Downscaling algorithm proof

³⁸² Reaching ALS values with the α correction coefficient

- Here we show how the α correction coefficient, applied to all tree diameters of a field plot makes it possible
- to reach the total BA (BA_{ALS}) and the BA proportion of broadleaf trees $(Prop_{BC_{ALS}})$ of the cell to which
- 385 the plot is associated.
- Using the α correction coefficient, the basal area of broadleaf trees (BA_D) of one cell is given by:

$$BA_D = \frac{\pi}{40000} \sum_{Dec. \ trees} \omega.(\alpha.dbh_F)^2$$

According to equation 8 defining ω ,

$$BA_D = \frac{\pi}{40000} \sum_{Dec. \ trees} \frac{40000}{\pi} \times \frac{ba_{tree_{ALS,F}}}{(\alpha.dbh_F)^2} . (\alpha.dbh_F)^2$$

$$BA_D = \sum_{Dec. \ trees} ba_{tree_{ALS,F}}$$

According to equation 9 defining $ba_{tree_{ALS,F}}$,

$$BA_D = \sum_{Dec. \ trees} BA_{ALS} \times Prop_{BC_{ALS}} \times Prop_{Sp_F} \times Prop_{tree_F}$$

$$BA_D = BA_{ALS} \times Prop_{BC_{ALS}} \times \sum_{Dec. \ trees} Prop_{Sp_F} \times Prop_{tree_F}$$

As $Prop_{tree_F}$ is the proportion of the trees within Sp and $Prop_{Sp_F}$ is the proportion of species within deciduous species, this sum equals 1. Therefore

$$BA_D = BA_{ALS} \times Prop_{BC_{ALS}}$$

This shows that the BA of broadleaf trees calculated from the trees dbh corrected with the α coefficient equals the broadleaf BA provided by the ALS mapping. The same rational applies for coniferous trees. Thus, the total basal area calculated from individual trees after correction with the α coefficient equals the total BA given by the ALS mapping. This also shows that our downscaling algorithm keeps the broadleafconiferous proportion provided by ALS mapping.

³⁹² Maintaining Dg ratios between species

- ³⁹³ Here we show how our algorithm maintains the Dg ratios observed on the field plots between the different
- 394 species.
- ³⁹⁵ The Dg of a species in a cell is calculated as

$$Dg_{Sp}^{2} = \frac{40000.BA_{Sp}}{\pi.\omega_{Sp}}$$
(12)

where Dg_{Sp} is the mean quadratic diameter of the species, BA_{Sp} its basal area, and ω_{Sp} its total stem number, which is given by

$$\omega_{Sp} = \sum_{Sp \ trees} \omega$$

According to equation 8 defining ω ,

$$\omega_{Sp} = \sum_{Sp \ trees} \frac{40000}{\pi} \times \frac{ba_{tree_{ALS,F}}}{(\alpha.dbh_F)^2}$$

According to equation 9 defining $ba_{tree_{ALS,F}}$,

$$\omega_{Sp} = \frac{40000}{\pi} \times \sum_{Sp \ trees} \frac{BA_{ALS} \times Prop_{BC_{ALS}} \times Prop_{Sp_F} \times Prop_{tree_F}}{(\alpha.dbh_F)^2}$$

$$\omega_{Sp} = \frac{1}{\alpha^2} \times \frac{40000}{\pi} \times BA_{ALS} \times Prop_{BC_{ALS}} \times Prop_{Sp_F} \times \sum_{Sp \ trees} \frac{Prop_{tree_F}}{dbh_F^2}$$

$$\omega_{Sp} = \frac{1}{\alpha^2} \times \frac{40000}{\pi} \times BA_{Sp} \times \sum_{Sp \ trees} \frac{Prop_{tree_F}}{dbh_F^2}$$

³⁹⁸ Thus, using equation 12, we get

$$Dg_{Sp}^2 = \alpha^2 \times \frac{1}{\sum_{Sp \ trees} \frac{Prop_{tree_F}}{dbh_F^2}}$$
(13)

where $Prop_{tree_F}$ is the BA proportion of trees in species Sp in the field plot given by:

$$Prop_{tree_F} = \frac{\pi}{40000} \frac{n_{tree_F} . dbh_F^2}{BA_{Sp_F}}$$

where n_{tree} is the number of trees in the field data, and BA_{Sp_F} is the basal area of species Sp in the field data. Hence

$$\sum_{Sp \ trees} \frac{Prop_{tree_F}}{dbh_F^2} = \sum_{Sp \ trees} \frac{\pi}{40000} \frac{n_{tree_F} . dbh_F^2}{BA_{Sp_F} . dbh_F^2}$$
$$\sum_{Sp \ trees} \frac{Prop_{tree_F}}{dbh_F^2} = \frac{\pi}{40000} \times \frac{1}{BA_{Sp_F}} \times \sum_{Sp \ trees} n_{tree_F}$$
$$\sum_{Sp \ trees} \frac{Prop_{tree_F}}{dbh_F^2} = \frac{\pi}{40000} \times \frac{1}{BA_{Sp_F}} \times N_{Sp_F}$$

 $_{\rm 402}$ $\,$ where N_{Sp_F} is the number of stems of species Sp in the field plot. Therefore

$$\sum_{Sp \ trees} \frac{Prop_{tree}}{dbh_F^2} = \frac{1}{Dg_{Sp_F}^2}$$

⁴⁰³ Finally, using equation 13, we get

$$Dg_{Sp}^2 = \alpha^2 \times Dg_{Sp_F}^2 \tag{14}$$

404 and then

$$Dg_{Sp} = \alpha \times Dg_{SpF} \tag{15}$$

As the α coefficient is the same for all trees and all species, the ratio of Dg_{Sp} of two species is equal to

their ratio of $\alpha \times Dg_{Sp_F}$. Thus our algorithm maintains the Dg ratios observed on the field plots between

407 the different species.