

Strategies for tackling the computational cost of modeling reacting fluids and related problems

Kyle Niemeyer

School of Mechanical, Industrial, and Manufacturing Engineering Oregon State University

<u>niemeyer-research-group.github.io</u>

27 January 2023

Today's talk

- Introduce applications of high-fidelity simulations of reacting fluid flows
- Discuss the challenges of incorporating detailed chemical kinetics models, and briefly summarize methods for reducing the cost
- Describe our recent work on using adaptive preconditioning to accelerate implicit integration of stiff chemical kinetics, and other recent updates to Cantera
- Illustrate how we have extended methods from combustion to other domains such as modeling of ocean biogeochemistry and neutron transport
- Discuss some alternate career paths for graduate students

Acknowledgments: Students

Anthony Walker Diba Behnoudfar Jackson Morgan

Taylor Coddington Jordan Peters

Malik Jordan

Ali Martz

Acknowledgments: Collaborators

David Blunck

Todd Palmer

Nikki Lovenduski

Vi Rapp

Camille Palmer Peter Hamlington **Raymond Speth**

Steven DeCaluwe Franklin Goldsmith **Richard West**

Acknowledgments: Funders

ALFRED P. SLOAN FOUNDATION

Sandia National Laboratories

Why reacting fluid flows?

Reacting flow applications

Combustion and fire

Atmospheric chemistry

Heterogeneous catalysis

The source of the problem:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0$$
$$\frac{\partial \rho \mathbf{u}}{\partial t} + \nabla \cdot (\rho \mathbf{u} \otimes \mathbf{u}) = -\nabla p + \nabla \cdot \boldsymbol{\tau}$$
$$\frac{\partial \rho T}{\partial t} + \nabla \cdot (\rho \mathbf{u} T) = \nabla \cdot (\rho \alpha \nabla T) +$$
$$\frac{\partial \rho Y_i}{\partial t} + \nabla \cdot (\rho \mathbf{u} Y_i) = -\nabla \cdot \mathbf{j}_i + \rho \dot{\omega}_i$$

The source of the problem:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0$$

$$\frac{\partial \rho \mathbf{u}}{\partial t} + \nabla \cdot (\rho \mathbf{u} \otimes \mathbf{u}) = -\nabla p + \nabla \cdot \mathbf{v}$$

$$\frac{\partial \rho T}{\partial t} + \nabla \cdot (\rho \mathbf{u} T) = \nabla \cdot (\rho \alpha \nabla T)$$

$$\frac{\partial \rho Y_i}{\partial t} + \nabla \cdot (\rho \mathbf{u} Y_i) = -\nabla \cdot \mathbf{j}_i + \rho \omega$$

$$\dot{\omega}_T = -c_p^{-1} \sum_i h_i(T)$$

Hydrogen oxidation

Hydrogen oxidation

 $H_2 + M \leftrightarrow 2H + M$ $O_2 + M \leftrightarrow 2O + M$ $H + O_2 \leftrightarrow O + OH$ $H_2 + O \leftrightarrow H + OH$ $H_2 + OH \leftrightarrow H_2O + H$ $2OH \leftrightarrow H_2O + O$ $O + H + M \leftrightarrow OH + M$ $H_2O_2 + OH \leftrightarrow HO_2 + H_2O$ $2H_2O \leftrightarrow H + OH + H_2O$ $H + O_2 \leftrightarrow HO_2$

 $H_2 + O_2 \iff HO_2 + H$ $H + HO_2 \iff 2OH$ $HO_2 + O \leftrightarrow O_2 + OH$ $HO_2 + OH \leftrightarrow H_2O + O_2$ $2HO_2 \leftrightarrow H_2O_2 + O_2$ $H_2O_2 \leftrightarrow 2OH$ $H_2O_2 + H \leftrightarrow H_2O + OH$ $H_2O_2 + H \leftrightarrow HO_2 + H_2$ $H_2O_2 + O \leftrightarrow OH + HO_2$ $H + OH + M \iff H_2O + M$

Chemistry = ODEs (usually)

Large number of independent ODEs to integrate, often using implicit algorithms Can be even more, and more complicated, for turbulent combustion!

$\frac{dY_i}{dt} = \frac{W_i}{\rho}\omega_i$

OK, we need detailed chemistry—what's the issue? Large-eddy simulation of diesel spray with 54-species n-

dodecane model:

48,000 CPU core-hours for 2 ms after start of injection

¹A. A. Moiz et al. Combust. Flame 173 (2016): 123–131. doi:10.1016/j.combustflame.2016.08.005

What drives costs?

Stiffness Size

Kinetic models exhibit high stiffness

K. E. Niemeyer, N. J. Curtis, & C. J. Sung. Fall 2015 Meeting of the West. States Sect. Combust. Inst. Provo, UT, USA, Oct. 2015. doi:10.6084/m9.figshare.2075515.v1

-1

Stiffness

- Wide range of species and reaction time scales
- Rapidly depleting radical species, fast reversible reactions
- Traditionally requires implicit integration algorithms (with some exceptions: DNS, high-speed flows)

Kinetic models can be large

Chemical kinetic model size for hydrocarbon oxidation

K. Niemeyer. Hydrocarbon chemical kinetic model survey. figshare. 2016. doi:10.6084/m9.figshare.3792660.v1

How to reduce the cost of kinetics

Model reduction

Tabulation

Stiffness removal

Data-driven models

Integration algorithms

17

How to reduce the cost of kinetics

Model reduction

Tabulation

Stiffness removal

Data-driven models

Integration algorithms

17

Accelerating implicit integration

- Solving with typical implicit algorithms requires evaluating and factorizing the Jacobian matrix to solve a linear system
- We can (significantly) speed up integration by combining a few steps:
 - Using a semi-analytical Jacobian with a mole-based system
 - Increasing sparsity by removing small, unimportant terms, and using sparse linear algebra operations
 - Preconditioning the iterative solution to the linear system of equations

M.J. McNenly, R.A. Whitesides, and D.L. Flowers. *Proc. Combust. Inst.*, 35(1) (2015) 581-587. <u>https://doi.org/10.1016/j.proci.2014.05.113</u> A.S. Walker, R.L. Speth, and K.E. Niemeyer. *Proc. Combust. Inst.*, in press (2023). <u>https://doi.org/10.1016/j.proci.2022.07.256</u>

Overall approach: generalized adaptive preconditioning

Implicit algorithm: $H(Y) \equiv Y^{n+1}$

Newton iteration: $H(Y) \approx H^{k-}$

 $Y^{k+1} \equiv$ Solution to linear system:

Solve using preconditioned GMRES

A.S. Walker, R.L. Speth, and K.E. Niemeyer. Proc. Combust. Inst., in press (2023). https://doi.org/10.1016/j.proci.2022.07.256

$$-Y^{n} + \Delta t \cdot F(t^{n+1}, Y^{n+1}) = 0$$

$$^{-1} + \Delta t \cdot J(H^{k}) \cdot (H^{k} - H^{k-1})$$

$$Y^{k} - (I - J(Y^{k}))^{-1} H(Y^{k})$$

Mass-fraction state vector

- Mass-fraction state vector
- Mole state vector

- Mass-fraction state vector
- Mole state vector
- Remove third-body effects

- Mass-fraction state vector
- Mole state vector
- Remove third-body effects
- Remove fall-off effects

- Mass-fraction state vector
- Mole state vector
- Remove third-body effects
- Remove fall-off effects
- Apply threshold

Not applied to system!

Testing

- Considered 14 kinetic models
- Considered fully analytical Jacobian, no threshold, and threshold from 10⁻¹⁸ to 10⁻¹
- Applied to both constant-volume and constant-pressure homogeneous ignition

Model	Formula	Species	R
Hydrogen [22]	H_2	10	29
GRI-Mech 3.0 [22]	CH_4	55	32
OME-Propane [23]	CH ₃ OCH ₃ & C ₃ H ₈	122	71
HyChem Jet-A [24, 25]	POSF 10325(C ₁₁ H ₂₂)	203	15
Sutane [26]	C_4H_{10}	230	24
-Heptane [27]	$n-C_{7}H_{16}$	654	48
sooctane [28]	$i - C_8 H_{18}$	874	68
B-Methylheptane [28]	$C_8H_{18}-3$	1378	81
<i>i</i> -Hexadecane [29]	$n-c_{16}h_{34}$	2115	13
Methyl-5-decenoate [30]	MD_5D	2649	10
Methyl-decanoate & <i>n</i> -heptane [30]	MD & <i>n</i> -C ₇ H ₁₆	3787	10
2-Methyl-nonadecane [31]	$C_{20}H_{42}-2$	7171	38

eactions 9 25 11 589 461 846 864 143 3341 0487 0264 8324

Constant pressure ignition

Constant volume ignition

Impact of threshold

Summary and current work

- improves performance
- substantial speedup without using a threshold
- well as replacing dense linear algebra with sparse.
- This is implemented in Cantera—and can be used now
- Currently extending to problems with multiple coupled reactors and surface chemistry (see NCM talk!)

 Adaptive preconditioning with a mole-based state vector and sparse linear algebra can be applied to constant-pressure and constant-volume systems and significantly

Applying a threshold does not have a major impact on performance and we obtain

• Performance is improved mainly by reducing the number of nonlinear iterations, as

Cantera: open-source community software

Raymond Speth

Richard West

Steven DeCaluwe

Bob Kee

Franklin Goldsmith

Greg Jackson

Xinyu Zhao

Cantera: open-source community software

Gandhali Kogekar China Hagström Anthony Walker

Chao Xu

Jongyoon Bae

Daniel Korff

Sun Su

Summary of recent work

- Cantera version 2.6.0 released in May 2022
 - Contributions from 23 developers
 - Over 1400 commits, 162 pull requests, 101 issues closed
- Key new features:
 - Easy installation via pip (as well as conda)
 - YAML-based input format
 - Extensible reactor classes
 - Refactored kinetics classes
 - New thermodynamics, kinetics classes (Peng–Robinson, Blowers–Masel surface kinetics)
 - MATLAB toolbox revamp

Extending to other fields: ocean biogeochemistry & neutron transport

Ocean turbulence-chemistry **Coupled with overlapping time scales**

Langmuir turbulence

Cigdem Akan https://digitalcommons.usf.edu/etd/3944/

 $CO_2 + H_2O \implies HCO_3^- + H^+$ $CO_2 + OH^- \implies HCO_3^ \mathrm{CO_3}^{2-} + \mathrm{H}^+ \quad \Longrightarrow \quad \mathrm{HCO_3}^ HCO_3^- + OH^- \implies CO_3^{2-} + H_2O$ $H_2O \implies H^+ + OH^ B(OH)_3 + OH^- \implies B(OH)_4^ \mathrm{CO_3}^{2-} + \mathrm{B(OH)_3} + \mathrm{H_2O} \implies \mathrm{B(OH)_4}^- + \mathrm{HCO_3}^-$

Carbonate chemistry

Adapting methods from combustion

- Carbonate kinetic system is stiff, and requires prohibitively small time step sizes with explicit time-integration scheme
- Applied computational singular perturbation, identifying H⁺ and OH⁻ as potential quasi-steady state (QSS) species
- Made QSS approximation for H⁺, reducing stiffness
- Also Implemented third-order Runge–Kutta– Chebyshev time integration scheme
- Large-eddy simulations using NCAR LES of upper open ocean

KM Smith, PE Hamlington, KE Niemeyer, B Fox-Kemper, and NS Lovenduski. 2018. Journal of Advances in Modeling Earth Systems, 10:3030–3048. https://doi.org/10.1029/2018MS001486

Effect of Langmuir turbulence on dissolved carbon

Combined effect of turbulence and chemical model fidelity

Biogeochemistry

- Want to similarly examine interaction between Langmuir turbulence and biogeochemical tracers—crucial to understanding role of ocean in global carbon cycle
- Focusing on 56-component Biogeochemical Flux Model (BFM), can capture complex ecosystem dynamics
- Too large to use in turbulenceresolving LES, so we are now extending the model reduction methods from combustion (DRGEP)

Summary: ocean biogeochemistry

- We are successfully applying methods for model reduction from combustion to ocean biogeochemistry
- So far, this has let us show how finite-rate carbonate chemistry needs to be considered for accurate calculations of carbon uptake in the ocean, due to the interactions between turbulence and chemistry
- We are extending this to more-complex scenarios that capture ocean ecosystem dynamics in the upper ocean

High-performance neutron transport code Monte Carlo / Dynamic Code (MCDC)

- Design and analysis of nuclear reactors requires modeling the transport of neutrons, to describe where and how they trigger fission
- Governed by complex intergro-partial differential Boltzmann-type equation with seven independent variables
- Monte Carlo methods commonly used to solve particle transport, but have high computational cost for necessary sampling size
- We are developing a Python-based Monte Carlo code for method and algorithm research, but need portable performance at large scales

source in absorber with "dog-leg" void

Monte Carlo neutron transport

MC/DC parallelization strategy

- Inspired by work in computational fluids and combustion, developing a Pythonbased code that uses other framework for generating parallel compute kernels
- These allow "easy" writing of new code in Python, relying on code-generation libraries to handle creating performant kernels
- Considering Numba, PyKokkos, and Mako templating engine
- These use just-in-time (JIT) compilation at run time to create machine-specific code

MC/DC Toy Neutronics Testbed

- Created a pared-down version that contains core compute functions of MD/DC
- Test problem: sub-critical slab with initial population of 10⁸ particles
- Verified with analytic solution
- Simulate particle transport until death

cuum /a

L = 40cm, v = 2.3,
$$\Delta x = 0.49$$
cm
 $\Sigma_{cap} = \Sigma_{scat} = \Sigma_{fis} = 1/3$ cm⁻¹

Performance on CPU and GPU

Single CPU results:

Method of Implementation

Pure Python

Numba (Native threading)

Numba (PyOMP)

PyKokkos (OpenMP)

Single GPU results:

Method of Implementation

Numba

PyKokkos

PyCUDA

Compile Time [s]	Run Time [s]
	52970
5.28	232.3
5.66	382.3
37.50	158.4

Compile Time [s]	Run Time [s]
6.25	179.36
39.72	385.24
2.45	160.53

Takeaways and ongoing work

- We can abstract the work of generating performant, portable code away and write in Python
- Numba is our method of choice moving forward, due to performance and ease of use
- Also researching usability with researchers familiar with neutron Monte Carlo methods but not writing high-performance massively parallel software
- Implementing this approach into the full MC/DC software

https://cement-psaap.github.io/

For the graduate students in the room...

"Alternate" career paths

What comes after grad school... other than academic research?

Where are they now?

Jayani Jayasuriya, PhD Instructor @ Oregon State University

AJ Fillo, PhD Additive Development **Responsible Engineer** @ Relativity Space

Paige Lorson, MS Engineer @ EOG Resources

Morgan Mayer, MS Intern @ Infinium

Emily Klee, MS Aerospace Engineer @ NASA

Khang Tran, MS Lithography Process Engineer @ Intel

Andrew Alferman, MS Engr. Supervisor @ ASC Engineered Solns.

Matt Zaiger, MS Metrology Engineer @ Rapid Machining Solns.

Luz Pacheco, MS Mechanical Engineer @ Mercury Systems

Phillip Mestas, MS Software Engineer @ Google

Shane Daly, PhD Senior Computational Scientist @ Enel X

Dan Magee, MS **HPC Engineer @ LANL**

Tejas Mulky, MS Thermal Engineer @ Cisco

Miguel Soler, MS Product Engineer @ Sierra Olympic

Chris Minar, MS Software Engineer @ Argo Al

Brittany Blankma-Stark Aerospace Engineer @ Sierra Space

Cailin Moore Project Engineer @ Vim Pacific

Maria Politi PhD Student @ Univ. Washington

What else is out there?

- If working on NSF-funded project: <u>Non-Academic Research Internships for Graduate</u> <u>Students (INTERN) supplemental funding</u>
- ORISE Internships, Fellowships, Postdocs: laboratory internships for current students; research and policy placements for recent graduates (BS, MS, PhD)
- <u>AAAS Science & Technology Policy Fellowship</u>: one/two-year placement in Executive, Legislative, or Judicial offices working on policy (PhD)
- Professional society Congressional Fellowships (<u>ASME</u>, etc.): one-year placement in Congressional offices working on policy (MS or PhD)
- <u>ARPA-E Fellows</u>: two-year position working in program creation, agency strategy, and outreach (PhD)

With an MS or PhD in Mechanical Engineering, you have options!

Focus on growing your skill set.

Thank you! Questions?

kyle.niemeyer@oregonstate.edu

niemeyer-research-group.github.io