The job at the
top of the waiting list will be run at the next time a slot becomes available.
SGE is configured for fair scheduling, this means that it tries to allot each
user the same amount of computation time. If, for example, you have
several jobs running and several more waiting to be run, than someone
else’s job will be scheduled with a higher priority (assuming this person
didn’t over use his fair share of computation time). This makes sure that
one person with 100 jobs will not block others from running their own
analyses.

When the script has finished, check the files that end in .e5678 and
.o5678, where 5678 is to be replaced with the job ID of your own job.

Answer to Exercise E6.2. SGE, R and command line arguments
The R script looks a lot like the example. Be sure to convert the arguments
to integers before using them. The if-clause in lines 4 – 7 gives an error
message if the user forgets one or more arguments. It is good practice to
build these kind of sanity checks in your code. They help you if you run
the same script next year and have forgotten how it exactly works.

1 cat("Start of the program\n")
2
3 arguments <- commandArgs(TRUE)
4 if (length(arguments) < 2) {
5 cat("Error: please give two command line arguments\n")
6 q()
7
8
9 start <- as.integer(arguments[1])
10 end <- as.integer(arguments[2])
11
12 for (i in start:end) {
13 cat(i, "^2 = ", i^2, "\n", sep="")
14 }
15
16 cat("End of program\n")

159

Appendix A Answers to the exercises

160

Running this program gives the following results:
$ R --slave --vanilla -q -f R_loop_script.R --args 1 5
Start of the program
1^2 = 1
2^2 = 4
3^2 = 9
4^2 = 16
5^2 = 25
End of program

This is the modified job script:
1 #! /bin/bash
2 # This is an example of a job submission script
3
4 # The following are options for qsub. Don't
5 # remove the # in front of them.
6 #$ -S /bin/bash
7 #$ -j y
8 #$ -cwd
9
10 # Here comes the rest of your script that
11 # actually does something. In this case it runs R.
12 message="This script needs two arguments"
13
14 if [-z ${1}]; then
15 echo $message
16 exit
17 fi
18 if [-z ${2}]; then
19 echo $message
20 exit
21 fi
22
23 R --slave --vanilla -q -f R_loop_script.R --args ${1} ${2}

In line 12 a variable is createdwith the errormessage. Lines 14 – 21 test the
presence of the arguments, which are subsequently sent to the R script

160

161

in line 23.

Submission to the queue goes like this:

$ qsub jobscript.sh 1 10

161

B01010
1010

10101
11001011010101011110000001101011010010010101110111011101000010010110101111

01

01
010

101
0101

11001
01101010

1011110000001101011010010010101110111011101000010010110101111

01
01
01

010
101

011
100

1011
0101

010111
10000001101

011010010010101110111011101000010010110101111

01
01
01
01
01
01

01
110

010
110

101
010

111
100

0000
1101

0110
10010

01010
111011

1011101
0000100101

10101111

01
01
01
01
01
01
01
11
00
10
11

01
01
01
01
111

000
000

110
101

101
001

001
010

111
011

101
1101

0000
1001

0110
1011

11

01
01
01
01
01
01
01
11
00
10
11
01
01
01
01
11
10
00
00
01
10
10
11
01
00
10
01
01
01
11
01
11
01

11
01
00
00
10
01
01
10
101

111

010
10
10
10
10
10
11
10
01
01
10
10
10
10
11
11
00
00
00
11
01
01
10
10
01
00
10
10
11
10
11
10
11
10
10
00
01
00
10
11
01
01
11
1

010
10
10
10
10
10
11
10
01
01
10
10
10
10
11
11
00
00
00
11
01
01
10
10
01
00
10
10
11
10
11
10
11
10
10
00
01
00
10
11
01
01
11
1

010
10
10
10
10
10
11
10
01
01
10
10
10
10
11

11
00

00
00

11
01

01
10

10
01

00
10

10
11

10
11

10
11

10
10

00
01

00
10

11
01
01
11

1

010
10
10
10
10

10
11

10
01

01
10

10
10

10
11

11
00

00
00

11
01

01
10

10
01

00
10

10
11

10
11

10
11

10
10

00
01

00
10

11
01

01
11

1

Appendix B
Reference Card of Basic Linux
Commands

Appendix B Reference Card of Basic Linux Commands

164

The next two pages form a reference card of basic Linux commands that
can be printed for easy reference.

164

Re
fe
re
nc
e
Ca
rd
of
Ba
sic

Li
nu
x

Co
m
m
an
ds

©
20
10
–2
02
3
Le
nn
ar
tC
.K
ar
ss
en
,l
.c

.k
ar

ss
en

@p
ol

yo
mi

ca
.c

om
Ba
se
d
on

th
e
vi
Re
fe
re
nc
e
Ca
rd
by
Do
na
ld
J.
Bi
nd
ne
r.

Lo
gg
in
g
ou
t

ex
it

lo
go

ut
Ct

rl
-d

Ge
tti
ng

he
lp

m
an
ua
lp
ag
e
on

co
m
m
an

d
ma

n
co

mm
an

d
sh
ow
s
ba
si
c
he
lp
an
d
op
tio
ns
fo
rc

om
m
an

d
co

mm
an

d
--

he
lp

Ke
yb
oa
rd
sh
or
tc
ut
s

Th
e
m
os
ti
m
po
rt
an
tk
ey
is
TA

B.
It
is
us
ed

to
co
m
pl
et
e
co
m
m
an
ds
an
d
fil
e
na
m
es
.

If
pr
es
se
d
tw
ic
e
it
wi
ll
lis
ta
ll
av
ai
la
bl
e
co
m
pl
et
io
ns
.

ca
nc
el
cu
rr
en
tc
om

m
an
d

Ct
rl

-c
go

to
be
gi
nn
in
g
of
lin
e

Ct
rl

-a
go

to
en
d
of
lin
e

Ct
rl

-e
se
ar
ch
hi
st
or
y
fo
ra

re
ce
nt
co
m
m
an
d

Ct
rl

-r
un
do

yo
ur
la
st
ch
an
ge
on

th
e
co
m
m
an
d
lin
e1

Ct
rl

-/
de
le
te
to
en
d
of
lin
e
an
d
co
py
to
bu
ffe
r(
cu
t)

Ct
rl

-k
de
le
te
to
be
gi
nn
in
g
of
lin
e
an
d
co
py
to
bu
ffe
r(
cu
t)

Ct
rl

-u
pa
st
e
(o
r:
ya
nk
)f
ro
m
bu
ffe
r

Ct
rl

-y
su
sp
en
d
cu
rr
en
tj
ob

Ct
rl

-z
in
se
rt
la
st
wo
rd
fro
m
pr
ev
io
us
co
m
m
an
d

Al
t-

.

Fi
le
an
d
di
re
ct
or
ym

an
ag
em

en
t

sh
or
tc
ut
fo
ru
se
r’s

ho
m
e
di
re
ct
or
y
(/
ho

me
/u

se
r/
)

~
th
e
cu
rr
en
td
ire
ct
or
y

.
th
e
pa
re
nt
di
re
ct
or
y

..
pr
in
tp
re
se
nt
wo
rk
in
g
di
re
ct
or
y

pw
d

ch
an
ge
di
re
ct
or
y
to

m
yd

ir
cd

my
di

r
ch
an
ge
to
yo
ur
ho
m
e
di
re
ct
or
y

cd
Li
st
in
g
fil
es

lis
tfi
le
s
an
d
di
re
ct
or
ie
s

ls
lis
tfi
le
s
an
d
di
re
ct
or
ie
s
wi
th
a
/
af
te
re
ac
h
di
re
ct
or
y

ls
-p

de
ta
ile
d
(lo
ng
)l
is
tw
ith

fil
e
si
ze
s
in
hu
m
an

re
ad
ab
le
fo
rm
at

ls
-l

h
lis
th
id
de
n
fil
es
an
d
di
re
ct
or
ie
s
as
we
ll

ls
-a

lis
tfi
le
s
in
re
ve
rs
e
or
de
ro
fc
re
at
io
n
tim

e
(i.
e.
ne
we
st
la
st
)

ls
-r

t
Co
py
,(
re
-)
m
ov
e,
re
na
m
e

cr
ea
te
a
di
re
ct
or
y
my

di
r

mk
di

r
my

di
r

re
m
ov
e
an

em
pt
y
di
re
ct
or
y
my

di
r

rm
di

r
my

di
r

co
py

2
fi

le
1
to
fi

le
2

cp
fi

le
1

fi
le

2
co
py
a
di
re
ct
or
y
re
cu
rs
iv
el
y
to
di

r2
cp

-r
di

r1
di

r2
co
py
a
fil
e
to
a
di
re
ct
or
y
on

a
re
m
ot
e
ho
st

sc
p

my
fi

le
us

er
@h

os
t:

~/
di

r/
co
py
a
di
re
ct
or
y
re
cu
rs
iv
el
y
fro
m
a
re
m
ot
e
ho
st
to
th
e
cu
rr
en
td
ire
ct
or
y

sc
p
-r

us
er

@h
os

t:
~/

my
di

r
.

a
sm
ar
te
rw

ay
of
co
py
in
g
a
di
re
ct
or
y
to
a
re
m
ot
e
ho
st

rs
yn

c
-a

zP
di

r1
us

er
@o

st
:~

/d
ir

2/

re
m
ov
e3
a
fil
e

rm
my

fi
le

re
m
ov
e
a
di
re
ct
or
y
re
cu
rs
iv
el
y
(in
cl
ud
in
g
al
li
ts
fil
es
!)

rm
-r

my
di

r
m
ov
e
a
fil
e
to
an
ot
he
rd
ire
ct
or
y

mv
my

fi
le

my
di

r
re
na
m
e
a
fil
e

mv
fi

le
1

fi
le

2
Fi
nd
in
g
fil
es

qu
ic
k
wa
y
of
fin
di
ng

a
my

fi
le

(n
ot
al
wa
ys
up

to
da
te
)

lo
ca

te
my

fi
le

id
em

,b
ut
fil
e
na
m
e
ca
se
in
se
ns
iti
ve

lo
ca

te
-i

fi
le

fin
d
fil
e
in
a
ce
rt
ai
n
di
re
ct
or
y
st

ar
td

ir
fi

nd
st

ar
td

ir
-n

am
e

"m
yf

il
e"

id
em

,b
ut
ca
se
in
se
ns
iti
ve

fi
nd

st
ar

td
ir

-i
na

me
"m

yf
il

e"
Fi
le
an
d
di
re
ct
or
yp

er
m
iss
io
ns

Fi
le
an
d
di
re
ct
or
yp
er
m
is
si
on
sc
an
be
se
tt
o
re

ad
(r
),
wr

it
e
(w
)a
nd

ex
ec

ut
ab

le
(x
)f
or
th
e
fo
llo
wi
ng
:’
ow
ne
r’,
’g
ro
up
’a
nd

’o
th
er
s’.
Us
e
th
e
id

co
m
m
an
d
to
sh
ow

yo
ur
us
er
na
m
e
an
d
th
e
gr
ou
ps

yo
u
ar
e
a
m
em

be
ro
f.
Fo
ra

di
re
ct
or
y
x
m
ea
ns

it
is
ac
ce
ss
ib
le
.U
se

ls
-l

to
sh
ow

th
es
e
pe
rm
is
si
on
s.

sa
fe
pe
rm
is
si
on
s
fo
ra

fil
e

rw
-r

--
--

-
sa
fe
pe
rm
is
si
on
s
fo
ra

di
re
ct
or
y

rw
xr

-x
--

-
se
te
xe
cu
ta
bl
e
bi
to
n
my

sc
ri

pt
.s

h
(o
wn
er
an
d
gr
ou
p)

ch
mo

d
+x
←
↩

my
sc

ri
pt

.s
h

m
ak
e
my

fi
le

re
ad
ab
le
to
al
lu
se
rs

ch
mo

d
a+

r
my

fi
le

re
cu
rs
iv
el
yr
em

ov
e
re

ad
pe
rm
.f
ro
m
my

di
r
fo
r’
ot
he
rs
’

ch
mo

d
-R

o-
r

my
di

r
re
m
ov
e
wr
ite

pe
rm
is
si
on

fo
r’
gr
ou
p’
fro
m
my

fi
le

ch
mo

d
g-

w
my

fi
le

W
ild
ca
rd
sa
nd

sh
el
le
xp
an
sio

n
W
ild
ca
rd
s
ar
e
us
ed

to
se
le
ct
m
or
e
th
an

on
e
fil
e
(fo
re
xa
m
pl
e
fo
rc
op
yi
ng

or
de
le
-

tio
n)
.B
e
ca
re
fu
lw
ith

th
em

!
se
le
ct
on
e
ch
ar
ac
te
r

?
se
le
ct
on
e
or
m
or
e
ch
ar
ac
te
rs

*
se
le
ct
on
e
ch
ar
ac
te
rf
ro
m
a
ra
ng
e4

[]
se
le
ct
fro
m
lis
to
fc
ha
ra
ct
er
s

{}
Fo
re
xa
m
pl
e:

lis
ta
ll
fil
es
en
di
ng

in
.p

df
in
th
is
di
re
ct
or
y

ls
*.

pd
f

co
py
al
l.
R
fil
es
to
an
ot
he
rd
ire
ct
or
y

cp
*.

R
my

di
r

fin
d
al
lfi
le
s
wi
th

ch
r2

in
th
ei
rn
am

e
in
~

fi
nd

~
-i

na
me

"*
ch

r2
*"

m
ov
e

fi
le

_1
.t

xt
–

fi
le

_9
.t

xt
to

my
di

r
(b
ut

al
so

fi
le

_a
.t

xt
,

fi
le

_B
.t

xt
,e
tc
.)

mv
fi

le
?.

tx
t

my
di

r
m
ov
e

fi
le

_1
.t

xt
–

fi
le

_5
.t

xt
to

my
di

r
(b
ut

no
t

fi
le

_a
.t

xt
,

fi
le

_6
.t

xt
,e
tc
.)

mv
fi

le
_[

1-
5]

.t
xt

my
di

r
sh
ow

in
fo
of
al
lfi
le
s
wi
th

.d
os

e
or

.p
ro

b
ex
te
ns
io
ns

ls
-l

h
←
↩

*.
{d

os
e,

pr
ob

}

Pr
oc
es
sm

an
ag
em

en
t

di
sp
la
y
pr
oc
es
se
s
in
yo
ur
cu
rr
en
tt
er
m
in
al

ps
di
sp
la
y
al
lp
ro
ce
ss
es
by
al
lu
se
rs

ps
-e

f
di
sp
la
y
al
lp
ro
ce
ss
es
by
us
er
us

er
ps

-f
u

us
er

di
sp
la
y
al
lr
un
ni
ng

pr
oc
es
se
s
dy
na
m
ic
al
ly

ht
op

di
sp
la
y
al
lr
un
ni
ng

pr
oc
es
se
s
dy
na
m
ic
al
ly

to
p

ki
ll
pr
oc
es
s
id

pi
d

ki
ll

pi
d

ki
ll
al
lp
ro
ce
ss
es
na
m
ed

pr
oc

ki
ll

al
l

pr
oc

su
sp
en
d
cu
rr
en
tj
ob

Ct
rl

-z
re
su
m
e
a
su
sp
en
de
d
jo
b
in
th
e
ba
ck
gr
ou
nd

bg
lis
tj
ob
s

jo
bs

br
in
g
th
e
m
os
tr
ec
en
tj
ob

to
fo
re
gr
ou
nd

fg
br
in
g
jo
b
n
to
th
e
fo
re
gr
ou
nd

fg
n

im
m
ed
ia
te
ly
st
ar
tc

om
m
an

d
in
th
e
ba
ck
gr
ou
nd

co
mm

an
d
&

Di
sp
la
yc
on
te
nt
so
fa

fil
e

sh
ow

fu
ll
co
nt
en
ts
of
my

fi
le

ca
t
my

fi
le

sh
ow

co
nt
en
ts
sc
re
en

by
sc
re
en

mo
re

my
fi

le
id
em

,b
ut
wi
th
se
ar
ch
an
d
sc
ro
lli
ng

le
ss

my
fi

le
Us
e
q
to
ex
it
mo

re
an
d
le

ss
.

sh
ow

fir
st
10
lin
es
of
my

fi
le

he
ad

my
fi

le
sh
ow

fir
st
4
lin
es
of
my

fi
le

he
ad

-n
4

my
fi

le
sh
ow

la
st
10
lin
es
of
my

fi
le

ta
il

my
fi

le
sh
ow

la
st
15
lin
es
of
my

fi
le

ta
il

-n
15

my
fi

le
sh
ow

la
st
10
lin
es
of
my

fi
le

an
d
ke
ep

fo
llo
wi
ng

it
as
it
gr
ow
s

ta
il

-f
←
↩

my
fi

le

Sy
st
em

in
fo

di
sp
la
y
us
er
s
th
at
ar
e
lo
gg
ed

in
w

ge
ti
nf
or
m
at
io
n
ab
ou
tu

se
r

fi
ng

er
us

er
sh
ow

gr
ou
p
m
em

be
rs
hi
p
of

us
er

id
us

er
sh
ow

ho
w
lo
ng

th
e
se
rv
er
ha
s
be
en

up
an
d
ru
nn
in
g

up
ti

me
sh
ow

di
sk
us
ag
e
in
a
ce
rt
ai
n
di
re
ct
or
y
di

r
du

-s
di

r
id
em

,b
ut
in
hu
m
an

re
ad
ab
le
fo
rm
at

du
-s

h
di

r

Co
m
pr
es
sio

n
an
d
ar
ch
iv
in
g

co
m
pr
es
s
a
si
ng
le
fil
e
my

fi
le

(o
rig
in
al
fil
e
is
re
m
ov
ed
)

gz
ip

my
fi

le
de
co
m
pr
es
s
a
si
ng
le
fil
e
(.
gz

fil
e
is
re
m
ov
ed
)

gu
nz

ip
my

fi
le

.g
z

cr
ea
te
a
co
m
pr
es
se
d
ar
ch
iv
e
of
my

di
r

ta
r
-c

zf
my

fi
le

.t
ar

.g
z

my
di

r
ex
tra
ct
al
lfi
le
s
fro
m
a
.t

ar
.g

z
fil
e
to
.

ta
r
-x

zf
my

fi
le

.t
ar

.g
z

id
em

,b
ut
sh
ow

th
e
fil
e
na
m
es
th
at
ar
e
ex
tra
ct
ed

ta
r

-x
zv

f
my

fi
le

.t
ar

.g
z

cr
ea
te
a
co
m
pr
es
se
d
ar
ch
iv
e
of
my

di
r

ta
r

-c
jf

my
fi

le
.t

ar
.b

z2
my

di
r

ex
tra
ct
al
lfi
le
s
fro
m
a
.t

ar
.b

z2
fil
e
to
.

ta
r

-x
jf

my
fi

le
.t

ar
.b

z2

Te
xt
m
an
ip
ul
at
io
n

re
pl
ac
e
al
lo
cc
ur
re
nc
es
of

ol
d
wi
th

ne
w
in
my

fi
le

se
d

-i
"s

/o
ld

/n
ew

/g
"

my
fi

le
pr
in
tl
in
e
4
fro
m
my

fi
le

se
d
-n

"4
p"

my
fi

le
de
le
te
lin
e
25
fro
m
my

fi
le

se
d

-i
'2

5d
'

my
fi

le
de
le
te
lin
es
2
to
5
fro
m
my

fi
le

se
d
-i

'2
,5

d'
my

fi
le

pr
in
tc
ol
um

n
3
fro
m
my

fi
le

us
in
g
co
m
m
as
as
co
lu
m
n
de
lim

ite
r

cu
t
-f

3
-d

",
"

my
fi

le
pr
in
tc
ol
um

ns
1a
nd

3
to
7
fro
m
my

fi
le

us
in
g
ta
b
as
co
lu
m
n
de
lim

ite
r

cu
t

-f
1,

3-
7

my
fi

le
pr
in
t1

st
,2

nd
an
d
la
st
co
lu
m
n
fro
m
my

fi
le

(c
ol
um

ns
se
pa
ra
te
d
by
wh
ite

sp
ac
e)

ga
wk

'{
pr

in
t

$1
,

$2
,

$N
F}

'
my

fi
le

id
em

,b
ut
co
lu
m
ns
ar
e
se
pa
ra
te
d
by
a
co
m
m
a

ga
wk

-F
",

"
'{

pr
in

t
$1

,
$2

,
$N

F}
'

my
fi

le
pr
in
ta
ll
co
lu
m
ns
ex
ce
pt
th
e
3r
d
an
d
5t
h
fro
m
my

fi
le

ga
wk

'{
$3

=$
5=

""
;

pr
in

t
$0

}'
my

fi
le

pr
in
tl
in
e
fro
m
my

fi
le

if
fir
st
co
lu
m
n
co
nt
ai
ns

te
xt

ga
wk

'$
1

~
"t

ex
t"

{p
ri

nt
$0

}'
my

fi
le

ch
an
ge
co
lu
m
n
3
to
NA

in
my

fi
le

ga
wk

'{
$3

="
NA

";
pr

in
t

$0
}'

my
fi

le
id
em

,b
ut
do
n’
tc
ha
ng
e
th
e
he
ad
er
lin
e

ga
wk

'{
if

(N
R!

=1
){

$3
="

NA
"}

;
pr

in
t

$0
}'

my
fi

le
pr
in
tt
he

fie
ld
on

ro
w
2,
co
lu
m
n
3
fro
m
my

fi
le

ga
wk

'i
f

(N
R=

=2
){

pr
in

t
$3

}'
my

fi
le

so
rt
lin
es
in
a
fil
e
(b
y
de
fa
ul
tu
se
s
co
lu
m
n
1,
se
pa
ra
te
d
by
sp
ac
e)

so
rt

my
fi

le
id
em

,b
ut
as
su
m
e
da
ta
is
nu
m
er
ic
,n
ot
ch
ar
ac
te
r

so
rt

-n
my

fi
le

id
em

,b
ut
as
su
m
e
hu
m
an

re
ad
ab
le
da
ta
(1
k,
2M
,e
tc
.)

so
rt

-h
my

fi
le

1 T
hi
s
on
ly
un
do
es
ch
an
ge
s
on

th
e
co
m
m
an
d
lin
e
its
el
f(
be
fo
re
yo
u
hi
tt
he

En
te
rk
ey
),
no
tt
he

re
su
lts

of
th
e
co
m
m
an
ds
th
at
yo
u
ty
pe
.

2 N
ot
e:
cp

ov
er
wr
ite
s
th
e
de
st
in
at
io
n
fil
e
(if
it
ex
is
ts
)w
ith
ou
tn
ot
ic
e.
Us
e
th
e
-i

op
tio
n
to
ge
tn
ot
ifi
ed
.

3 N
ot
e:
rm

do
es
no
ta
sk
fo
rc
on
fir
m
at
io
n.
Us
e
th
e
-i

op
tio
n
if
yo
u
wa
nt
to
be

as
ke
d
fo
re
ac
h
fil
e.

4 N
ot
e:
on
ly
on
e
ch
ar
ac
te
ri
s
su
bs
tit
ut
ed

he
re
,s
o
[0

-9
]
wi
ll
wo
rk
,b
ut

[1
-2

2]
wi
ll
no
t.

id
em

,b
ut
as
su
m
e
nu
m
be
rs
ar
e
in
sc
ie
nt
ifi
c
no
ta
tio
n
(e
.g
.1
.2

e-
3)

so
rt

-g
my

fi
le

so
rt
m
yfi
le
ba
se
d
on

co
lu
m
n
2

so
rt

-k
2

my
fi

le
id
em

,a
nd

us
e
a
co
m
m
a
to
se
pa
ra
te
th
e
co
lu
m
ns

so
rt

-t
",

"
-k

2
my

fi
le

re
m
ov
e
ad
ja
ce
nt
(!)
du
pl
ic
at
e
lin
es
fro
m
my

fi
le

un
iq

my
fi

le

Ou
tp
ut
re
di
re
ct
io
n

se
nd

sc
re
en

ou
tp
ut
of

co
m
m
an

d
to
my

fi
le

(w
hi
ch
wi
ll
be

ov
er
wr
itt
en
)

co
mm

an
d

>
my

fi
le

id
em

,b
ut
ap
pe
nd

to
in
st
ea
d
of
ov
er
wr
ite

my
fi

le
co

mm
an

d
>>

my
fi

le
us
e
ou
tp
ut
of

co
m
m
an

d1
as
in
pu
tf
or

co
m
m
an

d2
co

mm
an

d1
|

co
mm

an
d2

Di
ffe
re
nc
es
be
tw
ee
n
fil
es

sh
ow

di
ffe
re
nc
es
be
tw
ee
n
tw
o
te
xt
fil
es

di
ff

fi
le

1
fi

le
2

id
em

,b
ut
wi
th
m
or
e
co
nt
ex
t

di
ff

-u
fi

le
1

fi
le

2
fo
rb
in
ar
y
fil
es
:c
om

pa
re
m
d5
su
m
s

md
5s

um
fi

le
1

fi
le

2

Se
ar
ch
in
g
fo
rt
ex
t

pr
in
tl
in
es
fro
m
my

fi
le

co
nt
ai
ni
ng

pa
tte

rn
gr

ep
pa

tt
er

n
my

fi
le

id
em

,b
ut
fa
st
er
(a
ss
um

es
se
ar
ch
te
xt
is
fix
ed
)

gr
ep

-F
te

xt
my

fi
le

id
em

,b
ut

pa
tt

er
n
is
tr
ea
te
d
as
a
wo
rd
(e
.g
.w
ith

su
rr
ou
nd
in
g
wh
ite

sp
ac
e)

gr
ep

-w
pa

tt
er

n
my

fi
le

id
em

,b
ut

pa
tte

rn
is
tr
ea
te
d
ca
se
in
se
ns
iti
ve

gr
ep

-i
pa

tt
er

n
my

fi
le

id
em

,a
nd

pr
efi
x
wi
th
lin
e
nu
m
be
r

gr
ep

-n
pa

tt
er

n
my

fi
le

id
em

,b
ut
ge
ts
ea
rc
h
pa
tte
rn
s
fro
m
fil
e
se

ar
ch

.t
xt

gr
ep

-f
se

ar
ch

.t
xt

my
fi

le
id
em

,b
ut

fi
le

1
co
nt
ai
ns
a
lis
to
fp

at
te
rn
s

gr
ep

-f
fi

le
1

my
fi

le
pr
in
tl
in
es
co
nt
ai
ni
ng

pa
tte

rn
an
d
3
lin
es
af
te
r

gr
ep

-A
3

pa
tt

er
n

my
fi

le
pr
in
tl
in
es
co
nt
ai
ni
ng

pa
tte

rn
an
d
4
lin
es
be
fo
re

gr
ep

-B
4

pa
tt

er
n
←
↩

my
fi

le
pr
in
tl
in
es
co
nt
ai
ni
ng

pa
tte

rn
an
d
5
lin
es
co
nt
ex
t

gr
ep

-C
5

pa
tt

er
n
←
↩

my
fi

le
pr
in
tl
in
es
wi
th
ou
tp

at
te
rn
in
my

fi
le

gr
ep

-v
pa

tt
er

n
my

fi
le

se
ar
ch
re
cu
rs
iv
el
y
fo
rp

at
te
rn
in
my

di
r

gr
ep

-r
pa

tt
er

n
my

di
r

co
un
tt
he

nu
m
be
ro
fl
in
es
on

wh
ic
h
pa

tt
er

n
oc
cu
rs gr

ep
-c

pa
tt

er
n

my
fi

le

M
isc
el
la
ne
ou
s

ge
tm

or
e
in
fo
rm
at
io
n
ab
ou
tt
he

co
nt
en
ts
of
a
fil
e

fi
le

my
fi

le
ge
ne
ra
te
a
se
qu
en
ce
of
nu
m
be
rs
fro
m
1t
o
22

{1
..

22
}

ge
ne
ra
te
a
se
qu
en
ce
of
nu
m
be
rs
fro
m
1t
o
22

se
q

1
22

id
em

,b
ut
wi
th
st
ep
s
of
4

{1
..

22
..

4}
id
em

,b
ut
wi
th
st
ep
s
of
4

se
q

1
4

22
id
em

,b
ut
co
un
tin
g
do
wn

wi
th
a
st
ep

of
-1

{2
2.

.1
..

-1
}

id
em

,b
ut
co
un
tin
g
do
wn

wi
th
a
st
ep

of
-1

se
q
22

-1
1

sh
ow

cu
rr
en
td
at
e
an
d
tim

e
da

te
sh
ow

on
ly
to
da
y’s

da
te

da
te

+%
F

sh
ow

on
ly
cu
rr
en
tt
im
e

da
te

+%
T

co
nv
er
td
at
e
to
ot
he
rf
or
m
at

da
te

-d
"0

1
Ma

rc
h

96
"

+%
F

co
nv
er
tt
im
e
in
ot
he
rt
im
e
zo
ne

to
tim

e
in
se
rv
er
’s
tim

e
zo
ne

da
te

-d
"1

1:
00

pm
PD

T"
+%

T
Th
e
pr
ev
io
us

co
m
m
an
d
ta
ke
s
tim

e
zo
ne

an
d
da
te
di
ffe
re
nc
es

in
to
ac
co
un
t.
Fo
r

ex
am

pl
e:

$
da

te
-d

"2
02

1-
12

-3
1

11
:0

0
pm

PD
T"

Sa
t

1
Ja

n
07

:0
0:

00
CE

T
20

22

ch
an
ge
yo
ur
pa
ss
wo
rd

pa
ss

wd
cr
ea
te
an

al
ia
s
fo
ra

co
m
m
an
d5

al
ia

s
sh

or
t=

'l
on

g
co

mm
an

d'
fo
re
xa
m
pl
e:

al
ia

s
ls

l=
'l

s
-l

ha
rt

'

Ba
sh
sc
rip
tin
g

Ba
sh
sc
rip
ts
sh
ou
ld
be

m
ad
e
ex
ec
ut
ab
le

ch
mo

d
+x

my
sc

ri
pt

.s
h

Al
lb
as
h
sc
rip
ts
be
gi
n
wi
th

#!
/b

in
/b

as
h

Ex
it
sc
rip
tw
he
n
a
co
m
m
an
d
gi
ve
s
er
ro
r

se
t

-e
Ex
it
sc
rip
tw
he
n
a
va
ria
bl
e
is
un
de
fin
ed

se
t

-u
Ex
it
sc
rip
ti
fp
ar
to
fa

pi
pe
lin
e
er
ro
rs

se
t

-o
pi

pe
fa

il
fil
lv
ar
ia
bl
e
m
yv
ar
wi
th

so
me

te
xt

my
va

r=
"s

om
e

te
xt

"
fil
lv
ar
ia
bl
e
m
yv
ar
wi
th
th
e
ou
tp
ut
of

co
m
m
an

d
my

va
r=

$(
co

mm
an

d)
us
e
th
e
va
ria
bl
e
m
yv
ar

${
my

va
r}

Ex
am

pl
e
of
a
fo
r-
lo
op
:r
un

m
ys
cr
ip
t.s

h
fo
re
ac
h
ch
ro
m
os
om

e

fo
r

ch
r

in
{1

..
22

};
do

my
sc

ri
pt

.s
h

${
ch

r}
do

ne

Ex
am

pl
e
of
a
Ba
sh
if-
cl
au
se
th
at
co
m
pa
re
s
tw
o
st
rin
gs
:

if
[

"$
{v
ar

}"
=

"y
es

"
];

th
en

ec
ho

"T
he

va
ri

ab
le

va
r

is
eq

ua
l

to
ye

s"
el

se ec
ho

"v
ar

wa
sn

't
ye

s"
fi St
rin
g
co
m
pa
ris
on
s:

st
rin
gs
:e
qu
al

=
st
rin
gs
:n
ot
eq
ua
l

!=
Co
m
pa
rin
g
in
te
ge
rn
um

be
rs
:

nu
m
be
rs
:e
qu
al

-e
q

nu
m
be
rs
:n
ot
eq
ua
l

-n
e

nu
m
be
rs
:l
es
s
th
an

-l
t

nu
m
be
rs
:g
re
at
er
th
an

-g
t

te
st
if
va
ria
bl
e
s1

is
no
te
m
pt
y

[
-n

"$
{s

1}
"

]
te
st
if
va
ria
bl
e
s1

is
em

pt
y
or
un
se
t

[
-z

"$
{s

1}
"

]
Te
st
in
g
fil
es
an
d
di
re
ct
or
ie
s
in
an

if-
cl
au
se
:

Te
st
fo
rd
ire
ct
or
y
ex
is
te
nc
e

[
-d

di
re

ct
or

y
]

Te
st
if
fil
e
fi

le
ex
is
ts

[
-e

fi
le

]
Te
st
fo
rr
eg
ul
ar
fil
e
ex
st
en
ce
no
ta

di
re
ct
or
y

[
-f

fi
le

]
Te
st
if
fi

le
is
a
re
ad
ab
le

[
-r

fi
le

]
Te
st
if
fi

le
is
wr
ita
bl
e

[
-w

fi
le

]
Te
st
if
fi

le
is
ex
ec
ut
ab
le

[
-x

fi
le

]
Fo
r
ex
am

pl
e
(th
e
!
in
th
e
se
co
nd

lin
e
is
a
lo
gi
ca
lN

OT
,s
o
th
e
te
st
is
wh
et
he
r

so
me

sc
ri

pt
.s

h
is
no
te
xe
cu
ta
bl
e)
:

fi
le

na
me

=s
om

e_
sc

ri
pt

.s
h

if
[
!

-x
${

fi
le

na
me

}
];

th
en

ec
ho

"$
{f

il
en

am
e}

is
no

t
ex

ec
ut

ab
le

.
Fi

xi
ng

..
."

ch
mo

d
+x

${
fi

le
na

me
}

fi Ch
ec
ki
ng

th
e
nu
m
be
ro
fc
om

m
an
d
lin
e
ar
gu
m
en
ts
in
a
sc
rip
t:

1
if

[
${

#}
-l

t
3

];
th

en
2

ec
ho

"T
he

nu
mb

er
of

ar
gu

me
nt

s
sh

ou
ld

be
at

le
as

t
3"

3
ex

it
4

fi Cy
cl
in
g
th
ro
ug
h
al
lc
om

m
an
d
lin
e
ar
gu
m
en
ts
in
a
sc
rip
t:

fo
r

ar
g

in
${

*}
;

do
ec

ho
"A

rg
um

en
t

wa
s:

${
ar

g}
"

do
ne

In
iti
al
is
e
ar
ra
y
on
e
el
em

en
ta
ta

tim
e

ar
r[

in
de

x]
=v

al
ue

In
iti
al
is
e
ar
ra
y

ar
r=

(e
lm

0
el

m1
el

m2
)

Ac
ce
ss
in
g
ar
ra
ye
le
m
en
ta
ti
nd

ex
(fi
rs
te
le
m
en
th
as
in
de
x0
!)

${
ar

r[
in

de
x]

}
Ac
ce
ss
in
g
al
le
le
m
en
ts

${
ar

r[
@]

}
id
em

${
ar

r[
*]

}
Ge
ta
rr
ay
si
ze
/l
en
gt
h
(n
r.
of
el
em

en
ts
)

${
#a

rr
[@

]}
Ge
tl
en
gt
h
of
ar
ra
y
el
em

en
t2

${
#a

rr
[2

]}
Ap
pe
nd
in
g
el
em

en
ts
to
an

ar
ra
y

ar
r=

($
{a

rr
[@

]}
ne

w1
ne

w2
)

Us
in
g
an

ar
ra
y
in
a
lo
op
:

fo
r

i
in

${
ar

r[
@]

};
do

ec
ho

"E
le

me
nt

${
i}

=
${

ar
r[

${
i}

]}
"

do
ne

Si
nc
e
ar
ra
ys
ar
e
sp
ac
e
se
pa
ra
te
d
lo
op
in
g
ov
er
fil
es
is
ea
sy
:

fo
r

fl
in

*.
cs

v;
do

do
_s

om
et

hi
ng

do
ne Th
e
SG
E
ba
tc
h
qu
eu
e
sy
st
em

lis
ty
ou
rj
ob
s
in
th
e
qu
eu
e(
s)

qs
ta

t
lis
ta
ll
jo
bs
by
al
lu
se
rs
in
al
lq
ue
ue
s

qs
ta

t
-f

-u
*

ge
ti
nf
o
on

a
wa
iti
ng

or
ru
nn
in
g
jo
b
wi
th
Jo
bI
D
12
34

qs
ta

t
-j

12
34

ge
ti
nf
o
on

a
fin
is
he
d
jo
b
wi
th
jo
bI
D
12
34

qa
cc

t
-j

12
34

su
bm

it
a
jo
b
sc
rip
tt
o
th
e
qu
eu
es

qs
ub

my
sc

ri
pt

.s
h

su
bm

it
a
bi
na
ry
jo
b
to
th
e
qu
eu
e
sy
st
em

qs
ub

-c
wd

-b
y

my
pr

og
ra

m
su
bm

it
a
jo
b
sc
rip
ta
nd

gi
ve
it
a
na
m
e

qs
ub

-N
jo

bn
am

e
my

sc
ri

pt
.s

h
su
bm

it
a
jo
b
th
at
sh
ou
ld
un
til
a
jo
b
wi
th
na
m
e
my

jo
b
ha
s
fin
is
he
d

qs
ub

-h
ol

d_
ji

d
my

jo
b

my
sc

ri
pt

.s
h

de
le
te
jo
b
wi
th
jo
bI
D
12
34
fro
m
th
e
qu
eu
es

qd
el

12
34

Th
e
qs

ub
co
m
m
an
d
is
us
ed

to
se
nd

jo
bs

to
th
e
qu
eu
e.
W
ith
ou
tf
ur
th
er
op
tio
ns

it
wi
ll
lo
ok

fo
r
yo
ur
sc
rip
ti
n
yo
ur
ho
m
e
di
re
ct
or
y
an
d
al
so

pu
ti
ts
ou
tp
ut
th
er
e.

Th
es
e
ar
e
th
e
m
os
ti
m
po
rt
an
to
pt
io
ns
fo
rt
he

qs
ub

co
m
m
an
d:

us
e
cu
rr
en
tw
or
ki
ng

di
re
ct
or
y
fo
ri
np
ut
an
d
ou
tp
ut
fil
es

-c
wd

jo
in
th
e
no
rm
al
ou
tp
ut
an
d
th
e
er
ro
rs
in
on
e
fil
e

-j
y

th
e
su
bm

itt
ed

co
m
m
an
d
is
bi
na
ry
,n
ot
a
sc
rip
t

-b
y

se
nd

e-
m
ai
la
tb
eg
in
ni
ng

an
d
en
d
of
a
jo
b

-m
b

e
se
te
-m
ai
la
dd
re
ss
fo
rt
he

-m
op
tio
n

-M
us

er
@e

xa
mp

le
.c

om
ar
ra
y
jo
b
fo
r2
2
su
bj
ob
s
(u
se
va
ria
bl
e
$S

GE
_T

AS
K_

ID
in
yo
ur
sc
rip
t)

-t
1-

22
ar
ra
y
jo
b
wi
th
di
ffe
re
nt
st
ep

si
ze
,e
.g
.5

-t
10

0-
20

0:
5

ar
ra
y
jo
b,
bu
ts
ta
rt
m
ax
2
jo
bs
at
th
e
sa
m
e
tim

e
-t

1-
30

0
-t

c
2

W
he
n
su
bm

itt
in
g
a
sh
el
ls
cr
ip
tt
he
af
or
em

en
tio
ne
d
op
tio
ns
ca
n
be
se
ti
n
th
e
sc
rip
t

so
yo
u
do
n’
th
av
e
to
re
ty
pe
th
em

.S
im
pl
yp
ut
th
em

in
th
e
sc
rip
to
n
a
lin
e
th
at
st
ar
ts

wi
th

#$
.F
or
ex
am

pl
e:

#!
/b

in
/b

as
h

#
Th

is
is

an
ex

am
pl

e
of

a
jo

b
su

bm
is

si
on

sc
ri

pt

#
Th

e
fo

ll
ow

in
g

ar
e

op
ti

on
s

fo
r

qs
ub

.
#$

-S
/b

in
/b

as
h

#$
-j

y
#$

-c
wd

#
He

re
co

me
s

th
e

re
st

of
yo

ur
sc

ri
pt

th
at

#
ac

tu
al

ly
do

es
so

me
th

in
g.

5 S
av
e
al
ia
se
s
in
yo
ur

~/
.b

as
h_

pr
of

il
e
fil
e
so
th
ey
wi
ll
be

lo
ad
ed

ne
xt
tim

e
yo
u
lo
g
in
.

2

C01010
1010

10101
11001011010101011110000001101011010010010101110111011101000010010110101111

01

01
010

101
0101

11001
01101010

1011110000001101011010010010101110111011101000010010110101111

01
01
01

010
101

011
100

1011
0101

010111
10000001101

011010010010101110111011101000010010110101111

01
01
01
01
01
01

01
110

010
110

101
010

111
100

0000
1101

0110
10010

01010
111011

1011101
0000100101

10101111

01
01
01
01
01
01
01
11
00
10
11

01
01
01
01
111

000
000

110
101

101
001

001
010

111
011

101
1101

0000
1001

0110
1011

11

01
01
01
01
01
01
01
11
00
10
11
01
01
01
01
11
10
00
00
01
10
10
11
01
00
10
01
01
01
11
01
11
01

11
01
00
00
10
01
01
10
101

111

010
10
10
10
10
10
11
10
01
01
10
10
10
10
11
11
00
00
00
11
01
01
10
10
01
00
10
10
11
10
11
10
11
10
10
00
01
00
10
11
01
01
11
1

010
10
10
10
10
10
11
10
01
01
10
10
10
10
11
11
00
00
00
11
01
01
10
10
01
00
10
10
11
10
11
10
11
10
10
00
01
00
10
11
01
01
11
1

010
10
10
10
10
10
11
10
01
01
10
10
10
10
11

11
00

00
00

11
01

01
10

10
01

00
10

10
11

10
11

10
11

10
10

00
01

00
10

11
01
01
11

1

010
10
10
10
10

10
11

10
01

01
10

10
10

10
11

11
00

00
00

11
01

01
10

10
01

00
10

10
11

10
11

10
11

10
10

00
01

00
10

11
01

01
11

1

Appendix C
List of acronyms

Appendix C List of acronyms

170

BSD Berkeley Software Distribution, originally a Unix-like OS,
currently used to denote the whole family including its
descendants.

CLI Command Line Interface

CPU Central Processing Unit, a.k.a. the processor of your computer.

ErasmusMC Erasmus University Medical Centre, the place where the
foundations for this book were laid.

GIYF Google Is Your Friend

GNU GNU’s Not Unix, a recursive acronym used by the GNU free
software project (http://www.gnu.org).

GPL GNU Public License, a so-called copyleft licence that gives the
user liberal rights with respect to the use and distribution of
software.

GUI Graphical User Interface

NIHES Netherlands Institute for Health Sciences,
http://www.nihes.nl.

OS Operating System, the main pieces of software that make a
computer run.

pwd present working directory

SGE Sun Grid Engine, a batch queue system used the schedule
compute-intensive jobs on one or more servers.

TIMTOWTDI There Is More Than One Way To Do It

170

http://www.gnu.org
http://www.nihes.nl

010
101

0101
010111

001011010101011110000001101011010010010101110111011101000010010110101111

01

01
010

101
0101

11001
01101010

1011110000001101011010010010101110111011101000010010110101111

01
01
01

010
101

011
100

1011
0101

010111
10000001101

011010010010101110111011101000010010110101111

01
01
01
01
01
01

01
110

010
110

101
010

111
100

0000
1101

0110
10010

01010
111011

1011101
0000100101

10101111

01
01
01
01
01
01
01
11
00
10
11

01
01
01
01
111

000
000

110
101

101
001

001
010

111
011

101
1101

0000
1001

0110
1011

11

01
01
01
01
01
01
01
11
00
10
11
01
01
01
01
11
10
00
00
01
10
10
11
01
00
10
01
01
01
11
01
11
01

11
01
00
00
10
01
01
10
101

111

010
10
10
10
10
10
11
10
01
01
10
10
10
10
11
11
00
00
00
11
01
01
10
10
01
00
10
10
11
10
11
10
11
10
10
00
01
00
10
11
01
01
11
1

010
10
10
10
10
10
11
10
01
01
10
10
10
10
11
11
00
00
00
11
01
01
10
10
01
00
10
10
11
10
11
10
11
10
10
00
01
00
10
11
01
01
11
1

010
10
10
10
10
10
11
10
01
01
10
10
10
10
11

11
00

00
00

11
01

01
10

10
01

00
10

10
11

10
11

10
11

10
10

00
01

00
10

11
01
01
11

1

010
10
10
10
10

10
11

10
01

01
10

10
10

10
11

11
00

00
00

11
01

01
10

10
01

00
10

10
11

10
11

10
11

10
10

00
01

00
10

11
01

01
11

1

Bibliography

Bibliography

174

[1] The Linux Foundation. The Story of Linux: Commemorating 20 Years
of the Linux Operating System. Aug. 2011. URL: http://youtu.be/
5ocq6_3-nEw.

[2] Linus Torvalds. Gewoon Voor De Fun: Het genie achter Linux. ISBN:
90-6112-831-5. Karakter Uitgevers BV, 2001.

[3] L. Torvalds and D. Diamond. Just for Fun: The Story of an Accidental
Revolutionary. HarperBusiness, 2002. ISBN: 978-0-066-62073-2. URL:
http://books.google.com/books?id=6zSWd8Ou8BAC.

[4] W3Techs. Usage statistics and market share of Unix for websites.
2012. URL: http://w3techs.com/technologies/details/os-
unix/all/all.

[5] Top 500 Supercomputer Sites. Top 500 supercomputing operating
system share. June 2012. URL: http://i.top500.org/stats/list/
38/os.

[6] Yurii S. Aulchenko, Maksim V. Struchalin and Cornelia M. van Duijn.
‘ProbABEL package for genome-wide association analysis of im-
puted data.’ eng. In: BMC Bioinformatics 11 (2010), p. 134. DOI: 10.
1186/1471-2105-11-134. URL: http://dx.doi.org/10.1186/1471-
2105-11-134.

[7] Eric Steven Raymond. The Art of Unix Programming. 2003. URL:
http://www.faqs.org/docs/artu/index.html.

[8] Keith Bradnam and Ian Korf. UNIX and Perl to the rescue!: A Field
Guide for the Life Sciences (and Other Data-rich Pursuits). ISBN:
9781107000681. Cambridge University Press, 2012.

[9] John Loeliger and Matthew McCullough. Version Control with Git.
Ed. by Andy Oram. 2nd. ISBN: 978-1-449-31638-9. O’Reilly, 2012. URL:
http://shop.oreilly.com/product/0636920022862.do.

[10] Arnold Robbins and Nelson H.F. Beebe. Classic Shell Scripting. ISBN:
978-0-596-00595-5. O’Reilly, 2005. URL: http://shop.oreilly.
com/product/9780596005955.do.

174

http://youtu.be/5ocq6_3-nEw
http://youtu.be/5ocq6_3-nEw
http://books.google.com/books?id=6zSWd8Ou8BAC
http://w3techs.com/technologies/details/os-unix/all/all
http://w3techs.com/technologies/details/os-unix/all/all
http://i.top500.org/stats/list/38/os
http://i.top500.org/stats/list/38/os
https://doi.org/10.1186/1471-2105-11-134
https://doi.org/10.1186/1471-2105-11-134
http://dx.doi.org/10.1186/1471-2105-11-134
http://dx.doi.org/10.1186/1471-2105-11-134
http://www.faqs.org/docs/artu/index.html
http://shop.oreilly.com/product/0636920022862.do
http://shop.oreilly.com/product/9780596005955.do
http://shop.oreilly.com/product/9780596005955.do

Bibliography

175

[11] Carl Albing, JP Vossen and Cameron Newham. Bash Cookbook:
Solutions and Examples for Bash Users. 1st ed. O’Reilly, 2007. ISBN:
0596526784.

[12] V. Anton Spraul. Think Like a Programmer: An Introduction to Cre-
ative Problem Solving. ISBN: 9781593274245. No Starch Press, 2012.
ISBN: 1593274246.

[13] Roderick W. Smith. LPIC-1: Linux Professional Institute Certification
Study Guide: (Exams 101 and 102). ISBN: 978-0-470-40483. Sybex,
2009.

[14] Debra Cameron et al. Learning GNU Emacs. third. ISBN: 978-0-596-
0064-88. O’Reilly, 2004.

[15] Mickey Petersen. Mastering Emacs. 2022 edition. 13th May 2022,
p. 314. URL: https://masteringemacs.org/book.

175

https://masteringemacs.org/book

010
101

0101
010111

001011010101011110000001101011010010010101110111011101000010010110101111

01

01
010

101
0101

11001
01101010

1011110000001101011010010010101110111011101000010010110101111

01
01
01

010
101

011
100

1011
0101

010111
10000001101

011010010010101110111011101000010010110101111

01
01
01
01
01
01

01
110

010
110

101
010

111
100

0000
1101

0110
10010

01010
111011

1011101
0000100101

10101111

01
01
01
01
01
01
01
11
00
10
11

01
01
01
01
111

000
000

110
101

101
001

001
010

111
011

101
1101

0000
1001

0110
1011

11

01
01
01
01
01
01
01
11
00
10
11
01
01
01
01
11
10
00
00
01
10
10
11
01
00
10
01
01
01
11
01
11
01

11
01
00
00
10
01
01
10
101

111

010
10
10
10
10
10
11
10
01
01
10
10
10
10
11
11
00
00
00
11
01
01
10
10
01
00
10
10
11
10
11
10
11
10
10
00
01
00
10
11
01
01
11
1

010
10
10
10
10
10
11
10
01
01
10
10
10
10
11
11
00
00
00
11
01
01
10
10
01
00
10
10
11
10
11
10
11
10
10
00
01
00
10
11
01
01
11
1

010
10
10
10
10
10
11
10
01
01
10
10
10
10
11

11
00

00
00

11
01

01
10

10
01

00
10

10
11

10
11

10
11

10
10

00
01

00
10

11
01
01
11

1

010
10
10
10
10

10
11

10
01

01
10

10
10

10
11

11
00

00
00

11
01

01
10

10
01

00
10

10
11

10
11

10
11

10
10

00
01

00
10

11
01

01
11

1

Index

Index

178

.bash_aliases, 58

.bashrc, 58
<, 54
>, 53
>>, 53
|, see pipe symbol
\t , 72

account, 38
alias, 57–60
alias, 57
arguments, see command

arguments
array, see Bash
awk, see gawk

Bash, 12, 86–106
array, 101–104
extending, 104
initialisation, 103
length, 103–104
size, 103–104

command line arguments,
91

configuration, 58
debugging, 87–89
if-clause, 99–101
loop, 94–99, 104
variables, 89–92

bash
bash -x, 88

bash, see Bash
byobu, 136

cat, 33, 56
cd, 25
cd, 142
chmod, 40, 87, 112

command arguments
Bash, 91

command arguments, 16–19
command options, 16–19

long, 16
short, 16

completion (of commands and
file names), 17

compressed file, 35–37
copy

file, 26
count

lines, 49
words, 49

cp, 26
cp -i, 27, 59
cp -r, 27

csh, 12
current working directory, see

present working
directory

cut, 73
cut -d, 73
cut -f, 73

cut, 72–73

date, 49, 157
date -d, 49

debugging, see Bash
diff, 51

diff -u, 51
directory, 22, 25–31

home, 25
ownership, 38–39
parent, 26
permissions, 39–40

178

Index

179

present working directory,
25

present working directory,
see present working
directory

rename, 28
root, 22

distributions, see Linux
dos2unix, 65
dos2unix, 64–66
du, 50, 148

du -sh, 50

echo, 86, 91
editor, 14–15

Emacs, 14
Gvim, 14
Vim, 14

Emacs, 14, 125
emacs, 14

emacs -nw, 15
exit, 12

fg, 43
field, 73
file, 22, 25–31

hidden, 23
ownership, 38–39
permissions, 39–40
remove, 28
rename, 28

file, 65
find, 136
for, see loop
for, 94
for, 94–97

gawk, 74, 75

gawk -F, 75
gawk -f, 153
gawk -v, 93

gawk, 73–79
gid, 38
GNU project, 8
grep, 66

grep -A, 66
grep -B, 66
grep -C, 67
grep -c, 66, 68
grep -F, 66
grep -f, 69
grep -i, 66
grep -n, 66, 67
grep -r, 149
grep -v, 66
grep -w, 66, 67, 150

grep, 66–70
grep -A, 68–69
grep -B, 68–69
grep -C, 68–69

group, 38
gunzip, 36
gvim, 15
gzip, 36

head, 34, 152
hidden files, 23
history, 19
history, 19
home directory, 25
htop, 41, 43
htop, 41

id, 38

179

Index

180

input redirection, see
redirection

job, 43
job (SGE)

delete, 114
job (SGE), 110, 111, 113

submit, 111
jobs, 43

kernel, 8
kill, 41, 42
ksh, 12

less, 33
Linux, 8–9

distributions, 9
logout, 12
loop, 94, 104
ls, 16, 23

ls -a, 23
ls -d, 23
ls -h, 23
ls -l, 23
ls -t, 23

man, 21
manual, 21
md5sum, 52

md5sum -c, 52
mkdir, 26
more, 33
file, 27
mv, 27

mv -i, 28, 59

nano, 14

operating system, 8–9

options, see command
options

output redirection, see
redirection

ownership, 38–39

pager, 33–34
parent directory, 26
passwd, 20
PBS, 110
permissions, 39–40
pipe symbol, 55
present working directory, 25
present working directory, 23,

25, 111
process, 40
prompt, 12
ps, 41
pwd, see present working

directory
pwd, 25

qacct, 115
qacct -j, 115

qacct, 115–117
qdel, 114, 117
qrsh, 117
qstat, 113, 114

qstat -f, 113
qstat -f -u, 114

qstat, 113–114
qsub, 111
qsub, 110–113
queue, 110

interactive, 117
quota, 20

quota -s, 20

180

Index

181

read, 98
record, 73
redirection, 53

of output to another
command, see pipe
symbol

rm, 28
rm -i, 28, 59
rm -r, 28

rmdir, 26
root, see directory
rsync, 32

rsync -azP, 32

scp, 32
scp -r, 32

screen, 136
secure shell, 12
sed, 70, 71

sed -i, 72
sed, 70–72
seq, 96, 158
set

set -e, 105
set -o pipefail, 105
set -u, 105

SGE, 110–121
shell, 12

Bash, 12, 86–106
C-shell, 12
csh, 12
Korn shell, 12
ksh, 12
Z-shell, 12
zsh, 12

sleep, 118
sort, 45

sort -g, 46
sort -k, 46
sort -n, 46
sort -t, 47
sort -u, 47

sort, 45–47
SSH, see secure shell
ssh, 12

ssh -X, 13
ssh

X11 forwarding, 13

Tab-completion, 17
tail, 34

tail -f, 146
tar, 37
top, 41
touch, 99

uid, 38
uniq, 48
unix2dos, 65
unix2dos, 64–66
unzip, 36
user, 38

vi, 14
Vim, 14, 125
vim, 14

w, 57
wait, 157
watch, 35
wc, 49

wc -l, 49
wget, 45

wget -c, 147
while, see loop

181

Index

182

while, 97, 98
while, 97–98
whoami, 38, 118
wildcards, 28

X11 forwarding, 13

xargs, 136
xclock, 13

zip, 36
zless, 34, 36
zsh, 12

182

Colophon

This book was typeset with XƎLATEX using the Fira Sans Book font v4.1 by
Mozilla (http://www.carrois.com/fira-4-1/). The Fira Mono font v3.2
was used for monospaced text. BibLATEX was used to generate the biblio-
graphy.

http://www.carrois.com/fira-4-1/

	Contents
	List of Tables
	1 Preface
	1.1 About this book
	1.2 Acknowledgements

	2 What is Linux?
	3 The basics
	3.1 Logging in and out
	3.1.1 X11 forwarding: allowing application windows to `travel' from the server to your PC

	3.2 Editors
	3.3 The structure of Linux commands
	3.3.1 Exercises

	3.4 Managing your account
	3.5 Getting help
	3.6 Working with files and directories
	3.6.1 Directories
	3.6.2 Copying, moving, removing
	3.6.3 Wildcards
	3.6.4 Exercises

	3.7 Transferring files from one Linux machine to another
	3.8 Pagers, or how to look at the contents of a file
	3.8.1 Exercises

	3.9 Using compressed archives like .zip and tar.gz files
	3.9.1 zip
	3.9.2 gzip
	3.9.3 tar
	3.9.4 Exercises

	3.10 File ownership and permissions
	3.10.1 Ownership
	3.10.2 Permissions

	3.11 Process management
	3.11.1 Exercises

	3.12 Miscellaneous commands
	3.12.1 wget: downloading files to the server
	3.12.2 sort
	3.12.3 uniq
	3.12.4 wc: counting words and lines
	3.12.5 date
	3.12.6 du: disk space usage
	3.12.7 Differences between files

	3.13 Input and output redirection
	3.13.1 Redirecting to and from files
	3.13.2 Redirecting output of one command to another

	3.14 Aliases and creating your own commands

	4 Working with text files
	4.1 Converting between Windows and Linux format
	4.1.1 Exercises

	4.2 grep: finding text
	4.2.1 Exercises

	4.3 sed, the Stream EDitor
	4.3.1 Exercises

	4.4 cut: selecting columns
	4.5 GAWK: more fun with columns
	4.5.1 Exercises

	4.6 Putting it all together
	4.6.1 Exercises

	5 Writing Bash scripts
	5.1 A simple script
	5.2 Using variables
	5.3 Using shell variables in GAWK
	5.4 Loops, for and while
	5.5 if-clauses and tests
	5.6 Arrays in Bash
	5.7 Dealing with errors in your script

	6 Working with the SGE queue system
	6.1 Submitting jobs to the SGE queues
	6.1.1 Quick and dirty
	6.1.2 Using a submission script
	6.1.3 Refinements to the submission script

	6.2 Monitoring progress
	6.3 Deleting jobs from a queue
	6.4 Getting info on a finished job
	6.5 Interactive jobs
	6.6 Exercises

	7 Good scripting practices, structured programming and data management
	7.1 Code layout
	7.1.1 Indentation
	7.1.2 Line length
	7.1.3 Spaces

	7.2 Comments
	7.3 Variable names
	7.4 File and directory names
	7.5 Summary

	8 Where to go from here?
	8.1 More advanced topics
	8.2 Further reading

	A Answers to the exercises
	B Reference Card of Basic Linux Commands
	C List of acronyms
	Bibliography
	Index
	Colophon

