
Integration of Network
Performance Monitoring Data
at FTS3

July-August 2013

Author:
Rocío Rama Ballesteros

Supervisor(s):
Michail Salichos
Alejandro Álvarez

CERN openlab Summer Student Report 2013

CERN openlab Summer Student Report 2013

Project Specification
The main goal of this project is to optimize the tcp buffer size to make more efficient the file
transfers with FTS3. The library that has been implemented provides a way to calculate this
providing a source and a destination. This way, whoever is transferring the files does not have to
know anything about the logic of how calculate it.

In this project, I have done a library to make easy the access to PerfSONAR’s information
between two hosts, calculating the optimized tcp buffer size and thereby to making more efficient
the transfer of files.

As part of my work, I have also tested the library to check if it actually improved the transfer
throughput with tools as GridFTP and Globus.

Acknowledgements
I would like to express my gratitude to my supervisor Michail Salichos, who was solving always
my questions, although he was on holidays. Thanks also to Michal Kamil Simon, and special
thanks to Alejandro Álvarez, who was taking care of my work during my period as OpenLab
Summer Student like he was my supervisor as well. It was a pleasure working with the FTS team.

And of course, thanks to the entire section, because they were always helping me, during almost 2
months, when I needed it and they had always time to listen my presentations or to take a coffee
and talk not just about work.

I hope one day they see the results of using this library.

CERN openlab Summer Student Report 2013

Abstract

The File Transfer Service (FTS) manages the distribution of data coming mainly from the Large
Hadron Collider (LHC) across the global computing grid. Recent developments in the monitoring
of the infrastructure offer opportunities for optimising the efficiency of transfers based on an
improved knowledge of network characteristics and state. The project is centred on integrating
appropriate network monitoring data into FTS’s transfer scheduling and parameterization.

CERN openlab Summer Student Report 2013

Contents

1 Introduction .. 5

2 Optimizing TCP buffer size ... 5

2.1 FTS .. 5

2.2 PerfSONAR .. 6

2.3 How optimize the TCP buffer size .. 6

3 Implementation .. 7

4 Test .. 10

5 Conclusions and future work .. 12

6 References ... 13

CERN openlab Summer Student Report 2013

1 Introduction
Recent developments in the monitoring of the infrastructure offer opportunities for optimizing the
efficiency of transfers based on improved knowledge of network characteristics and state.

Nowadays, TCP is the main transfer protocol used, also in FTS3, and because of this, we need it
to work well.

The maximum achievable throughput for a single TCP connection is determined by different
factors. One trivial limitation is the maximum bandwidth of the slowest link in the path. But there
are also other, less obvious limits for TCP throughput.

One of the causes of poor TCP performance is incorrect configuration parameters of the host TCP
implementation on the data transfer system.

The appropriate configuration of TCP on data transfer nodes for very long round trip (RTT) (high
latency) paths can be accomplished by competent system administrators with the help of public
knowledge base sites.

It is critical to use the optimal TCP send and receive socket buffer sizes for the RTT of the path
that the applications see end-to-end. The default maximum operative system TCP buffer sizes are
too small for today’s high speed networks. Until around 8 years ago, default TCP send/receive
buffers were typically 64 KB, however the buffer size needed to fill. [1]

2 Optimizing TCP buffer size
In this project we want to integrate appropriate network monitoring data into FTS’s transfer
scheduling and parameterization. Giving an optimized tcp buffer size, in order to make more
efficient the transfers files, is one of the goals.

Before getting into details, it is necessary to give an introduction about the project’s ecosystem.

2.1 FTS

FTS (File Transfer Service) is a transfer job scheduler for scientific experiments producing,
analyzing and storing high amount of data, used mainly in CERN/LHC experiments. It is the
services responsible for distributing the majority of LHC data across the WLCG infrastructure,
transferring 25PB in 2012.

The users have the following properties:

- Produce and analyze lots of data, in petabyte scale.
- Replicate data between different sites.
- Data storage a network infrastructure is heterogeneous.[2]

5 | P a g e

CERN openlab Summer Student Report 2013

2.2 PerfSONAR

PerfSONAR (Performance Service Oriented Network monitoring Architecture) is an
infrastructure for network performance monitoring, making it easier to solve end-to-end
performance problems on paths crossing several networks. It contains a set of services delivering
performance measurements in a federated environment. These services act as an intermediate
layer, between the performance measurement tools and the diagnostic or visualization
applications. This layer is aimed at making and exchanging performance measurements between
networks, using well-defined protocols. [3]

PerfSONAR makes possible to automate monitoring data exchange between networks, to
simplify troubleshooting performance problems occurring between sites connected through
several networks. It can collect both passive and active network measures, convert these to
standard format and publish the data where it is publically accessible. Thanks to this, now is
possible gather the information that is necessary to calculate the optimize tcp buffer size.

In addition, it is open, and any tool can take advantage of it.

2.3 How optimize the TCP buffer size

If there is no network congestion or packet loss, network throughput is directly related to TCP
buffer size and the network latency. Network latency is the amount of time for a packet to
traverse the network. [4]

Most networking experts agree that the optimal tcp buffer size is twice the bandwidth*delay
product of the link. The ping program will give us the round trip time (RTT) for the network link,
which is twice the delay, so the formula simplifies to:

𝐵𝑢𝑓𝑓𝑒𝑟𝑆𝑖𝑧𝑒 (𝐾𝐵) =
𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ(𝑀𝑏𝑠) ∗ 𝑅𝑇𝑇(𝑚𝑠)

8

In PerfSonar, we have the information about the round trip time. Therefore we can use this
formula instead of the previous one.

Example:

If the round trip time is 50ms, and the end-to-end network consists of all 2G or 20G Ethernet, the
TCP buffers should be:

0.05 sec * (2Gbit/8) = 12.5 Mbytes

If you know the TCP window size and the round trip latency you can calculate the maximum
possible throughput of a data transfer between two hosts, regardless of how much bandwidth you
have.

6 | P a g e

CERN openlab Summer Student Report 2013

3 Implementation
The library has been implemented following the next ideas:

- Need to access to PerfSONAR and parse the json’s file that is obtained.
- Get the information from the json’s file that is needed to calculate the optimize tcp buffer

size.
- Consider the possibility to add new source of information that can impact the calculation of

the tcp buffer size.

The json’s format has the following structure:

To calculate the tcp buffer size, it is important check the summary. If it is:
“PS_CHECK_THROUGHPUT OK", we need to save the information. Other messages like
“PS_CHECK_THROUGHPUT WARNING”, we do not take into consideration because we just
need the success throughput between the two hosts.

PerfSONAR offers us a lot of information about the connection between two hosts: summary, id,
monitor, source, status, lastCheckTime, destination and parameters (throughput average,
maximum, minimum and sigma), but the information that we need to calculate depends on the
throughput and the source and destination.

7 | P a g e

CERN openlab Summer Student Report 2013

Additionally, is interesting to distinguish between “pull files” and “push files”:

- Pull, is when the destination gets data from the source.
- Push, is when the source sends data to the destination.

In the json’s file, if the monitor and the source are the same, is pushing data; if the monitor and
the source are different, is pulling data.

Example pushing data:

 "monitor":"psmsu02.aglt2.org",
 "source": "lhcmon.bnl.gov",

Example pulling data:

 "monitor":"lhcmon.bnl.gov",
 "source": "lhcmon.bnl.gov",

The next diagram shows an overview of the library.

- ParserInfoPerfSonar and PerfSonarJson are classes implemented to parse the json’s file that is
retrieved from PerfSONAR.

The information is read using the library boost, and is stored in a structure so we can later access
to this data. An example is:

boost::property_tree::read_json(fileToRead, pt);
BOOST_FOREACH(boost::property_tree::ptree::value_type &v, pt.get_child("root")){
///…….}

Moreover, functions to set and to get the data, as: average throughput value, or maximum
throughput value, and so on, are available.

In the class ParserInfoPerfSonar is possible to get the pushing value or the pulling value, the user
will decide what is better for the buffer.

- INetworkLink contains the information of the json’s file, and store the data needed to calculate
the tcp buffer size.

Also, it acts like an interface, letting to add in a future, other classes that can affect the calculation
of the tcp buffer size.

To get all the information that PerfSONAR provides us, is enough to know the source and the
destination, calling the function getInfo(source, destination).

getInfo("lhcmon.bnl.gov", "psmsu02.aglt2.org");

- TcpOptimizer is the class that the main program has to call to calculate the optimized tcp buffer
size. Also, it follows a singleton pattern design. In this way, it is registering the different links,
and later can calculate the total optimize tcp buffer size.

8 | P a g e

CERN openlab Summer Student Report 2013

An example about how to use the functions is:

TcpOptimizer* tcpBuffer; //Create the variable
tcpBuffer = TcpOptimizer::getInstance(); //Get the instance (is a singleton)
ParserInfoPerfSonar *fileData = new ParserInfoPerfSonar(); //Create the structure to
 // store the data

struct INetworkLink::NetworkLinkInfo info = fileData->getInfo("lhcmon.bnl.gov",
"psmsu02.aglt2.org"); //Get the data from Perfsonar between two points
tcpBuffer->registerNetInfo(fileData); //Register the information
tcpBuffer->optimizeTCP(false); //Calculate the tcp buffer size. False if is pulling,
 //True if is pushing

9 | P a g e

CERN openlab Summer Student Report 2013

To implement the library it has been considered a singleton pattern to ensure that one and only
one object is instantiate for the main class and also, to give us a global point of access.

Other necessary libraries:

- Curl

- Boost: is a set of libraries for the C++ programming language that provide support for tasks and
structures such as linear algebra, pseudorandom number generation, multithreading, image
processing, regular expressions, and unit testing. It is used to parse the json’s file and save the
data in a specific structure.

4 Test
The library is not still integrated in FTS3, thus to test the library and check if all the calculations
improve the throughput and following the transfer files, we have been testing it using Globus
tools and GridFTP protocol (that it is what FTS3 itself uses).

Therefore, the round trip time (RTT) was calculated doing a ping from the source to the
destination.

We have been doing different tests, transferring several files concurrently (3, 4, 5, 6, 8 and 10
files).

We have created a file, bulk.txt, with the same source and different destinations:

This way, we can have a better overview about how affects the optimized TCP buffer size in the
transfer of files.

The tests have been done at the same time, first with the default OS tcp buffer size, using the next
command line:

"globus-url-copy -nodcau -p 10 -fast -vb -concurrency 10 -f ./bulk.txt"

And just after get the throughput, we tuned the parameters, with the optimized tcp buffer size,
using the next command line, to get the throughput:

"globus-url-copy -nodcau -p 10 -fast -vb -concurrency 10 -tcp-bs tcpsize(bytes) -f ./bulk.txt"

10 | P a g e

CERN openlab Summer Student Report 2013

The graphics show the throughput obtained. The blue color means before optimization, and the
orange color means after optimization. Higher throughput means better results (vertical
axis). The horizontal axis means the different tests done at different times.

RTT
(ms)

Before optimization
(MB)

After optimization
(MB)

TCP_buffer
(bytes)

12 4.76 6.8 7486832

11.9 3.82 7.04 5958270

14 4.1 7.75 7523532

13.6 3.77 8.62 6720323

12.6 2.81 6.49 4640735

11.9 3.72 6.85 5802295

13.3 1.79 2.18 3120431

14.6 2.58 3.52 4937220

13.1 1.81 1.93 3107848

12.7 2.89 3.65 4810735

RTT
(ms)

Before optimization
(MB)

After optimization
(MB)

TCP_buffer
(bytes)

12 4.72 4.46 7362051

13.6 5.08 4.2 9055502

11.9 4.2 9.71 6550978

12.6 4.1 6.49 6771179

11.9 3.15 3.66 4913233

12 3.1 5.26 6338641

12.3 5.92 7.19 4671406

12.7 2.61 2.56 4344643

13.5 3.51 5.59 6210846

12 2.48 4.18 3900702

11 | P a g e

CERN openlab Summer Student Report 2013

We can see that much of the times we get better throughput. We can even double the throughput,
if we optimize the tcp buffer size.

Also, other times, the difference between before and after the optimization is not so clear. That is
because it depends on the network state: available bandwidth, people using the network...

5 Conclusions and future work
We achieve a better throughput in most of the tests done. That means that we get a more efficient
transfer.

Still it is needed to integrate the library in FTS3 and evaluate the throughput and the transfer, and
this will be the next step in this project. But seeing the results from the initial tests, we are going
in the good way.

Moreover, perfSONAR information can be used in a future to select replicas.

That means that, for example, we want to copy a file, with multiples copies in the world, to place
B. If we know the network performance between site B and the
copies of the file, we can choose the best source.

12 | P a g e

CERN openlab Summer Student Report 2013

6 References
[1] Enabling high throughput in widely distributed data management and analysis systems:
Lessons from the LHC.

[2] FTS3, https://svnweb.cern.ch/trac/fts3

[3] http://www.perfsonar.net/

[4] LAMP article: TCP Tuning and Network Troubleshooting

[5] “High Performance Bulk Data Transfer”- Brian Tierney and Joe Metger, ESnet
http://fasterdata.es.net/assets/fasterdata/JT-201010.pdf

[6] https://github.com/carioka88/fts3-perfsonar

13 | P a g e

http://www.perfsonar.net/
http://onlamp.com/pub/a/onlamp/2005/11/17/tcp_tuning.html
http://fasterdata.es.net/assets/fasterdata/JT-201010.pdf
https://github.com/carioka88/fts3-perfsonar

	Integration of Network Performance Monitoring Data at FTS3
	July-August 2013
	Author:
	Rocío Rama Ballesteros
	Supervisor(s):
	Michail Salichos
	Alejandro Álvarez
	CERN openlab Summer Student Report 2013

	1 Introduction
	2 Optimizing TCP buffer size
	2.1 FTS
	2.2 PerfSONAR
	2.3 How optimize the TCP buffer size

	3 Implementation
	4 Test
	5 Conclusions and future work
	6 References

