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Abstract

Here, we introduce VLF, an R package to determine the distribution of very low frequency

variants (VLFs) in nucleotide and amino acid sequences for the analysis of errors in DNA

sequence records.  The package allows users  to  assess VLFs in  aligned and trimmed

protein-coding  sequences  by  automatically  calculating  the  frequency  of  nucleotides  or

amino acids in  each sequence position and outputting those that  occur  under  a  user-

specified frequency (default  of  p =  0.001).  These results  can then be used to explore

fundamental population genetic and phylogeographic patterns, mechanisms and processes

at the microevolutionary level, such as nucleotide and amino acid sequence conservation.

Our  package extends  earlier  work  pertaining  to  an  implementation  of  VLF analysis  in

Microsoft Excel, which was found to be both computationally slow and error prone. We

compare those results to our own herein. Results between the two implementations are

found to be highly consistent for a large DNA barcode dataset of bird species. Differences

in  results  are  readily  explained  by  both  manual  human error  and  inadequate  Linnean

taxonomy (specifically, species synonymy). Here, VLF is also applied to a subset of avian

barcodes to assess the extent of biological artifacts at the species level for Canada goose

(Branta canadensis), as  well  as  within  a  large  dataset  of  DNA barcodes  for  fishes  of
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forensic and regulatory importance. The novelty of VLF and its benefit over the previous

implementation include its high level  of  automation,  speed, scalability  and ease-of-use,

each desirable characteristics which will be extremely valuable as more sequence data are

rapidly accumulated in popular reference databases, such as BOLD and GenBank.
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Introduction

The ability to distinguish between sequence disparity arising from true biological variation

versus that arising as a result of sequencing artifacts, known to occur during the PCR/

sequencing process, is of great importance. Numerous studies have noted the detrimental

effect  of  sequencing  errors  on  the  accurate  estimation  of  key  population  genetic

parameters for  assessment  of  genetic  diversity,  such as effective population size (N ),

haplotype diversity (h) and nucleotide diversity ( ) (Cummings et al. 2010, Liu et al. 2010

).  Both  amplification and sequencing artifacts  can lead to  inflation of  N  and standing

genetic diversity, thereby challenging studies involving species of conservation importance

with small census population sizes for instance (Cummings et al. 2010). In fact, this group

in particular is expected to possess lower levels of nucleotide diversity as a result of the

influence of genetic drift and selective sweeps acting on at-risk species populations at the

genomic level (Petit-Marty et al. 2021) in comparison to non-threatened taxa.

Concerning PCR errors, whose magnitudes are highly variable (Potapov and Ong 2017), at

least one is expected to occur in upwards of 10% of amplified DNA fragments as small as

250 bp (Cummings et al. 2010). Simple extrapolation, assuming a baseline PCR error rate

of  10%, might  even suggest  a rate of  up to 26% for  short,  low-quality  segments from

genomic  markers  like  the  5’  terminus  of  the  cytochrome  c oxidase  subunit  I  (5’-COI)

mitochondrial locus, which spans ca. 650 bp (PCR error rate = (650 × 0.10)/250 = 65/250).

Albeit, this is probably a naïve estimate, as the total error rate depends highly on both the

number of PCR cycles and the propensity for error in the polymerase employed, amongst

other  factors  (Potapov  and Ong 2017).  Such a  high  PCR error  rate  is  comparable  in

magnitude to  Pacific  Biosciences (PacBio)  SEQUEL platform for  Single  Molecule  Real

Time (SMRT) sequencing, whose error rate of 13% for single basecalls in long reads up to

60 kb in length was noted by Hebert et al. (2018). However, as such errors tend to occur

randomly, error rates are mitigated through continual sequencing of the same gene region

via  generation  of  a  large  number  of  circular  consensus  sequences  (CCSs).

Notwithstanding, Sanger sequencing is still considered the gold standard despite its high

cost, with accuracies of 99.9%, often rivalling newer short read (< 400 bp) HTS machines

with error rates of 0.8-1.7% (Hebert et al. 2018).

Screening high-volume DNA sequences for putative errors can reveal incorrect basecalls,

chimeras/heteroplasmies,  contaminants,  insertion-deletion  mutations  (indels)  and  other
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nucleotide  substitutions,  as  well  as  nuclear-mitochondrial  (NUMT)  insert/pseudogene

amplification (Bandelt et al. 2001) within reference databases, such as GenBank (Harris

2003,  https://www.ncbi.nlm.nih.gov/genbank)  and  the  Barcode  of  Life  Data  Systems

(BOLD, Ratnasingham and Hebert 2007, www.boldsystems.org). This is an important step

for  maintaining  high  levels  of  accuracy  in  assembled  sequence  records.  Unlike  in

GenBank,  which  is  not  actively  curated,  users  within  BOLD  currently  can  only  flag

questionable  barcode sequences  for  subsequent  examination  (e.g.  via  specimen trace

files)  to  ensure high sequence quality  (Hanner  2009).  However,  it  can be argued that

neither database has been particularly successful in fully eliminating PCR, sequencing and

other errors (Meiklejohn et al. 2019, Pentinsaari et al. 2020). Elimination of these errors

(e.g. Stoeckle and Thaler (2014), Thaler and Stoeckle (2016)) is paramount to successful

identification  of  specimens  to species,  phylogeographic  haplotype  analysis,  studies  of

molecular evolution, characterisation of human diseases and the design of robust species

primer/probe sets for forensic investigations.

DNA barcoding uses a small gene fragment from a standardised (orthologous) region of

the  genome  to  identify  multicellular  species  (Hebert  et  al.  2003).  In  animals,  this

corresponds to a 648-658 bp fragment of 5’-COI (Hebert et al.  2003). As of December

2021, over 10.2 million DNA barcodes from animals, plants, fungi and protists have been

catalogued  within  BOLD  for  almost  330000  species.  With  the  number  of  specimen

sequences in publicly accessible databases on the rise, it is crucial that their quality is not

compromised.

A  key  approach  employed  within  many  modern  sequencing  platforms  to  quantitatively

assess putative errors stemming from incorrect nucleotide basecalls is the PHRED quality

score (Ewing et al. 1998, Ewing and Green 1998). PHRED scores relate the probability of

incorrectly calling a given base to the accuracy of said basecall on a logarithmic (base-10)

scale. Higher PHRED scores indicate a lower probability of an incorrect basecall occurring

and, thus, a greater overall accuracy in nucleotide assignment to electropherogram peaks.

For instance, a PHRED score of 20 at a particular basepair position corresponds to an

incorrect basecall probability of 0.01, meaning one error is expected to occur in every 100

sequenced nucleotides, resulting in a basecalling accuracy of 99%. The FASTQ file format

incorporates  both  the  nucleotide  sequence  for  a  particular  read,  along  with  position

PHRED scores in ASCII format for easy portability. While PHRED scores offer an intuitive

and simple way to measure sequencing integrity, a robust framework to easily visualise

and quantify the impact of instrument errors from multiple sources in a DNA barcoding

context is currently lacking.

Stoeckle  and  Kerr  (2012) first  addressed  the  issue  of  sequencing  errors  within  DNA

barcodes  using  a  frequency  matrix  approach,  implemented  in  Microsoft  Excel,  to

investigate the distribution of rare genomic variants (termed very low frequency variants

(VLFs))  in  a  large  avian  dataset  (11333  barcodes  from  2706  species  spanning  1038

genera and 149 families; 1-125 specimens/species; ca. 4.19 specimens/species). To do

this, the occurrence of each positional nucleotide or amino acid in a set of DNA sequences

was recorded in  a  data  matrix.  If  a  nucleotide/amino  acid  occurred  at  a  frequency  of

< 0.001 (i.e. one error for every 1000 basepair positions), it was designated as a VLF and
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was noted as a potential sequencing artifact. Thus, a dataset consisting of at least 1000

taxon sequences is required to detect at least one true VLF. To further elucidate the precise

origin of sequencing errors, VLFs were categorised as belonging to two distinct classes:

singleton VLFs and shared VLFs. Singleton VLFs do not occur in other members of a

species and tend to occur at the 5’ and 3’ ends of sequence reads; therefore, they are

more likely to be errors in sequences, whereas shared VLFs are more consistent with

known biological variation and tend to be randomly scattered throughout sequences. The

distribution  of  singleton  and  shared  VLFs  within  sequences  can  be  explained  by  two

primary factors arising during sequencing and assembly. Firstly, when viewing specimen

trace files, sequence ends tend to be crowded and unevenly spaced, in addition to being

often highly deteriorated with broad peaks that  can be difficult  to resolve (Athey 2013, 

Ewing et al. 1998, Ewing and Green 1998). As a result, misinterpretation of chromatograms

and, thus, incorrect sequence editing, is common. Secondly, coverage is often lower at

sequence ends (1×) compared to the middle (2×) from the forward and reverse primer

(Athey 2013).

Here, we present VLF version 1.1 (Athey and McNicholas 2022, R Core Team 2022), an R

package designed as a rapid and automated implementation of  the method utilised by

Stoeckle  and  Kerr  (2012) to  assess  and  indicate  possible  errors  in  DNA  barcode

sequences.  DNA barcodes were of  initial  interest  in  this  paper  because of  their  broad

application  to  specimen  identification  and  because  of  their  wide  availability  in  online

reference sequence databases. We validate the usefulness of the VLF package by first

testing R functions on the avian barcode dataset of Stoeckle and Kerr (2012) and then

applying the VLF pipeline in two ways: (1) to a subset of avian DNA barcodes comprising

the Canada goose (Branta canadensis) and (2) to a newly-generated COI barcode dataset

comprising  sequence  data  from  previously  published  studies  related  to  seafood

mislabelling  of  societally-important  fish  species.  While  we  apply  our  method  to  DNA

barcode  data,  such  an  approach  is  easily  extended  to  other  protein-coding  sequence

datasets  well  represented  in  online  databases,  such  as  those  that  make  use  of  the

mitochondrially-encoded cytochrome b (cytb) gene. Further, while our focus is based solely

on reads generated via Sanger-based amplicon sequencing, we stress that the approach

outlined  here  could  in  theory  also  extend  well  to  analysing  DNA  variation  in  Next-

Generation Sequencing (NGS) and/or High-Throughput Sequencing (HTS) technologies,

such  as  the  PacBio  SEQUEL  platforms  for  downstream  targeted  environmental  DNA

(eDNA), metabarcoding, (mito)genome assembly or ancient DNA studies.

Implementation of the VLF package

The VLF package inputs aligned DNA sequences as a matrix in FASTA format using the

function  fasta.read(file,  seqlength  =  648,  pos1  =  1,  pos2  =  3)  and  converts  it  into  a

sequence matrix. The first column of the matrix contains a specimen identifier, while the

second gives the species name, followed by the DNA sequence in subsequent columns.

The FASTA input header should be separated by ‘|’ and the 'pos1' and 'pos2' identifiers

indicate the header’s position for the unique specimen identifier ('pos1') and the species
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name  ('pos2').  For  example,  a  FASTA  header  may  be  ‘>GBGC1668-06|NC  005317|

Thunnus alalunga|COI-5P’, where GBGC1668-06 is the unique specimen identifier in the

first  position after  the ‘>’  (pos1 = 1)  and the species is  Thunnus alalunga in  the third

position (pos2 = 3). The default sequence length is 648 bp. This function will automatically

separate the FASTA file into a matrix containing the unique specimen identifier in the first

column,  the  species  name in  the  second column and the  nucleotide  sequence in  the

subsequent columns, one column per nucleotide. If the user wishes, they may also upload

their sequences from their own format, provided the final sequence matrix follows these

conventions. Sequence alignment can be handled using external  software programmes

such as MEGA (Kumar et al. 2016) to check whether indels are present within sequences

and to verify that barcodes are in the correct reading frame when translated using the

appropriate  codon  table.  As  well,  VLF assumes  that  the  first  sequence  position

corresponds exactly to the first codon position. The 3' end of most primers is a first or

second position, so it is rare that sequences trimmed to the primers will begin with a first

codon position. Thus, users must exercise caution to ensure correct alignments prior to

further analysis, especially if there is length variation within sequences to be assessed.

VLF analysis with the VLF package may pose an issue for taxa that are known to harbour

problematic artefacts within the barcode region, such as indels and NUMTs, derived from

PCR or sequencing runs. Although indels and NUMTs/pseudogenes are rare in protein-

coding genes such as COI, they are nevertheless common in various major invertebrate

groups (including taxa such as Arachnida (Young and Hebert 2015), marine taxa (Schultz

and Hebert 2022) and insects (Hebert et al. 2022)). Indels that do not occur in multiples of

three (i.e. forming triplet codons) can lead to sequence frameshifts and, thus, alteration of

overall protein function and their occurrence may be directly due to sequencing error or the

presence of a NUMT/pseudogene. If  a VLF leads to a change, not only in amino acid

sequence,  but  also in  the type of  amino acid,  this  likely  indicates a change in protein

structure and may be a further indication of a potential error in barcode sequences (Athey

2013). Further, the presence of stop codons within sequence alignments due to a single-

base indel can indicate the presence of NUMTs/pseudogenes which should be manually

excluded  by  the  user.  Their  presence  can  signal  the  premature  termination  of  DNA

translation if not eliminated naturally from species populations through purifying selection.

If indels are found to be present within protein-coding sequence alignments from BOLD,

the user should take several steps to deal with them. First, the associated specimen trace

file(s) should be consulted and verified to be free of errors. This includes ensuring that both

forward and reverse chromatograms are properly aligned with primers removed. Further,

there should be no evidence of sequencing artefacts including heterozygous peaks, dye

blobs,  partial  co-amplification,  homopolymeric  tracts  or  stop codons indicating possible

reading frame shifts. Next, raw sequences should be realigned using altered parameters

(e.g. gap penalties) or an alternative sequence alignment algorithm altogether, one that

carries out both pairwise, in addition to, multiple sequence alignment (though at the cost of

increased computation time) (e.g. ClustalW (Thompson et al. (1994)) instead of MUSCLE

(Edgar 2004)). If indels are restricted to only one or a few sequences, the user may want to

try to align sequences by eye, then verify that the resulting alignment is in the correct

reading  frame  (i.e.  free  of  stop  codons)  when  translated  to  amino  acids  using  the

appropriate  codon  table.  As  a  last  resort,  the  user  can  simply  exclude  such  sites  or
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sequences entirely (e.g. if they are found to be associated with GenBank records). When

scanning alignments for  nucleotide VLFs (ntVLFs) and amino acid VLFs (aaVLFs),  the

user has the option of specifying a cut-off frequency (denoted p, not to be confused with p-

value) different from the default  of 0.001. The default  value of p = 0.001 was selected

because: (1) it was employed by Stoeckle and Kerr (2012) and (2) it resulted in a levelling

off of singleton VLF occurrence to an asymptote as barcode length is reduced (while both

shared and total VLFs showed an increasing linear trend; Fig. 1) (Athey 2013). The user

must also specify a sequence length if different from the default 648 bp for nucleotides (or

216 residues for amino acids). Users can also analye a subset of sequences separate from

reference sequences to allow easier interpretation of results and the elucidation of novel

biological  patterns within and between species using the function argument  ‘own’  (see

below  for  further  explanation).  For  example,  if  there  are  20,000  barcode  sequences

available for different species of fishes, but the user only has five sequences that they wish

to assess, then the user can enter in the 20,000 barcode sequences as ‘x’ and their five

sequences as ‘own’.  In this way, a meaningful frequency matrix can be calculated and

users can analyse their own sequences easily.

The VLF package consists of three main functions: vlfFun(x, p = 0.001, seqlength = 648,

own  =  NULL),  aminoAcidFun(x,  p  =  0.001,  seqlength  =  216,  own  =  NULL)  and

concordanceFun(nuc,  aa,  nuclength  =  648,  aalength  =  216,  aminoAcid.Modal).  The

functions vlfFun()  and aminoAcidFun()  have the same output:  ‘modal’,  ‘con100’,  ‘conp’,

‘combine’,  ‘specimen’,  ‘position’,  ‘sas’  and ‘VLFmatrix’.  The ‘modal’  object  contains  the

sequence of nucleotides or amino acids that occur most often in each position, based on

the calculated frequencies. The ‘con100’ value gives the number of sequence positions

Figure 1.  

Plot  depicting  the  effect  of  evenly  reducing  avian  DNA barcode  length  at  both  5’  and  3’

sequence ends on the overall presence of VLFs.
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that are 100% conserved amongst all  specimens in the dataset,  while the ‘conp’ value

gives the number of  sequence positions that  are (1 -  p)% conserved (i.e.  if  using the

default value of p = 0.001, then (1 - p)% = 99.9%). The ‘combine’ value gives the number

of  amino  acid  positions  that  are  (1  -  p)%  conserved  for  the  first  and  second  modal

sequence (i.e. the two most common sequence variants in a taxon dataset). ‘Specimen’ is

a vector containing the number of VLFs for each specimen in the dataset and 'position' is

the number of VLFs for each sequence position in the dataset. The value ‘sas’ gives the

number of singleton and shared VLFs in each sequence position of the dataset. Lastly,

‘VLFmatrix’ is a reduced matrix containing only VLFs, with “NA”s in any position that does

not  contain  a  VLF.  Additionally,  if  the  user  specifies  their  own  sequences,  then  the

programme  outputs  specimen  VLF  counts  (‘ownSpecCount’),  position  VLF  counts

(‘ownPosCount’),  a  VLF matrix  containing all  “own“  specimens (‘ownVLFMatrix’)  and a

reduced VLF matrix containing only those specimens which have VLFs in their sequence

(‘ownVLFreduced’). This output allows the user to assess their own sequences of interest

more easily, without having to filter through large datasets. The third main function of the

VLF package is concordanceFun(nuc, aa, nuclength = 648, aalength = 216, aminoAcid

Modal), where ‘nuc’ and ‘aa’ are the VLFmatrix outputs of the vlfFun() and aminoAcidFun()

functions,  respectively,  ‘nuclength’  and  ‘aalength’  are  the  sequence  lengths  for  the

nucleotide and amino acid sequences, respectively (648 bp and 216 residues by default)

and  ‘aminAcidModal’  is  the  modal  output  of  aminoAcidFun().  The  main  goal  of  the

concordanceFun()  function  is  to  calculate  how many nucleotide  VLFs occur  within  the

codon of an amino acid VLF. The output for this function is a list of concordant nucleotide

and amino acid VLFs ('matched'), a calculation of how many concordant VLFs there are for

each codon position ('codons'), the number of concordant amino acid VLFs that changed

amino acid residue type (‘concordantType’), the number of overall amino acid VLFs that

changed amino acid residue type (‘aminoAcidType’), the overall number of nucleotide VLFs

and  amino  acid  VLFs  that  showed  concordance  (‘concordNuc’  and  ‘concordAA’,

respectively) and the number of sequences that contained both nucleotide VLFs and amino

acid VLFs (‘sequences’).

The  VLF package  also  has  several  other  useful  functions,  such  as  one  to  calculate

singleton, shared and total VLF error rates, based on a high degree of conservation at

second codon positions (Error.Rate(single, shared, spec, seqlength)). In computing total

error  rates,  both  singleton  and  shared  VLFs  should  be  considered.  This  is  because,

despite shared VLFs making up a negligible fraction of overall sequences, they comprise a

high proportion of  sequences with VLFs (Athey 2013).  However,  this was not done by

Stoeckle and Kerr (2012), who only calculated an overall singleton error rate. As such, we

introduce modified formulae for the calculation of putative VLF error rates (ERs) as follows:
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A useful  feature of  the VLF package is  the ability  to distinguish VLFs that  are shared

between members of the same species (i.e. occurring in two or more sequences) or that

are  singletons  (i.e.  occurring  in  only  a  single  individual).  In  the  case  of  singleton

sequences, it is important to know how they manifest in large barcode libraries. There are

two possibilities:  (1)  only  a  single specimen of  a  species was sampled or  (2)  multiple

individuals within a species lacking true genetic polymorphisms were sampled (Talavera et

al.  2013).  This  information  can  be  used to  assess  whether  VLFs  arise  as  a  result  of

sequencing error or divergence, since with small sample sizes, actual biological variants

(i.e.  true  haplotypes)  may  be  misidentified  as  VLFs;  whereas,  very  heavily  sampled

species will have a higher incidence of their biological variants (Athey 2013). In utilising

DNA barcodes for biodiversity or evolutionary studies, the presence of one or two VLFs

(equivalent to 0.15-0.30% K2P (Kimura Two Parameter; Kimura (1980) distance) is not

likely to hinder specimen assignment as the majority of species will differ by > 2% in their

barcodes (Hebert et al.  2003, Hebert et al.  2003, Stoeckle and Kerr 2012). Since VLF

occurrence is  expected to be low within taxon records,  a VLF is not  likely to cause a

barcode sequence to appear more closely related in distance to a distinct species (Athey

2013). This is the case for species displaying many VLFs, as a VLF will result in a given

specimen becoming equally distant from all  others in a taxonomic group (Athey 2013).

However, when DNA barcodes are used in the design of molecular assays for accurate

species detection of potentially mislabelled seafood products (e.g. primer/probe synthesis),

the presence of even a single nucleotide difference can greatly inflate the number of false

positive  and  false  negative  errors.  In  such  cases,  alternative  methods  of  species

identification, apart from traditional distance-based approaches, are often employed (e.g.

diagnostic nucleotides; Sarkar et al. (2008), Wong et al. (2009)). Thus, VLF analysis is

expected to be well utilised within socioeconomic contexts. In such cases, it is imperative

that a high level of species sequence identity be achieved (often ca. 98% for instance, but

ideally a 100% query match to a reference in the library is needed). The VLF package can

aid in this endeavour by eliminating questionable sequences having a high incidence of

VLFs, including only those DNA sequences with a low proportion of VLFs.

In a study by Phillips et al. (2015) utilising DNA barcodes from ray-finned fishes (Chordata,

Actinopterygii),  it  was  found  that the  random  sampling  of  hundreds  to  thousands  of

individuals per species will likely be required to uncover the majority of estimated haplotype

variation within a given species.  In the case of  Actinopterygii,  which is a group that  is

known to possess high levels of intraspecific genetic diversity, it seems plausible that much

of the biological variation seen within and between species actually comprises spurious or

non-unique (i.e. duplicate) haplotypes (Hickerson et al. 2006, Dasmahapatra et al. 2010, 

Fietz et al. 2013). Phillips et al. 2019 highlighted the strong relationship between VLFs and

required specimen sample sizes: higher sampling coverage means true haplotype variation
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will be less likely flagged as VLFs. A large proportion of COI DNA barcodes within BOLD

are mined from GenBank.  Unfortunately,  such records often lack appropriate metadata

requirements  necessary  for  compliance  with  BARCODE  standards  set  out  by  the

Consortium for the Barcode of Life (CBOL) (Hanner 2009). This was the primary reason for

excluding GenBank records in Phillips et al. (2015)'s study, despite resulting in lower initial

sample sizes on which to probe current levels of sampling effort for fishes.

The question, therefore, that must be addressed is: does there exist an optimal threshold

size for specimen sampling above which no new genetic (i.e.  DNA barcode haplotype)

variation is likely to be observed for a species? That is, can all (or nearly all) DNA barcode

haplotype diversity for a species be uncovered by simply sampling N individuals? If so,

how confident can one be in such an estimate? Phillips et al. (2015), Phillips et al. (2019)

and Phillips et al. (2020) term this sampling sufficiency, which is defined as the sample size

at  which  sampling  accuracy  is  maximised  (or  converged)  and  above  which  no  new

sampling  information  (i.e.  DNA  barcode  haplotype  variation)  is  likely  to  be  gained.

However, caution is required in adopting this definition since exhaustively sampling taxa of

interest may result in only small gains in accuracy (Phillips et al., in preparation). Despite

this  caveat,  if  such a  lower  bound estimate  exists,  it  would  provide  a  useful  stopping

criterion for specimen sampling since it is the best guess presently available (Phillips et al.

2015, Phillips et al. 2019, Phillips et al. 2020). Future work should, therefore, employ the R

package HACSim (Phillips et al. 2020), which will ensure a representative sample of COI

variation,  to  assemble  representative  taxon  BARCODE  datasets,  based  on  BOLD  or

GenBank specimen records for direct assessment of VLFs using the VLF package.

It is well known that current sample sizes within barcode libraries are likely insufficient for

making inferences at the phylogenetic level, for instance, in the calculation of divergence

times of sister taxa via neutral coalescent/molecular clock models, but there is evidence

that suggests otherwise (e.g. Lavinia et al. (2016)). Early on, the DNA barcode gene region

was believed to be too short  to aid in reliable tree reconstruction due to relatively low

phylogenetic  signal  since  multiple  genetic  markers  must  often  be  considered  to

conclusively  yield  meaningful  information  on  the  evolutionary  history  of  a  single  taxon

(Hajibabaei et al. 2007). However, because phylogenetically-informative mitochondrial loci,

with the exception of COI (and to a lesser extent cytb), are available for only a handful of

taxa within global sequence databases, phylogenetic interpretations can become obscured

(Wilson 2011). Despite this, neighbour-joining trees are routinely used in DNA barcoding

studies as an identification tool to flag sequences originating from potential contaminants

(e.g. bacterial symbionts like Wolbachia (Smith et al. 2012)) or to pinpoint sequences that

may reflect non-functional gene copies (i.e. NUMTs/pseudogenes), both of which may be

complicated by mitochondrial introgression. The impact of sampling on the presence of

VLFs in taxon sequence records is an important consideration in the assessment of overall

sequence  quality  within  barcode  libraries;  however,  questions  still  remain  concerning

optimal sample sizes required for such assessments.

The VLF package also contains functions to give visual outputs of the distribution of VLFs

throughout the sequences. Decile.Plot(VLF, seqlength = 648) creates a decile plot showing

the number of VLFs in every tenth of the sequence. The input ‘VLF’ is the ‘position’ output
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of  the  vlfFun()  and  aminoAcidFun()  functions,  containing  the  counts  of  VLFs  in  each

position of the sequence. The user may also enter in the ‘sas’ output of these functions, to

create a decile plot of both the single and shared VLFs. Similarly, the VLF package also

contains the function Sliding.Window(VLF, seqlength = 648, n = 30) which creates a sliding

window plot of VLFs with a default  window size of 30 bp. A 30 bp k-mer window was

selected by Stoeckle and Kerr (2012) to eliminate as much noise in the data as possible

while clearly showing the precise distribution of singleton and shared VLFs within barcode

sequences.  Sliding  windows  are  useful  for  this  type  of  analysis  because  they  offer  a

glimpse into how the number of observed VLFs change as the window is shifted along the

barcode segment from the 5’ to 3’ end by a fixed amount (one basepair by convention) in

the fashion of a moving average. Such plots have been used within the DNA barcoding

literature to select informative minibarcodes for optimal specimen identification in taxa such

as earthworms, using sequencing technologies like pyrosequencing (Boyer et al. 2012).

Results

In  the  following  subsections,  focus  is  placed  specifically  on  ntVLFs  (hereafter  simply

referred to as VLFs) for the sake of brevity. Required DNA sequence data is included in

Suppl. material 1. Code to reproduce all analyses can be found in Suppl. material 2.

Application of the VLF package to avian DNA barcodes

Aligned avian barcode sequences, identified to at least the family level, were downloaded

from the supplementary material of Stoeckle and Kerr (2012) in FASTA format. Birds were

the taxon of choice because they are amongst the best-represented groups within barcode

libraries,  have well-defined species  boundaries,  as  well  as  large and well-documented

census  population  sizes  (Stoeckle  and  Kerr  2012,  Stoeckle  and  Thaler  2014).  These

sequences were initially retrieved from GenBank using the keyword ‘BARCODE’ (Hanner

2009),  which  ensures  sequences  are  at  least  500  bp  in  length,  contain  less  that  1%

ambiguous bases (Ns) and have associated trace files and primers within BOLD, amongst

other  requirements  and  optional  metadata  (such  as  specimen  images  and  GPS

coordinates). The birds nucleotide dataset can be accessed using the R code data(birds);

the amino acid dataset can be accessed by using the R code data(birds_aminoAcids).

Sequences were then analysed in R using the three primary functions of the VLF package

outlined above in conjunction with others. Results were concordant with those of Stoeckle

and Kerr (2012) (Fig. 2, Fig. 3). Reproducing the full analysis of Stoeckle and Kerr (2012)'s

dataset using the VLF package gave nearly identical results, but took less than one minute

(6.723 s) using vlfFun() on a Mac OS X 11.4 machine (2.7 GHz Dual-Core Intel Core i5

processor,  8 GB 1867 MHz DDR3 memory),  while the conventional  analysis,  using an

Excel spreadsheet, took several days (actual numbers unknown since this is dependent on

memory used by macros).

In comparing results obtained via VLF to those found by Stoeckle and Kerr (2012) Excel

implementation, two discrepancies are noteworthy. The first relates to the occurrence of
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synonymous species names. Stoeckle and Kerr  (2012) found a total  of  573 singletons

within the avian dataset, whereas in employing R, 582 singletons were observed by Athey

(2013).  This  difference is  likely  because the present  study simply  checked for  species

names  only  occurring  once,  without  accounting  for  any  prior  taxonomic  knowledge.

Secondly, a total of 768 specimen VLFs (494 singleton VLFs, 274 shared VLFs) from 549

barcodes were noted by Stoeckle and Kerr (2012) when singleton and shared VLFs were

pooled together, in comparison to findings herein, where 771 specimen VLFs (between

1-15 VLFs for each specimen) and 771 positional VLFs (510 singleton VLFs, 261 shared

VLFs, between 1-18 VLFs for each position) were observed across 552 sequences and

241 sequence positions, respectively. A singleton (gi|359282265|gb|JQ174997.1, 651 bp),

corresponding to the species Halcyon smyrnenis (White-throated kingfisher) possessed the

most VLFs. Alignment position 308 comprised the most VLFs. Using VLF, the distribution

of specimen and positional VLFs was easily determined (Table 1 and Table 2). Singleton,

shared and total error rates, computed using the function Error.Rate(), are given in Table 3.

While the VLF package automatically compared species names for counts of singleton and

shared VLFs, Stoeckle and Kerr (2012) manually separated and compared VLFs. Thus, it

is possible that Stoeckle and Kerr (2012) counted some sequences that contained both

shared and singleton VLFs as only shared VLFs, or vice versa, which may account for the

observed decrease in VLF count. The small difference in sequence count is not accounted

for,  but  has  negligible  effect  on  the  overall  results.  As  VLF does  not  require  manual

assessment and because of the speed of the computation, the VLF package is the most

appropriate available tool for a large-scale VLF analysis.

Figure 2.  

Decile  plot  showing the distribution  of  singleton (blue)  and shared (red)  VLFs across the

barcode segment in avian barcodes.
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VLFs 1 2 3 4 5 6 9 10 13 15

Specimens 446 63 27 3 2 5 2 2 1 1

VLFs 1 2 3 4 5 6 7 8 9 10 11 13 14 15 18

Positions 91 53 25 19 12 11 5 7 5 3 4 2 2 1 1

Singleton 8.54 x 10  (0.0553)

Shared 3.92 x 10  (0.0254)

Total 1.25 x 10  (0.0810)

-5

-5

-4

Figure 3.  

Sliding window plot depicting the distribution of singleton (blue) and shared (red) VLFs in avian

barcodes.  A default  window size of  30 nucleotides was selected to  minimise stochasticity

apparent in the data.

 

Table 1. 

Specimen VLF distribution for birds.

Table 2. 

Positional VLFs for birds.

Table 3. 

Positional error rates for birds. Per barcode error rates are indicated in parentheses.
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Another  advantage of  the VLF package is  automation of  the analysis.  To perform this

analysis using Excel, the user must manually enter macros for each individual dataset. The

automation of the analysis makes it a user-friendly tool that can be utilised as a clean-up

step during a barcode analysis workflow.

In addition, the effect of reducing full-length avian barcodes evenly at both the 5’ and 3’

ends and the choice of VLF frequency cut-off, on the presence of VLFs is clearly illustrated

in Fig. 4 and Fig. 5, respectively. The former figure depicts a contour heatmap plot of the

total  number  of  VLFs  observed  as  a  result  of  shortening  barcodes  on  both  5’  and  3’

sequence ends.  In  that  image,  deeper  colour  intensities associated with  higher  overall

numbers of VLFs within sequences, are directly proportional to the number of nucleotide

bases removed. Such a plot represents a novel way of examining DNA sequences for the

presence of machine errors (in conjunction with sliding windows and decile plots presented

herein, as well as in Stoeckle and Kerr (2012)'s original study).

Probing species-specific VLFs in avian DNA barcodes

Taxa with large numbers of collected specimens should be expected to show strong VLF

signals relative to the real biological variation present in DNA sequences. Thus, in addition

to investigating the prevalence of VLFs at the class level (Aves), the incidence of VLFs at

the species level was assessed for Branta canadensis (Canada goose), the species with

the largest number of specimens (125) in Stoeckle and Kerr (2012)'s dataset. The Canada

Figure 4.  

Plot depicting choice of VLF frequency on the number of observed single, shared and total

VLFs across avian barcodes.
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goose is  widely known as a nuisance species that  has become well-adapted to urban

human environments. This species was noted as a strong outlier in comparison to other

taxa by Stoeckle and Kerr (2012). Analysis of this and other species in the birds' dataset is

easily accomplished by first using the separate() function in VLF, which rapidly partitions

specimen records into lists according to species name, followed by passing the reduced

dataset  to  the  ‘own’  argument  to  vlfFun()  (or  another  function  that  takes  the  same

argument). B. canadensis corresponded to list element 317 upon applying the function.

While  more  than  100  conspecifics  were  found  to  lack  VLFs  for  this  species,  closer

examination of specimen trace files revealed the presence of double peaks at VLF sites (

Stoeckle and Kerr 2012). Such a pattern is highly suggestive of co-amplification of a short

pseudogene at the 5’ end of examined barcodes.

Analysis of the Canada goose dataset revealed a total of 27 specimen VLFs (between 1

and  3  VLFs  for  each  specimen)  across  all  125  examined  barcode  sequences  (18

specimens comprised VLFs). Similarly, 27 positional VLFs were observed across the entire

648 bp barcode segment (five singleton VLFs, 22 shared VLFs, between 1-10 VLFs for

each position). Ten alignment positions displayed VLFs: sites 58, 59, 124, 145, 147, 190,

435, 490, 501, 535. Position 145 contained the most VLFs at 10, while all other sites had

between 1 and 4 VLFs. Most VLFs were concentrated at the 5’ end of sequences, with 15

VLFs occurring within the third decile alone (Fig. 6). All other deciles had between 2 and 3

VLFs.  Within  the  sliding  window,  the  highest  positional  VLF  error  rate  (ca.  0.5  VLFs)

occurred near the 20  percentile (Fig. 7).  Specimen and position VLF distributions are

given in Table 4 and Table 5, respectively. Calculated error rates are found in Table 6.

th

Figure 5.  

Contour plot displaying the effect of evenly shortening sequences by fixed amounts from the 5’

end to reduce overall numbers of VLFs across avian barcodes.

 

14 Phillips J et al

https://arpha.pensoft.net/zoomed_fig/8109715
https://arpha.pensoft.net/zoomed_fig/8109715
https://arpha.pensoft.net/zoomed_fig/8109715
https://doi.org/10.3897/BDJ.11.e96480.figure5
https://doi.org/10.3897/BDJ.11.e96480.figure5
https://doi.org/10.3897/BDJ.11.e96480.figure5


VLFs 1 2 3

Specimens 11 5 2

VLFs 1 2 3 4 10

Positions 5 1 2 1 1

Singleton 7.74 x 10  (5.016)

Shared 3.56 x 10  (2.304)

Total 0.0113 (7.320)

-3

-3

Table 4. 

Specimen VLF distribution for Canada goose (Branta Canadensis).

Table 5. 

Positional VLF distribution for Canada goose (Branta Canadensis).

Table 6. 

Positional error rates for Canada goose (Branta canadensis). Per barcode error rates are indicated

in parentheses.

Figure 6.  

Decile  plot  showing the distribution  of  singleton (blue)  and shared (red)  VLFs across the

barcode segment in Canada goose (Branta canadensis) barcodes.
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Application of the VLF package to DNA barcoding forensics

Seafood fraud is a growing economic and ecological problem facing society today. DNA-

based identification of specimens to species (e.g. DNA barcoding) is increasingly being

used as a means of  verifying product  integrity.  The availability  of  such technologies is

important given that species of higher economic value (e.g. halibut, red snapper) are often

substituted with those of lower cost (e.g. catfish, tilapia) (Hanner et al. 2011a, Naaum and

Hanner 2015).  Thus,  it  is  imperative that  new tools be developed to aid governmental

regulatory agencies, such as the Canadian Food Inspection Agency (CFIA) and the United

States Food and Drug Administration (USFDA) in combatting this mounting issue. VLF

analysis represents one potential solution in this respect.

To assess the utility of VLF to the field of barcoding forensics for regulatory purposes, DNA

barcodes from four research studies published between 2008 and 2011 (Wong and Hanner

2008, Rasmussen et al. 2009, Wong et al. 2009, Hanner et al. 2011b) were downloaded

from the BOLD4 database on 30 November 2016 using the BOLD project codes ‘EMRKT’

(Fish  Market  Survey),  ‘SSNA’  (Salmonid  Species  North  America),  ‘EWSHK’  (Shark

Barcoding Using a Nucleotide Diagnostic Approach) and ‘EBFSF’ (Billfish and Swordfish

COI  Identification),  respectively.  EMRKT  comprised  a  single  Echinodermata  sequence

(EMRKT065-07, Mesocentrotus franciscanus (Red sea urchin), 633 bp with Ns excluded

Figure 7.  

Sliding window plot  depicting the distribution of  singleton (blue) and shared (red) VLFs in

Canada goose (Branta canadensis) barcodes. A default window size of 30 nucleotides was

selected to minimise stochasticity apparent in the data.
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from the 3’ end), which was treated separately from the fish barcodes. The final dataset

consisted of 2371 barcode sequences from 44 genera, 72 families and 114 species (ca.

20.80 specimens/species; Table 7). Only EMRKT and EBFSF were comprised partially of

barcodes  >  500  bp  in  length.  Barcodes  shorter  than  this  cut-off  were  nevertheless,

infrequent in EWSHK and SSNA projects and were not removed prior to VLF analysis.

BOLD Project Code No. of 5’-COI Sequences No. of Families/Genera/Species 

EBFSF 296 2/6/10

EMRKT 91 23/32/20

EWSHK 1050 18/32/76

SSNA 934 1/2/8

Total 2371 44/72/114 

Sequence alignment was carried out in MEGA6 using MUSCLE and the ‘Align DNA’ option

with default parameters. Ends of the aligned sequences were then trimmed to the standard

barcode length for fishes (i.e. 652 bp) and subsequently translated to amino acids using

the ‘Vertebrate Mitochondrial’ and the ‘Invertebrate Mitochondrial’ codon tables. Alignments

were checked for the absence of stop codons and verification that they were in the correct

reading frame. Sequencing artifacts were common within DNA barcodes. For example, a

single-base indel (specifically, a nucleotide deletion), identified using the SequenceMatrix (

Vaidya et al. 2011) tool within the TaxonDNA software (Meier et al. 2006, Vaidya et al. 2011

),  was present  in  one specimen from the SSNA BOLD project  for  Oncorhynchus keta

(Chum salmon, SSNA943-08, 606 bp, position 367) and, while presumed to be the result of

sequencing error, was not excluded from analysis since the intent here is to demonstrate

that such errors are evident and persist in reference DNA sequence libraries.

Findings are presented below (Fig. 8, Fig. 9). A total of 117 specimen VLFs were detected

(between  1  and34  VLFs  for  each  specimen)  across  all  2371  COI  sequences  (58

specimens  displayed  VLFs).  Similarly,  117  positional  VLFs  were  noted  (103  singleton

VLFs, 14 shared VLFs, between 1 and 3 VLFs at each position) across the entire barcode

region.  VLFs  were  identified  at  84  alignment  sites.  Positions  155,  618,  636  and  639

comprised the most VLFs. While singleton VLFs were otherwise uniformly frequent across

the  barcode  region,  they  were  lowest  in  the  middle  (within  the  fifth  decile  and  50

percentile). The distribution of specimen and positional VLFs is shown in Table 8 and Table

9. Computed error rates can be found in Table 10. Error rates were similar in magnitude

across  all  datasets  examined  herein  and  to  that  of  Stoeckle  and  Kerr  (2012) who

calculated a singleton error rate of ca. 8.04 x 10  errors/bp (8.04 x 10  errors/bp x 648 bp/

barcode = ca. 0.05 errors/barcode), as well as Athey (2013) who found ca. 8.54 x 10

errors/bp (ca. 0.06 errors/barcode). These results are strong evidence for high sequence

quality of published and unpublished taxon records mined from GenBank and BOLD.

th
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Table 7. 

Summary of public BOLD projects used in this study.
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VLFs 1 2 3 4 6 34

Specimens 42 10 1 3 1 1

VLFs 1 2 3

Positions 55 25 4

Singleton 7.81 x 10  (0.0509)

Shared 1.56 x 10  (0.0102)

Total 9.37 x 10  (0.0611)

-5

-5

-5

Table 8. 

Specimen VLF distribution for fishes.

Table 9. 

Positional VLF distribution for fishes.

Table 10. 

Positional error rates for fishes. Per barcode error rates are indicated in parentheses.

Figure 8.  

Decile  plot  showing the distribution  of  singleton (blue)  and shared (red)  VLFs across the

barcode segment in fish barcodes.
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Discussion

Stoeckle and Kerr (2012) were the first to address the issue of DNA barcoding errors using

a  frequency  matrix  approach.  Their  analysis  showed  that  singleton  VLFs  occur  more

frequently at the 5’ and 3’ ends of sequence reads, making them more likely to be errors in

sequences. Based on this observation, it stands to reason that trimming full length (ca. 650

bp) barcode alignments by ca. 50 bp (ca. 25 bp on both sequence ends) down to ca. 600

bp should reduce much of the existing VLFs and, thus, also overall error rates. However,

this trimming figure is arbitrary and will likely depend on a number of factors including the

taxonomic  group  under  investigation,  the  choice  of  primers  employed  for  sequence

amplification (e.g. universal, specific or cocktail) and the choice of molecular gene marker.

The 5’ end of sequences is known to be considerably noisier than the 3’ end (Stoeckle and

Kerr  2012),  owing  to  greater  difficulties  during  targeted  amplification  and  sequencing

(Ivanova et al. 2007). Thus,  researchers  should  consider  multiple  different  trimming

thresholds when conducting their own analyses. Barcode length is expected to affect the

number of haplotypes observed for a species, which is evident in fungi, for example (Min

Figure 9.  

Sliding window plot depicting the distribution of singleton (blue) and shared (red) VLFs in fish

barcodes.  A default  window size of  30 nucleotides was selected to  minimise stochasticity

apparent in the data.
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and Hickey 2007). Short sequences that are shared between two species are presumed to

be evolutionarily older, while longer sequences have a more recent origin (Racimo et al.

2015). Shortening sequences may remove important biological information; however, this

strategy would likely not hinder species-level assignment, as various studies have aptly

demonstrated that barcodes as short as 200 bp can still lead to correct taxon identification

of an unknown degraded animal sample with upwards of 90% accuracy (Hajibabaei et al.

2006,  Meusnier  et  al.  2008).  However,  artifacts such as NUMTs/pseudogenes are less

easily detected in short reads (Porter and Hajibabaei 2021). Thus, novel computational and

statistical  approaches are needed to better uncover machine errors and artifacts within

Sanger-derived DNA sequence libraries housed in large genomic repositories.

Since the publication of  Stoeckle  and Kerr  (2012)'s  study,  VLF analysis  has not  been

widely utilised as an alternative method (e.g. compared to PHRED scores in sequence

trace files) to evaluate the quality of DNA sequences available in online libraries, such as

GenBank and BOLD. A brief literature search (as of December 2021) revealed only 20

peer-reviewed publications  that  explicitly  mention  Stoeckle  and  Kerr  (2012)'s  work.  Of

these, only a handful  adopt Stoeckle and Kerr (2012)'s trimming approach to minimise

barcode errors.  For  instance,  Stoeckle  and Thaler  (2014) trimmed full-length  (648 bp)

avian barcodes by 10% (ca. 65 bp) on both the 5’ and 3’ ends (down to 519 bp) to reduce

the overall  contribution of  (singleton) VLFs.  Other studies have followed a similar  path

(Stoeckle and Coffran 2013, Chakraborty  and  Ghosh  2015,  Collins  et  al.  2015, 

Chakraborty et al. 2017, Machado et al. 2018, Sanchez-Velasquez et al. 2021).

The VLF package is a useful tool for assessing errors in DNA sequences; however, the

presence of a single VLF is not always an indication of biological error and so caution must

be exercised when investigating these cases. When VLFs occur, it is advisable to assess

whether they are singletons or shared between multiple specimens/species. The specific

analyses carried out herein suggest that singleton and shared VLFs may occur outside the

narrow 3’ and 5’ windows as seen in Fig. 2, Fig. 3, Fig. 6, Fig. 7, Fig. 8, and Fig. 9. For

example, Fig. 9 indicates that the highest incidence of shared VLFs for fishes occurs in the

70 -80  percentile of the barcode segment, as opposed to the sequence ends. This could

be due to the relatively low sample size of the examined dataset overall (despite a high

number of specimens per species on average) when compared to the much larger birds

dataset, meaning that true biological variation has potentially been misconstrued as PCR/

sequencing error. Further, the figures suggest that shared VLFs are more prevalent within

5’ and 3’ windows rather than outside. Thus, researchers must carefully exercise vigilance

when  trying  to  distinguish  errors  from  actual  haplotype  variation.  If  VLFs  are  shared

between  members  of  the  same  species,  then  examination  of  morphological  traits,

geographic/ecological range and evolutionary history of those specimens sharing a VLF

may be of interest to determine if these VLFs are new biological variants in individuals

separated  from  other  members  of  the  same  species.  When  VLFs  are  detected,  it  is

recommended that the original trace file be examined to determine if an incorrect basecall

is present. This may help curate sequence databases for the further application of the DNA

sequences. If multiple VLFs occur within a single specimen, then this may be an indication

of a NUMT/pseudogene or a chimeric sequence. This explanation seems plausible for M. 

th th
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franciscanus,  whose  record  showed  a  high  degree  of  sequence  noise  (34  VLFs).

Interestingly,  Wong and Hanner (2008) found that this record returned three conflicting

species matches to three distinct genera with sequence similarities below 90% in both the

BOLD ID Engine and BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi; Altschul et al. 1990)

and  showed  a  K2P  minimum  interspecific  distance  of  34.48%  (nearest  neighbour:

EMRKT013-07,  Elagatis bipinnulata (Rainbow  runner))  using  the  DNA  Barcode  Gap

Analysis  tool  within  the  BOLD  Workbench,  suggesting  that  VLFs  may  indeed  pose

significant obstacles for specimen discrimination, contrary to previous expectations. If no

ambiguous basecalls are detected, VLFs may be the result of biological variants.

Note that this method is only useful with large datasets of sequences since the default cut-

off frequency for VLF designation is p = 0.001. Therefore, a dataset with at least 1,000

sequences is required, but even larger datasets are suggested. Having as much haplotype

variation as possible for a given taxon is ideal; however, the datasets should not be so

deeply divergent that many specimens are expected to have vastly different sequences

from  other  specimens  within  the  same  dataset.  As  well,  the  datasets  should  contain

multiple members from each species, to ensure adequate representation of singleton and

shared VLFs.  It  is  suggested to use 5-10 individuals per species,  if  possible,  which is

typical for most barcoding initiatives conducted to date (Phillips et al. 2015, Phillips et al.

2019,  Phillips  et  al.  2020,  Phillips  et  al.  2022),  but  smaller  numbers  (e.g.  1  or  2

sequences), which may arise in the case of rare taxa, restricted geographic sampling or

project  costs/funding,  may  also  be  acceptable.  In  these  scenarios,  caution  must  be

exercised when interpreting results as findings will likely be biased at low sample sizes. In

contrast,  Phillips et al.  (2015) found that between 150 and5400 individuals per species

must be collected to uncover all estimated haplotype variation for species of Actinopterygii

using a crude sampling model, based on uniformity of species’ haplotypes. That approach

served as a canvas from which to develop more sophisticated methods. To this end, novel

computational  tools,  such  as  HACSim should  be  employed  to  assess  likely  required

specimen sample sizes for well-inventoried species of interest. This improved method over

that of Phillips et al.  (2015) makes use of species’ haplotype frequency distributions to

iteratively propose improving estimates of sampling sufficiency, based on an initial guess

and provided haplotype diversity recovery thresholds, along with saturation levels observed

in  haplotype  accumulation  curves.  For  instance,  using  a  non-parametric  stochastic

statistical resampling scheme, HACSim predicts that sample sizes of 414, 604 and 803

individuals for scalloped hammerhead shark (Sphyrna lewini), lake whitefish (Coregonus 

clupeaformis) and deer tick (Ixodes scapularis), respectively, based on initial estimates of

171, 235 and 349 specimens represented in DNA sequence alignments, are likely required

to capture at least 95% of 5’-COI haplotype variation observed for these species. Having

sufficient sample sizes allowing broad representation of real taxon-level genetic diversity is

critical for enabling reliable detection of taxon barcode gaps with high statistical power and

confidence when they actually exist (Meyer and Paulay 2005, Phillips et al. 2022). VLF

analysis appears to be a promising avenue to explore in this regard.

It is important to consider the ways in which VLF assessment may be implemented into the

BOLD  system,  as  biological  variants  should  not  be  tagged  as  sequence  errors.  An
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interesting, but noteworthy connection exists between the occurrence of sequencing errors

within barcode records and the Barcode Index Number (BIN) framework (Ratnasingham

and Hebert 2013). As specimens assigned to operational taxonomic units (OTUs) closely

mirror  actual  species,  the  VLF R  package  can  be  directly  utilised  to  detect  artificial

biological  variants  that  may  be  missed  by  other  assessments.  Four  levels  of  BIN

assignment are possible: MATCH, SPLIT, MERGE or MIXTURE. Only BIN MATCHES are

concordant with current Linnean taxonomy. A BIN SPLIT, in which sequences fall into two

or  more  OTUs  (i.e.  erroneous  lumping  of  named  species),  indicates  potential  cryptic

species diversity; whereas, BIN MERGES and MIXTURES suggest premature splitting of

named species or cases of species synonymy and specimen misidentification or species

hybridisation, respectively (Ratnasingham and Hebert 2013, Serrao et al. 2014). Although

BINs are inherently dynamic, a stand-alone BIN (i.e. a BIN MATCH) containing only one

specimen may indicate that the sequence is erroneous; however, it may also indicate a

lack of reference barcodes. Thus, VLF analysis can be integrated with the BIN framework

to  identify  poor  quality  sequences  containing  VLFs,  standalone  BINs  with  VLFs  or  a

singleton VLF found within a large BIN.

VLF analysis is a useful tool for evaluating errors in sequence records. The VLF package

allows users to quickly and easily assess their own barcode records without the need for

manual  configuration  or  the  use  of  Excel.  While  we  tested  the  VLF R  package  on  a

previously-studied avian barcode dataset, as well as investigated the distribution of VLF

sequencing  errors  in  DNA  barcodes  from  a  variety  of  seafood  species  to  probe  the

incidence of product mislabelling, we suggest the programme be used further to assess

sequence errors in other large BARCODE and non-BARCODE libraries within GenBank

and BOLD, such as Lepidoptera. Inspection of species-specific sliding window plots could

indicate highly-variable nucleotide sequence regions subject to high mutation rates (such

as that indicated by the sharp peaks in Fig. 7) and, thus, strong levels of selection (e.g.

selective  sweeps)  acting  on  species  populations.  Definitive  evidence  of  the  impact  of

NUMTs/pseudogenes  could  be  easily  checked  through  either  the  computation  of  GC

content, inspection of open reading frame (ORF) length or the calculation of per site non-

synonymous to synonymous substitution ratios (dN/dS; Porter and Hajibabaei 2021). Both

GC content and ORF length have been found to be lower/shorter in NUMTs/pseudogenes

when compared to true haplotype variants. dN/dS fractions close to one are indicative of

the presence of non-functional gene copies; conversely, ratios much less than one are

expected for functional genes since substitutions primarily occur within non-synonymous

sites, thus preserving overall  amino acid composition and structure, which is crucial for

functional genes like COI (Pentinsaari et al. 2016). Thus, positional VLF error rates are

expected  to  be  considerably  different  from error  rates  observed  for  entire  sequences.

Findings for  birds like Canada goose may aid in explaining interesting population-level

phylogeographic  patterns  consistent  with  colonisation  of  refugia  during  Pleistocene

glaciations, such as founder events, bottlenecks, migrations and admixture within this and

other groups (Scribner et al. 2003). Finally, a worthwhile and timely next step would be to

assess  errors  in  COVID-19  nucleotide  sequence data  as  was  done  by  Dunn  (2021) 

using VLF.
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Conclusion

In this paper,  we present a new R package, VLF,  along with a simple R workflow, for

quality assessment and curation of large reference sequence libraries through detection of

sequence  artifacts,  such  as  machine  errors,  indels  and  NUMTs/pseudogenes,

inconsistencies which have been observed in diverse COI sequence datasets for crayfish,

grasshoppers, marine Metazoa and insects for instance (Song et al. 2008, Buhay 2009, 

Hebert et al. 2022, Schultz and Hebert 2022). Similar computational and statistical tools, in

the  form  of  MATLAB  packages,  R  packages,  Python  packages  and  methodological

pipelines,  used  to  assess  anomalies  in  DNA  (meta)barcodes,  have  been  released.

Examples include divisive hierarchical clustering: DADA (Rosen et al. 2012) and DADA2 (

Callahan et al. 2016); artificial neural networks: (Ma et al. 2018); Profile Hidden Markov

Models: coil (Nugent et al. 2020), debar (Nugent et al. 2021 and Porter and Hajibabaei

2021); distribution sample quantiles: MACER (Young et al. 2021); and Shannon entropy:

SequenceBouncer (Dunn 2021), A2G2 (Hleap et al. 2020), DnoisE (Antich et al. 2022 and

Turon et al. 2020). These methods and programmes are beginning to see widespread use

within the biodiversity and regulatory science communities. VLF brings several advantages

over  Stoeckle  and Kerr  (2012)'s  method:  our  approach is  simpler  to  implement,  much

faster  to run and less prone to human error.  Importantly,  we stress the need to clean

generated taxon sequence datasets as much as possible to mitigate the contribution of

PCR/sequencing errors to specimen identification, particularly to the level of species and

suggest steps to take in this regard. We have shown here various ways in which the VLF R

package can be used to address interesting questions in evolutionary biology, molecular

genetics, population genetics and phylogeography. As sequence cleaning forms a major

part of the DNA barcoding effort, the availability of VLF as a first line of defence, should

greatly facilitate integration of sequence error analysis and quality checking into a wide

range of novel bioinformatics workflows. In fact, VLF analysis, in the form of alignment

trimming at the 5’ and 3’ ends, has already begun to be incorporated into said pipelines,

such  as  that  of  Loeza-Quintana  and  Adamowicz  (2018) for  the  iterative  calibration  of

Echinoderm molecular clocks, based on accurate timing of geologic events and that of May

et  al.  (2020) to  assess  the  effect  of  various  ecological  and  environmental  traits  on

molecular evolutionary rates in ray-finned fishes. Aside from purely biological applications

of VLF analysis, we foresee widespread use of VLF in regulatory settings to ensure high

accuracy of specimen identifications at large.

Data availability

VLF version 1.1 is available for download through the Comprehensive R Archive Network

(CRAN) directly within R using the successive commands:

>install.packages(“VLF”)

>library(VLF).
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The reference manual for VLF, which includes built-in functions with explanations for their

proper use, can be accessed by typing:

>?VLF.

The birds nucleotide and amino acid dataset used by Stoeckle and Kerr (2012) can be

accessed by typing:

>data(birds)

>data(birds_aminoAcids)

Package  source  code  can  be  accessed  by  typing  the  name  of  the  desired  function.

Alternatively, code is accessible via GitHub at https://github.com/jphill01/VLF.R.

Raw (unaligned)  5’-COI  sequences  used  in  the  forensic  VLF  analysis  can  be  directly

downloaded using the Project and Dataset Search field within the BOLD Workbench.
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