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Abstract 
The Berliner Wasserbetriebe (BWB) are operating more than 650 vertical filter wells supplying the 

limits. In order to keep performance and water quality as high as possible, these wells require regular 
monitoring and maintenance. The main reason for inefficient well performance is so-called well 
ageing caused by deposit formation due to multiply correlated biological, chemical and physical 
clogging processes in and around the well that decrease the yield for a given drawdown. In order to 
better understand the key drivers for well ageing and to project the loss of capacity for a given time 
ahead, machine learning (ML) approaches were applied to selected data from routine well 
monitoring. The statistical programming language R was used for automated data processing, 
feature selection and assessment of the importance of the selected variables, and finally for model 
training and prediction of future loss of well capacity. Four variables were identified to be highly 
significant predictor variables. Multivariate linear regression, logistic regression, decision tree, 
random forest and gradient boosting were applied, the latter performing best with a sensitivity of 
94% and precision of 88%. The approach is now transferred into a well condition index to be 
included in a well management and reporting tool box developed in the frame of the H2020 project 
digital-water.city.  
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INTRODUCTION 
Drinking water production from groundwater is done with horizontal or vertical filter wells. The 
lifetime of such drinking water wells typically ranges between 20 and 50 years. Statistical evaluation 
of well data from drinking water wells in Berlin, Germany, showed for example an average well age 
of 34 years (Schwarzmüller et al., 2010). The capacity of wells, that is the yield for a given drawdown, 
however, decreases with time of operation. This effect is called well ageing and is due to the formation 
of deposits of biochemical origin (e.g. iron oxides formed by iron bacteria; Figure 1) or particulate 
matter (e.g. clogging with silt or sand).  
 

 
Figure 1: left: clogged well, ochre deposits inside the screen; right: clogged pump,  

ochre deposits at the pump intake, both ©BWB 
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Maintenance, such as cleaning the pump and filter screen as well as gravel pack, prolongs the 
functioning by removing these deposits. To identify and prioritize maintenance needs, well condition 
is monitored during operation in regular intervals or on demand and comprises parameters such as 
flow rate, water levels, water quality, power consumption, etc. These data are stored in a well 
management database together with static information such as well design and construction, 
geological information, and analytical data from raw water samples. Goal was to combine automated 
data processing of routine monitoring data and well characteristics, site properties and operational 
data with machine-learning (ML) approaches to identify well ageing and decreasing well capacity 
and prioritize maintenance or reconstruction needs. The application was developed as one of 15 
digital solutions implemented in the H2020 project digital-water.city (DWC) aiming at leveraging 
the potential of data for boosting water management in cities.  
 
METHODOLOGY 
The ML approach considered 6.308 data sets of a total of 994 currently operated and abandoned wells 
operated by the Berliner Wasserbetriebe (BWB) since the 1950s. Data were obtained from a db2 
database with SQL scripts and transferred to csv files. The statistical programming language R (R 
Core Team, 2021) was used to define the core algorithms to (i) pre-process the well data turning them 
into a data structure providing the explanatory variables to the ML model, (ii) assess the importance 
of the variables and select model features, and (iii) train the ML model and predict future loss of well 
capacity based on selected well characteristics. 36 features (26 numeric, 10 categorical) were initially 
tested describing well characteristics (e.g. well age, construction material, screen diameter), site 
properties (well location, aquifer coverage, groundwater level variation), operational data (abstraction 
volumes, flow rates), past maintenance events (number of rehabilitation events, time since last 
rehabilitation) and raw water quality (e.g. total iron, dissolved oxygen, total phosphate).  
 
Target variable was the prediction of a numeric value for the specific capacity (that is the quotient of 
flow rate and drawdown) relative to the capacity at the time of initial operation (Qs_rel; Figure 2).  
 

 
Figure 2: Typical Qs-curve (ageing curve) with decreasing specific  

capacity with time in operation (modified after DVGW, 2007) 
 
RESULTS AND DISCUSSIONS 
Based on the intercorrelation and variable importance tests, six of 36 variables were discarded as 
highly intercorrelated, another four were not contributing to the model accuracy. Of the remaining 
features, top five predictor variables were extracted from the random forest resulting in (i) well age, 
(ii) time since last rehabilitation, (iii) location, (iv) number of previous well rehabilitation events and 

ded 
in order to make the solution transferable to other well settings.  
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Training the model and applying it to the test data yielded a root mean square error (RMSE) of 15% 
and a coefficient of determination of r² = 0.78. The classification accuracy for specific capacity values 
< 80% was 94% (recall), with 12% wrong warnings (1 precision) and 20% false positives (1 
specificity). The ML approach was thus rated well- applicable to forecast well ageing based on well 
and site-specific data (Figure 3 right). The trained model was subsequently used to predict the ageing 
curves for each single well of the test data set. Here too, the model showed a good fit to pumping test 
data from before and after past maintenance.

         
Figure 3: left: Results of random forest variable importance ranking; right: Model performance of gradient

boosting approach with more than 78% of the variance in the observations explained by the model

CONCLUSIONS
Extended data collection and processing in combination with ML approaches provides data-driven 
analysis and identification of key variables related to the specific capacity development. One of the 
main advantages of the ML approach is that many variables could be included in the analyses and 
subsequently be narrowed down to a set of key variables, while no direct correlation was observed 
for single variables in previous research. 

Gradient boosting showed a highly satisfying sensitivity and accuracy in the prediction and can assist 
well operators in planning well rehabilitations and renewals. Refinement of the solution within the 
DWC project will include further analyses such as clustering the ageing curves to narrow down 
preferred site conditions and factors that accelerate well aging. Data availability and remaining data 
gaps and/or pre-aggregated data showed to be a barrier and remain as crucial steps in proactive well 
maintenance. 
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