
Installation	and	Usage	instructions	for	the	
ImageJ	plugin	calciumImaging	
	
Fatemeh	Navaee,	Braschler	Thomas,	November	2019	
	
T.	Braschler	wrote	the	code,	F.	Navee	provided	the	data.	

Content
	
Content	..	1	
Installation	...	1	
Prerequisites	..	1	
Download	..	1	
Plugin	installation	..	2	

Usage	..	3	
Preparation	...	3	
Temporal	peak	detection	...	4	
Plugin	options	...	4	
Plugin	output	..	5	

Evaluation	of	local	frequency	...	5	
Local	phase	...	6	

Concept,	Credits	and	Bibliography	..	9	
	

Installation
	

Prerequisites
	
Usage	of	this	plugin	requires	a	functional	ImageJ[1]	or	Fiji[2]	installation.	It	was	tested	
on	ImageJ	version	2.0.0-rc-44/1.50g	as	part	of	a	Fiji	installation	on	MacOSX	but	should	
hopefully	also	work	on	a	variety	of	other	version	and	operating	systems.	While	we	hope	
that	this	plugin	and	its	source	code	elements	will	be	useful,	we	can	however	no	
guarantee	about	functionality	for	any	particular	purpose	or	on	any	particular	operation	
system	(see	License	section).	

Download
	

	
	
Figure	1.	Download	calciumImaging_.jar	from	https://github.com/tbgitoo/calciumImaging	

	
The	first	step	in	installation	of	the	calciumImaging	plugin	is	downloading	the	full	.jar	file	
https://github.com/tbgitoo/calciumImaging.	The	“calciumImaging_.jar”	file	is	the	
relevant	binary	(Figure	1A),	it	can	be	downloaded	by	clicking	on	it	on	github	and	then	
downloading	it	on	the	dedicated	page	(Figure	1B).	
	
Alternatively,	a	direct	link	is:	
		
	
https://github.com/tbgitoo/calciumImaging/blob/master/calciumImaging_.jar	
	

Plugin installation
	
After	downloading,	the	file	“calciumImaging_.jar”	needs	to	placed	in	the	plugins	folder	of	
the	ImageJ	(or	Fiji)	installation.	The	location	of	the	ImageJ	(or	Fiji)	installation	varies	
depending	on	the	options	chosen	during	installation.	On	MacOSX,	it	can	typically	be	
found	in	/Applications/Fiji	or	/Applications/ImageJ.	On	Windows,	a	typical	install	
location	would	be	C:\\Program	Files(x86)\ImageJ	respectively	Fiji,	or	also	C:\\Program	
Files\ImageJ	respectively	Fiji	for	64-bit	installations	or	on	systems	before	the	
introduction	of	separate	program	file	folders	for	32-bit	and	64-bit	programs.	
	

	
Figure	2.	Installation	in	the	plugin	folder	(here,	of	Fiji)	

In	case	Fiji	or	ImageJ	was	already	running	during	the	installation,	they	need	to	be	
restarted	after	placing	the	“calciumImaging_.jar”	file	in	the	plugins	folder	of	your	
ImageJ/Fiji	installation.	This	is	because	the	plugins	are	loaded	into	memory	during	
startup	of	ImageJ/Fiji.	

Usage

Preparation
	

	
Figure	3.	Preparation	for	peak	analysis.	A)	RGB	raw	video,	loaded	in	Fiji.	B)	Green	channel	as	grey	scale	image,	
downsampled,	and	with	vignetting	and	photobleaching	corrections	

	
The	calciumImaging	plugin	needs	a	greyscale,	8-bit	z-stack	in	ImageJ	or	Fiji	to	work	
properly.	Therefore,	RGB	videos	need	to	be	processed	before	to	satisfy	this	requirement.	
	
In	many	cases,	downsampling	the	xy-dimensions	of	large	videos	is	also	a	good	idea.	This	
reduces	noise	which	otherwise	makes	peak	detection	more	difficult,	and	also	accelerates	
the	calculations.		
	
Further,	peak	detection	becomes	easier	when	certain	typical	microscopy	artefacts	are	
corrected.	First,	many	fluorescence	objectives	show	some	vignetting	–	the	corners	tend	
to	be	darker	than	the	center	of	the	image	(example:	Fig.	3A).	This	is	a	purely	optical	
effect	and	arises	from	less-than-ideal	light	transmission	far	from	the	image	center.	We	
typically	correct	vignetting	by	fitting	a	parabolic	background	(with	the	aid	of	the	Plugin	
“Polynomial	Surface	Fit”,	order	2	for	x	and	y	direction)	on	cell-free	areas	or	on	control	

images	in	the	absence	of	cells,	and	use	the	resulting	parabolic	smooth	vignetting	image	
for	correction	of	the	light-collection	efficiency	(example:	Fig.	3B).	
	
Another	problem	is	photobleaching,	leading	to	decreasing	fluorescence	intensity	over	
time.	Like	vignetting,	this	makes	application	of	a	global	threshold	difficult,	and	it	is	
advisable	to	adjust	the	intensity	in	such	a	way	that	there	is	no	global	trend	over	the	z-
profile.	We	do	so	by	measuring	the	time-course	of	the	intensity	on	a	cell-free	area,	and	
adjust	the	overall	intensity	per	z-plane	(video	frame)	such	as	to	keep	this	intensity	
constant	(not	seen	in	Fig.	3).	
	
These	are	not	the	only	possibilities,	some	microscopes	provide	photobleaching	routines,	
and	vignetting	can	be	reduced	by	narrowing	the	field	of	observation	or	by	cropping.	It	is	
in	any	case	advisable	to	analyse	such	optical	and	photobleaching	effects	by	tracing	in-
plane	and	z-profiles	and	if	necessary	to	apply	appropriate	corrections,	as	the	
calciumImaging	plugin	at	present	takes	the	data	as	they	are.	
	

Temporal peak detection
	

	
Figure	4.	Starting	the	temporal	peak	detection.		

	
With	a	greyscale,	8-bit	z-stack	loaded,	initiate	temporal	peak	detection	by	clicking	
“>Plugins>Calcium	Imaging>Locate	temporal	peaks”	(Figure	4).	
	

Plugin options
	
The	plugin	options	appear	after	plugin	start.	They	are	shown	schematically	in	Figure	5,	
in	comparison	with	a	z-profile	of	intensity,	showing	temporal	activation.	We	tried	to	
propose	reasonable	standard	values,	but	experience	shows	that	peak	detection	can	be	
made	more	pertinent	by	examining	z-axis	profiles	in	areas	containing	cells	or	
background	only,	to	more	realistically	set	the	plugin	parameters.	

	
Figure	5.	Plugin	options	for	temporal	peak	detection.	The	meaning	of	the	different	parameters	is	indicated	in	
the	dialog,	and	illustrated	in	comparison	with	the	z-axis	intensity	profile.	

Plugin output
	
The	temporal	peak	detection	yields	a	new	image,	of	the	same	xy	and	z	dimensions	as	the	
stack	analyzed.	In	the	new	image,	white	pixel	(greyscale	value	255)	indicate	local	peaks,	
black	pixels	(greyscale	value	0)	indicate	non-peak	values	(Figure	6).	
	

		
Figure	6.	Temporal	peak	detection	output	

Evaluation of local frequency
	
Mean	frequency	can	be	evaluated	manually,	by	performing	z-projection	on	a	temporal	
peak	stack	as	shown	in	Figure	6,	and	rescaling	the	values	to	obtain	frequencies	in	Hz	or	
beats	per	minute.	
	

For	convenience,	the	calciumImaging	plugin	offers	streamlining	the	process.	To	do	so,	
user	entry	of	the	actual	frame-rate	is	required	(in	frames/second),	the	plugin	then	does	
the	z-projection	and	ensures	conversion	to	beats	per	minutes.	To	perform	conversion	to	
local	frequency	via	the	calciumImaging	plugin,	select	Plugins>Calcium	Imaging>Local	
Frequency	(from	peaks)	as	shown	in	Figure	7		
	

	
	
Figure	7.	Calculation	of	local	frequency	from	a	temporal	peak	stack.	

The	calciumImaging	plugin	performs	the	local	frequency	analysis	and	shows	it	as	
greyscale	image	with	32-bit	(float	values).	Areas	where	no	peaks	were	detected	are	set	
to	0.	
	

		
Figure	8.	Local	frequency	output	

Local phase
	

As	a	last	functionality,	the	calciumImaging	plugin	allows	evaluation	of	local	phase.	Like	
local	frequence	evaluation,	local	phase	evaluation	is	performed	on	a	stack	with	
identified	peak	values	(e.g.	as	in	Figure	6).	To	launch	local	phase	evaluation,	select	
“Plugins>Calcium	Imaging>Local	Phase	(from	peaks)”	as	shown	in	Figure	9.	
	

	
Figure	9.	Launching	of	local	phase	evaluation.	

	
Local	phase	is	evaluated	by	comparison	of	the	temporal	peak	sequence	to	the	sequence	
at	a	reference	point	supplied	by	the	user	(via	the	dialog	that	opens,	Figure	10)	.	The	
reference	section	should,	where	possible,	reflect	the	general	beating	behavior,	and	so	
some	care	should	be	taken	in	its	selection.		
	

	
Figure	10.	Options	for	the	local	phase	evaluation.	

Figure	11	shows	the	working	principle	of	local	phase	evaluation.	The	analysis	compares	
every	point	C	of	the	image	(see	Figure	11A)	to	the	reference	point	B,	as	specified	in	the	
user	dialog	(Figure	10).	For	each	point	of	interest	(C)	and	also	for	the	reference	point	B,	
the	z-profile	is	evaluated	(see	Figure	11).		
	
To	evaluate	the	local	phase,	comparison	proceeds	for	each	peak	found	in	the	z-profile	of	
the	point	of	interest	(Figure	11C).	The	relative	timing	of	the	peaks	in	the	z-profile	of	the	
point	of	interest	to	the	neareast	peak	in	the	reference	section	(Figure	11B)	is	
determined,	and	converted	to	a	phase	angle	between	-180°	(late)	and	+	180°	(early).	For	
peaks	at	the	point	of	interest	before	the	first	or	after	the	last	reference	peak,	the	plugin	
extrapolates	by	assuming	a	constant	frequency	in	the	reference.	
	
For	averaging	of	the	phase	angle,	the	individual	phase	angles	are	converted	to	unit	
complex	vectors,	and	the	overall	phase	angle	obtained	from	the	mean	complex	vector;	
this	avoids	problems	with	phase	jumps	between	-180°	and	180°.			

	

	
Figure	11	Working	principle	of	local	phase	evaluation.	From	the	peak	localization	stack	(A),	the	reference	z-
profile	is	extracted	at	point	defined	by	the	user	(B).	The	point	of	interest	is	then	scanned	across	the	entire	
image	(x	and	y	direction),	and	for	each	point,	the	intensity	profile	across	the	stack	is	evaluated	(C,	arbitrary	
example	point).	Here,	the	point	of	interest	peaks	are	generally	late	compared	to	reference	peaks,	so	that	
would	be	a	negative	phase	value.		

The	output	of	the	phase	angle	evaluation	is	a	flat	image	with	the	same	xy	dimensions	as	
the	peak	stack	(Figure	12),	with	the	value	of	the	phase	given	in	degrees	at	each	point.	
Early	timing	corresponds	to	positive	phase	values	(advanced),	late	timing	to	negative	
phase	values.	

	
Figure	12.	Phase	output,	grey	scale	from	-180°	(late	activation)	to	+180°	(early	activation).	Pixels	without	
activity	are	given	as	NaN,	which	displays	black,	but	can	be	distinguished	from	0	in	ImageJ	32-bit	images.	

	

Concept and Credits
	
The	calcium	imaging	data	was	acquired	by	Fatemeh	Navee,	Thomas	Braschler	wrote	the	
code	and	this	user	manual.	The	screenshots	shown	here	were	obtained	while	treating	
calcium	imaging	data,	but	are	not	from	a	single	run;	the	goal	is	merely	to	illustrate	how	
to	use	the	plugin,	not	to	characterize	any	experiment	in	particular.	
	
A	very	important	contribution	to	this	calciumImaging	plugin	is	the	open	source	
Octave[3]	method	“findPeaks”,	by	Juan	Pablo	Carbajal	(see	
https://searchcode.com/codesearch/view/64213481/).	This	method	find	peaks	in	an	
arbitrary	signal,	by	a	combination	of	value	sorting,	thresholding,	parabola	fitting,	and	
filtering,	and	we	applied	it	to	find	the	location	of	the	peaks.	For	the	sorting	part,	we	also	
made	use	of	a	code	snippet	in	a	stackexchange	discussion	
(https://stackoverflow.com/questions/4859261/get-the-indices-of-an-array-after-
sorting,	see	further	license	details	in	the	source	code	itself).	
	
Evaluation	of	beating	motion	or	calcium	spiking	characteristics	from	videographic	
evidence	is	by	no	means	new[4],	and	some	very	sophisticated	tools	are	available.	A	
powerful	online	analysis	tool	is	for	example	the	Pulsevideoanalysis	platform	
(https://pulsevideoanalysis.com),	which	can	be	used	to	obtain	beating	frequency	and	
other	characteristics	from	calcium	imaging	videos.	For	specific	analysis	such	as	the	
phase	analysis	proposed	here,	such	closed	source	software	would	however	be	difficult	
to	adapt.		
	
We	therefore	aimed	at	providing	and	using	open	source	software	for	the	calciumImaging	
plugin.	In	this	context,	the	idea	of	using	ImageJ[1]	to	evaluate	spikes	in	calcium	imaging	
is	also	not	new,	and	there	are	some	published	tools	available[5][6],	although	they	tend	
to	focus	on	local	spike	identification.	A	sophisticated	wavelet	analysis	for	peak	detection	
is	available	as	an	open	source	tool	(NA3[7]),	but	this	requires	integration	of	ImageJ[1]	
with	R[8]	on	the	Bio7[8]	platform.		
	
With	the	present	calciumImaging	plugin,	we	pursued	the	following	specific	aims:		
	

1) Like	other	purely	ImageJ[1]	tools[5][6],	the	aim	was	to	provide	a	tool	compliant	
with	the	simple,	usual	ImageJ	plugin	installation	procedure	:	By	physically	
placing	a	binary	file	into	the	plugins	folder	of	the	local	ImageJ	installation,	the	
functionality	should	become	available.	Hence,	we	wrote	this	plugin	as	a	self-
contained,	Java[10]-only	implementation.		

2) We	nevertheless	wanted	to	be	able	to	carry	out	efficient	temporal	peak	
identification[7].	This	problem	is	elegantly	addressed	in	the	NA3	software[7],	
but	it	comes	at	the	cost	of	complexity	arising	from	the	connection	with	R[8]	and	
the	use	of	the	Bio7[8]	libraries.	We	therefore	resorted	to	the	known	highly	
performant,	and	open-source	findPeaks	algorithm	of	Octave[3]	
(https://searchcode.com/codesearch/view/64213481/).	We	re-implemented	
this	in	Java[10]	to	avoid	having	to	use	a	bridge	to	Octave[3].	

3) And	finally,	we	wanted	to	be	able	to	carry	not	only	standard	frequency	
(«	activity	»	[7])	analysis,	but	also	temporal	shift	analysis	in	the	form	of	the	phase	
shift.	

Bibliography
	
[1]	C.	A.	Schneider,	W.	S.	Rasband,	and	K.	W.	Eliceiri,	“NIH	Image	to	ImageJ:	25	years	of	

image	analysis,”	Nat	Methods,	vol.	9,	no.	7,	pp.	671–675,	Jul.	2012.	
[2]	 J.	Schindelin	et	al.,	“Fiji:	an	open-source	platform	for	biological-image	analysis,”	Nat	

Methods,	vol.	9,	no.	7,	pp.	676–682,	Jul.	2012.	
[3]	Eaton,	J.W.,	Bateman,	D.,	Hauberg,	S.,	and	Wehring,	R.,	GNU	Octave	version	3.8.1	

manual:	a	high-level	interactive	language	for	>>			numerical	computations.	
CreateSpace	Independent	Publishing	Platform,	2014.	

[4]	M.	Maddah	et	al.,	“A	Non-invasive	Platform	for	Functional	Characterization	of	Stem-
Cell-Derived	Cardiomyocytes	with	Applications	in	Cardiotoxicity	Testing,”	Stem	Cell	
Reports,	vol.	4,	no.	4,	pp.	621–631,	Mar.	2015.	

[5]	E.	M.	Steele	and	D.	S.	Steele,	“Automated	Detection	and	Analysis	of	Ca2+	Sparks	in	x-y	
Image	Stacks	Using	a	Thresholding	Algorithm	Implemented	within	the	Open-Source	
Image	Analysis	Platform	ImageJ,”	Biophysical	Journal,	vol.	106,	no.	3,	pp.	566–576,	
Feb.	2014.	

[6]	E.	Picht,	A.	V.	Zima,	L.	A.	Blatter,	and	D.	M.	Bers,	“SparkMaster:	automated	calcium	
spark	analysis	with	ImageJ,”	Am.	J.	Physiol.,	Cell	Physiol.,	vol.	293,	no.	3,	pp.	C1073-
1081,	Sep.	2007.	

[7]	 J.	Prada,	M.	Sasi,	C.	Martin,	S.	Jablonka,	T.	Dandekar,	and	R.	Blum,	“An	open	source	
tool	for	automatic	spatiotemporal	assessment	of	calcium	transients	and	local	‘signal-
close-to-noise’	activity	in	calcium	imaging	data,”	PLOS	Computational	Biology,	vol.	14,	
no.	3,	p.	e1006054,	Mar.	2018.	

[8]	R	Core	Team,	R:	A	Language	and	Environment	for	Statistical	Computing.	Vienna,	
Austria:	R	Foundation	for	Statistical	Computing,	2015.	

[9]	Austenfeld,	M.,	“Bio7	User	Guide	Version	3.0	(work	in	progress).”	.	
[10]	 K.	Arnold,	J.	Gosling,	and	D.	Holmes,	The	Java	programming	language.	Addison	

Wesley	Professional,	2005.	
	

License
	
GNU	General	Public	License.	We	adhere	to	the	usual	license	text	:	
	
This	program	is	free	software;	you	can	redistribute	it	and/or	modify	
it	under	the	terms	of	the	GNU	General	Public	License	as	published	by	
the	Free	Software	Foundation;	either	version	3	of	the	License,	or	(at	your	option)	any	
later	version.	
	
This	program	is	distributed	in	the	hope	that	it	will	be	useful,	
but	WITHOUT	ANY	WARRANTY;	without	even	the	implied	warranty	of	
MERCHANTABILITY	or	FITNESS	FOR	A	PARTICULAR	PURPOSE.	See	the	
GNU	General	Public	License	for	more	details.	

	
You	should	have	received	a	copy	of	the	GNU	General	Public	License	
along	with	this	program;	if	not,	see	<http://www.gnu.org/licenses/>.		
	

