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Write programs for people, not computers.

a) A program should not require its readers to hold more than a handful of facts in

memory at once.

b) Make names consistent, distinctive, and meaningful.
c) Make code style and formatting consistent.
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Let the computer do the work.

a) Make the computer repeat tasks.
b) Save recent commands in a file for re-use.
c) Use a build tool to automate workflows.
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Make incremental changes.

a) Work in small steps with frequent feedback and course correction.

b) Use a version control system.,
c) Put everything that has been created manually in version control.
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Don’t repeat yourself (or others).

a) Every piece of data must have a single authoritative representation in the
system.

b) Modularize code rather than copying and pasting.

c) Re-use code instead of rewriting it.
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Plan for mistakes.

a) Add assertions to programs to check their operation.
b) Use an off-the-shelf unit testing library.

c) Turn bugs into test cases.

d) Use a symbolic debugger.

ASTRON

Netherlands Institute for Radio Astronomy




Optimize software only after it works correctly.

a) Use a profiler to identify bottlenecks.
b) Write code in the highest-level language possible.
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Document design and purpose, not mechanics.

a) Document interfaces and reasons, not implementations.
b) Refactor code in preference to explaining how it works.
c) Embed the documentation for a piece of software in that software.
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Collaborate.

a) Use pre-merge code reviews.

b) Use pair programming when bringing someone new up to speed and when tackling
particularly tricky problems.

c) Use an issue tracking tool.
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PEPs (Python Enhancement Proposals)

PEP 8 Style Guide for Python code
PEP 20 The Zen of Python
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PEP 8 Style GUIDE for Python Code

The guidelines are intended to improve the readability of code
Consistency is the KEY

* Consistency with the style guide is important.
* Consistency within a project is more important.
* Consistency within one module or function is the most important.

A Foolish Consistency Is the Hobgoblin of Little Minds
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Code Lay-out — Indentation & Line break

Indentation
* Use 4 spaces per indentation level.
* Spaces are the preferred indentation method.
Should a line break before or after a binary operator?
* Consistency is the key

income = (gross_wages
+ taxable interest
+ (dividends — qualified_dividends)
— 1lra_deduction
— student loan interest)
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Code Lay-out — Blank Lines

Blank Lines
* Surround top-level function and class definitions with two blank lines.
* Method definitions inside a class are surrounded by a single blank line.

from setuptools import setup
from setuptools.command.test import test as TestCommand

class PyTest (TestCommand) :
user_options = [ ('pytest—-args=', 'a', "Arguments to pass into
py.test") ]

def initialize_options(self):
TestCommand.initialize_options(self)

self.pytest_args = [] AST((ON
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Code Lay-out — Imports

Imports should usually be on separate lines, e.g.:

Yes:

import os

import sys

No:

import sys, os

Imports are always put at the top of the file
Absolute imports are recommended
import mypkg.sibling

from mypkg import sibling

from mypkg.sibling import example

Wildcard imports ( from module import * ) should be avoided
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Code Lay-out — Comments

Comments that contradict the code are worse than no comments.
Always make a priority of keeping the comments up-to-date when the code

changes!
Comments should be complete sentences.
Write your comments in English.
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Code Lay-out — Comments Contd.

Block Comments

* Block comments generally apply to some (or all) code that follows them, and are indented to the
same level as that code.

* Each line of a block comment starts with a # and a single space.

# Code examples for Good code practice in Python.
Inline Comments
* Use inline comments sparingly.

* Inline comments are unnecessary and in fact distracting if they state the obvious. DON’T do this:

x = x + 1 # Increment x
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Code Lay-out — Comments Contd.
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Code Lay-out — Comments Contd.

Documentation Strings (a.k.a. "docstrings”)

* Adocstring Is a string literal that occurs as the first statement in a module, function, class,

or method definition.
* Such a docstring becomes the __doc__ special attribute of that object.
* PEP 257 describes good docstring conventions.

Most importantly, the """ that ends a multiline docstring should be on a line by itself
For one liner docstrings, please keep the closing """ on the same line.

"""Return a foobang.

Optional plotz says to frobnicate the bizbaz first.

wwmnw
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Docstring Versus Block Comments

# This function slows down program execution for some reason.
def square_and_ rooter (x):
"""Return the square root of self times self."""

The leading comment block is a programmer’s note.
The docstring describes the operation of the function or class and will be shown in
an interactive Python session when the user types

help (square_and_rooter)
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Self-Documenting Code - Naming

A variable, class, or function name should speak for themselves.

decay ()
decay_constant ()
get_decay_constant ()

p = 100
pressure = 100
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Self-Documenting Code — Simple functions

Functions must be small to be understandable and testable.
It should do ONLY one thing.

import numpy as np

def initial cond (N, Dim):
"""Generates 1initial conditions for N unity masses at rest
starting at random positions 1n D—-dimensional space.
min
position0 = np.random.rand (N, Dim)
velocity0 = np.zeros((N, Dim), dtype=float)
mass = np.ones (N, dtype=float)
return position0O, velocityO, mass
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PEP 20 The Zen of Python

By Tim Peters
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Beautiful is better than ugly.
Explicit Is better than implicit.

The Zen of Python
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Explicit is better than implicit

Bad Good
def make_complex (*args) : def make_complex(x, y):
X, y = args return {'x': x, 'y': y}

return dict (**locals())

ASTRON

Netherlands Institute for Radio Astronomy




Simple Is better than complex.
Complex is better than complicated.
Sparse Is better than dense.

The Zen of Python
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Make only one statement per line

Bad Good
print ('one'); print('two') print ('one')
print ('two')
if x == 1: print ('one')
if x ==
if <complex comparison> and print ('one')
<other complex comparison>:
# do something condl = <complex comparison>
cond2 = <other complex comparison>

if condl and cond2:
# do something
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Errors should never pass silently.
Unless explicitly silenced.

The Zen of Python
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There should be one-- and preferably only
one — obvious way to do It.

Although that way may not be obvious at
first unless you're Dutch.

The Zen of Python
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If the Implementation Is hard to explain,

It's a bad idea.
If the Implementation Is easy to explain, It

may be a good Idea.
The Zen of Python
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>>> 1mport this

Want to see the complete list of The Zen of Python?
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Argparse — Command line option and
argument parsing
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The argparse module

Added to Python 2.7 as a replacement for optparse.
The API for argparse is similar to the one provided by optparse.

The parser class is ArgumentParser.
The constructor takes several arguments to set up the description used in the help text for the program.

argparse IS a complete argument processing library.
import argparse

parser = argparse.ArgumentParser(description='Short sample app')

parser.add argument('-a', action="store true", default=False)
parser.add argument('-b', action="store", dest="b")
parser.add argument('-c', action="store", dest="c", type=int)

print (parser.parse args(['-a', '-bval', '-c', '3'])) AST({ON
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Structuring Your Project
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Sample repository by Kenneth Reitz

samplemod

— LICENSE

— MANIFEST.in

— Makefile

— README.rst

— docs

— Makefile

— conf.py

— index.rst
L— make.bat
requirements.txt
sample

F— __init__.py
— core.py

L— helpers.py
setup.py

tests

— __init__.py
— context.py
I— test_advanced.py
L— test_basic.py

|
|
|
|
—
—
|
|
|
—
—
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Pitfalls to avoid

Multiple and messy circular dependencies
Hidden coupling

Modifying code in one class breaks many tests in unrelated test cases
Heavy use of global state or context
Spaghetti code

Multiple pages of nested if clauses and for loops with a lot of copy-pasted
procedural code and no proper segmentation
Ravioli code

Consists of hundreds of similar little pieces of logic without proper structure
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Decorators

Dynamically alter the functionality of a function, method, or class without having to
change the source code of the function being decorated
Helps separate business logic from administrative logic

from python_toolbox.caching import cache

@cache ()

def f (x):
print ('Calculating...')
return x ** x
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Dynamic Typing

Avoid using the same variable name for different things
Good discipline: assign a variable only once
Check your code: Pylint, Pyflakes, Flakes8, Pychecker

Bad Good
a = 1 count = 1
a = 'a string' msg = 'a string'
def a(): def func():
pass # Do something pass # Do something
items = 'a b ¢ d! items_string = 'a b ¢ d'
items = items.split (' ") items_list = items_string.split (' ")
items = set (items) items = set (items 1list)
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