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ANNEX A. DATA ANALYSIS FOR SMORP
The total area of microalgae cultivation is calculated using Eq. (1):
Total area = Single pond surface - Number of ponds. (€D)]
The total volume of microalgae culture using Eq. (2):
Total volume = Total area - water depth 2
The total energy needed for microalgae growth is calculated using Eg. (3):
PAR requested - Totalarea
Totalenergy = q . 3)
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The factor for downtime by crash (Fcrash) is calculated using Eq. (4):

365 — (number of crashes- prod downtime per crash) (4)
365

where number of crashes is the crash occurrence per year, and prod downtime per crash is the
estimated mean time necessary to empty, clean, inoculate a new strain, and to be able to restart
the harvest in the pond.

The optimal temperature for microalgae growth is species-dependent and decreases according
to specific law, moving away from this optimal value. This law calculates a temperature factor
(Tf) as an exponential limitation caused by sub-optimal temperatures, based on James and Boriah
law [1] as described in Eq. (5):

Fcrash =

Tf - e—K(T—Topt)Z , (5)

where the difference between actual (T) and optimal temperature (Top) iS used to calculate the
production limitation through an empirical constant (K=0.004).

The evaporation rate is expressed in kg (m? h)* and calculated in Eq. (6):

(30.6+32.1-Vuing) - (Pw— Pa)
DH. '

where (Py) is the saturation of vapor pressure at water temperature, (Pa) is the saturation
vapor pressure at air dew point, and (DHYv) is the latent heat of water at the pond temperature,
multiplied by the surface area of the ponds (Total area). (Vwind) is assumed to be equal to 0,
values of 30,6 and 32,1 are two empirical constants. The water flow inevitably influences the
evaporation rate. Thus, the calculated evaporation rate is considered indicative. (Pa) is
expressed in kPa and calculated using equation (11):

Pa _ 06108 . 1e727 'Tair

273.15+Tair ' (7)

Me = Totalarea - (6)

where (Tair) represents the air dew point temperature. The same equation can be used to
calculate (Pw) while substituting (Tair) by (Tw) representing the average water temperature.
The latent heat of water at pond temperature (DHy, expressed in kJ kg™) is calculated as
showed in Eq. (8) [2]:

DH, = 2500.8 — 2.36 - Ty, + 0.0016 - T,2 — 0.00006 - T,.  (8)

After converting evaporation rate in m3 month™! (E,) for the total pond surface, is
therefore possible to calculate heat loss in kWh month-! through evaporation rate using

Eq. (9):
Heat loss evaporation = DHv-Er-1000-0.000278, ©)
where 0.000278 is the conversion factor from kJ to kWh.

A simplified heat loss calculation for crashes was made through the number of crashes
multiplied for the total water volume and the water-specific heat capacity assuming 10 °C
difference from the tap water and the pond temperature calculated by Eq. (10):

(Er + H20 overflow - day
R = month

0.001

)-10-4180 | (10)
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where (Rh) represents the heat required to warm up the refill water lost for evaporation and
the recirculation water that cools down outside the heated pond, (H20 overflow) represents
the daily recirculation water that goes into the settling tank and returns into the pond, and
4180 J (kg °C)-1 is the water-specific heat capacity.

Heat loss for convection (HIc) is calculated according to Stefan-Boltzmann’s fourth power
law using alpha parameter (a=1.146240), ponds total area, and the difference between pond
and air temperature, as shown in Eq. (11):

a-(pond temp —airtemp) - Total area 99

= 99 m (11)
1000

Assumption for wall dispersion represents the quantity of heat which, through the walls of
the pond, is dispersed in the surrounding environment (D). The material chosen for its good
optical and mechanical characteristics for the construction of the SMORP pilot is the PMMA,
which has a thermal transmission coefficient (k), expressed in W (m? °C)! equal to 5.80. For
the calculation of total heat losses through ponds walls in kWh month~ Eq. (12) has been
used:

AT k- (Ba+Wa). .99
g9 m 12)

Duw =

1000
where (47) represents the difference between air temperature inside the greenhouse and water
temperature, (Ba) is the total base area of the ponds and (Wa) the total area of the ponds walls.

Solar radiation represents the sun's thermal energy in the infrared area, which contributes
to pond heating. It was calculated first by converting the global radiation expressed in J (m?
month) to kwWh (m? month)~ using Eq. (13):

Grad(J)

Grad (kWh) = .0.000278, (13)

where 0.000278 is the conversion factor from kJ to kWh. The heat input is expressed in kWh
month~! calculated using Eq. (14):

Hin = Totalarea - (1— Pe) - Grad (kWh), (14)

where (Hin) is the heat input from solar radiation, Total area the total area of the ponds, and (Pe)
the photosynthetic efficiency, the part of the radiation that is absorbed by microalgae and does not
contribute to the medium heating.

The power requirement for each hydraulic pump in J s is dependent on the gravitational
acceleration g, total lift expressed in m, flow rate in m? s, the density of fluid in kg (m®),
hydraulic (#nyar), organic (rorg), and electric (ner) efficiency of the electric motor as summarized in
Eq. (15):

g -Totlift - Flowrate - Fluid density (15)
Thydr - TJorg - 1]el

Power =

where Tot lift in metres is the sum of static lift and pipe head loss. Pipe head losses are calculated
with the Darcy—Weisbach equation and is presented in Eq. (16):
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2
hf =t bV, (16)
2-9-D

where hf is head loss due to friction expressed in (m), L is the length of the pipe (m), V is the mean
velocity of the flow (m s1), g is the acceleration of gravity (m/s?), D is the pipe diameter (m), and
f is the friction factor. The Swamee—Jain equation is used to solve for the Darcy-Weisbach friction
factor f, and is presented in Eq. (17):

0.25 , (17)

e 5.4
+ o)l

37-D Re”

f =

[log1o(

where ¢ is the pipeline roughness (m), and Re is the Reynolds number for fluid flow in a pipe
(unitless). The Reynolds number is calculated with Eq. (18):

Re_QDr (18)
A-v

where Q is the volumetric flowrate (m® s), Dy is the hydraulic diameter of the pipe (m), A is the
pipe cross sectional area (m?), and v is the water kinematic viscosity in (m?s™). The mean velocity
of the flow in (m s7?) is expressed in Eq. (19):

voQ, (19)
A

where A is the pipe cross sectional area (m?), and Q is the volumetric flow rate (m® s?). The
cross-sectional area of a circular pipe is expressed in Eq. (20):

Azﬂ(gf7 (20)

where D is the diameter of the pipe (m). For each pump 2 meters of pipe with concentrated losses
at the inlet and outlet are considered. Each pump has a daily working time of 30 minutes,
composed of 3 sessions of 10 minutes, each to respect the microalgae growth rate assuming an 8
hours retention period. Flowrate is calculated scaling data related to another study. [3] According
to estimate, the hydraulic pumps have a lower consumption compared, for instance, to mixing or
artificial lighting.

Electricity consumption for spraying flue gas inside the pond has been taken from literature.
[63] As this value is expressed in kWh kg of flue gases. The algal biomass quantity is related to
CO, consumption [4] according to Eq. (21):

kgCO: . (21)

CO2flue gas=kg biomass DW realised - ————
kg biomass DW

Consequently, the quantity of flue gases in kg that is sprayed into the pond to ensure the correct
amount of CO; needed for algal growth is expressed as given in Eq. (22):

CO: from flue gas (22)

Flue gas spraying = :
gas spraying CO:2 uptake eff -%CO:2 in flue gas
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The actual average pond temperature is equal to set desired average temperature when the heat
system is activated and equal to the air temperature when higher than the set temperature,
calculated with Eqg. (23):

Actual pond temp = MAX[TairGH; setTemp], (23)

where TairGH represent the average air temperature inside the greenhouse and setTemp is the
desired set pond temperature. Factor for sub-optimal pond temperature, as seen in the
Temperature-Growth curve, represents the limiting growth factor for the particular microalgae
species when the medium temperature is not optimal.

Biomass potential production is the quantity of biomass that SMORP pilot can theoretically
produce if no culture crashes occur during the production. The monthly values are obtained with
Eq. (24):

pot biom. prod =biomass prod - Total area - Tf - Pf , (24)

where biomass prod is the biomass daily production and Pf the production factor
considering that the plant is not operative 365 days per year, due to holidays and festivities,
and in these days the harvest stops. It is assumed that this factor limits only the algae
production but not the energy consumptions. Pf value is calculated according to Eq. (25):

365 —total working days (25)
12

Pf = days of the month—

Biomass realized production represents a hypothetical actual biomass production. It is
calculated multiplying the potential biomass production with the crash production factor,
Fcrash. Lost biomass by crashes is the difference between theoretical and actual production.
Wasted water by crashes (Wwcrashes) represents the amount of water (m? year), which is
wasted based on the number of annual crashes, considering that in each subsequent washing
it is necessary to fill the tank twice to clean it from any contamination that could compromise
the restart of the culture, as shown in Eq. (26):

Wwecrashes = Number of crashes - Tot vol - 2 (26)

Evaporation value is taken from the heat parameters and useful for the total water
calculation, represents the quantity of water (m® month) that evaporate from the pond
surface.

Biomass to centrifuge is the amount of biomass expressed in kg, extracted after the
centrifugation system. Biomass losses due to centrifuge inefficiency or due to recirculation
to the pond are not considered.

To calculate electricity consumption in centrifuge, the specific centrifugation consumption
per m? of water treated is multiplied by the volume of treated water (see Eq. (27)), calculated
by scaling down a larger pond system [5]:

| treated

days .ﬂ-specificconsumption (@7)
months 1000

Elec. centrif. =

ANNEX B. HEAT BALANCE IN SMORP
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ANNEX C. SMORP PI1LOT PARAMETERS
TABLE 2. SUMMARY OF SMORP PILOT PARAMETERS
Parameter Unit Value Source
Single pond surface m? 3.6 [6]
Single pond water depth m 0.4 [6]
Number of ponds number of units 3 [6]
Photosynthetic efficiency % 15 [1]
Biomass concentration kg DW/m?® 0.3 [1]
Biomass daily production g (m2 day)* 20 [7]
Digestate needed kg/kg DW 6 [1]
Total working days days year™ 300 Estimation
Culture crashes crash year? 3 Estimation
Culture downtime per crash days 7 [1]
Production downtime per crash days 14 [1]
Electricity for CO, spraying kWh/kg flue gas 0.0222 [8]
Electricity for mixing kWh/kg DW 8,9 [9]
Electricity for centrifuge kWh/m?3 8 [8]
CO, uptake efficiency % 30 [10]
CO; required g/lg DW 1.8 [11]
% CO; in flue gas % 7 [1]
PAR requested umol phot (m? s)* 50 Estimation

ANNEX D. LIFE CYCLE INVENTORY OF SMORP PiLOT

TABLE 1. SUMMARY OF INPUTS FOR SMORP PILOT OPERATION

Process inputs Value Unit
Cultivation inputs

Electricity for CO, spraying 2640 kwWh
Electricity for mixing 28620 kWh
Heat 60455 MJ
Tap water 774 m?
Electricity for lighting 7500 kWh
Cultivation avoided products

Carbon dioxide biogenic 1958.19 kg
Nitrogen fertiliser 29,64 kg
Harvesting inputs

Electricity for inflow to settler 5840 kWh
Electricity for outflow to pond 5610 kWh
Electricity for centrifuge 1260 kWh
Harvesting outputs

DW algae biomass 1025.4 kg
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.SMORP PiLOT ENERGY CONSUMPTIONS AND BIOMASS

ANNEX E
PRODUCTION
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Annex F. Comparative LCIA, weighting at midpoint
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