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ABSTRACT

Background: Common data models solve many challenges of standardizing electronic health

record (EHR) data, but are unable to semantically integrate all the resources needed for deep

phenotyping. Open Biological and Biomedical Ontology (OBO) Foundry ontologies provide

computable representations of biological knowledge and enable the integration of

heterogeneous data. However, mapping EHR data to OBO ontologies requires significant

manual curation and domain expertise. Objective: We introduce OMOP2OBO, an algorithm for

mapping Observational Medical Outcomes Partnership (OMOP) vocabularies to OBO

ontologies. Results: Using OMOP2OBO, we produced mappings for 92,367 conditions, 8611

drug ingredients, and 10,673 measurement results, which covered 68-99% of concepts used in

clinical practice when examined across 24 hospitals. When used to phenotype rare disease

patients, the mappings helped systematically identify undiagnosed patients who might benefit

from genetic testing. Conclusions: By aligning OMOP vocabularies to OBO ontologies our

algorithm presents new opportunities to advance EHR-based deep phenotyping.
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1.0  INTRODUCTION

Electronic health record (EHR) adoption, which is nearly universal within the US healthcare

system,1,2 has increased adherence to evidence-based clinical guidelines3 and facilitated greater

patient communication4 resulting in significant improvements in care.5 EHRs contain a myriad of

systematically collected, longitudinal, patient-level information and are a valuable resource for

population-level research.6 The cornerstone of medicine, diagnosis or clinical phenotyping, aims

to identify empirically observable traits exhibited by patients (i.e., signs and symptoms) known to

be characteristic of a specific disease.7 Computational phenotyping is the process of converting

clinical phenotypes into computer-executable algorithms in order to identify relevant patients

from large sources of clinical data, usually EHRs.8 One promise of EHR-based computational

phenotyping is the ability to perform population-level investigations of mechanistic drivers of

disease in diverse patient populations.9,10 Despite significant progress, this objective remains

largely aspirational.6,11–14

Traditionally, computational phenotypes have been imprecise due to their exclusive

reliance on EHR data, which has been shown to be insufficient at capturing the phenotypic

heterogeneity present in most complex diseases.15–18 Deep phenotyping, or “the precise and

comprehensive analysis of phenotypic abnormalities in which the individual components of the

phenotype are observed and described”,7 is a fundamental component of precision medicine

that requires timely synthesis of multiple types of patient data.19,20 Deep phenotyping has been

successfully applied to rare disease and genetic disorders,21–33 cancer,34–40 and pregnancy41–43

using a variety of clinical and -omic data. Despite large-scale biobanking efforts and resources

like the UK Biobank44 and the All of Us Research Program45, most EHRs do not systematically

integrate nor have the infrastructure to integrate patient-level genomic data or other forms of

external knowledge (e.g., scientific literature) with clinical data.46–48

Within an EHR, most data used for research (i.e., structured data) are stored using

3

https://paperpile.com/c/efTJ4n/uIuzq+FQWAO
https://paperpile.com/c/efTJ4n/4Bh4V
https://paperpile.com/c/efTJ4n/npHTI
https://paperpile.com/c/efTJ4n/z6V8F
https://paperpile.com/c/efTJ4n/vNLxZ
https://paperpile.com/c/efTJ4n/AtCvd
https://paperpile.com/c/efTJ4n/zYP8
https://paperpile.com/c/efTJ4n/E1RTE+vcimE
https://paperpile.com/c/efTJ4n/1P2HO+FfWET+zrDfd+7B9Ve+vNLxZ
https://paperpile.com/c/efTJ4n/jsHn+Scb3+h4P3+EzUh
https://paperpile.com/c/efTJ4n/AtCvd
https://paperpile.com/c/efTJ4n/MVEjm+QbDLb
https://paperpile.com/c/efTJ4n/yaT2Y+xIzHI+b8Ltv+7p8lO+JbS7A+r2wQa+kinPw+dHxVF+e51N1+wKQyD+AIeGW+fqGJk+mKLny
https://paperpile.com/c/efTJ4n/otmtO+gq6vF+RpEPz+wjKi3+77XRC+lkvP3+4CCEd
https://paperpile.com/c/efTJ4n/fEzRI+Tr5Km+DsFx
https://paperpile.com/c/efTJ4n/pnnQ
https://paperpile.com/c/efTJ4n/fTMz
https://paperpile.com/c/efTJ4n/gsL5o+n9Hc9+kjE2D


clinical terminologies or vocabularies. Clinical vocabularies are defined as a standard

representation of preferred terms which may or may not be hierarchical or have formally defined

relationships and are designed to facilitate meaningful and unambiguous information exchange

within the medical domain.49–51 Hundreds of clinical vocabularies have been developed and their

use differs by hospital and country. Examples include the International Classification of

Diseases (ICD),52 the Logical Observation Identifiers, Names and Codes (LOINC),53 the

Systematized Nomenclature of Medicine -- Clinical Terms (SNOMED-CT),54 and RxNorm.55 Most

clinical vocabularies were not designed to be integrated or interoperable with other

vocabularies, which is one of the long standing barriers preventing the secondary use of EHR

data for research.48 Common data models (CDMs) like the Observational Medical Outcomes

Partnership (OMOP)56 have solved many of the challenges of standardizing, representing, and

utilizing clinical EHR data. Unfortunately, most CDMs and associated terminology management

systems are not yet able to integrate and interpret genomic data or other sources of external

knowledge or publicly available data.57

Similar to clinical vocabularies, ontologies are classification systems that provide

detailed representations of our knowledge of a specific domain.51 Ontologies, like those in the

Open Biological and Biomedical Ontology (OBO) Foundry, exist for nearly all scales of biological

organization and when combined, can provide a semantically rich and biologically accurate

representation of molecular entities and mechanisms.58–60 Unlike clinical vocabularies,

ontologies are semantically computable and interoperable with formally defined relationships,

which means they can be logically verified and integrated with data from basic science and

clinical research.51 Mapping clinical vocabularies to ontologies has been recognized as a

fundamental requirement for use in deep phenotyping.20,48,51,61 An example of how aligning these

resources improves deep phenotyping was recently demonstrated by Zhang et al., (2019)62 who

mapped LOINC53 to the Human Phenotype Ontology (HPO),63 which enabled the harmonization

of laboratory tests with different clinical codes to common HPO concepts.
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Due to the time-consuming manual effort required to map clinical vocabularies to OBO

Foundry ontologies, no comprehensive mapping across commonly used ontologies currently

exists. While automated mapping approaches exist, they largely remain unable to correctly

capture the complex semantics underlying clinical data and the knowledge encoded by clinical

vocabulary concepts.64 For example, when mapping the concept Peptic Ulcer without

Hemorrhage AND without Perforation but with Obstruction (SNOMED-CT:54157007) to the

HPO, most automated approaches would return a single best mapping, most likely Peptic Ulcer

(HP:0004398). This HPO concept is much broader in meaning than the clinical concept. A more

precise mapping would explicitly capture the presence and absence of all relevant phenotypic

features: Peptic Ulcer (HP:0004398) and Gastrointestinal Obstruction (HP:0004796) and NOT

Gastrointestinal Hemorrhage (HP:0002239) or Intestinal Perforation (HP:0031368). To the best

of our knowledge no existing mappings or mapping algorithms are capable of capturing this type

of complex semantics.

Building on LOINC2HPO, the goal of this work is to develop OMOP2OBO, an algorithm

that enables semantically interoperable mappings between clinical vocabularies in the OMOP

CDM to OBO Foundry ontologies (Figure 1). The resulting mappings will enhance the semantic

interoperability of the data represented by the OMOP concepts and have the potential to

advance deep EHR-based phenotyping by enabling the identification of relevant patients using

our knowledge of the molecular mechanisms underlying disease rather than billing codes which

are prone to error and subject to bias. Using OMOP2OBO, we created the first healthcare

system-scale mappings between clinical vocabularies in the OMOP CDM and eight of the most

widely used OBO Foundry ontologies59 spanning diseases, phenotypes, anatomical entities,

organisms, chemicals, vaccines, and proteins. The mappings were evaluated on: (I) accuracy,

examined by a team of domain experts; (II) generalizability, examined through comparison to a

large set of mapped concepts used at least once in clinical practice from 24 hospital systems;

and (III) clinical utility, examined through the identification of patients with an undiagnosed rare
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disease. OMOP2OBO is open source (https://github.com/callahantiff/OMOP2OBO) and includes

a custom built interactive dashboard (http://tiffanycallahan.com/OMOP2OBO_Dashboard/).

2.0  RESULTS

Supplementary Table 1 lists the acronyms and definitions used in the paper. The resources

used to build and evaluate the OMOP2OBO algorithm and mappings are described in

Supplementary Table 2 and Supplementary Table 3.

2.1  OMOP2OBO Mapping Data

2.1.1  OMOP Data

The OMOP2OBO mappings were created using a de-identified pediatric dataset from the

Children’s Hospital of Colorado (CHCO) normalized to the OMOP CDM (referred throughout the

manuscript as “CHCO OMOP Database” and described in detail in Supplemental Table 3).56,65

Standardized vocabularies are a fundamental component of the OMOP CDM, which serve as

primary vocabularies within each OMOP domain; all other vocabularies within a specific domain

are aligned to a standard vocabulary using mappings provided by the CDM. The standard

vocabularies used in this work included: SNOMED-CT54 (the OMOP Condition domain for

diseases and clinical findings), RxNorm55 (the OMOP Drug domain for drug products and

vaccines), and LOINC53 (the OMOP Measurement domain for laboratory tests and assessment

scales).66 Concepts from these three vocabularies, including labels, synonyms, source codes

(i.e., standard vocabulary codes), and ancestor concepts obtained from the OMOP CDM, were

extracted and used as input to the OMOP2OBO mapping algorithm. Using the CHCO OMOP

Database, concepts were organized into two data waves according to whether or not they had

been used at least once in clinical practice (i.e., Concepts Used in Practice) or not (i.e.,

Concepts Not Used in Practice). Only Concepts Used in Practice were manually mapped.

The counts of concepts eligible for mapping by OMOP domain and data wave are shown

in Table 1. There were 109,719 condition concepts (Concepts Used in Practice: n=29,129,
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Figure 1: Overview of the OMOP2OBO Algorithm.
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Concepts Not Used in Practice: n=80,590) and 11,803 drug ingredient concepts (Concepts

Used in Practice: n=1693, Concepts Not Used in Practice: n=10,110) available to map. For

measurements, there were 4083 concepts, representing 11,269 measurement results (Concepts

Used in Practice: n=1606 concepts [4425 results], Concepts Not Used in Practice: n=2477

concepts [6844 results]) available to map. With respect to the Concepts Used in Practice, the

29,129 conditions had a median frequency of 25 (range 1-544,618), the 1693 drug ingredients

had a median frequency of 251 (range 1-2,267,866), and the 1606 measurement concepts had

a median frequency of 313.5 (range 1-56,823,139).

2.1.2  OBO Foundry Ontologies

Under the guidance of domain experts, eight OBO Foundry ontologies were selected to

represent the following domains: diseases (Mondo67), phenotypes (HPO63), anatomical entities

(Uber Anatomy Ontology [Uberon68]; Cell Ontology [CL]69), organisms (National Center for

Biotechnology Information Taxon Ontology [NCBITaxon]70), chemicals (Chemical Entities of

Biological Interest [ChEBI]71), vaccines (the Vaccine Ontology [VO]72), and proteins (the Protein

Ontology [PRO]73). Each set of ontology concepts also included metadata, which was obtained

by querying each ontology for labels, definitions, synonyms, and database cross-references

(i.e., codes from other vocabularies and ontologies). The amount of metadata available for

mapping is shown in Table 1 and varied across the OBO Foundry ontologies, with NCBITaxon

containing the most metadata and Uberon containing the least (visualized in Supplementary

Figure 1). A Chi-squared test of independence with Yate's correction revealed a significant

association between the ontology and the amount of available metadata ( (14) = 2,664,853.8,χ2

p<0.0001). Post-hoc tests with Bonferroni adjustment confirmed the ontologies provided

significantly different amounts of metadata (p<0.0001 for all significant comparisons).

2.2  OMOP2OBO Mappings

Figure 2 includes example mappings and illustrates how the OBO Foundry ontologies were
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Figure 2: OMOP2OBO Mapping Examples by OMOP Domain.

9



used to map concepts from each OMOP domain. As illustrated by this figure, OMOP conditions

were mapped to HPO and Mondo, OMOP drug ingredients were mapped to ChEBI, NCBITaxon,

PRO, and VO, and OMOP measurements results were mapped to HPO, Uberon, NCBITaxon,

PRO, CheBI, and CL. As illustrated in the bottom panel of Figure 1, each mapping consists of

four elements: (I) the approach used to create it (i.e., “automatic”, “manual”, or “cosine

similarity”); (II) cardinality (i.e., one-to-one or one-to-many); (III) level (i.e., concept or ancestor);

and (IV) evidence, which consists of pipe-delimited free-text phrases that explain what fields

were used to construct the mapping. Supplementary Table 4 provides additional details on and

examples of the OMOP2OBO mapping categories. The mapping procedures and resources are

described in the OMOP2OBO Algorithm section of the Methods.

2.2.1  Conditions

Unified Medical Language System (UMLS)74 concept unique identifiers (CUIs) were found for

96.6% of condition concepts (n=105,976) representing 69 unique Semantic Types.75 The

mapping results for each OBO Foundry ontology are displayed in Figure 3 and detailed in

Supplementary Table 5. Of the 109,719 available concepts, 66.9% (n=73,417) mapped to 5654

unique HPO concepts (Concepts Used in Practice: 83.9%, Concepts Not Used in Practice:

60.8%) and 57.8% (n=63,374) mapped to 9637 unique Mondo concepts (Concepts Used in

Practice: 68.9%, Concepts Not Used in Practice: 53.8%). Only 50 concepts we attempted to

map (excluding purposefully unmapped concepts) were unable to be mapped to at least one

OBO Foundry ontology concept.

Mapping Categories. The frequency distributions of the Concepts Used in Practice by

mapping category and ontology are visualized in Figure 4. The majority of automatic mappings

were one-to-one at the concept-level for Concepts Used in Practice (HPO: n=3601, Mondo:

n=4836) and Concepts Not Used in Practice (HPO: n=1166, Mondo: n=4261). The majority of

the manual mappings were one-to-many (HPO: n=10,328, Mondo: n=2835). Cosine similarity-
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Figure 3: OMOP Concept Mapping Results by Clinical Domain, Concept Type, Mapping
Category, and OBO Foundry Ontology.
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Figure 4: Condition Concept Frequency of Use in Clinical Practice by Mapping Category
and OBO Foundry Ontology.

scored concept embeddings enabled 1374 HPO (Concepts Used in Practice: median 0.5, range

0.2-1; Concepts Not Used in Practice: median 0.4, range 0.2-1) and 667 Mondo (Concepts

Used in Practice: median 0.8, range 0.2-1; Concepts Not Used in Practice: median 1, range

0.2-1) mappings (Supplementary Figure 2a). On average, more evidence was found for

mappings to Concepts Not Used in Practice than Concepts Used in Practice for HPO (8.9 vs

3.9) and Mondo (12.4 vs 10.6).

2.2.2  Drug Ingredients

UMLS CUIs were found for 99.3% of drug ingredient concepts (n=11,716) representing 23

unique Semantic Types. The mapping results for each OBO Foundry ontology are displayed in

Figure 3 and detailed in Supplementary Table 6. Of the 11,803 available concepts, 37.4%

(n=411) mapped to 4072 unique ChEBI concepts (Concepts Used in Practice: 100%, Concepts

Not Used in Practice: 26.9%), 21.5% (n=4661) mapped to 2535 unique NCBITaxon concepts

(Concepts Used in Practice: 23.9%, Concepts Not Used in Practice: 42.1%), 2.11% (n=4249)

mapped to 142 unique PRO concepts (Concepts Used in Practice: 10.5%, Concepts Not Used

in Practice: 0.7%), and 1.3% (n=154) mapped to 132 unique VO concepts (Concepts Use in

12



Clinical Practice: 6.9%, Concepts Not Used in Practice: 0.4%). All of the OMOP concepts were

mapped to at least one ChEBI concept.

Mapping Categories. The frequency distributions of the Concepts Used in Practice by

mapping category and OBO Foundry ontology are visualized in Figure 5. The majority of

automated mappings were one-to-one at the concept-level for Concepts Used in Practice

(ChEBI: n=959, NCBITaxon: n=20, PRO: n=1, VO: n=90) and Concepts Not Used in Practice

(ChEBI: n=2192, NCBITaxon: n=135, PRO: n=42, VO: n=18). The majority of the manual

mappings were one-to-one (321 ChEBI: n=321, NCBITaxon: n=230, PRO: n=157, VO: n=21).

Cosine similarity-scored concept embeddings enabled 109 ChEBI (Concepts Used in Practice:

median 1, range 0.3-1; Concepts Not Used in Practice: median 1, range 0.3-1), 4241

NCBITaxon (Concepts Used in Practice: median 0.6, range 0.3-1; Concepts Not Used in

Practice: median 0.6, range 0.3-1), 18 PRO (Concepts Used in Practice: median 0.8, range

0.4-1; Concepts Not Used in Practice: median 1, range 0.6-1), and 17 VO (Concepts Used in

Practice: median 1, range 0.4-1; Concepts Not Used in Practice: median 0.8, range 0.4-1)

mappings (Supplementary Figure 2b). On average, more evidence was found for mappings to

Concepts Not Used in Practice than Concepts Used in Practice for ChEBI and PRO, excluding

NCBITaxon and VO (ChEBI: 7.6 vs 7.6; PRO: 3.9 vs. 1; NCBITaxon: 1.2 vs 1.1; VO: 3 vs. 4.1).

2.2.3  Measurements

UMLS CUIs were found for 94.8% of measurement concepts (n=3869) representing a single

Semantic Type. The mapping results for each OBO Foundry ontology are displayed in Figure 3

and detailed in Supplementary Table 7. Of the 11,269 measurement results, 96.6% (n=10,888)

mapped to 1115 unique HPO concepts (Concepts Used in Practice: 92.4%, Concepts Not Used

in Practice: 99.4%) and 45 unique Uberon concepts (Concepts Used in Practice: 92.4%,

Concepts Not Used in Practice: 99.4%), 76.8% (n=8657) mapped to 425 unique NCBITaxon

concepts (Concepts Used in Practice: 64.4%, Concepts Not Used in Practice: 84.9%), 42.6%
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Figure 5: Drug Ingredient Concept Frequency of Use in Clinical Practice by Mapping
Category and OBO Foundry Ontology.

(n=4804) mapped to 172 unique PRO concepts (Concepts Used in Practice: 35.5%, Concepts

Not Used in Practice: 47.2%), 87.9% (n=9,904) mapped to 443 unique ChEBI concepts

(Concepts Used in Practice: 78.9%, Concepts Not Used in Practice: 93.7%), and 9.9% (n=1114)

mapped to 38 unique CL concepts (Concepts Used in Practice: 15.3%, Concepts Not Used in

Practice: 6.4%). Only 13 concepts we attempted to map (excluding purposefully unmapped

concepts) were unable to be mapped to at least one OBO Foundry ontology concept.

Mapping Categories. The frequency distributions of the Concepts Used in Practice by

mapping category and OBO Foundry ontology are visualized in Figure 6. The majority of the

14



Figure 6: Measurement Concept Frequency of Use in Clinical Practice by Mapping
Category and OBO Foundry Ontology.

automated mappings were one-to-one at the concept-level for Concepts Used in Practice (HPO:

n=17, Uberon: n=1793, NCBITaxon: n=444, PRO: n=44, ChEBI: n=264, CL: n=182) and

Concepts Not Used in Practice (HPO: n=3, Uberon: n=3589, NCBITaxon: n=444, PRO: n=12,

ChEBI: n=515, CL: n=186). The majority of the manual mappings were one-to-one (HPO:

n=3902, Uberon: n=406, NCBITaxon: n=2300, PRO: n=1267, ChEBI: n=1377, CL: n=319).

Cosine similarity-scored concept embeddings enabled 113 HPO (Concepts Used in Practice:

median 0.4, range 0.3-0.8; Concepts Not Used in Practice: median 0.4, range 0.3-0.9), 142

Uberon (Concepts Used in Practice: median 0.3, range 0.3-0.8; Concepts Not Used in Practice:

median 0.4, range 0.3-0.7), 150 NCBITaxon (Concepts Used in Practice: median 0.4, range

0.3-0.7; Concepts Not Used in Practice: median 0.4, range 0.3-0.7), 132 PRO (Concepts Used

in Practice: median 0.4, range 0.3-0.7; Concepts Not Used in Practice: median 0.4, range

0.3-0.6), 476 ChEBI (Concepts Used in Practice: median 0.4, range 0.3-1; Concepts Not Used

in Practice: median 0.3, range 0.3-0.6), and 102 CL (Concepts Used in Practice: median 0.4,
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range 0.3-1; Concepts Not Used in Practice: median 0.4, range 0.3-1) mappings

(Supplementary Figure 2c). On average, more evidence was found for mappings to Concepts

Used in Practice than Concepts Not Used in Practice for HPO, Uberon, and PRO (HPO: 1.03 vs

1.02; Uberon: 2.3 vs 1.9; PRO: 1.1 vs 1; NCBITaxon: 1.3 vs 1.4; ChEBI: 2.7 vs 2.9; CL: 2.5 vs

2.8).

2.3  Validation

2.3.1  Accuracy

The goal of this task was to verify the accuracy of randomly selected sets of manual one-to-one

and one-to-many OMOP2OBO mappings from each OMOP domain through domain expert

review. Of the 2000 condition mappings, 73.9% were correct (n=1477). Of the 116 reviewed

drug ingredient mappings, 70.7% (n=82) were correct. Upon review, it was found that 165

(31.6%) of the incorrect condition and 14 (41.2%) of the incorrect drug ingredient mappings

could be improved by creating more specific mappings through adding new concepts to the

OBO Foundry ontologies or by replacing multiple mappings to broad ancestor concepts with a

single best representative ancestor concept. Measurement concepts were reviewed at the

result-level using a survey and manual domain expert review. On the survey, 92.9% (n=251) of

the mappings were found to be correct. Of the 1350 measurement results, 97.3% (n=1314)

were correct.

In addition to expert review, each mapping was inspected at least twice by a member of

the research team (TJC). If we assume that the automatic one-to-one mappings created using

resources provided by the UMLS, OMOP CDM, and OBO Foundry ontologies are correct and

exclude mappings that occur at the ancestor level (assuming those are too broad) and

unmapped concepts, then the following concepts received at least one form of review: (I)

Conditions: 18.4% of Mondo and 9.9% of HPO; (II) Drug Ingredients: 95.3% of NCBITaxon,

90.3% of VO, 85.3% of ChEBI, and 33.3% of PRO; and (III) Measurements: 79.2% of HPO,
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50.8% of Uberon, 48.5% of CL, 12.7% of CHEBI, 10.6% of NCBITaxon, and 3.9% of PRO.

2.3.2  Generalization

The goal of this evaluation was to characterize the generalizability or coverage of concepts in

the OMOP2OBO mapping set to a set of OMOP standard concepts that are commonly utilized

in clinical practice. The Observational Health Data Sciences and Informatics (OHDSI) Concept

Prevalence Study contains OMOP standard concepts that are commonly utilized in practice

from several independent study sites across the OHDSI network (see Supplementary Table 3

for more information).76–79 For this evaluation, we leveraged data (referred throughout the

remainder of the manuscript as the “OHDSI Concept Prevalence Data”) from 24 independent

study sites, which included hospitals, academic medical centers, and claims databases. For this

analysis, the OMOP2OBO mappings were filtered to identify all concepts with at least one valid

mapping (i.e., excluding unmapped and not yet mapped concepts) across all of the ontologies

mapped within each OMOP domain.

2.3.2.1  Conditions

The OHDSI Concept Prevalence Data contained 62,335 condition concepts from 24

independent sites. The filtered OMOP2OBO mapping set contained 92,367 eligible concepts,

which covered 92.5% (99.5% weighted coverage) of the OHDSI Concept Prevalence Data

concepts (n=57,663 concepts; median 689, range 100-874,824,195). Of the remaining

concepts, 34,704 were only found in OMOP2OBO (median 100, range 100-39,975) and 4672

were only found in the OHDSI Concept Prevalence Data (median 100, range 100-52,739,431).

These findings are visualized in Figure 7a. OMOP2OBO concept coverage ranged from

93-99.7% across the 24 OHDSI Concept Prevalence Data sites. Supplementary Figure 3a

presents the counts of OMOP concepts in the OHDSI Concept Prevalence Data by site. A

Chi-Squared test of independence with Yate's correction revealed a significant association

between the OHDSI Concept Prevalence Data sites and OMOP2OBO coverage ( (23) =χ2
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Figure 7: OMOP2OBO - Concept Prevalence Coverage.

7559.1, p<0.0001). Post-hoc tests using Bonferroni adjustment confirmed that 32% of the

pairwise OHDSI Concept Prevalence Data site comparisons had significantly different

OMOP2OBO coverage (p<0.001 for all significant comparisons). The results of this analysis are

visualized as a heatmap in Supplementary Figure 3b. The OMOP2OBO concept count by OBO

Foundry ontology, data wave, and coverage type are shown in Supplementary Figure 4.

Error Analysis. Results for the 4672 (7.5%) OHDSI Concept Prevalence Data concepts

missing from OMOP2OBO are visualized in Figure 8a. Roughly 7.9% (n=367) of concepts were

accounted for using a newer version of the OMOP CDM and occurred in an average of 2.6 sites

with a mean frequency of 27,412.3 (range 100-3,539,698.5). 90.6% (n=4231) of concepts

purposefully excluded from the OMOP2OBO mapping set (i.e., no clear pathological or

biological origin, not yet mapped, or were unable to be mapped) occurred in an average of 1.7

sites with a mean frequency of 6139.3 (range 100-8,254,186.5). The remaining concepts (1.6%;

n=74) were truly missing and occurred in an average of 2.7 sites with a mean frequency of

5320.1 (range 100-100,483). The frequency of distributions of the covered OMOP2OBO

concepts and Concept Prevalence concepts missing from OMOP2OBO in the OHDSI Concept

Prevalence Data by site are visualized in Supplementary Figure 3c-d. The five most frequently

occurring missing concepts are shown in Table 2. Domain expert review determined these
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Figure 8: OMOP2OBO - Concept Prevalence Coverage Error Analysis.

concepts were likely missing due to differences in patient populations and coding practices. The

domain experts identified comparable condition concepts in the OMOP2OBO mapping set.

2.3.2.2  Drug Ingredients

The OHDSI Concept Prevalence Data contained 4588 drug ingredient concepts from 18

independent sites. The OMOP2OBO mapping set contained 8611 eligible concepts, which

covered 87.9% (99.9% weighted coverage) of the OHDSI Concept Prevalence Data concepts

(n=4037 concepts; median 7299, range 100-1,308,580,305). Of the remaining concepts, 4574

were only found in OMOP2OBO (median 100, range 100-69,311) and 551 were only found in

the OHDSI Concept Prevalence Data (median 300, range 100-10,748,492). These findings are

visualized in Figure 7b. OMOP2OBO concept coverage ranged from 91.2-98.4% across the 18

Concept Prevalence Study sites. Supplementary Figure 5a presents the counts of OMOP

concepts in the OHDSI Concept Prevalence Data by site. A Chi-Squared test of independence

with Yate's correction revealed a significant association between the OHDSI Concept

Prevalence Data sites and OMOP2OBO coverage ( (17) = 195.6, p<0.0001). Post-hoc testsχ2

using Bonferroni adjustment confirmed that 22% of the pairwise OHDSI Concept Prevalence

Data site comparisons had significantly different OMOP2OBO coverage (p<0.001 for all

significant comparisons). The results of this analysis are visualized as a heatmap in
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Supplementary Figure 5b. The OMOP2OBO concept count by OBO Foundry ontology, data

wave, and coverage type are shown in Supplementary Figure 6.

Error Analysis. Results for the 551 (12%) OHDSI Concept Prevalence Data concepts

missing from OMOP2OBO are visualized in Figure 8b. Roughly 0.9% (n=5) of concepts were

accounted for using a newer version of the OMOP CDM and occurred in an average of 8.4 sites

with a mean frequency of 51,732 (range 100-221,229.7). 82.8% (n=456) of concepts

purposefully excluded from the OMOP2OBO mapping set (i.e., not yet mapped) occurred in an

average of 3.9 sites with a mean frequency of 18,847.3 (range 100-1,077,258.9). The remaining

concepts (16.3%; n=90) were truly missing and occurred in an average of 2.7 sites with a mean

frequency of 3361.2 (range 100-175,551.3). The frequency of distributions of the covered

OMOP2OBO concepts and Concept Prevalence concepts missing from OMOP2OBO in the

OHDSI Concept Prevalence Data by site are visualized in Supplementary Figure 5c-d. The five

most frequently occurring missing concepts are shown in Table 2. Domain expert review of

these concepts found that they were likely missing as a result of hospital vendor differences or

because they were a new high-risk biologic whose safety and efficacy had not yet been tested

or confirmed for use in pediatric populations. The domain experts identified comparable drug

ingredient concepts in the OMOP2OBO mapping set.

2.3.2.3  Measurements

The OHDSI Concept Prevalence Data contained 25,513 measurement concepts from 18

independent sites. The resulting OMOP2OBO mapping set contained 3828 eligible concepts

(10,676 results), which covered 11.1% (67.7% weighted coverage) of the OHDSI Concept

Prevalence Data concepts (n=2260 concepts; median 1355, range 100-1,465,815,430). Of the

remaining concepts, 1208 were only found in OMOP2OBO (median 100, range 100-1,842,485)

and 20,893 were only found in the OHDSI Concept Prevalence Data (median 109, range

100-1,219,846,862). These findings are visualized in Figure 7c. OMOP2OBO concept coverage
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ranged from 4.2-75% across the 18 OHDSI Concept Prevalence Data sites. Supplementary

Figure 7a presents the counts of OMOP concepts in the OHDSI Concept Prevalence Data by

site. A Chi-Squared test of independence with Yate's correction revealed a significant

association between the OHDSI Concept Prevalence Data sites and OMOP2OBO coverage (χ2

(17) = 3872.3, p<0.0001). Post-hoc tests using Bonferroni adjustment confirmed that 56% of the

pairwise OHDSI Concept Prevalence Data site comparisons had significantly different

OMOP2OBO coverage (p<0.001 for all significant comparisons). The results of this analysis are

visualized as a heatmap in Supplementary Figure 7b. The OMOP2OBO concept count by OBO

Foundry ontology, data wave, and coverage type are shown in Supplementary Figure 8.

Error Analysis. Results for the 20,893 (81.9%) OHDSI Concept Prevalence Data

concepts missing from OMOP2OBO are visualized in Figure 8c. Roughly 0.1% (n=13) of

concepts were accounted for using a newer version of the OMOP CDM and occurred in an

average of 3.2 sites with a mean frequency of 9836.3 (range 100-29,098.2). 0.8% (n=158) of

concepts purposefully excluded from the OMOP2OBO mapping set (i.e., not mapped test type,

unspecified sample, or were unable to be mapped) occurred in an average of 5.2 sites with a

mean frequency of 282,115.3 (range 100-14,317,951.9). The remaining concepts (99.2%;

n=20,722) were truly missing and occurred in an average of 2.8 sites with a mean frequency of

218,874 (range 100-1,219,846,862). The frequency of distributions of the covered OMOP2OBO

concepts and Concept Prevalence concepts missing from OMOP2OBO in the OHDSI Concept

Prevalence Data by site are visualized in Supplementary Figure 7c-d. The five most frequently

occurring missing concepts (reported as the average frequency across the 18 sites and number

of sites with that concept) are shown in Table 2. Domain expert review of these concepts

confirmed that they were likely missing due to inconsistencies in hospital use of LOINC, a

finding that’s been observed in literature.80 The domain experts identified comparable

measurement concepts in the OMOP2OBO mapping set.
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2.3.3  Clinical Utility

Many patients with a genetic disease never receive a specific diagnosis, even after genetic

sequencing.81–84 Longitudinal EHR data has been used to identify patients with genetic

disorders.85–88 Inspired by the fact that most genetic diseases manifest as a recurring pattern of

multiple symptoms or phenotypes affecting multiple organ systems,86 the phenotype risk score

(PheRS), which measures the similarity between an individual’s diagnosis codes and phenotypic

features of known genetic disorders, was developed.85 While the PheRS has shown great

promise for identifying patients with undiagnosed Mendelian disease from EHR data,61 it

requires mappings that link ICD codes to HPO concepts, which most EHRs do not contain.The

existing mappings61 developed to support PheRS were manually constructed, which may limit

scalability when applied to new data.

The goal of this evaluation was to determine if the OMOP2OBO mappings could be used

to facilitate the application of the PheRS to EHR data and to compare their performance to an

existing set of validated manual mappings. For this analysis, the OMOP2OBO HPO mappings

were compared to the ICD-HPO mappings61 using data from the All of Us Research Program

(AoU)89. The AoU Data were selected for this task because it provides access to a large sample

of EHR data and genetic testing results (see Supplementary Table 3 for additional details on this

data source). Five genetic diseases (and their associated genes) for which diagnosis codes

have been found to be of high positive predictive value in EHRs,61 were examined: Marfan

syndrome (FBN1 and TGFBR1), multiple endocrine neoplasia (MEN1 and RET),

neurofibromatosis (NF2), paragangliomas (SDHAF2, SDHB, SDHC), and tuberous sclerosis

(TSC1, TSC2). These diseases were associated with 2257 unique phenotypic features (HPO

codes). When querying AoU data to identify patients who had at least one of these phenotypic

features, the ICD-HPO mappings (n=7815 ICD codes) took ~30 minutes to complete and

returned 210,718 patients and the OMOP2OBO mappings (n=3783 OMOP concepts) took ~10

minutes to complete and returned 209,342 patients. Of the 208,831 patients found in common,
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1887 were only identified by the ICD-HPO mappings, and 601 patients were only identified by

the OMOP2OBO mappings. When the PheRS was applied to patients from both mappings they

were found to be highly correlated (r2>0.6 across all diseases). This suggests that the patients

returned by both mappings are similar.

For additional validation, case-control studies using only the OMOP2OBO mappings

were performed: Marfan syndrome (131 cases and 63,086 controls), multiple endocrine

neoplasia (86 cases and 72,150 controls), neurofibromatosis (255 cases and 65,256 controls),

paraganglioma (105 cases and 65,256 controls), and tuberous sclerosis (38 cases and 58,555

controls). The results of these studies are shown in Supplementary Table 8 and the distributions

of PheRS scores for cases and controls for each of the five diseases are visualized in

Supplementary Figure 9. As shown in this figure, PheRS were higher for cases than controls

across all examined diseases. These results are further supported by one-sided Wilcoxon rank

sum tests, which indicated that the PheRS were significantly higher for cases than controls

(p<0.001 for all diseases). Collectively, these results support the use of OMOP2OBO mappings

as a scalable alternative to an existing set of validated manual mappings for use with PheRS to

aid in the systematic identification of patients who might benefit from genetic testing.

3.0  DISCUSSION

In this paper we present OMOP2OBO, an algorithm that semantically aligns conditions, drug

ingredients, and measurement results from standard vocabularies in the OMOP CDM to OBO

Foundry ontologies. Using OMOP2OBO, we built mappings for 92,367 condition, 8615 drug

ingredient, and 10,673 measurement result concepts to ontology concepts representing 9636

diseases, 6309 phenotypes, 83 anatomical entities, 2704 organisms, 4261 chemicals, 132

vaccines, and 272 proteins. The mappings were evaluated on accuracy, generalizability, and

clinical utility. For the first task, a panel of 10 domain experts reviewed subsets of the

manually-derived mappings from each of the OMOP domains and found that 73.9% of the
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condition, 70.7% of the drug ingredient, and 92.9% of the measurement result mappings were

correct. For the second task, we examined the generalizability of the concepts and found that

99.5% of conditions, 99.9% of drug ingredients, and 68% of measurement results overlapped

with concepts used in clinical practice from 24 independent hospitals and claims databases. For

the final task, we compared OMOP2OBO HPO mappings to an existing set of validated manual

mappings when used to identify patients with five rare genetic diseases using data from the AoU

Research Program. Queries using the OMOP2OBO mappings identified 99.3% of the patients

returned by the validated manual mappings using fewer codes and one-third of the time.

To the best of our knowledge, the OMOP2OBO mappings are the largest set of publicly

available mappings between clinical vocabularies and OBO Foundry ontologies. The

OMOP2OBO algorithm can easily be incorporated into existing clinical workflows and presents

new opportunities to advance EHR-based deep phenotyping (recently published examples are

described below in the Applications section).

3.1  Related Work

Existing work to develop mapping sets and mapping algorithms has largely focused on using

ontologies to improve the phenotyping of specific diseases (e.g., infectious disease,90 rare

diseases,91,92 and cancer93) and for the investigation of specific biological (e.g., glycobiology94)

and clinical domains (e.g., laboratory test results62 and medical diagnoses64,95). Our work is most

similar to LOINC2HPO,62 which we have expanded in our current mapping set (with annotations

to five additional OBO Foundry ontologies). OMOP2OBO complements existing phenotyping

efforts like the Electronic Medical Records and Genomics or eMERGE Network96 and the AoU

Research Program,89 by providing access to resources not currently available in EHRs and

opportunities to improve the semantic interoperability of definitions through alignment to the

OBO Foundry ontologies.

A portion of the mappings that are automatically derived by OMOP2OBO overlap with
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existing mappings provided by the OMOP CDM, the UMLS, and the OBO Foundry ontologies.

The UMLS and OMOP CDM each align more than 200 vocabularies. At the time of our analysis

(and determined using the same data), only the UMLS provided mappings to an OBO Foundry

ontology, which included: the Gene Ontology (67,807 CUIs covering 69 vocabularies and an

average of 166.9 codes), HPO (16,154 CUIs covering 91 vocabularies and an average of

1668.7 codes), and NCBITaxon (1,776,212 CUIs covering 55 vocabularies and an average of

3236.1 codes). Of these mappings, only the HPO and NCBITaxon are relevant to our work. Of

the 1,776,212 CUIs aligned to NCBITaxon, 1128 were mapped to LOINC and 138 were mapped

to RxNorm covering 0% of the measurement and 1.1% of the drug ingredient concepts in the

CHCO OMOP Database, respectively. Of the 16,154 CUIs aligned to HPO, 993 were mapped to

LOINC and 18,212 were mapped to SNOMED-CT covering 0% of the measurement and 4.2%

of the condition concepts in the CHCO OMOP Database, respectively. Similar to the OMOP

CDM and the UMLS, some of the OBO Foundry ontologies provide mappings to vocabularies in

these resources. Collectively, the eight OBO Foundry ontologies used in this work provided

489,794 unique database cross-references from 179 unique data sources. Of these, only the

HPO (11,616 ontology concepts to 19,569 codes from 16 data sources), Mondo (22,110

ontology concepts to 159,918 codes from 45 data sources), CL (949 ontology concepts to 1376

codes from 29 data sources), and Uberon (10,865 ontology concepts to 51,322 codes from 91

data sources) mappings were relevant to our work. Of the 19,569 HPO and 159,918 Mondo

database cross-references only 3.6% and 15.6% mapped to a condition concept in the CHCO

OMOP Database, respectively.

These findings highlight that while there are some existing mappings between the

resources that OMOP2OBO aligns, at best, they covered only ~15% of the OMOP concepts that

we aimed to map supporting the need for its development. Further, it should be noted that the

vast majority of the mappings provided by the OMOP CDM, UMLS, and OBO Foundry

ontologies are simple one-to-one mappings. While OMOP2OBO also contributes one-to-one
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mappings, it provides more complex one-to-many mappings.

3.2  Applications

The OMOP2OBO mappings have been used to characterize differences in definitions of long

COVID,97 generate long COVID phenotypes,98,99 and improve the categorization and prediction

of psychiatric diseases among patients with long COVID.100 Additionally, our recent work in

pediatric rare disease subphenotyping demonstrated that patient representations constructed

from the OMOP2OBO mappings produced more clinically meaningful clusters than

representations built using OMOP concepts alone.101 We further demonstrated the value of the

mappings by leveraging them to successfully integrate external gene expression data from an

independent sample of pediatric patients resulting in more clinically-meaningful and

biologically-actionable phenotypes than those generated using only clinical data.

One potential use of OMOP2OBO is to aid in the alignment of patient data to ontologies

in the Global Alliance for Genomics and Health’s Phenopacket schema,102 which was designed

to support the global exchange of computable patient-level phenotypic information. This work

was discussed during the 2021 ELIXIR European BioHackathon.103

3.3  Limitations and Future Work

3.3.1  Limitations

OMOP2OBO has not been optimized for performance; all possible ancestors are mapped when

unable to generate a mapping at the concept-level. A prioritization strategy would significantly

improve performance. OMOP2OBO does not take advantage of all of the knowledge available

in the UMLS. Leveraging information in the mapping and hierarchy tables could improve the

automatically mapped concepts and would enable use of other UMLS-aligned resources like the

SemMedDB.104 We only evaluated the accuracy of a small subset of the manual mappings. It is

important to evaluate the remaining manually derived mappings as well as to provide citations

from the resources from which they were derived. The Accuracy evaluation revealed limitations
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of our expert review procedures; some of the experts experienced challenges when trying to

use the OBO ontologies, which may have negatively impacted the results. Providing better

training and offering outcomes other than correct/incorrect should be considered. Finally, OMOP

standard clinical vocabularies are also dependent upon a large set of CDM-specific mappings

and may be subject to similar errors as our mappings.

3.3.2  Future Work

There are two primary challenges that remain given the initial development of the OMOP2OBO

algorithm and mapping set. The first challenge is to establish procedures and build

infrastructure to enable community sharing, monitoring, and updating of the mappings. While

the GitHub repository for the OMOP2OBO currently contains policies for contributing to the

mapping algorithm, we have yet to establish an infrastructure or policies for the mappings.

Future opportunities include the adoption of a system like the one utilized by the Bioregistry

(https://bioregistry.io/).105 The Bioregistry provides extensive governance policies and templates,

which make it easy to incorporate new and modify existing identifiers. They also developed a

robust, semi-automated infrastructure that facilitates review by the maintainers and triggers

rebuilds of the registry anytime changes are made. To improve the shareability of the mappings,

we’d also like to extend the mapping output formats to include Semantic Web standards like

RDF/XML and the Simple Standard for Sharing Ontological Mappings or SSSOM.106 In addition

to creating a system like the Bioregistry, future work may include adoption and adaptation of

OBO Foundry protocols for ontology development and maintenance.60,107

The second challenge is to improve and expand the evaluation of the algorithm and the

mapping set. The UMLS, OMOP CDM, and the OBO Foundry ontologies provide mappings

between clinical vocabularies and ontologies, which are automatically- or manually-derived

(e.g., mappings between source and standard vocabulary concepts, mappings between clinical

vocabularies and ontologies, and/or database cross-references mapped to ontology concepts).
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While the OMOP2OBO algorithm leverages these mappings (i.e., leveraging source codes

mapped to standard concepts), verifying the quality of existing mappings was not within the

scope of the current work. Currently, no modules in the OMOP2OBO algorithm verify the quality

of existing mappings used by OMOP2OBO or mappings generated by it. This should include

resources to validate automatic mappings as their accuracy depends upon the quality of the

resources from which they were built, and ontologies are subject to a variety of errors.108–110 To

do this, we might leverage pretrained language models and/or develop new machine learning

models using trusted resources (e.g., the scientific literature) to verify the database

cross-references provided by the OBO Foundry ontologies, UMLS, and OMOP CDM database

prior to running OMOP2OBO.

4.0  METHODS

OMOP2OBO is open source (https://github.com/callahantiff/OMOP2OBO), available on PyPI

(https://pypi.org/project/omop2obo/), and includes an interactive dashboard that summarizes the

current mapping set (http://tiffanycallahan.com/OMOP2OBO_Dashboard/). We also created a

dedicated Zenodo Community, which provides access to data, mappings, and presentations

(https://zenodo.org/communities/omop2obo). A list of the acronyms used in this paper are

provided in Supplementary Table 1 and the resources used by the OMOP2OBO algorithm and

mappings are described in Supplementary Table 2.

4.1  OMOP2OBO Algorithm

4.1.1  Algorithm Resources

Although it is possible to apply the OMOP2OBO algorithm to any clinical vocabulary, the OMOP

CDM was selected because of its rich data representation, standard vocabularies (and

hierarchies) and the mappings it provides to more than 200 commonly used clinical

vocabularies. To increase the coverage of the resources and the potential of an automatic

mapping, OMOP2OBO leverages the National Library of Medicine's UMLS (MRCONSO and
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MRSTY tables [2020AA version111])74. These data are used to annotate each OMOP concept

with a UMLS CUI and a Semantic Type.75 Additionally, the mappings provided by the

MRCONSO table are used to enhance existing database cross-reference mappings provided by

OMOP and the OBO Foundry ontologies (both described in detail in the Input Data Used to

Create OMOP2OBO Mappings section).

4.1.2  Algorithm Overview

The OMOP2OBO algorithm (Figure 1) consists of the following three components: (I) Process

Input Data; (II) Map OMOP Standard Vocabulary Concepts to OBO Foundry Ontology

Concepts; and (III) Synthesize and Process Mapping Results and Output Mappings. Each

component is described in detail below.

Component 1: Process Input Data. The algorithm takes as input a table of OMOP

concepts and a list of one or more OBO Foundry ontologies. For both types of data, the

algorithm expects concept or class identifiers, source codes or database cross-references,

labels, synonyms, and ancestor concepts or classes. While the algorithm expects a table of

input OMOP concepts (due to the private nature of clinical data, the algorithm does not assume

a direct database connection is possible), it automatically downloads the OBO Foundry

ontologies using OWLTools (April 06, 2020 release).112

Component 2: Map OMOP Vocabulary Concepts to OBO Foundry Ontology

Concepts. This component is designed to automatically map or align OMOP concepts to OBO

Foundry ontology concepts. The algorithm includes several different approaches, prioritizing

those that result in high confidence mappings. This component includes concept alignment and

concept embedding.

- Concept Alignment. Exact-string matches between OMOP and OBO Foundry ontology

concept labels, definitions, and synonyms are obtained. Prior to alignment, the label and

synonym fields are both made lowercase. This step also obtains exact matches between
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OMOP standard concepts and source codes to OBO Foundry ontology database

cross-references. To increase the likelihood of finding a match, the OMOP standard

concepts and source codes are first merged with terminologies in the UMLS using core

functionality from OHDSI Ananke,113 a program developed to align OMOP concepts to

UMLS CUIs. Prior to performing this alignment, the OMOP standard concepts and

source codes and the OBO Foundry ontology database cross-references are normalized

using a custom dictionary (source_code_vocab_map.csv114). This resource ensures that

concepts referenced by the same code using different prefixes or symbols can be

aligned (e.g., SNOMED-CT:1234567 and sctid:1234567).

- Concept Embedding. Using scikit-learn,115 a bag-of-words (BoW)116 vector space model

with term-frequency inverse-document frequency (TF-IDF)117 and L2 normalization is

used to learn concept embeddings for all OMOP and OBO Foundry ontology concepts

and concept ancestors label and synonym text strings. While the BoW model was used

because it is easy to understand and has shown great success when applied to EHR

data and when used to align biomedical ontologies,118,119 any language or embedding

model could be utilized. The BoW model is implemented as an NxM document-term

matrix with one row per input string and one column for each tokenized word appearing

in the universe of all input strings. The value of each cell in the matrix is the normalized

frequency each word occurred in each input string (using TF-IDF normalization). Prior to

building the model, all text fields are made lowercase, stop words are removed using the

wordnet list from Python’s NLTK library,120 white spaces are removed, and word-level

tokenization and lemmatization are applied. After learning the model, a final embedding

is constructed for each input string by aggregating the constituent concept embeddings.

Cosine similarity is used to compute scores between all pairwise combinations of OMOP

and OBO Foundry concept embeddings. Given that each OMOP and OBO concept can

have a label and one or more synonyms, only the single highest-scoring pairwise
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comparison is selected for the final mapping. Cosine similarity scores range from 0-1,

where a score of one indicates a greater match between the embedding pairs. To

improve the efficiency of this process, only the top 75% of pairs with scores >=0.25 are

output, which was decided after visualizing the score distribution using a histogram. All

thresholds and cut-offs are customizable. Concept embeddings are created for all

OMOP concepts, regardless of whether or not they were automatically mapped by a

prior Component. All remaining unmapped concepts require manual curation.

Component 3: Synthesize and Output Mapping Results. The mapping results from

the prior component are post-processed to include a mapping category and human-readable

evidence. The mapping category is constructed by combining the following elements: (I) one or

more OBO Foundry ontology identifiers and labels; (II) mapping logic applied to specify

semantics when there are multiple ontology concepts (i.e., “and”, “or”) or to denote negation

(i.e., “not”); (III) a mapping category derived from the mapping approach (e.g., automatically

determined using an algorithm or manually derived by a human annotator), cardinality (i.e.,

one-to-one aligning a single OMOP concept to a single OBO Foundry ontology concept or

one-to-many aligning a single OMOP concept to one or more OBO Foundry ontology concepts),

and level (i.e., mapping to the OMOP concept directly or to one of its ancestors); and (IV)

mapping evidence represented as a pipe-delimited string that denotes all resources that support

the mapping (i.e., the exact string matches between labels and synonyms, source codes and

database cross-reference alignments, and other sources supporting a mapping like scored

heuristics and references from manual review). Supplementary Table 4 provides additional

details on and examples of the mapping categories. Post-processed mappings are serialized

and able to be output to a variety of file types, like flat file, database dump, or RDF/XML file.

4.2  Input Data Used to Create OMOP2OBO Mappings

The OMOP2OBO mappings were constructed from two data sources: (i) the CHCO OMOP
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Database and (II) OBO Foundry ontologies (both are described in detail below). Figure 2

includes example mappings and illustrates how the OBO Foundry ontologies were used to map

OMOP concepts from each domain. Supplementary Table 4 provides additional details on and

examples of the mapping categories. Supplementary Table 3 provides descriptions of the

clinical data sources used to build and validate the OMOP2OBO mappings.

4.2.1  OMOP Data

The OMOP2OBO mappings were constructed using data from the CHCO OMOP Database, a

de-identified database that contained data from more than 6 million pediatric patients. The

CHCO OMOP Database is stored within University of Colorado Anschutz Medical Campus

Health Data Compass’ Health Insurance Portability and Accountability Act compliant Google

Cloud-based infrastructure (created in October 2018).121 The data conformed to the structure

defined by the National Pediatric Learning Health System (PEDSnet) OMOP CDM v3.0, which is

an adaptation of the OMOP CDM version 5.0.56,65 Use of these data was approved by the

Colorado Multiple Institutional Review Board (#15-0445).

Concept lists were derived from standard OMOP vocabularies (i.e., SNOMED-CT54

[v20180131], RxNorm55 [v20180507], and LOINC53 [v2.64]) from the Condition Occurrence,

Drug Exposure (at the drug ingredient level), and Measurement tables, respectively. For each

concept set, metadata were extracted from the OMOP CDM including concept codes (i.e.,

codes from each standard vocabulary), labels, synonyms, and ancestor concepts (codes,

labels, and synonyms were also extracted for each concept ancestor). Concept lists were

organized into two data waves according to whether or not they had been used in clinical

practice (i.e., Concepts Used in Practice and Concepts Not Used in Practice). As manual

annotation requires significant resources, only concepts from the first data wave (i.e., Concepts

Used in Practice) were manually mapped. Prior to constructing the concept lists, Condition and

Measurement data were preprocessed to ensure the mapping process was robust and

32

https://docs.google.com/document/d/1UA6gTx-ady7eqwq778ODCGf4dJSXpJrzn71Ym05jLe0/edit#heading=h.9mm43v4hdjqi
https://docs.google.com/document/d/1UA6gTx-ady7eqwq778ODCGf4dJSXpJrzn71Ym05jLe0/edit#heading=h.ieb9wyqu1a49
https://paperpile.com/c/efTJ4n/wbkX5
https://paperpile.com/c/efTJ4n/8FS5S+lCFMS
https://paperpile.com/c/efTJ4n/dWcpk
https://paperpile.com/c/efTJ4n/bGCAh
https://paperpile.com/c/efTJ4n/zpeW2


reproducible.

4.2.1.1  Conditions

For Concepts used in Practice, UMLS Semantic Types were used to identify all concepts that

had a clear pathological or biological origin. All remaining concepts (e.g., accidents, injuries,

external complications, and findings without clear interpretations) were marked as unmapped

and the reason for exclusion was provided in the evidence field. The Semantic Types were also

used to group OMOP concepts such that those typed as “Findings” or “Signs and Symptoms”

were treated as phenotypes and only mapped to HPO and concepts typed as “Disease or

Syndrome” were only mapped to Mondo. For Concepts Not Used in Clinical Practice, all

possible automatic mappings were obtained and concepts which were unable to be mapped

automatically were marked as unmapped and “NOT YET MAPPED” was provided as the

mapping evidence. This same approach was applied to drug ingredients.

4.2.1.2  Measurements

For all measurement concepts, a scale and result type were created. The scale (i.e., ordinal,

nominal, quantitative, qualitative, narrative, doc, and panel) of each measurement was identified

from the OMOP CDM or by parsing the concept synonym field. For all Concepts Used in

Practice, reference ranges were used to determine the result type; concepts with numeric

reference ranges were typed as “Normal/Low/High'' and concepts with reference ranges that

included “positive” or “negative” were typed as “Positive/Negative”. Concepts Not Used in

Practice with an ordinal scale or with synonyms that contained the words “presence” or “screen”

were typed as “Positive/Negative”. Concepts with a quantitative scale were typed as

“Normal/Low/High”. All other scale types were typed as “Unknown Result Type”. While it is

possible to infer the result type from the scale type (e.g., all concepts with a quantitative scale

have result type “Normal/Low/High'' and all concepts with an ordinal scale have result type

“Positive/Negative”), our approach aimed to maximize the inclusion of concepts from all scale
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types. Mappings were created for each result type using the procedures defined by

LOINC2HPO62; results were annotated with respect to their result type:

- Concepts with result type “Normal/Low/High”. For example, Corticotropin [Mass/volume]

in Plasma --4th specimen post XXX challenge (LOINC:12460-2). Results above the

reference range are mapped to Increased Circulating ACTH Level (HP:0003154).

Results below the reference range are mapped to Decreased Circulating ACTH Level

(HP:0002920). Results within the reference are mapped to Abnormality of Circulating

Adrenocorticotropin Level and logically negated (NOT HP:0011043).

- Concepts with result type “Positive/Negative”. For example, Amphetamine [Presence] in

Urine by Screen Method (LOINC:19343-3). Positive results are mapped to Positive Urine

Amphetamine Test (HP:0500112). Negative results are mapped to Positive Urine

Amphetamine Test and logically negated (NOT HP:0500112).

Also consistent with the procedures adopted by LOINC2HPO, all concepts lacking sufficient

detail (i.e., non-specific body substances) were marked as unmapped and “Unspecified Sample”

was provided as the mapping evidence.

LOINC2HPO Extensions. The initial set of measurement concepts was supplemented

with LOINC2HPO annotations,62 which were downloaded on August 2, 2020 from the

LOINC2HPO annotation Github repository.122 OMOP2OBO expands the LOINC2HPO mappings

by including the measurement substance (i.e., body fluids, tissues, and organs via Uberon), the

entity being measured (i.e., chemicals, metabolites, or hormones via ChEBI; cell types via CL;

and proteins via PRO), and the species of the measured entity (i.e., organism taxonomy via

NCBITaxon). All modifications to the original LOINC2HPO annotations were recorded in the

mapping evidence field, enabling users to easily identify when an original LOINC2HPO

annotation had been updated. All LOINC concepts in the LOINC2HPO mappings that were not

used at least once in clinical practice in the CHCO pediatric OMOP Database were categorized

as a Concept Not Used in Practice.
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4.2.2  OBO Foundry Ontologies

OBO Foundry ontologies were selected under the advice of several clinicians, molecular

biologists, and professional OBO Foundry biocurators to cover the following domains: diseases

(Mondo67 [v2020-09-14]), phenotypes (HPO63 [v2020-08-11]), anatomical entities (CL69

[v2020-05-21], Uberon68 [v2020-06-30]), organisms (NCBITaxon70 [v2020-04-18]), chemicals

(ChEBI71 [v191]), vaccines (VO72 [v1.1.102]), and proteins (PRO73 [v61.0]). Similar to the clinical

concepts, each ontology was queried to obtain labels, definitions, synonyms (including synonym

type), and database cross-references. All OBO Foundry ontologies were downloaded in

September 2020 using OWLTools (April 06, 2020 release).112

4.3  Mapping Evaluation

The OMOP2OBO mappings were evaluated by assessing their accuracy, generalizability, and

clinical utility.

4.3.1  Accuracy

Automatic mappings are created from exact alignments between resources available in the

OMOP CDM and the OBO Foundry ontologies and thus are assumed to be accurate and

high-confidence mappings. The goal of this evaluation was to evaluate the accuracy of a portion

of the manually-derived mappings. For conditions and drug ingredients, of all manual mappings

(including one-to-one and one-to-many), 20% were randomly selected for manual review

(n=2,000 conditions; n=116 drug ingredients) by a practicing resident physician and clinical

pharmacist, respectively.

Measurement mappings are significantly more complex as they require interpreting lab

test results and annotating the source of the sample (e.g., bodily fluid, anatomical entity, or cell

type), entity being measured (e.g., chemical or cell type), and organism of the measured entity.

While annotating the samples and entities is straightforward, interpreting lab tests results and

aligning them to HPO concepts can be challenging. As a result, only the HPO mappings were
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evaluated by domain experts. These mappings were evaluated in two ways: (i) Survey. A subset

of the mappings (n=270) were independently validated by five domain experts including three

practicing pediatric clinicians, a PhD-level molecular biologist, and a master’s-level

epidemiologist using a Qualtrics Survey.123 Any mapping that did not meet agreement by at least

one clinician and both the biologist and the epidemiologist were re-evaluated by the most senior

clinician. These mappings were also vetted on the LOINC2HPO GitHub tracker124 by members

of the biocuration team. (ii) Biocurator Validation. A random subset of 1350 measurement

results were manually verified by an OBO Foundry biocurator.

All of the manual mappings were derived by a member of the research team who at the

time of the analysis was a Computational Biology PhD candidate with Masters-level training in

epidemiology and biostatistics (TJC). As this individual does not have specialized medical or

pharmacological training, it is assumed that these mappings may contain errors. Additional

details are provided on GitHub (https://github.com/callahantiff/OMOP2OBO/wiki/Accuracy).

4.3.2  Generalizability

The generalizability of the OMOP2OBO mappings were examined using the OHDSI Concept

Prevalence Study data.76–79 The Concept Prevalence study provides data on the frequency of

OMOP concept usage in clinical practice across several independent sites in the OHDSI

network. In addition to the Concept Prevalence Study sites, data were obtained from two

independent academic medical centers, bringing the total number of sites to 24. None of the 24

sites overlapped with the site that was used to generate the OMOP2OBO mappings. Consistent

with the Concept Prevalence Study procedures, all concepts from the OMOP CHCO Database

occurring fewer than 100 times were assigned a count of 100. For all other analyses, the true

range of counts in the OMOP CHCO Database were utilized. The OMOP2OBO mappings were

filtered to remove all concepts without at least one ontology mapping. Coverage of all standard

OMOP concepts in the OMOP2OBO mapping set was assessed by identifying: (I) concepts that
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existed in the OMOP2OBO set and in at least one Concept Prevalence Study site (i.e.,

Overlap); (II) concepts only present in the OMOP2OBO set (i.e., OMOP2OBO Only); and (III)

concepts only present in the Concept Prevalence Study set (i.e., Concept Prevalence Only).

Error Analysis. An error analysis was performed to examine the Concept Prevalence

Only concept set. Three scenarios were examined: (I) Recovered in Newer Version of CDM:

concepts that could be recovered using a newer version of the OMOP CDM (v5.3.1;

02/25/2022); (II) Purposefully Excluded: concepts without clear pathological or biological origin

that were purposefully excluded from the OMOP2OBO mapping set; and (III) Truly Missing:

concepts that could not be accounted for using the prior two scenarios. For all scenarios,

concept frequency within the Concept Prevalence Study sites was used as a measure of

concept importance. Findings from each scenario were reviewed by a practicing resident

physician and a clinical pharmacist. See GitHub for Additional details

(https://github.com/callahantiff/OMOP2OBO/wiki/Generalizability).

4.3.3  Clinical Utility

The clinical utility of the OMOP2OBO mappings was compared to an existing set of validated

manual mappings (ICD-HPO mappings61) when used to identify undiagnosed rare disease

patients. For this analysis, AoU Data89 was selected because it provides access to a large

sample of EHR data with genetic testing results. For this evaluation, the version 6 build was

used, which contained data from ~630 sites on more than 528,000 patients.89 Five genetic

diseases for which diagnosis codes have been found to be of high positive predictive value in

EHRs61 were selected, which included: Marfan syndrome, multiple endocrine neoplasia,

neurofibromatosis, paraganglioma, and tuberous sclerosis. These diseases are associated with

11 of the 73 American College of Medical Genetics and Genomics (ACMG) secondary finding

genes (ACMG-73; v3.0), which have specific mutations known to cause disorders, have

well-defined phenotypes, and are clinically actionable.125 The diseases and associated genes

37

https://paperpile.com/c/efTJ4n/sZVSD
https://paperpile.com/c/efTJ4n/RIhF4
https://paperpile.com/c/efTJ4n/RIhF4
https://paperpile.com/c/efTJ4n/sZVSD
https://paperpile.com/c/efTJ4n/da1KN


included: FBN1 and TGFBR1 (Marfan syndrome); MEN1 and RET (multiple endocrine

neoplasia); NF2 (neurofibromatosis); SDHAF2, SDHB, and SDHC (paragangliomas); and TSC1,

TSC2 (tuberous sclerosis). Using the Online Mendelian Inheritance in Man (OMIM)126 database

and the HPO gene annotation table,127 each gene and its corresponding set of phenotypic

features were aligned to the HPO. To calculate the phenotypic burden of each genetic disease,

HPO mappings to OMOP condition concepts from OMOP2OBO (v2.0.0 beta) and ICD concepts

from a validated set of ICD-HPO mappings61 were queried against the AoU data. PheRS for

each gene were then calculated for patients from each the OMOP2OBO and Phecode mapping

sets. The PheRS85 is an algorithm used to identify patients with phenotypic features that are

clinically similar to OMIM126 Mendelian profiles but who lack formal diagnosis and has

demonstrated utility for identifying underdiagnosed rare disease patients using only EHR

data.61,85 For this evaluation, the standardized PheRS was used because it is easier to interpret

and reduces noise when it is suspected that a large number of phenotypes will overlap between

cases and controls.85 The OMOP2OBO and ICD-HPO mappings were compared and evaluated

on time to complete the query against the AoU Data and differences in the returned patient

cohorts. As validation, case-control studies were performed for each of the five diseases using

the patients returned from the OMOP2OBO mappings. Cases were defined as patients with at

least two occurrences of a relevant diagnosis code and control patients had no instances of

these codes. Cases and controls were matched on age, sex, and length of EHR record. For

each disease, a one-sided Wilcoxon rank sum test was performed in order to determine if

PheRS were significantly higher for cases than controls. Results were verified by a PhD-level

Epidemiologist specializing in genetics (CZ).

4.4  Statistics and Technical Specifications

OMOP2OBO was developed using Python 3.6.2 on a single machine with 8 cores and 16GB of

RAM. All code and project information are publicly available and detailed on GitHub
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(https://github.com/callahantiff/OMOP2OBO). The OMOP2OBO (v1.0) mappings are publicly

available from Zenodo.128–130 The OMOP2OBO Mapping Dashboard was built with R (v4.2.1)

using Rmarkdown (v2.14) and flexdashboard (v0.5.2).

Descriptive and inferential statistics were performed to evaluate the data available for

mapping and the OMOP2OBO mapping set. Chi-squared tests of independence with Yate's

correction were used to: (I) assess differences in the proportions of metadata available from

each OBO Foundry ontology; and (II) assess differences in the proportions of mapped concepts

between OHDSI Concept Prevalence sites. Post-hoc tests using Bonferroni adjustment to

correct for multiple comparisons were performed for significant omnibus tests. Analyses were

performed in Jupyter Notebooks (v6.1.6) using the scipy (v1.4.1), statsmodels (v0.12.1),

statistics (v1.0.3.5), and numpy (v.1.18.1) libraries. Visualizations were created using matplotlib

(v.3.3.2). The Clinical Utility evaluation was performed in the AoU Researcher Workbench131

using R (v4.1.2) and Python (v3.7). Analyses were performed on a machine with 16 CPUs and

60GB of memory.
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DATA AVAILABILITY

Supplementary Table 2 lists the resources used by the OMOP2OBO algorithm. The MRCONSO

and MRSTY tables (2020AA) require a license and are available through the UMLS

(https://www.nlm.nih.gov/research/umls/licensedcontent/umlsknowledgesources.html). The data

used to build and validate the OMOP2OBO mappings (v1) are described in Supplemental Table

3. The OMOP concepts are available for download through Athena (https://athena.ohdsi.org/).

The OBO Foundry ontologies are publicly available (https://obofoundry.org/). The OMOP2OBO

(v1.0) mappings are publicly available and can be downloaded from Zenodo: Conditions

(https://doi.org/10.5281/zenodo.6774363); Drugs (https://doi.org/10.5281/zenodo.6774401); and

Measurements (https://doi.org/10.5281/zenodo.6774443).

CODE AVAILABILITY

OMOP2OBO is publicly available through GitHub (https://github.com/callahantiff/OMOP2OBO)

and PyPI (https://pypi.org/project/omop2obo/).
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FIGURE LEGENDS

Figure 1: Overview of the OMOP2OBO Algorithm.
The OMOP2OBO algorithm132 consists of three components: (1) Process Input Data. The
algorithm takes as input a table of Observational Medical Outcomes Partnership (OMOP)
concepts and a list of one or more OBO (Open Biological and Biomedical Ontology) Foundry
ontologies. For both data types, the algorithm expects concept or class identifiers, source codes
or database cross-references, labels, synonyms, and ancestor concepts or classes. (2) Map
OMOP Vocabulary Concepts to OBO Foundry Ontology Concepts. This component is
designed to automatically map or align OMOP concepts to OBO Foundry ontology concepts.
The algorithm includes several different approaches, prioritizing those that result in high
confident mappings. This component includes concept alignment and concept embedding.
(3) Synthesize and Output Mapping Results. The mapping results from the prior component
are post-processed to include a mapping category and human-readable evidence.
Post-processed mappings are serialized and able to be output to a variety of file types, like flat
file, database dump, or RDF/XML file.

Figure 2: OMOP2OBO Mapping Examples by OMOP Domain.
This figure illustrates which OBO (Open Biological and Biomedical Ontology) Foundry
ontologies were used for each OMOP (Observational Medical Outcomes Partnership) domain
and provides example mappings. (A) OMOP conditions were mapped to HPO and Mondo. (B)
OMOP drug ingredients were mapped to ChEBI, NCBITaxon, PRO, and VO. (C) OMOP
measurements were mapped to ChEBI, CL, HPO, NCBITaxon, PRO, and Uberon.
Acronyms: UMLS (Unified Medical Language System); HP (Human Phenotype Ontology);
MONDO (Monarch Disease Ontology); CHEBI (Chemical Entities of Biological Interest);
NCBITaxon (National Center for Biotechnology Information Taxon Ontology); PR (Protein
Ontology); VO (Vaccine Ontology); UBERON (Uber-Anatomy Ontology); CL (Cell Ontology).

Figure 3: OMOP Concept Mapping Results by Domain, Concept Type, Mapping Category,
and Ontology.
The Sankey Diagram illustrates the mapping flow implemented by the OMOP2OBO algorithm
beginning with OMOP (Observational Medical Outcomes Partnership) concepts from the
Conditions, Drugs, and Measurements domains, which were grouped by Data Wave (i.e.,
whether or not the concept has been used at least once in clinical practice), and organized by
mapping category. The flow lines in the diagram are weighted by the count of OMOP concepts
from the Children's Hospital Colorado pediatric OMOP database.
Acronyms: OBO (Open Biological and Biomedical Ontology); HP (Human Phenotype Ontology);
MONDO (Monarch Disease Ontology); CHEBI (Chemical Entities of Biological Interest);
NCBITaxon (National Center for Biotechnology Information Taxon Ontology); PR (Protein
Ontology); VO (Vaccine Ontology); UBERON (Uber-Anatomy Ontology); CL (Cell Ontology).
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Figure 4: Condition Concept Frequency of Use in Clinical Practice by Mapping Category
and Ontology.
This figure presents the frequency distributions of OMOP (Observational Medical Outcomes
Partnership) condition concepts used at least once in clinical practice (log 10 scale) in the
Children's Hospital Colorado pediatric OMOP database by mapping category and OBO (Open
Biological and Biomedical Ontology) Foundry ontology. Center lines: median, boxes: first and
third quartiles, whiskers: 1.5x interquartile range. The x-axis labels are numbers which
correspond to the OMOP2OBO mapping categories: (1) Automatic One-to-One Concept; (2)
Automatic One-to-One Ancestor (3) Automatic One-to-Many Concept; (4) Automatic
One-to-Many Ancestor; (5) Cosine Similarity One-to-One Concept; (6) Manual One-to-One
Concept; (7) Manual One-to-Many Concept; and (8) Unmapped.
Acronyms: HPO (Human Phenotype Ontology); Mondo (Monarch Disease Ontology).

Figure 5: Drug Ingredient Concept Frequency of Use in Clinical Practice by Mapping
Category and Ontology.
This figure presents the frequency distributions of OMOP (Observational Medical Outcomes
Partnership) drug exposure ingredient concepts used at least once in clinical practice (log 10
scale) in the Children's Hospital Colorado pediatric OMOP database by mapping category and
OBO (Open Biological and Biomedical Ontology) Foundry ontology. Center lines: median,
boxes: first and third quartiles, whiskers: 1.5x interquartile range. The x-axis labels are numbers
which correspond to the OMOP2OBO mapping categories: (1) Automatic One-to-One Concept;
(2) Automatic One-to-One Ancestor (3) Automatic One-to-Many Concept; (4) Automatic
One-to-Many Ancestor; (5) Cosine Similarity One-to-One Concept; (6) Manual One-to-One
Concept; (7) Manual One-to-Many Concept; and (8) Unmapped.
Acronyms: ChEBI (Chemical Entities of Biological Interest); NCBITaxon (National Center for
Biotechnology Information Taxon Ontology); PRO (Protein Ontology); VO (Vaccine Ontology).

Figure 6: Measurement Concept Frequency of Use in Clinical Practice by Mapping
Category and Ontology.
This figure presents the frequency distributions of OMOP (Observational Medical Outcomes
Partnership) measurement concepts used at least once in clinical practice (log 10 scale) in the
Children's Hospital Colorado pediatric OMOP database by mapping category and OBO (Open
Biological and Biomedical Ontology) Foundry ontology. Center lines: median, boxes: first and
third quartiles, whiskers: 1.5x interquartile range. The x-axis labels are numbers which
correspond to the OMOP2OBO mapping categories: (1) Automatic One-to-One Concept; (2)
Automatic One-to-One Ancestor (3) Automatic One-to-Many Concept; (4) Automatic
One-to-Many Ancestor; (5) Cosine Similarity One-to-One Concept; (6) Manual One-to-One
Concept; (7) Manual One-to-Many Concept; and (8) Unmapped.
Acronyms: HPO (Human Phenotype Ontology); Uberon (Uber-Anatomy Ontology); NCBITaxon
(National Center for Biotechnology Information Taxon Ontology); PRO (Protein Ontology);
ChEBI (Chemical Entities of Biological Interest); CL (Cell Ontology).

50



Figure 7: OMOP2OBO - Concept Prevalence Coverage.
This figure visualizes the coverage distributions of Observational Medical Outcomes Partnership
(OMOP) concepts over their frequency of use in clinical practice (log 10 scale) within the
Concept Prevalence Study data by domain ((A) Conditions; (B) Drugs; and (C) Measurements).
The three modeled distributions include: concepts only found in the Concept Prevalence Study
data (magenta), concepts only found in the OMOP2OBO mapping set (blue), and concepts
found in both the Concept Prevalence Study data and the OMOP2OBO mapping set (yellow).

Figure 8: OMOP2OBO - Concept Prevalence Coverage Error Analysis.
This figure visualizes the distributions of Observational Medical Outcomes Partnership (OMOP)
concepts missing from the OMOP2OBO mapping set over their frequency of use in clinical
practice (log 10 scale) within the Concept Prevalence Study data by domain ((A) Conditions; (B)
Drugs; and (C) Measurements). The three modeled error analysis distributions include:
concepts recovered in a newer version of the OMOP common data model (CDM; magenta),
concepts that were purposefully excluded, not yet mapped, or unable to be mapped by
OMOP2OBO (blue), and concepts that were truly missing from the OMOP2OBO mapping set
(yellow).
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Table 1: Clinical Data and Ontologies Used for Input to OMOP2OBO Mapping Algorithm.

OMOP CLINICAL VOCABULARIES

Vocabulary Concept Level Concepts Labels Synonyms

CONDITIONS

SNOMED-CT

Standard Concepts Used In Practice

Concept 29129 29129 86630

Ancestor 1421104 1389525 N/A

Standard Concepts Not Used In Practice

Concept 80590 80590 194264

Ancestor 3458072 3393343 N/A

DRUG INGREDIENTS

RxNorm

Standard Concepts Used In Practice

Concept 1693 1693 1865

Ancestor 1697 1696 N/A

Standard Concepts Not Used In Practice

Concept 10110 10110 11235

Ancestor 10578 10578 N/A

MEASUREMENTS

LOINC

Standard Concepts Used In Practice

Concept 1606 1606 41917

Ancestor 20784 21196 N/A

Standard Concepts Not Used In Practice

Concept 2477 2477 73612

Ancestor 23457 24306 N/A

OBO FOUNDRY ONTOLOGIES

Ontology Classes Labels Synonyms Cross-References

ChEBI 126169 126169 269798 231247

CL 2238 2238 2124 1376

HPO 15247 15247 19860 19569

Mondo 22288 22288 98181 159918

NCBITaxon 2241110 2241110 263571 18426

PRO 215624 215624 590190 195671

Uberon 13898 13898 36771 51322

VO 5789 5789 6 0
Acronyms: ChEBI (Chemical Entities of Biological Interest); CL (Cell Ontology); HPO (Human Phenotype Ontology); Mondo (Mondo
Disease Ontology); NCBITaxon (National Center for Biotechnology Information Taxon Ontology); OMOP (Observational Medical
Outcomes Partnership); PRO (Protein Ontology); Uberon (Uber-Anatomy Ontology); VO (Vaccine Ontology).
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Table 2: Concept Prevalence Concepts Missing from the OMOP2OBO Mapping Set.

Concept Concept Label
aAverage Concept

Frequency
Study Site

Count

Conditions

4091502 Increased fluid intake 100483.0 1

37311061 COVID-19 93585.0 1

40443308 Polycystic ovary syndrome 62900.3 3

35615055 Saddle embolus of pulmonary artery with acute cor
pulmonale 22324.4 10

36684319 Adjustment disorder with mixed anxiety and
depressed mood 18453.0 1

Drug Ingredients

37498625 hepatitis A virus strain CR 326F antigen, inactivated 175551.3 14

1510467 erenumab 60618.0 10

35200577 fremanezumab 15579.6 5

35200800 galcanezumab 11594.8 5

35201105 baloxavir marboxil 11366.7 3

Measurements

3045980 Pulse intensity of Unspecified artery palpation 1219846862.0 1

3021716 Penicillin G potassium [Mass] of Dose 253609945.0 1

40760098 Sodium [Moles/volume] in Saliva (oral fluid) 246641311.0 1

3045820 Cotinine/Creatinine [Mass Ratio] in Urine 246063202.0 1

3008500 Chloride [Moles/volume] in Saliva (oral fluid) 234931483.0 1

aThe average concept frequency was calculated as the frequency of each concept divided by the number of Concept Prevalence
study sites with that concept by each clinical domain.
Concept labels were obtained from the Athena web application (https://athena.ohdsi.org/) on 12/29/2022.
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