
Fig. 1

1. A short course in PyVO

Markus Demleitner (msdemlei@ari.uni-heidelberg.de)
Hendrik Heinl (heinl@ari.uni-heidelberg.de)

Please open a browser and point it to
http://docs.g-vo.org/pyvo

It’s also a good idea to have a page open on PyVO’s documentation1 as well as astropy’s
documentation2.

Coming up (possibly): VO redux, operating simple data access services, multi-service queries,
sending results around on the desktop, parameter discovery, TAP queries, async services, UCDs,
ObsTAP, Registry, VO for the solar system, datalink, remote manipulation. . .

This course will introduce you to the primary concepts of PyVO, an astropy-affiliated package
for accessing Virtual Observatory services from Python. It’s too much for a day in an interactive
situation, so if you’re reading this at the beginning of a course day: Say what you’re interested
in – we’ll have to select material anyway.

It assumes familiarity with VO concepts (services, protocol types, the registry) as well as astropy,
but you can probably gather missing parts as you go (or ask, if you’re reading this in an interactive
course situation).

The full source code for the programs discussed here is also available as an attachment if you read
this in pdf. One way to retrieve them is to get pdftk (there’s packages for it for Debian-derived
systems), run pdftk pyvo.pdf unpack files. Other PDF tools may also support attachments.
For instance, in KDE’s Okular its at File/Embedded Files, and in Adobe’s proprietary Acrobat
Reader 9, attachments can be retrieved through the paperclip icon in the lower left corner.

This material, except for the included software, is available under the Creative Commons Attribution
4.0 International3 (CC-BY) License. The included software is licensed under the GNU General
Public License separately.

(cf. Fig. 1)

1 http://pyvo.readthedocs.io/en/latest/
2 http://docs.astropy.org/en/stable/
3 https://creativecommons.org/licenses/by/4.0/legalcode

1

2. Prerequisites

• python and astropy, of course (we assume Debian stable, at least; anaconda on proprietary
systems should do, too)

• TOPCAT4 for viewing and visualising tables

• Aladin5 to work with images

• PyVO. Get it from

• https://pypi.python.org/pypi/pyvo

• or try apt-get install python-pyvo

• or try pip install pyvo

• or try conda install pyvo

3. What’s the VO

The VO is a set of standards that let clients discover and interrogate astronomical data services
in a uniform manner. Standards include:

• Registry – describing and finding services

• VOTable, UCD – writing tables with rich metadata

• SAMP – connecting software components

• SCS, SIAP, SSAP – querying catalog, image, and spectral services

• TAP – running remote database queries

• Datalink – bundling up complex data and services

• MOC, HiPS – sky coverage and hierarchical imaging

The purpose of all this is so machines instead of humans can operate the services. With an
average web page, that’s hard to impossible.

Machines operating services, in turn, are important to save manual work. This is part convenience,
but mainly it’s so you can use more and diverse data for your research.

See the IVOA home page6 for more information.

4 http://www.star.bris.ac.uk/~mbt/topcat/
5 http://aladin.u-strasbg.fr/aladin.gml

6 http://ivoa.net

2

4. What’s PyVO?

PyVO provides APIs for lots of VO protocols.

It’s glue between astropy and python in general and the astronomical data services in the VO.

PyVO works for both python2 and python3. We hope the examples here do, too (but they’re
mostly only run under python2, so complain if you’re seeing odd errors with python3).

It’s a community project. You’re welcome to contribute at
PyVO on github7

We will speak almost all of the protocols mentioned above within this course, but there’s no
need to dig into what all of them do here – they’ll come in quite naturally when we want to
solve problems.

5. Running Simple Services

When querying “simple” remote services (image, spectral, cone search; not directly TAP), PyVO
has a consistent pattern:
<prot> is SIA, SSA, SCS, SLA...

import pyvo

construct a service object with a service’s endpoint URL

service = pyvo.dal.<prot>Service(access_url)

#call the search method with the protocol’s parameters

for result in service.search(<parameters>):

...work on dict-like object result...

The “dal” in here means “Data Access Layer”, which essentially means: the VO protocols dealing
with how to query services and how the services are supposed to respond.

You’ll soon learn who to find out the access URLs.

7 https://github.com/pyvirtobs/pyvo

3

6. Query a Single Image Service

Example: SIAP, the VO’s protocol to access image servers.

Query a VO service for a list of images covering a small field on the sky, and download one of
these images:
svc = pyvo.sia.SIAService(ACCESS_URL)

images = svc.search((11,35), (0.1, 0.1), verbosity=2)

image=iamges[0]

image.cachedataset()

[See trivial.py]

For SIAP, pos (as a tuple of ra and dec) and size (in degrees, either one radius or extent in ra
and dec) are mandatory. More parameters: in the pyvo docs8.

Note how you don’t actually have to know anything about the service except its access URL.
Since PyVO uses a standard protocol, it knows enough to be able to, in this case, retrieve the
file and (mostly) give it a reasonable name.

This is a very basic example though. PyVO provides you with more functionality that helps
analysing the results before selecting the images. We will see some of these functions by using
PyVO in an interpreter (e.g. ipython).

Problems

(6.1) Get the full program from the attachment trivialsiap.py and inspect it to see how things work.

Find some other image service – use WIRR9 to access the VO Registry for now – and see if they have some images
for the positions given (or positions you’re actually interested in).

What’s coming back from SIAService’s search is a sequence of SIARecords. Have a quick look a its pyvo
documentation10 and make your program print the file size, too. If you find some frames of reasonable size,
download them into your favourite FITS viewer.

See PDF attachment(s): trivialsiap.py

8 http://pyvo.readthedocs.io/en/latest/api/pyvo.dal.SIAService.html#pyvo.dal.SIAService.search
9 http://dc.g-vo.org/WIRR

10 http://pyvo.readthedocs.io/en/latest/api/pyvo.dal.SIARecord.html#pyvo.dal.SIARecord

4

7. This is Python

The advantage of doing this in Python is that it’s easy to add your own logic. Here’s how to
add time constraints (SIAP version 1 unfortunately doesn’t specify how to tell the service you’re
only interested in a specific time interval – we’ll later see how more modern standards let you
push time constraints to the server) and search multiple positions:
svc = pyvo.sia.SIAService(ACCESS_URL)

for pos in [

(10, 20),

(45, 85)]:

images = svc.search(pos, (0.5, 0.5), verbosity=2)

for row in images:

if not DATE_MIN<row.dateobs<DATE_MAX:

continue

row.cachedataset()

[See multisiap.py]

Also: row.cachdataset saves the image to your local disk under a name sensible for the
metadata.

See PDF attachment(s): multisiap.py

8. And now all-VO

The nice thing about standard services: Handle one, and you get them all. So, let’s add a query
to the Registry and run our query all over the VO –
for svc in registry.search(servicetype="image"):

try:

search_one_service(svc.accessurl, image_sender)

except Exception:

import traceback; traceback.print_exc()

[See globalsiap.py]

The Registry that’s being used here is a big directory of all the services that are in the VO. If
you have tried the problem above and tried WIRR: it’s the same underlying data. The Registry
interface of PyVO is a bit simplistic, and we’ll later see other options to use the Registry.
Meanwhile, you can also search for catalog, spectrum, line, and database services, and you
can pass keyword (for queries against titles and descriptions), waveband (see docs for supported
terms), and datamodel (which we’ll look at later) as further keyword arguments.

The exception catcher is there since not all services claiming to be standards-compliant actually
are. It doesn’t hurt to complain to the service operators if a service you’re interested in behaves
weirdly – sometimes the operators haven’t noticed it’s broken or just broke.

To find out who to complain to, you can again use the Registry. In the most common case,
you would use WIRR with an access URL constratint. In the query result, you should see a mail
address when clicking on the person icon.

You will probably also see lots of warnings from astropy’s VOTable parser. This is partly because
astropy is overly paranoid, rejecting UCDs actually required by the SIAP standard, partly because
operators botch things. Interoperability isn’t always easy. I’d say at this point it’s too early to
complain to operators about your average VOTable warning, which is why we’ll later shut them
off.

5

If a service hangs, you can interrupt it by hitting Control-C. In production code, socket.settimeout
is your friend.

Rule: In multi-service queries, expect at least one service to be broken. Write your scripts to
cope.

Problems

(8.1) Get the globalsiap.py script from the attachment and change it so it skips 90% of the services discovered
randomly (use random.random()). Also, remove the constraint on the date (few services will have stuff this old)
and change the position to something you’re interested in or expect to have pretty pictures (M1’s or M51’s are
always good candiates). Run the thing and see what you find.

See PDF attachment(s): globalsiap.py

9. Add SAMP Magic

SAMP lets you exchange data between VO clients. Your script is a VO client, too. Let’s make it
broadcast some of the found images:

with vohelper.SAMP_conn() as conn:

... (search) ...

vohelper.send_image_to(conn, None, image.acref)

[See globalsiapsamp.py]

(also, vohelper.py abstracts SAMP here).

Before running this, start Aladin so the images are displayed.

SAMP-enabling programs may not come quite natural to people who so far have mainly written
fairly linear science code, because when doing SAMP you usually want to react to external events.
In linear code this is rather uncommon.

In this example we will be sending data. That’s no big deal except for the necessity to manage
the connection to the SAMP hub, which is taken care of by a context manager from vohelper.

If you inspect how send image to actually is implemented in vohelper (do it!), the way arguments
are passed between SAMP services may seem a bit funky: We build message dictionaries with
odd keys and then use methods on the “conn” object. But think of the mtype as the function
name, and passing arguments in dictionaries instead of tuples isn’t that far-fetched, either.

Given we’re doing function calls between different processes written in different languages, I’d
argue that’s actually surprisingly compact.

See PDF attachment(s): globalsiapsamp.py

See PDF attachment(s): vohelper.py

Problems

(9.1) Have a look at the implementation of SAMP conn in vohelper. This is done as a context manager, which is
a python construct ensuring what’s called “external invariants” (e.g., the status of a file is closed before and after
a piece of code that needs it). They’re used together with the with keyword that you may already know from file
handling.

Can you imagine why such a context manager is a good idea here? Try the code creating a connection and run it
without a disconnect several times. Look at the SAMP info in TOPCAT meanwhile. (L)

6

10. Custom Parameters

SIAP only has very few standard parameters (e.g., no time constraints), and even SSAP’s rich
parameter set is insufficient for, e.g., theoretical spectra.

SIAP and SSAP services can define custom parameters. Discover them using a FORMAT=METADATA
URL parameter.

The input parameters are given as VOTable params in the root VOTable RESOURCE, where
their names are prefixed with INPUT:. You can figure out names, units, descriptions, and, if the
service operators do a good job, even hints as to what you should pass in when you want to get
data back.

PyVO doesn’t yet have some API that would properly hide this (not terribly pretty) implementation
detail. Worse, it’s not totally trivial to get these PARAMs with astronomer-level PyVO.

To make amends, this course comes with a script viewparams.py that has a function and a UI
to retrieve metadata. To see how an example works, try
pyhton viewparams.py "http://dc.g-vo.org/bgds/q/sia/siap.xml?"

Pass custom parameters as keyword arguments to search:

svc.search((107, -10), (0.1, 0.1),

dateObs="57050/58050",

bandpassId="SDSS i’")

[See siapextra.py]

The attached script siapextra.py that lets you look at this in practice uses extra trickery we’ve
not seen yet to avoid downloading entire datasets. This is using a standard called datalink that
we’ll look at later.

Syntax trouble: Old-style VO services (parameters usually declared as char[*] or double)
write intervals with slashes.

New-style (SIAv2, datalink...) have interval xtypes and type double[2]. Their intervals are
written with a blank.

We’re sorry about this, but not all standards work out well on the first attempt. In defence of
the early standards authors that came up with the wretched slash syntax: There was prior un-art
for this from the geospatial community.

See PDF attachment(s): viewparams.py siapextra.py

Problems

(10.1) There is a spectral service with the access URL

http://dc.g-vo.org/theossa/q/ssa/ssap.xml?

It houses theoretical spectra mostly of hot, compact stars (think central stars of planetary nebula or perhaps young
white dwarfs).

Start from trivialsiap.py to write a little script querying the service.

Inspect its custom parameters using the attached viewparams.py script and see if you can retrieve three spectra
for stars with log g (if you don’t know what that is: viewparams.py will tell you) between 4.5 and 5.5, an effective
temperature between 7×104 and 105 Kelvin, and a Nitrogen mass fraction (that that’s in “dex” – decadic logarithm
of ratio to the solar value – goes without saying for people in the field; the metadata could explain that better,
yes) larger than 0.015 (write +Inf for “no upper limit”).

Use TOPCAT to convince yourself that you actually retrieved spectra.

Hint: Remember dal.ssa.SSAService.

Hint: To stop at three spectra, enumerate is a nifty thing.

Hint: Due to SSA breakage, this service will return each spectrum as both text and VOTable. To retrieve each
spectrum just once (and in VOTable), pass FORMAT=’VOTable’ to search. (L)

7

11. Enter TAP

What we’ve seen so far doesn’t scale when you’re interested in more regions.

Also, only fairly basic constraints are supported.

TAP is far more powerful.

Sample use case: Integrate photometry from different source catalogs, do some local work on
results, try to obtain spectra for interesting candidates.

12. Step 1a: Synchronous Queries

Run queries via TAP:
access_url = "http://dc.g-vo.org/tap"

service = pyvo.dal.TAPService(access_url)

result = service.run_sync(

"""SELECT raj2000, dej2000, jmag, hmag, kmag

FROM twomass.data

WHERE jmag<3""")

for row in result:

print(row["raj2000"], row["jmag"])

[See fetch2.py]

This is another instance of the PyVO pattern “create a service object, then call a method”. In
this case, we’re calling run sync. What’s coming back is a sequence of dal.Record elements
(well, the truth about TAPResults11 is a bit more complex, but that’s the gist of it).

“Synchronous” means: Submit a query and then just sit around waiting for the results. We’ll see
later when and why you might want to do something else.

result.to table() is an astropy.table instance – here, we take a column from it. To save it,
say:

with open("result.vot") as f:

result.to_table().write(output=f, format="votable")

Problems

(12.1) Write a program that prints the number of rows in the table arihip.main in the TAP service at http://dc.g-
vo.org/tap (do not pull all the rows and use python’s len).

Hint: With ADQL’s AS construct you can control the names of table columns. (L)

See PDF attachment(s): fetch2.py

11 http://pyvo.readthedocs.io/en/latest/api/pyvo.dal.TAPResults.html

8

13. Step 1b: Three Queries, TOPCAT

Separate “science” from “code” as much as possible:

QUERIES = [

("twomass", "http://dc.zah.uni-heidelberg.de/tap",

"""SELECT TOP 1000000 raj2000, dej2000, jmag, hmag, kmag

...

("allwise", "http://tapvizier.u-strasbg.fr/TAPVizieR/tap",

"""SELECT raj2000, dej2000, w1mag, w2mag, w3mag, w4mag

...

with vohelper.SAMP_conn() as conn:

topcat_id = vohelper.find_client(conn, "topcat")

for short_name, access_url, query in QUERIES:

service = pyvo.dal.TAPService(access_url)

result = service.run_sync(query.format(**locals()), maxrec=90000)

vohelper.send_table_to(conn, topcat_id, result.table, short_name)

[See fetch2.py]

Also new: send retrieved tables directly to TOPCAT.

We specify services and actions in a listQUERIES. Each list item is a tuple consisting of short
name (which later is used as a label in TOPCAT), an access URL, and a query, which we’ve
hand-crafted here. It is conceivable to automate this a lot by generating the queries based on
metadata you get from the services, but that’s for later. Obviously, new services can simply be
added by appending another triple to this list.

For a detailed introduction into TAP and ADQL please look at http://docs.g-vo.org/adql

Note the maxrec parameter – when you expect large result sets, always pass an explicit maxrec to
the service, or it may truncate your results. Most services have rather moderate default maxrecs
(our server software assumes 2000 unless the operators override it).

See PDF attachment(s): fetch2.py

Problems

(13.1) Use TOPCAT’s TAP data browser to locate services and table names for TGAS and RAVE (or just use the
GAVO DC TAP service with tables tgas.main and rave.main). Also figure out where the positions and some usable
magnitude are, plus the proper motions from TGAS and the radial velocities from RAVE (or just blindly use ra,
dec, pmra, pmdec, phot g mean mag for TGAS and raj2000, dej2000, rv, and hmag for RAVE).

Write queries to retrieve proper motions from TGAS and radial velocities from RAVE for all stars between 8 and
8.5 mags of some magnitude (don’t worry about the difference between H and G for this problem).

Then, re-write fetch2.py to query the two services, and change it to send the results to Aladin (which is known as
Aladin in upper case on the SAMP bus). See if you can get a nice plot of rv, pmra, and pmdec (which, of course,
would be particularly interesting for the stars that happen to be in both sets). (L)

9

14. Step 2: Go Async

When doing a lot of queries or long-running queries, run them asynchronously and in parallel.

Asynchronous means that you go to a service, submit your query there and immediately receive
some sort of token. With this token, you can come back later and retrieve your result. In the
meantime, you’re free to do whatever else you have to do – which includes turning off and/or
moving your machine, for instance.
jobs = set()

for short_name, access_url, query in QUERIES:

job = pyvo.dal.TAPService(access_url).submit_job(

query.format(**locals()), maxrec=9000000)

job.run()

jobs.add((short_name, job))

while jobs:

time.sleep(5)

for short_name, job in list(jobs):

if job.phase not in (’QUEUED’, ’EXECUTING’):

jobs.remove((short_name, job))

vohelper.send_table_to(conn, topcat_id,

job.fetch_result().table, short_name)

job.delete()

[See fetch2 async.py]

We said sync is easier to program with. But on the other hand: With this program, all three
queries run in parallel, which is nice, in particular if they take a while. Additional, you have a
little more control about ’when’ to receive the data.

What’s happening here? First, we submit all jobs. Rather than run sync we now use TAPService’s
submit job method. While taking the same arguments as run sync, it immediately returns.
Since it can’t peek into the future, it can’t return the finished result. Instead, you get an object
that one can use to manipulate the remote job. That remote job is not started by submit job.
It is instead waiting for further configuration (e.g., increasing its maximal runtime) or a request
to put it into the processing queue.

For our task, it’s enough to just start the job using the run method. We then add it to a watch
set of running jobs..

The rest of the code above is all about managing this set. In a polling loop – be sure to introduce
sleeps or your code will hit the remote services all the time – we iterate through the jobs. Actually,
we iterate over a copy of the job set since we want to delete completed from it, and we couldn’t
do that if there was an iterator over it active.

In the loop body, we check the phase attribute of the job. Although this looks like an attribute
access, in each iteration PyVO goes to the remote service and asks it what our job is doing. While
it is in either QUEUING or EXECUTING states, it’s still worth waiting for a result. Other states
include PENDING (not yet started), COMPLETED (done, result available), ERROR (done, some
kind of failure happened; call the raise if error method to turn it into a python exception),
and ABORTED (interrupted by client or operator intervention).

Once we find a job is done, we remove it from the job list and send the result over to TOPCAT
as before.

Finally, we delete the remote job. That’s a nice thing to do. Services will eventually delete your
job anyway (you can figure out when and even change that date in the job’s destruction

attribute), but it’s good style to discard services once you don’t need them any more.

Note that PyVO also gives you a run async method on TAPServices – this works exactly like
run sync, i.e., it will block until the results are in. Use it if you have to go async because your
job runs too long for sync but you want to avoid the dance with checking the phases.

See PDF attachment(s): fetch2˙async.py

10

15. Step 3a: UCDs build SEDs

Can we build SEDs from the results of the three services?

Not simply; photometry metadata in the VO isn’t quite sufficient for that yet. However, UCDs
let us do a workaround:

UCD_TO_WL = {

"phot.mag;em.opt.u": 3.5e-7,

"phot.mag;em.opt.b": 4.5e-7,

"phot.mag;em.opt.v": 5.5e-7,

"phot.mag;em.opt.r": 6.75e-7, ...

for row in rows:

for index, col in enumerate(row):

ucd = row.columns[index].meta.get("ucd", "").lower())

if ucd.startswith("phot.mag"):

if ucd in UCD_TO_WL:

phots.append((UCD_TO_WL[ucd], col))

UCDs (“Unified Content Descriptors”) are VO-standardised strings defining the physics contained
in columns. They even have a bit of syntax. In our example, we can see that first, we have
magnitudes (“phot.mag”) and then that they were taken in a certain band.

Similarly, “pos.eq.ra” would tell you that something is a right ascension as part of an equatorial
position; since tables sometimes have multiple positions in a single row (e.g., different reduction,
position in some reference catalog, or position of a sub-feature), you may want to single
out a particular column as your preferred, primary, default, or whatever RA. For that, use
“pos.eq.ra;meta.main”.

UCDs are particularly nifty in data discovery when you’re looking for tables that have a certain
kind of physics. Of course, that only works when people properly mark up their tables with UCDs
– be sure to do that on your data whenever you let a VOTable leave your disk. The full list of
UCD atoms is available from the IVOA document respository12.

The clean way, incidentally, is a proper annotation of the columns in question with full photometry
metadata (e.g., central wavelength, bandwidth, perhaps a URL of the detector’s response curve,
etc). The details are hellish, but there actually is a photometry DM in the VO. There’s just not
a good way to put that info into a VOTable yet. Yeah, it sucks for now, but we are onto it.

Problems

(15.1) Can you figure out what the UCD for a B-V colour would be? (L)

12 http://www.ivoa.net/documents/latest/UCDlist.html

11

16. Step 3b: Aggregate Photometry

Construction of “clusters” is in vohelper.py and uses astropy’s SkyCoords and match catalog to sky

(asymmetric!).

For three catalogs, we must perform six sky matches to get pairs, then walk the graph to gather
the clusters.

This actually is pure astropy and has nothing to do with PyVO as such. As a matter of fact, it
is usually smarter to have the remote sides do the cross matches if at all possible.

In this case, since we don’t have a “master catalogue” to match against, that’s actually hard.
For smallish crossmatches, the code in vohelper works reasonably well (but it scales horribly
when then number of tables increases; use specialised packages when your problem takes that
direction).

What’s happening in that code? sky coords are astropy.SkyCoord instances (in the example
code, there’s a function get coordinates for table that makes these for essentially arbitrary
tables as long as they’re properly marked up).

The code then goes through all pairs of input SkyCoords and uses their match to catalog sky

method to generate pairs of indices into these objects that are the closest pairs (that operation
isn’t symmetrical, which is why we compute the matches with all permutations).

The remaining code filters out those pairs that are closer than a limit that’s passed in and adds
a new pair of rows to be matched to a set. Each row is designated as a pair of table index and
row index within that table.

The rest is a graph problem: If you compute the connected subsets of the graph formed in this
way, you’ll have all measurements that are crossmatched together and thus, hopefully, correspond
to one object.

Sorry for this excursion. Feel free to ignore this.

(cf. Fig. 2)

12

2MASS SDSS WISE

⊕ ⊕ ⊕

⊕ ⊕ ⊕

〈2MASS-3,SDSS-132〉
〈SDSS-132,WISE-54〉
〈2MASS-29,WISE-21〉
〈WISE-21, 2MASS-3〉. . .

sky

p
airs

ca
t

Fig. 2

17. Combine with “your” Code

This is python: Add your own logic!

Here: Let’s display the approximate SEDs and let the user interactively select “interesting” cases.

for pos, phots in seds:

to_plot = np.array(phots)

plt.semilogx(to_plot[:,0], to_plot[:,1], ’-’)

plt.show(block=False)

selection = raw_input(

"s)elect SED, q)uit, enter for next? ")

if selection=="q":

break

if selection=="s":

selected.append(pos)

plt.cla()

13

return selected

[See fetch3 cluster.py]

This is now fairly standard matplotlib. We’re interacting through raw input in the shell here
for simplicity. It’s not actually hard to interact through the matlotlib window, but that requires
a bit object magic that we wanted to avoid here.

See PDF attachment(s): fetch3˙cluster.py

Problems

(17.1) Go through the source code of fetch3 cluster. You’ll see we’ve put in two workarounds for where the
data providers messed up. Can you see in each case what might have gone wrong? Have the service operators
fixed their software or do things still fail when you remove a workaround? In a course setting, coordinate with your
neighbours and split up the work so each only looks at one workaround.

(17.2) Run the program and select a couple of objects. Keep the resulting file (selected positions.vot) – we’ll
want to re-use it later.

18. Looking for Spectra

Suppose you have a couple of positions for “interesting” objects. Can we find spectra for them?

SSAP is the traditional VO protocol to access spectra, quite like SIAP, and we could query SSAP
services just like we queried SIAP services. However, SSAP only lets you access one object at a
time, which is kind of tedious.

Let’s use
ObsTAP = TAP with table ivoa.obscore

ivoa.obscore has lots of metadata on observational data products (spectra, cubes, timeseries).

Having what people generally call a “data model” – here, rather a set of pre-defined columns
– enables a lot of powerful data discovery scenarious when coupled with TAP. So, why do we
bother with SCS, SIAP, and SSAP?

Good question. It mainly has historical reasons – S*AP where easier to define than TAP and
Obscore. And until datalink was there, there were a few tricks you could play with them that
just don’t work with simple ObsTAP (cutouts, for instance).

Even now, there’s still much less data in ObsCore services than in SSAP; hence, if your problem
easily admits querying through SSAP, it’s certainly no mistake to do so, perhaps in addition to
SSAP (beware, though: there is some data that’s in Obscore but not in SSAP).

Plan:

• Search for obscore services

• Use TAP upload to search to collect spectra

• Send spectra to SPLAT

14

19. Query the Registry

Iterate over all obscore services (here: see what data collections they house):

for svc_rec in pyvo.registry.search(datamodel="obscore"):

svc = pyvo.dal.TAPService(svc_rec.access_url)

result = svc.run_sync("SELECT DISTINCT obs_collection"

" FROM ivoa.obscore")

print("\n>>>>{}\n{}\n".format(

svc_rec.short_name,

"\n".join(

r["obs_collection"] for r in result))

To “use ObsTAP”, just query the ivoa.obscore table; all (registred) ObsTAP services can be
found by passing the data model name “obscore” to registry.search.

The selling point here is: we’re running the same database query on all the ObsTAP service, and
we’re processing their results in the same way. That’s the power of uniform data models.

This script doesn’t come attached. That’s because on large services, the SELECT DISTINCT can
actually be computationally expensive for the services.Do not run this script just for fun.

20. Query with Upload

For each ObsTAP service, we query against our object list: if not svc.upload_methods:

return

result = vohelper.run_sync_resilient(svc,

"""SELECT TOP 2000 oc.obs_publisher_did, oc.access_url

FROM ivoa.obscore AS oc

JOIN TAP_UPLOAD.pois AS mine

ON 1=CONTAINS(

POINT(’ICRS’, oc.s_ra, oc.s_dec),

CIRCLE(’ICRS’, mine.ra, mine.dec, 0.01))

WHERE oc.dataproduct_type=’spectrum’

"""),

uploads = {"pois": pois})

What’s going on here? Right after constructing the service, we check whether it supports table
uploads – not all TAP services do. TAPService objects have a few other attributes that let you
figure things out about services. This, in particular, includes resource limits (maximum upload
size, limit to which maxrec can be raised, etc).

Here, it’s enough to know there’s any upload method at all, because the standard says that inline
upload must be supported if there’s any upload support.

To actually perform the upload, pass a dictionary to the uploads keyword argument of run sync
and friends. The keys there are simple names (starting with a letter and letters or numbers after
that), the values can be various things, but you’ll probably get by passing either a string (which
is interpreted as an URL to fetch a VOTable from) or an astropy table.

You can upload multiple tables using different keys; for each key, a table TAP UPLOAD.key becomes
available – in the example above, that’s TAP UPLOAD.pois. You will almost always join the
uploaded table with a table on the service, and thus it’s almost always a good idea to use
ADQL’s AS construct to give abbreviated names to tables. The name mine is typically a good
choice if you only have one upload.

15

Note that even if you don’t have to qualify column names in a query with a join with the source
table names, you will regret not doing so in queries you will likely re-use (trap: you’ll always reuse
the one you least expect to reuse) – just because there’s no column s ra in the table uploaded
here doesn’t mean the table you have in your next program doesn’t, and if it has and you’ve not
used the oc. prefix (here), your function will fail.

Instead of the common run sync, this uses vohelper.run sync resilient, which catches all
kinds of exceptions and other trouble. As said above, when you do all-VO queries, expect at least
one service to fail completely and another to give results that look like they come from a fuzzer.

The actual obscore query compromises a bit. We should say something like
1=CONTAINS(POINT(’’, up.ra, up.dec), s_region)

as s region is supposed to contain geometries for the data products. However, proper s region
support isn’t necessarily in place, whereas all data providers get the center RA and Dec for their
datasets roughly right. Also, the construct here lets us fudge a bit (the circle radius). That,
however, you could have with s region, too:
1=INTERSECTS(CIRCLE(’’, up.ra, up.dec, 0.01), s_region)

The code in get spectra.py is actually a bit more general in that it doesn’t hardcode the column
names in the uploaded table but instead discovers them using UCDs. So, as long as your tables
are properly annotated, the function there will just work for global spectra discovery (or, if you
change the query, really any other global ObsCore discovery on sets of positions).

Problems

(20.1) Can you figure out the default output limit (i.e., in effect an implied TOP) for the TAP service at http://dc.g-
vo.org/tap? How far can you raise it?

Can you write a program that figures it out for all TAP services out there that talk about tgas? (L)

(20.2) (This is more of an async excercise, but you need the upload stuff to solve it)

One particularly cool part about async is that you can keep your results publicly available on the remote server for
a while. That, in turn, you can use to do cross-service joins without having to download intermediate tables.

As said above, you can use URLs in a query’s upload argument. To try this out, review the TGAS and RAVE
example above. Make the RAVE query asynchronous. Watch the resulting job, and when it is done, get the URI of
the result table from the job’s result uri attribute. Push that into an upload such that the following query does
a join between the two datasets:

SELECT *

FROM

tgas.main as tg

JOIN TAP_UPLOAD.rave as mine

ON (1=CONTAINS(

POINT(’’, tg.ra, tg.dec),

CIRCLE(’’, mine.raj2000, mine.dej2000, 1/3600.)))

Obviously, this is much more logical than the first version, since there’s just one constraint on the magnitudes now
(the one on the H-band in rave) – when you send the resulting table to Aladin, you’ll see more matches in TGAS
than you had when you were comparing the two catalog cuts manually. (L)

16

21. Collect Spectra finished

The rest is almost standard SAMP fare to get the spectra retrieved to SPLAT as they come in:
try:

target_id = vohelper.find_client(conn, "splat")

except KeyError:

sys.exit("Start Splat and try again")

...

for ds_name, access_url in specs:

try:

vohelper.send_spectrum_to(

conn, target_id, access_url, ds_name)

except vohelper.SAMPProxyError:

print(" (Failed)")

[See get spectra.py]

As for images, spectra are usually passed around by their URLs in SAMP.

What’s new here is that we’re catching exceptions. Catching the KeyError when trying to find
Splat is probably helpful when you run the program after a couple of months, have forgotten
about splat being a part of this analysis chain, and would wonder otherwise why you see a
KeyError of all things.

The second exception catching, around send spectrum to, is a lot more subtle. Here, and
exception is raised if Splat fails to open a spectrum and sends back a notice to this effect. So,
what we’re catching here, in effect, is an exception raised within Splat. In general, there’s no
telling if the target client has already informed the user that something is wrong – it’s probably
better to assume it has in generic code most of the time, and so sending code should avoid modal
error messages (“Click here to continue”). Our very terse notification might not be optimal either,
though.

See PDF attachment(s): get˙spectra.py

Problems

(21.1) Can you change our program such that only spectra of resolving power 10000 or greater are retrieved?

Hint: Use TOPCAT or the tables property of your TAPService to inspect the metadata of the ivoa.obscore

table to figure out which column to query against. Just in case: It’s almost always better to filter on the remote
side rather than the local side, and that’s always true if the constraint can be expressed as a single condition in a
WHERE clause.

22. End of Part 1

We believe you now know enough to further explore PyVO and the VO on your own.

However, we’ve prepared a couple of extra slides on special topics. Here’s some titles – let me
know after the break what you’d like to do.

• Reacting to SAMP messages

• Solar System science with EPN-TAP

• Using datalink

• Multi-service TAP (Improvised)

• Walking a spectral grid (Improvised)

17

23. Higher SAMP Magic

Let’s say you’re debugging your pipeline and want to manually inspect “weird” objects by
checking what a set of other catalogs have on them.

Plan: Write a program that other clients

• can send tables to (table.load.votable) and then

• when a table row is selected, computes a new table

• that’s then broadcast.

Pattern for listening:
conn.bind_receive_notification(

"table.highlight.row",

self.handle_selection)

SAMP is based on messages; there are several message types (MTypes), which are documented
on the IVOA wiki13.

To make our program ready to receive tables via SAMP, we have to listen to table.load.votable.

To react to row selections, we have to react to table.highlight.row. An alternative would be
coord.pointAt.sky, which communicates where people are looking at; but in this case we’re
looking for odd rows, not odd positions.

The SAMP client objects’s bind receive notificationmethod arranges for the hub to call a
function when a message of a certain MType comes in. The calling pattern is a bit complicated,
but what really counts is a dictionary of the parameters passed to the originating call; according
to what’s said on the wiki, you’ll be passed a table-id, a URL, and a row index.

Problems

(23.1) The somewhat verbose argument list for a handler of a SAMP message is handler(privkey, sender id,

msg id, mtype, params, extra). You can usually ignore all of these except the params, which are a dicitionary.

Write a little program that listens for coord.pointAt.sky messages and just prints the sky coordinate looked at.
Test it by starting the program when TOPCAT or Aladin are already running. In Aladin, you can just pan around.
In TOPCAT, you must configure an activation action to see something.

Hint 1: The basic code to obtain a client object as discussed on the “Add SAMP Magic” slide.

Hint 2: At least some versions of astropy don’t show exceptions raised within a handler function. To save yourself
grief in such cases, decorate your handler function with vohelper.show exception, that is, defined it like this:

@vohelper.show_exception

def print_coord(privkey, sender_id, msg_id, mtype, params, extra):

Hint 3: This program just waits for events from the outside, which is common for server programs but perhaps
scary to you if you’ve mainly written “user code” so far. Astropy makes it easy for you, though – just have your
program wait with raw input and you’re fine. (L)

13 http://wiki.ivoa.net/twiki/bin/view/IVOA/SampMTypes

18

24. Doin’ It With Class

Our program needs to manage quite a bit of state. At least:

• A table sent to us

• The SAMP connection

Whenever your problems gather state (and that’s quite usual when you handle SAMP messages),
think object.

Don’t be scared: An object is essentially like a dictionary with an odd syntax and some keys
giving slightly magic functions (“methods”). For instance, a table.load.votable handler:
class VicinitySearcher(object):

def __init__(self, client):

self.client = client

self.cur_table = self.cur_id = None

self.client.bind_receive_call(

"table.load.votable", self.load_VOTable)

def load_VOTable(self, private_key, sender_id, msg_id, mtype,

params, extra):

self.cur_table = Table.read(params[’url’])

self.cur_id = params["table-id"]

self.client.reply(msg_id,

{"samp.status": "samp.ok", "samp.result": {}})

[See vicinitysearcher.py]

The trivial version of object lore in python is: All functions belonging to an object (yes: methods)
have a first argument called self, and whenever you put an attribute on self, you can find
it again in other methods’ self, provided these other methods are called on the same instance
(i.e., object)..

To call other methods of the same object, use self.methodname.

Create an object (yes: instance) by calling the class (here: VicinitySearcher(conn)).Whatever
you pass into the constructor will be passed to the init method.

See PDF attachment(s): vicinitysearcher.py

Problems

(24.1) The action of the SAMP handler is in the make response table method; have a look at it. The UCDs used
are those of SCS, an ancient standard made before modern UCDs were invented.

Use UCDs to add another column, mag, which, for this exercise, can be just the first column you find with a UCD
starting with phot.mag.

Hint: You can iterate over result.table.columns, and you’ll find the UCD in col.meta[’ucd’].

19

25. EPN-TAP 1: Discovery

EPN-TAP is a protocol for distributing solar system data; essentially, it’s normal VO TAP plus
a pre-defined table structure; the tables are always called epn core.

Let’s try an all-VO query for data on Mars. For discovery, we use GloTS:

glots_svc = pyvo.dal.TAPService("http://dc.g-vo.org/tap")

epn_services = glots_svc.run_sync(

"SELECT accessurl, ivo_string_agg(table_name, ’#’) as tables"

" FROM glots.services NATURAL JOIN glots.tables"

" WHERE table_name LIKE ’%epn_core’"

" GROUP BY accessurl")

GloTS, the global TAP schema, is a service that iterates over all TAP services out there and
harvests their TAP schemas. The union of those, annotated with the source service, are then
published as glots.services, glots.tables, an glots.columns. This is a private initiative
and should be supplanted by the registry soon-ish. While it exists, it’s pretty nifty, though.

The official way to discover EPN-TAP services is a normal registry query looking like this:
SELECT ivoid, access_url

FROM rr.capability

NATURAL JOIN rr.interface

NATURAL JOIN rr.res_table

WHERE

standard_id LIKE ’ivo://ivoa.net/std/tap%’

AND table_utype LIKE ’ivo://vopdc.obspm/std/epncore#schema-2.%’

– however, this assumes that all EPN-TAP services properly publish table metadata, and,
unfortunately, not all do, yet. Which is why we recommend using GloTS for now.

26. EPN-TAP 2: Querying EPN-TAP

EPN-TAP services are queried like any other TAP service. Use a table browser to see what
columns are available or check the standard14.

for svcrow in epn_services.table():

service = pyvo.dal.TAPService(svcrow["accessurl"])

for table_name in svcrow["tables"].split("#"):

print("\nQuerying {} on {}".format(

table_name, svcrow["accessurl"]))

for row in vohelper.run_sync_resilient(service,

"SELECT TOP 2 * FROM {} WHERE target_name=’Mars’".format(

table_name).table():

print(row)

[See epnquery.py]

This looks a bit more complex than before because a single service can have multiple EPN-TAP
tables, so we have another iteration to go, and we need to fiddle in the table names into the
queries.

Things are a bit more complex than in anything we’ve seen so far because EPN-TAP lets people
stick in almost any kind of data into such tables, and what your access url points to – spectra,
profiles of elemental abundances, odd magnetospheric data, or nothing at all – is impossible
to tell before at least inspecting the dataproduct type column (and even then your average
non-solar-system astronomer may be stumped. . .)

Of course, you want to do smarter things than print a row.

See PDF attachment(s): epnquery.py

14 https://voparis-confluence.obspm.fr/display/VES/EPN-TAP+V2.0+parameters

20

Problems

(26.1) Get the little epnquery program and change it to only discover spectra. then send the first two spectra your
program finds to TOPCAT (or SPLAT, if you have it).

27. Datalink: Related Infos

Datalink is a standard for “linking” files to datasets. Think previews, extracted objects, etc.

After a data discovery query on a datalink-enabled service, you can use the result’s iter datalinks

method:

for dl in result.iter_datalinks():

for link in dl: # multiple links per dataset

print link

Each link has a URL, a description, and machine-readable semantics15. E.g., to load previews:

for dl in matches.iter_datalinks():

prev_url = dl.bysemantics("#preview").next()["access_url"]

im = Image.open(io.BytesIO(requests.get(prev_url).content))

...

[See datalink-previews.py]

See PDF attachment(s): datalink-previews.py

Problems

(27.1) Write a function get available semantics(dl) -> set returning a set of the semantics available for a
given datalink.

What semantics do you get for the links coming from the datalink-previews program? (L)

15 http://www.ivoa.net/rdf/datalink/core

21

28. Datalink: Remote processing

Datalink also lets you declare processing services. SODA is a special set of parameters applicable
to astronomical images (CIRCLE, POLYGON, TIME, BAND,. . .).

Save a lot of time by only downloading cutouts of the object you’re interested in:

roi = SkyCoord.from_name(’Mira’)

for rec in svc.run_sync(

"SELECT access_url, access_format FROM ivoa.obscore"

" WHERE obs_collection=’HDAP’"

"AND 1=CONTAINS(CIRCLE(’ICRS’, {}, {}, 0.05),"

"s_region)".format(roi.ra.deg, roi.dec.deg)):

processed = rec.processed(

circle=(roi.ra.deg, roi.dec.deg, 0.05))

[See datalink-soda.py]

Problems

(28.1) Warning: Doesn’t work with pyVO as of Feb 2018

CALIFA is a collection of spectral cubes (i.e., an array of small-band images) of galaxies; there is a datalink-enabled
TAP table (califadr3.cubes) listing the cubes on the TAP service http://dc.g-vo.org/tap.

Use TOPCAT to inspect the tables belonging to califadr3; in particular note the objects table that you can join
with cubes via the califaid column. Now write a program that gets images of Sd galaxies in their Hα light.

Hints:

U se the Hubble type in the hubtyp column of califadr3’s objects table. Use a TOPCAT query to see how Hubble
types are written.

T he cubes come in three different setups. Only look at COMB for this exercise (this avoids duplicate data).

H α is at 656.25 nm. For the low redshifts we’re talking about here, use λlab = (1 + z)λ0 to compute the
wavelength in the lab frame (and don’t worry about vacuum vs. air wavelengths for this exercise).

Y ou’ll need to select the obs publisher did and mime columns for datalink to work. Use califaid to generate
file names.

T o cut out by wavelength, use SODA’s BAND parameter (future versions of pyVO will have better facilities to
inspect the parameters the services support and the ranges applicable to a given dataset). It’s in meters of
(vaccuum) wavelength.

T o cut out just a single pixel in wavelength, just use the same upper and lower bound.

(L)

22

29. Scaling TAP Queries

TBD (Take from https://blog.g-vo.org/adql-tricks-at-mpia/)

For many interesting discovery problems, a simple parameter-based interface as in registry.search
just isn’t powerful enough. Fortunately, if you know TAP and the (admittedly somewhat complicated)
relational mapping of the Registry data model, you can get almost arbitrarily fancy. This is called
RegTAP and is available from reg.g-vo.org (and a few other TAP services). There, you can query
roughly a dozen tables that contain the service metadata. To learn more, inspect the metadata
of the tables in the rr schema (they are designed to be joined using NATURAL JOINs) if you
want to know more, and if you’re still not satisfied, there’s more explanations and examples in
the underlying standard16.

Here, we combine the tables of interfaces (things a client can talk to), capabilities (ways of using
a services, in this case: TAP), and details (various “minor” properties of resources; in this case:
implementation of a data model).

This may look a bit complex, but it’s fairly stereotypic. If you have somewhat more advanced
data discovery problems and want to come up with queries of this sort yourself, you may want
to read 2015A&C....10...88D.

See PDF attachment(s): query˙lots.py

30. Operating Over Spectral Grids

TBD (let’s have some spectral arithmetic here – anyone in for a nice python lib for rebinning
spectra and computing RMSes?)

See PDF attachment(s): download˙a˙spectral˙grid.py

16 http://ivoa.net/documents/RegTAP

23

31. Splitting Up Queries

It usually pays to try and optimize ADQL queries (and we’ll finally write a guide on this one
of these days). But sometimes you just need to partition queries; for instance, your result set
otherwise becomes too large, or your query really takes that long. In the latter case, you can
play with execution duration on async jobs:
job = svc.run_async("...")

job.execution_duration=10000

This will not help you when you hit the hard match limit. In such cases, the recommended way
is to use the table’s primary key to partition the data; usually, that should be the column with
the UCD meta.id;meta.main. For a rough partition, where the partition sizes may be grossly
different, just figure out the maximum value of the identifier. For our light version of Gaia DR2,
you could query:
SELECT max(source_id) FROM gaia.dr2light

\endverbatim

(if that’s slow, you probably haven’t chosen a good primary key); in

this case, that yields 6917528997577384320.

With that number, you can enter a program like this:

\startverbatim

import pyvo

MAX_ID, N_PART = 6917528997577384320+1, 10

partition_limits = [(MAX_ID/N_PART)*i

for i in range(N_PART+1)]

svc = pyvo.dal.TAPService("http://dc.g-vo.org/tap")

main_query = "SELECT count(*) FROM cur_part"

for lower, upper in zip(partition_limits[:-1], partition_limits[1:]):

result = svc.run_sync("WITH sample AS "

"(SELECT * FROM gaia.dr2light"

" WHERE source_id BETWEEN {} and {}) ".format(lower, upper-1)

+main_query)

print(result)

(Exercise: Can you see why the +1 is necessary in the MAX ID assignment)

You’ll obviously have to adapt that a bit when the primary key is a string, but that’s rare these
days.

Since most astronomical objects are distributed highly unevenly on the sky, this will yield chunks
of very different sizes for commen schemes, where the idenfier somehow encodes the sky position.

If you have a use case where you need a guaranteed maximum result size per partition, you
will have to use two passes, first figuing out the distribution of objects and then computing the
desired partition from that.

Here’s an example for how one might go about this:
from astropy import table

import pyvo

MAX_ID, ROW_TARGET = 6917528997577384320+1, 10000000

ENDPOINT = "http://dc.g-vo.org/tap"

the 20000 is just the number of bins to use; make it too small, and

24

your inital bins may already overflow ROW_TARGET

ID_DIVISOR = MAX_ID/10000

QUERY = """

select round(source_id/%d) as bin, count(*) as ct

from gaia.dr2light

group by bin

"""%ID_DIVISOR

def get_bin_sizes():

"""returns a ordered sequence of (bin_center, num_objects) rows.

"""

since the partitioning query already is expensive, cache it,

and use the cache if it’s there.

try:

with open("partitions.vot", "rb") as f:

tbl = table.Table.read(f)

except IOError:

Fetch from source; takes about 1 hour

print("Fetching partitions from source; this will take a while"

" (provide partitions.vot to avoid re-querying)")

svc = pyvo.dal.TAPService(ENDPOINT)

res = svc.run_async(QUERY, maxrec=1000000)

tbl = res.table

with open("partitions.vot", "wb") as f:

tbl.write(output=f, format="votable")

res = [(row["bin"], row["ct"]) for row in tbl]

res.sort()

return res

def get_partition_limits(bin_sizes):

"""returns a list of limits of source_id ranges exhausting the whole

catalog.

bin_sizes is what get_bin_sizes returns (and it must be sorted by

bin center).

"""

limits, cur_count = [0], 0

for bin_center, bin_count in bin_sizes:

if cur_count+bin_count>MAX_ROWS:

limits.append(int(bin_center*ID_DIVISOR-ID_DIVISOR/2))

cur_count = 0

cur_count += bin_count

limits.append(MAX_ID)

return limits

def get_data_for(svc, query, low, high):

"""returns a TAP result for the (simple) query in the partition

between low and high.

query needs to query the ‘‘sample‘‘ table.

"""

25

job = svc.submit_job("WITH sample AS "

"(SELECT * FROM gaia.dr2light"

" WHERE source_id BETWEEN {} and {}) ".format(lower, upper-1)

+query, maxrec=ROW_TARGET)

try:

job.run()

job.wait()

return job.fetch_result()

finally:

job.delete()

def main():

svc = pyvo.dal.TAPService(ENDPOINT)

for ct, (low, high) in enumerate(zip(limits[:-1], limits[1:])):

print("{}/{}".format(ct, len(limits)))

res = get_data_for(svc, low, high-1)

do your thing here

But, most importantly: If you need any of this, you’re probably doing it wrong.

26

import io
import requests
import pyvo
from astropy.coordinates import SkyCoord
import Image

import vohelper

svc = pyvo.ssa.SSAService("http://dc.g-vo.org/feros/q/ssa/ssap.xml?")
matches = svc.search(SkyCoord.from_name("EI Eri"), 0.001)
per_line = 6

previews = []
for dl in matches.iter_datalinks():
 prev_url = dl.bysemantics("#preview").next()["access_url"]
 im = Image.open(io.BytesIO(requests.get(prev_url).content))
 previews.append(im)

xsz, ysz = previews[0].size
montage = Image.new("L",
 (xsz*per_line, int(ysz*(len(previews)/per_line))),
 color=240)
for index, preview in enumerate(previews):
 montage.paste(preview, (index%per_line*xsz, index/per_line*ysz))
montage.save("previews.png")

vi:ts=4:sw=4:sta:et

pyvo code to pull spectra for a given composition from TheoSSA
(determining the best match to a local spectrum is left as an exercise
to the user:-). Here, we just see if we can pull out values in a given
band with Teff and log_g

import urllib
import numpy as np
from astropy import table
from astropy import units as u

import pyvo

use format=metadata to figure out the custom parameters of an
SSA service -- we'll need these below.
ACCESS_URL = "http://dc.g-vo.org/theossa/q/ssa/ssap.xml?"
LAMBDA_INT = 100e-9

def get_matching_spectra(**constraints):
	query = pyvo.dal.ssa.SSAService(ACCESS_URL
).create_query(**constraints)
	return query.execute()

def fetch_flux_near(url, lambda0):
	"""returns a wavelength, flux near a wavelength from a votable
	spectrum near url.

	For simplicity, we hardcode column names; you could do a lot better
	by exploiting more VOTable and even SDM metadata.

	lambda0 needs to be a quantity.

	And yes, for this particular use case one would rather use SODA
	"""
	spec = table.Table.read(urllib.urlopen(url).read)
	spec_loc = spec["spectral"].to("m")
	min_index = np.argmin(spec_loc-lambda0)
	return spec_loc[min_index], spec["flux"][min_index]

if __name__=="__main__":
	spectra = get_matching_spectra(
			w_Al="0.00099/0.001", w_C="0.4532/0.4534", FORMAT="votable")
	# Yeah, SSA and its utypes suck.
	spec_start_name = spectra.fieldname_with_utype(
		"ssa:Char.SpectralAxis.Coverage.Bounds.Start")
	spec_end_name = spectra.fieldname_with_utype(
		"ssa:Char.SpectralAxis.Coverage.Bounds.Stop")

	for res in spectra:
		if res[spec_start_name]<LAMBDA_INT<res[spec_end_name]:
			# we have data near what we're interested in -- fetch data
			# and pull out a flux
			print(fetch_flux_near(res.getdataurl(), LAMBDA_INT*u.m))

This is an all-epn-TAP search example using pyvo.
Of course, the query isn't that exciting, but you
get the idea.

import pyvo

import vohelper

glots_svc = pyvo.dal.TAPService("http://dc.g-vo.org/tap")
epn_services = glots_svc.run_sync(
 "SELECT accessurl, ivo_string_agg(table_name, '#') as tables"
 " FROM glots.services NATURAL JOIN glots.tables"
 " WHERE table_name LIKE '%epn_core'"
 " GROUP BY accessurl")

for svcrow in epn_services.table:
 service = pyvo.dal.TAPService(svcrow["accessurl"])
 for table_name in svcrow["tables"].split("#"):
 print("\nQuerying {} on {}".format(
 table_name, svcrow["accessurl"]))
 for row in vohelper.run_sync_resilient(service,
 "SELECT TOP 2 * FROM %s WHERE target_name='Mars'"%table_name
).table():
 print(row)

vim:sta:et:sw=2

#!/usr/bin/python

This code is in the public domain.

Step 1: Query three VO services, broadcast the result via SAMP
(requires: astropy, pyvo, and a little helper module, vohelper)

Queries are configured as triples of short name, access url (as from a
registry query) query. You *could* use TAP_SCHEMA to automate query
generation, but that's left as an exercise to the reader

import sys
import vohelper
import pyvo

Note that it's of course silly to use TAP to do just cone searches.
Imagine more interesting queries here.
QUERIES = [
 ("twomass", "http://dc.zah.uni-heidelberg.de/tap",
 """SELECT TOP 1000000 raj2000, dej2000, jmag, hmag, kmag
 FROM twomass.data
 WHERE 1=CONTAINS(
 POINT('ICRS', raj2000, dej2000),
 CIRCLE('ICRS', {ra}, {dec}, {radius}))"""),
 ("allwise", "http://tapvizier.u-strasbg.fr/TAPVizieR/tap",
 """SELECT raj2000, dej2000, w1mag, w2mag, w3mag, w4mag
 FROM "II/328/allwise"
 WHERE 1=CONTAINS(
 POINT('ICRS', raj2000, dej2000),
 CIRCLE('ICRS', {ra}, {dec}, {radius}))""")]

def main():
 # arguments: ra, dec, and sr; fill in a known-good default
 if len(sys.argv)!=4:
 ra, dec, radius = 30, 10, 0.05
 else:
 ra, dec, radius = [float(a) for a in sys.argv[1:]]

 # make (and close when done) a SAMP connection so we can
 # talk to other clients
 with vohelper.SAMP_conn() as conn:
 # see we have TOPCAT on the bus and get its client id for later use
 topcat_id = vohelper.find_client(conn, "topcat")

 # now run the three queries, sending the results via samp:
 for short_name, access_url, query in QUERIES:
 service = pyvo.dal.TAPService(access_url)
 # you could now figure out interesting things about the service,
 # e.g., its table schema and such, to potentially construct queries.
 result = service.run_sync(query.format(ra=ra, dec=dec,
 radius=radius), maxrec=90000)
 vohelper.send_table_to(conn, topcat_id, result.table, short_name)

if __name__=="__main__":
 main()

#!/usr/bin/python

This code is in the public domain.

Step 1: Query three VO services, broadcast the result via SAMP
(requires: astropy, pyvo, and a little helper module, vohelper)

Queries are configured as triples of short name, access url (as from a
registry query) query. You *could* use TAP_SCHEMA to automate query
generation, but that's left as an exercise to the reader

import sys
import vohelper
import pyvo

Note that it's of course silly to use TAP to do just cone searches.
Imagine more interesting queries here.
QUERIES = [
 ("twomass", "http://dc.zah.uni-heidelberg.de/tap",
 """SELECT TOP 1000000 raj2000, dej2000, jmag, hmag, kmag
 FROM twomass.data
 WHERE 1=CONTAINS(
 POINT('ICRS', raj2000, dej2000),
 CIRCLE('ICRS', {ra}, {dec}, {radius}))"""),
 ("allwise", "http://tapvizier.u-strasbg.fr/TAPVizieR/tap",
 """SELECT raj2000, dej2000, w1mag, w2mag, w3mag, w4mag
 FROM "II/328/allwise"
 WHERE 1=CONTAINS(
 POINT('ICRS', raj2000, dej2000),
 CIRCLE('ICRS', {ra}, {dec}, {radius}))""")]

def main():
 # arguments: ra, dec, and sr; fill in a known-good default
 if len(sys.argv)!=4:
 ra, dec, radius = 30, 10, 0.05
 else:
 ra, dec, radius = [float(a) for a in sys.argv[1:]]

 # make (and close when done) a SAMP connection so we can
 # talk to other clients
 with vohelper.SAMP_conn() as conn:
 # see we have TOPCAT on the bus and get its client id for later use
 topcat_id = vohelper.find_client(conn, "topcat")

 # now run the three queries, sending the results via samp:
 for short_name, access_url, query in QUERIES:
 service = pyvo.dal.TAPService(access_url)
 # you could now figure out interesting things about the service,
 # e.g., its table schema and such, to potentially construct queries.
 result = service.run_sync(query.format(ra=ra, dec=dec,
 radius=radius), maxrec=90000)
 vohelper.send_table_to(conn, topcat_id, result.table, short_name)

if __name__=="__main__":
 main()

#!/usr/bin/python

This code is in the public domain.

Step 2: as fetch3.py (see there for comments what's going on)
but now we're querying async, in parallel

import sys
import time
import astropy

import vohelper
import pyvo

QUERIES = [
 ("twomass", "http://dc.zah.uni-heidelberg.de/tap",
 """SELECT TOP 1000000 raj2000, dej2000, jmag, hmag, kmag
 FROM twomass.data
 WHERE 1=CONTAINS(
 POINT('ICRS', raj2000, dej2000),
 CIRCLE('ICRS', {ra}, {dec}, {radius}))"""),
 # limiting wise matches since both vizier and astropy's
 # VOTable parser are lame in some sense
 ("allwise", "http://tapvizier.u-strasbg.fr/TAPVizieR/tap",
 """SELECT raj2000, dej2000, w1mag, w2mag, w3mag, w4mag
 FROM "II/328/allwise"
 WHERE w1mag<14 AND
 1=CONTAINS(
 POINT('ICRS', raj2000, dej2000),
 CIRCLE('ICRS', {ra}, {dec}, {radius}))""")]

def main():
 if len(sys.argv)!=4:
 ra, dec, radius = 30.0, 10.0, 0.20
 else:
 ra, dec, radius = [float(a) for a in sys.argv[1:]]

 jobs = set()
 for short_name, access_url, query in QUERIES:

 # create the service:
 svc = pyvo.dal.TAPService(access_url)
 # format the query:
 query = query.format(ra=ra, dec=dec, radius=radius)
 # then create a job:
 job = svc.submit_job(query)
 # then start it. This immediately returns.
 job.run()
 # we keep note of the jobs we started -- we'll watch them later.
 jobs.add((short_name, job))

 with vohelper.SAMP_conn() as conn:
 topcat_id = vohelper.find_client(conn, "topcat")

 # now watch jobs until they return, then take them off the watch list
 # and send their result
 while jobs:
 # we do the list(.) so we can remove jobs with impunity
 for short_name, job in list(jobs):
 # async jobs are in phases; they're done (or failed) when
 # they're neither queued nor executing.
 print short_name, job.phase
 if job.phase not in ('QUEUED', 'EXECUTING'):
 jobs.remove((short_name, job))
 vohelper.send_table_to(
 conn,
 topcat_id,
 # this is how you get the result from a finished job
 job.fetch_result().table,
 short_name)
 # be a good citizen: clean up your job (it'll be cleaned up
 # eventually anyway, but that might take a while)
 job.delete()

 # wait a bit before doing the next round of polling
 time.sleep(0.5)

if __name__=="__main__":
 main()

#!/usr/bin/python

This code is in the public domain.

Step 3: as Step 1, but this time cluster the points retrieved to
combine the different photometry, then show sketches of the SED
and let users select objects for closer inspection.

try:
 input = raw_input
except NameError:
 pass

import pickle
import os
import sys

from astropy import coordinates
from astropy import units as u
from astropy import table
from matplotlib import pyplot as plt
import numpy as np
import pyvo

import vohelper

for rough SED: map filter UCDs to representative wavelengths
to do this better, we'd need more takeup of the photometry DM
UCD_TO_WL = {
 "phot.mag;em.opt.u": 3.5e-7,
 "phot.mag;em.opt.b": 4.5e-7,
 "phot.mag;em.opt.v": 5.5e-7,
 "phot.mag;em.opt.r": 6.75e-7,
 "phot.mag;em.opt.i": 8.75e-7,
 "phot.mag;em.ir.j": 1.25e-6,
 "phot.mag;em.ir.h": 1.75e-6,
 "phot.mag;em.ir.k": 2.2e-6,
 "phot.mag;em.ir.3-4um": 3.5e-6,
 "phot.mag;em.ir.4-8um": 6e-6,
 "phot.mag;em.ir.8-15um": 11.5e-6,
 "phot.mag;em.ir.15-30um": 22.5e-6,
}

QUERIES = [
 ("twomass", "http://dc.zah.uni-heidelberg.de/tap",
 """SELECT TOP 1000000 raj2000, dej2000, jmag, hmag, kmag
 FROM twomass.data
 WHERE 1=CONTAINS(
 POINT('ICRS', raj2000, dej2000),
 CIRCLE('ICRS', {ra}, {dec}, {radius}))
 	AND Jmag<15"""),
 ("allwise", "http://tapvizier.u-strasbg.fr/TAPVizieR/tap",
 """SELECT raj2000, dej2000, w1mag, w2mag, w3mag, w4mag
 FROM "II/328/allwise"
 WHERE 1=CONTAINS(
 POINT('ICRS', raj2000, dej2000),
 CIRCLE('ICRS', {ra}, {dec}, {radius}))
 AND w1mag<14"""),
 ("sdss", "http://gea.esac.esa.int/tap-server/tap",
 """SELECT ra, dec, u_mag, g_mag, r_mag, i_mag, z_mag
 FROM gaiadr1.sdssdr9_original_valid
 WHERE 1=CONTAINS(
 POINT('ICRS', ra, dec),
 CIRCLE('ICRS', {ra}, {dec}, {radius}))
 AND i_mag<16"""),]

def work_around_vizast_bug(col):
 """fixes a non-interability problem between VizieR and astropy: arraysize=1
 has not meant 1-array on Vizier-TAP.

 This function makes arrays of such 1-arrays arrays of scalars.
 """
 if not np.isscalar(col[0]) and col[0].shape==(1,):
 return col.__class__(data=col[:,0], name=col.name, mask=col.mask[:,0],
 unit=col.unit, meta=col.meta)
 else:
 return col

def work_around_sdss_ucd_bug(name, ucd):
 """guesses better UCDs for SDSS' botched ones.
 """
 if ucd=="em.opt;phot.mag":
 return {
 "u_mag": "phot.mag;em.opt.u",
 "g_mag": "phot.mag;em.opt.b",
 "r_mag": "phot.mag;em.opt.r",
 "i_mag": "phot.mag;em.opt.i",
 "z_mag": "phot.mag;em.opt.i",
 }[name]
 return ucd

def get_tables(ra, dec, radius):
 """returns pairs of (short_name, result) for the queries defined.

 For experimentation, we cache the results here; to clear the cache,
 delete the file cache.pickle.
 """
 if os.path.exists("cache.pickle"):
 with open("cache.pickle", "rb") as f:
 return pickle.load(f)

 results = []
 for short_name, access_url, query in QUERIES:
 service = pyvo.dal.TAPService(access_url)
 results.append(
 (short_name, service.run_sync(query.format(**locals())).table))

 with open("cache.pickle", "wb") as f:
 pickle.dump(results, f)

 return results

def get_coordinates_for_table(table):
 """returns SkyCoord objects for an astropy table.

 This uses pos.eq.*; meta.main UCDs to know where to look.
 """
 ra_column = vohelper.get_name_for_ucd(
 "pos.eq.ra;meta.main", table)
 dec_column = vohelper.get_name_for_ucd(
 "pos.eq.dec;meta.main", table)

 # fix broken metadata (sigh)
 if table[ra_column].unit=="Angle[deg]":
 table[ra_column].unit = "deg"
 if table[dec_column].unit=="Angle[deg]":
 table[dec_column].unit = "deg"

 return coordinates.SkyCoord(
WORKAROUND!
 work_around_vizast_bug(table[ra_column]),
 work_around_vizast_bug(table[dec_column]))

def force_scalar(val):
 """returns val[0] if val is an array, val otherwise.

 Again, this is a workaround for a vizier-astropy battle.
 """
 if np.isscalar(val):
 return val
 else:
 return val[0]

def make_photo_cluster(rows):
 """makes a pair of (position, photopoint) from a list of database
 rows.
 """
 pos = [None, None]
 phots = []

 for row in rows:
 for index, col in enumerate(row):
 name = row.columns[index].name
WORKAROUND!
 ucd = work_around_sdss_ucd_bug(name,
 row.columns[index].meta.get("ucd", "").lower())

 if ucd.startswith("phot.mag"):
 col = force_scalar(col)
 if ucd in UCD_TO_WL:
 phots.append((UCD_TO_WL[ucd], col))
 elif ucd=="pos.eq.dec;meta.main":
 pos[1] = force_scalar(col)
 elif ucd=="pos.eq.ra;meta.main":
 pos[0] = force_scalar(col)

 return tuple(pos), sorted(phots)

def make_seds(tables, clusters):
 """returns a sequence of (position, photopoints) from database tables
 and the custer result.

 We select columns based on UCDs.
 """
 seds = []
 for cluster in clusters:
 seds.append(
 make_photo_cluster([tables[table_ind][1][row_ind]
 for table_ind, row_ind in cluster]))
 return seds

def select_seds(seds):
 selected = []

 for pos, phots in seds:
 to_plot = np.array(phots)
 plt.semilogx(to_plot[:,0], to_plot[:,1], '-')
 plt.ylim([min(to_plot[:,1]), max(to_plot[:,1])])
 plt.ylabel("Mag",fontsize=15)
 plt.xlabel("Wavelength", fontsize=15)
 plt.show(block=False)
 selection = input("s)elect SED, q)uit, enter for next? ")
 if selection=="q":
 break
 if selection=="s":
 selected.append(pos)
 plt.cla()

 return selected

def main():
 if len(sys.argv)!=4:
 ra, dec, radius = 130.8, 3.4, 0.3
 else:
 ra, dec, radius = [float(a) for a in sys.argv[1:]]

 tables = get_tables(ra, dec, radius)

 clusters = vohelper.compute_multi_join([
 get_coordinates_for_table(t) for name, t in tables],
 0.2*u.arcsec)

 seds = make_seds(tables, clusters)

 selected = np.array(select_seds(seds))

 if not len(selected):
 sys.exit("Nothing selected, nothing written.")

 t = table.Table()
 t.add_column(table.Column(name='ra',
 data=selected[:,0],
 unit=u.degree,
 meta={"ucd": "pos.eq.ra;meta.main"}))
 t.add_column(table.Column(name='dec',
 data=selected[:,1],
 unit=u.degree,
 meta={"ucd": "pos.eq.dec;meta.main"}))
 with open("selected_positions.vot", "wb") as f:
 t.write(output=f, format="votable")

if __name__=="__main__":
 main()

#!/usr/bin/python

This code is in the public domain.

do an all-VO obscore search for spectra around a list of points.

import sys

from astropy import table
import pyvo

import vohelper

def iter_obscore_urls():
 """yields access URLs for obscore services.
 """
 # use raw RegTAP until pyVO registry is up to the task
 result = pyvo.dal.TAPService("http://reg.g-vo.org/tap"
).run_sync("""
 SELECT DISTINCT access_url AS url
 FROM rr.interface
 NATURAL JOIN rr.capability
 NATURAL JOIN rr.res_detail
 WHERE standard_id='ivo://ivoa.net/std/tap'
 AND intf_type='vs:paramhttp'
 AND detail_xpath='/capability/dataModel/@ivo-id'
 AND 1=ivo_nocasematch(detail_value,
 'ivo://ivoa.net/std/obscore%')""")

 for url in result["url"]:
 yield url

def get_spectra_for_table(obscore_url, pois, radius, samplesize):
 """yields pairs of (dataset name, access_url) for spectra within radius
 degrees of points in pois for and obscore service.
 """
 ra_column_name = vohelper.get_name_for_ucd(
 "pos.eq.ra;meta.main", pois)
 dec_column_name = vohelper.get_name_for_ucd(
 "pos.eq.dec;meta.main", pois)

 # the rstrip in the next line is a workaround for a botched registration of
 # VAO
 try:
 svc = pyvo.dal.TAPService(obscore_url.rstrip("?"))
 if not svc.upload_methods:
 # service doesn't support upload, can't use it
 return
 except Exception, msg:
 # service unusable, skip it (but log, as whenever you catch all exceptions)
 print("broken: {}".format(msg))
 return
 except KeyboardInterrupt:
		# let users interrupt hanging/slow services
		return

 # you'd normally really match
 # CONTAINS(POINT(up.ra, up.dec), s_region); however, we need to fudge here
 # since there's still too little data in obscore.
 result = vohelper.run_sync_resilient(svc,
 """SELECT TOP {samplesize} oc.obs_publisher_did, oc.access_url
 FROM ivoa.obscore AS oc
 JOIN TAP_UPLOAD.pois AS mine
 ON 1=CONTAINS(
 POINT('ICRS', oc.s_ra, oc.s_dec),
 CIRCLE('ICRS',
 mine.{ra_column_name},
 mine.{dec_column_name},
 {radius}))
 WHERE oc.dataproduct_type='spectrum'
 """.format(**locals()),
 # add more constraints (spectral region, resolution... here)
 uploads = {"pois": pois})

 if result is None:
 return

 for row in result.table:
 yield unicode(row[0]), unicode(row[1])

def main():
 args = sys.argv+["selected_positions.vot", "1000", "2"][len(sys.argv)-1:]

 with open(args[1]) as f:
 pois = table.Table.read(f)
 radius = float(args[2])/3600
 n_samp = int(args[3])

 with vohelper.SAMP_conn() as conn:
 try:
 target_id = vohelper.find_client(conn, "splat")
 except KeyError:
 sys.exit("Start Splat and try again")

 for access_url in iter_obscore_urls():
 sys.stdout.write("Querying {} ...".format(access_url))
 sys.stdout.flush()

 specs = list(get_spectra_for_table(access_url, pois, radius, n_samp))
 sys.stdout.write(" done. ({})\n".format(len(specs)))

 for ds_name, access_url in specs:
 print("Opening {}...".format(access_url))
 try:
 vohelper.send_spectrum_to(conn, target_id, access_url, ds_name)
 except vohelper.SAMPProxyError:
 print(" (Failed)")

if __name__=="__main__":
 main()

"""
A little script doing an all-VO SIAP query for some positions and a date
range.
"""

from __future__ import print_function

try:
 input = raw_input
except NameError:
 pass

import sys

from astropy.time import Time
from pyvo.dal import sia
from pyvo import registry

DATE_MIN = Time("1902-01-01", scale="tt").mjd
DATE_MAX = Time("1922-12-31T23:59:59", scale="tt").mjd

def search_one_service(svc):
 print("\nNow querying ", svc.res_title)
 svc = sia.SIAService(svc.access_url)
 for pos in [
 (10, 20)]:
 images = svc.search(pos, 0.5, verbosity=2)
 for rec_no, match in enumerate(images):

 if not DATE_MIN<match.dateobs<DATE_MAX:
 continue

 print("{} Get? ".format(match.title), end=" ")
 if input().strip().lower().startswith("y"):
 match.cachedataset()

def main():
 for svc in registry.search(servicetype="image"):
 try:
 search_one_service(svc)
 except KeyboardInterrupt:
 if input("\nQuit? ").strip().lower().startswith("y"):
 sys.exit()
 except:
 import traceback; traceback.print_exc()

if __name__=="__main__":
 main()

"""
A little script doing an all-VO SIAP query for some positions and a date
range; the results can be sent to SAMP clients.
"""

from __future__ import print_function

import sys

from astropy.time import Time
from astropy.vo.samp import SAMPIntegratedClient
from pyvo.dal import sia
from pyvo import registry

import vohelper

DATE_MIN = Time("1990-01-01", scale="tt").mjd
DATE_MAX = Time("2005-12-31T23:59:59", scale="tt").mjd
NAME_TEMPLATE = "global-{:03d}"

def search_one_service(svc, conn):
 print("\nNow querying ", svc.res_title)
 svc = sia.SIAService(svc.access_url)

 for pos in [
 (185.4, 75.3)]:
 images = svc.search(pos, (0.5, 0.5), verbosity=2, timeout=5)
 dateName = images.fieldname_with_ucd("VOX:Image_MJDateObs")
 if dateName is None:
 return

 for rec_no, match in enumerate(images):

 if not DATE_MIN<match[dateName]<DATE_MAX:
 continue

 if not match.format.endswith("fits"):
 continue

 print("{} Show? ".format(match.title), end="")
 if raw_input().strip().lower().startswith("y"):
 vohelper.send_image_to(conn,
 None,
 match.acref,
 NAME_TEMPLATE.format(rec_no))

def main():
 with vohelper.SAMP_conn() as conn:
 for svc in registry.search(["quasars"], servicetype="image"):
 try:
 search_one_service(svc, conn)
 except KeyboardInterrupt:
 if raw_input("\nQuit? ").strip().lower().startswith("y"):
 sys.exit()
 except:
 import traceback; traceback.print_exc()

if __name__=="__main__":
 main()

"""
A trivial example for how to operate a SIAP service from PyVO:
find images from a list of positions and by date.

Get ACCESS_URL from, e.g., http://dc.g-vo.org/WIRR.
"""

from __future__ import print_function

try:
	input = raw_input
except NameError:
	# we're on python3
	pass

from astropy.time import Time
import pyvo

ACCESS_URL = "http://dc.g-vo.org/lswscans/res/positions/siap/siap.xml?"
DATE_MIN = Time("1920-01-01", scale="tt").mjd
DATE_MAX = Time("1922-12-31T23:59:59", scale="tt").mjd

def main():
 svc = pyvo.sia.SIAService(ACCESS_URL)
 for pos in [
 (10, 20),
 (240, -10),
 (45, 85)]:
 images = svc.search(pos, (0.5, 0.5), verbosity=2)
 for row in images:

 if not DATE_MIN.real < Time(row.dateobs).mjd < DATE_MAX.real:
 continue

 print("{} Get ({} bytes)?".format(
 row.title,
 row.filesize), end=" ")
 if input().strip().lower().startswith("y"):
 row.cachedataset()

if __name__=="__main__":
 main()

#!/usr/bin/python
A program running a Registry query for tables matching specific
properties (in this case: having columns with a specific UCD)
and then running generated queries to yield a common result
table.
#
In this script, we're sending the table over to TOPCAT directly.
#
Right now (Jun 2017), RegTAP doesn't work terribly well for TAP
table discovery yet, so we're providing a workaround here.
#
WARNING: With this kind of thing, you can hit a lot of services
with a lot of queries. At least while still trying out, please
don't run every iteration on the whole VO.
#
In production, you probably want to avoid going through dictionaries
for all result rows, but that's

from astropy import table
import pyvo
import sys
import vohelper # this should be where you got this file

The region of interest as a circle
RA, DEC, SR = 83.8221, -5.3911, 0.01

This is how this kind of thing should be done in the future...
REGTAP_ENDPOINT = "http://reg.g-vo.org/tap"
REGTAP_QUERY = """
SELECT TOP 1 DISTINCT access_url, table_name
FROM rr.interface
NATURAL JOIN rr.capability
NATURAL JOIN rr.res_table
NATURAL JOIN rr.table_column
NATURAL JOIN rr.stc_spatial
WHERE
	standard_id LIKE 'ivo://ivoa.net/std/tap%'
	AND ucd LIKE 'pos.pm%'
	AND 1=CONTAINS(gavo_simbadpoint('M 42'), coverage)
"""

the data items you're interested in, expressed through UCDs
that's pairs of (ucd, name, unit); implied is src, src_table
RESULT_SCHEMA = [
	('cat_id', "meta.id;meta.main", None),
	('ra', "pos.eq.ra;meta.main", "deg"),
	('dec', "pos.eq.dec;meta.main", "deg"),
	('pmra', "pos.pm;pos.eq.ra", "mas/yr"),
	('pmde', "pos.pm;pos.eq.dec", "mas/yr"),]

def get_services_and_tables(regtap_query):
	"""returns a sequence of (service, [table-names]) pairs for a
	hardwired RegTAP query.

	regtap_query must (at least) have access_url and table_name in
	the select clause.

	NOTE: As of mid-2017, this query doesn't really do what you'd expect
	due to deficiencies in the providers' registry records. Use the
	GloTS variant until then.
	"""
	reg_svc = pyvo.dal.TAPService(REGTAP_ENDPOINT)
	result = reg_svc.run_sync(regtap_query)

	svcs = {}
	for row in result.table:
		svcs.setdefault(row["access_url"], []).append(row["table_name"])
	return svcs.items()

def get_services_and_tables_glots():
	"""stands in for get_services_and_tables until people get their
	act together.

	For subtle reasons, coverage queries here won't do what you want here.
	Sorry.
	"""
	reg_svc = pyvo.dal.TAPService(REGTAP_ENDPOINT)
	result = reg_svc.run_sync("""
		SELECT DISTINCT accessurl as access_url, table_name
		FROM glots.columns
			JOIN glots.services using (ivoid)
			JOIN glots.tables using (ivoid, table_name)
		WHERE
			ucd LIKE 'pos.pm%'
			-- Skip half-broken but time-consuming wfau services for now
			AND accessurl NOT LIKE '%wfau%'
		""", maxrec=3000)

	svcs = {}
	for row in result.table:
		svcs.setdefault(row["access_url"], []).append(row["table_name"])
	return svcs.items()

def get_query(svc, table):
	"""returns a query producing RESULT_SCHEMA for table in svc, plus
	a defaults dict to complete with empty columns.

	svc is a pyvo.dal.TAPService, table a name from the schema.
	"""
	db_table = svc.tables[table]
	select_clause, defaults = [], {}
	for dest_name, ucd, unit in RESULT_SCHEMA:
		try:
			select_clause.append("{} AS {}".format(
				vohelper.quote_if_necessary(
					vohelper.get_name_for_ucd(ucd, db_table)),
				dest_name))
		except KeyError:
			# ADQL cannot SELECT NULL, hence this workaround
			defaults[dest_name] = None

	return ("SELECT {selclause} FROM {srctable}"
		" WHERE 1=CONTAINS(POINT('', {racol}, {deccol}),"
		" CIRCLE('', {ra}, {dec}, {sr}))").format(
			selclause=", ".join(select_clause),
			srctable=vohelper.quote_if_necessary(table),
			racol=vohelper.get_name_for_ucd("pos.eq.ra;meta.main", db_table),
			deccol=vohelper.get_name_for_ucd("pos.eq.dec;meta.main", db_table),
			ra=RA,
			dec=DEC,
			sr=SR), defaults

def get_rows_for_svc(access_url, tables):
	"""returns rows in RESULT_SCHEMA for tables in the service at access_url.
	"""
	svc = pyvo.dal.TAPService(access_url)
	for table_name in tables:
		try:
			sys.stderr.write("> {} on {}\n".format(table_name, access_url))
			query, defaults = get_query(svc, table_name)
			defaults.update({"src": access_url, "src_table": table_name})

			db_rows = svc.run_sync(query).table
			for row in db_rows:
				# TODO: Fix units here
				res = dict(zip(row.colnames, row.as_void()))
				res.update(defaults)
				yield res
		except Exception, msg:
			sys.stderr.write("Table {} at {} broken: {}\n".format(
				table_name, access_url, msg))

def make_result_table(recs):
	"""returns an astropy table for RESULT_SCHEMA plus src, src_table.
	"""
	res = table.Table()
	res.add_column(table.Column(name='src',
		description="Source service",
		data=[r["src"] for r in recs]))
	res.add_column(table.Column(name='src_table',
		description="Source table",
		data=[r["src_table"] for r in recs]))
	
	for name, ucd, unit in RESULT_SCHEMA:
		res.add_column(table.Column(name=name,
			data=[r[name] for r in recs],
			meta={"ucd": ucd})),

	return res

def main():
	recs = []
	for svc_url, tables in get_services_and_tables_glots():
	# in the future: get_services_and_tables(REGTAP_ENDPOINT)
		recs.extend(
			list(get_rows_for_svc(svc_url, tables)))
	
	res_table = make_result_table(recs)
	with vohelper.SAMP_conn() as conn:
		topcat_id = vohelper.find_client(conn, "topcat")
		vohelper.send_table_to(conn, topcat_id, res_table, "lotsarows")
				

if __name__=="__main__":
	main()

"""
Use extra (non-protocol) parameters in SIAP. To see what a service supports,
look at ACCESS_URL?FORMAT=METADATA (the INPUT: PARAMs).

Here, we also do SODA-based cutouts.
"""

from pyvo.dal import sia

ACCESS_URL = "http://dc.g-vo.org/bgds/q/sia/siap.xml?"

svc = sia.SIAService(ACCESS_URL)

for index, match in enumerate(svc.search((107, -10), (0.1, 0.1),
		dateObs="57050/58050",
		bandpassId="SDSS i'").iter_datalinks()):
	with open("cutout-{}03d.fits".format(index), "wb") as f:
		f.write(
			next(match.bysemantics("#proc")).processed(circle=(107,-10,0.1)
).read())

"""
A trivial example for how to operate a SIAP service from PyVO:
find images from a list of positions and by date.

Get ACCESS_URL from, e.g., http://dc.g-vo.org/WIRR.
"""

from __future__ import print_function

import pyvo

ACCESS_URL = "http://dc.g-vo.org/lswscans/res/positions/siap/siap.xml?"

def main():
 svc = pyvo.sia.SIAService(ACCESS_URL)
 results = svc.search((10, 35), (0.5, 0.5))
 for image_desc in results:
 print(image_desc.title, image_desc.dateobs, image_desc.acref)

if __name__=="__main__":
 main()

"""
A quick example showing astropy and pyvo working hand in hand with the
rest of the VO

This program expects Aladin to run. It then waits for tables to be sent,
and when a row is selected, it will search some (SERVICE_META) cone
search services. The results are joined and sent to aladin with
positions, proper motions, and source.

Sample use:

(1) start TOPCAT, aladin, then python vicinitysearcher.py
(2) in TOPCAT, open VO/Cone Search, look for "transitional YSOs"
(3) select the Magnier+ 1999 service, make RA and DEC 0, SR 180, "ok"
(4) broadcast table
(5) in Aladin, pan and zoom until you have a catalog object in a FoV of
 an arcminute or so
(6) hover over the object to pull in the potential matches
(7) select the items to see the catalog entries.
"""

import vohelper

from astropy import table
from pyvo.dal import scs

SERVICE_META = [
 ("PPMXL", "http://dc.zah.uni-heidelberg.de/ppmxl/q/cone/scs.xml?"),
 ("2MASS", "http://dc.zah.uni-heidelberg.de/2mass/res/2mass/q/scs.xml?"),
 ("UCAC4", "http://dc.zah.uni-heidelberg.de/ucac4/q/s/scs.xml?")]

def get_name_for_ucd(ucd, table):
 """returns the name of a column having ucd in table.

 If there are multiple such columns, a random one is returned. If there
 are none, a key error is raised.
 """
 ucd = ucd.lower()

 for col in table.columns.values():
 if col.meta.get("ucd").lower()==ucd:
 return col.name
 raise KeyError(ucd)

class VicinitySearcher(object):
 """The SAMP handling class.

 This is where the action takes place: receiving VOTables, handling
 notifications of selected rows, querying the remote services.

 True, in a less one-off program this should be less god-like, and
 at least make_response_table shouln't be part of this.
 """
 vicinity_size = 30 # arcsec
 client_name = "Aladin" # samp.name of the client for the match table

 def __init__(self, conn):
 self.conn = conn
 self.cur_table = self.cur_id = None
 self.dest_client = vohelper.find_client(self.conn, self.client_name)

 self.services = []
 for short_name, access_url in SERVICE_META:
 self.services.append(scs.SCSService(access_url))
 self.services[-1].my_tag = short_name

 self.conn.bind_receive_call(
 "table.load.votable", self.load_VOTable)
 self.conn.bind_receive_notification("table.highlight.row",
 self.handle_selection)

 @vohelper.show_exception
 def load_VOTable(self, private_key, sender_id, msg_id, mtype,
 params, extra):
 """the SAMP handler to load VOTables.

 (binding is done in the constructor)
 """
 self.cur_table = table.Table.read(params['url'])
 self.ra_name = get_name_for_ucd("POS_EQ_RA_MAIN", self.cur_table)
 self.dec_name = get_name_for_ucd("POS_EQ_DEC_MAIN", self.cur_table)
 self.cur_id = params["table-id"]

 self.conn.reply(msg_id,
 {"samp.status": "samp.ok", "samp.result": {}})

 @vohelper.show_exception
 def handle_selection(self, private_key, sender_id, msg_id, mtype,
 params, extra):
 """the SAMP handler for a row selection in our current table.
 """
 if params["table-id"]!=self.cur_id:
 # doesn't concern us, not our table
 return
 table_index = int(params["row"])
 print "Row selected:", table_index
 response = self.make_response_table(table_index)

 if response is not None:
 vohelper.send_table_to(self.conn, self.dest_client, response)

 def make_response_table(self, table_index):
 """returns an astropy table (or None) for the row table_index.

 This is essentially the "user code" that reacts on the incoming
 messages.
 """
 ra = self.cur_table[self.ra_name][table_index]
 dec = self.cur_table[self.dec_name][table_index]
 pm_unit = "deg/yr"

 ras, decs, pmras, pmdecs, svcs = [], [], [], [], []
 for service in self.services:
 print "Querying ", service.my_tag
 cone_result = service.search((ra,dec),
 self.vicinity_size/3600.)
 nrecs = len(cone_result.getcolumn(
 cone_result.fieldname_with_ucd("POS_EQ_RA_MAIN")))

 ras.extend(cone_result.getcolumn(
 cone_result.fieldname_with_ucd("POS_EQ_RA_MAIN")))
 decs.extend(cone_result.getcolumn(
 cone_result.fieldname_with_ucd("POS_EQ_DEC_MAIN")))

 pmra_name = cone_result.fieldname_with_ucd("pos.pm;pos.eq.ra")
 if pmra_name:
 pmras.extend(cone_result.table.columns[pmra_name].to(pm_unit).value)
 else:
 pmras.extend([None]*nrecs)

 pmdec_name = cone_result.fieldname_with_ucd("pos.pm;pos.eq.dec")
 if pmdec_name:
 pmdecs.extend(cone_result.table.columns[pmdec_name].to(pm_unit).value)
 else:
 pmdecs.extend([None]*nrecs)

 svcs.extend([service.my_tag]*nrecs)

 if not ras:
 return None
 else:
 print "Found %d matches"%len(ras)

 res = table.Table([
 table.Column(name="ra",
 data=ras,
 description="Right Ascension from upstream",
 unit="deg",
 meta={"ucd": "pos.eq.ra;meta.main"}),
 table.Column(name="dec",
 data=decs,
 description="Declination from upstream",
 unit="deg",
 meta={"ucd": "pos.eq.dec;meta.main"}),
 table.Column(name="pmra",
 data=pmras,
 description="Proper motion in Right Ascension from upstream",
 unit=pm_unit,
 meta={"ucd": "pos.pm;pos.eq.ra"}),
 table.Column(name="pmdec",
 data=pmdecs,
 description="Proper motion in declination from upstream",
 unit=pm_unit,
 meta={"ucd": "pos.pm;pos.eq.dec"}),
 table.Column(name="service",
 data=svcs,
 description="Source of the data",
 meta={"ucd": "meta.id"}),])

 return res

def main():
 with vohelper.SAMP_conn() as conn:
 VicinitySearcher(conn)
 print("Listening. Send me a table, hit return to exit.")
 raw_input()

if __name__=="__main__":
 main()

vim:sta:et:sw=2

"""
A program to dump the extra parameters accepted by SIAP and SSAP services.

It takes an access URL as its parameter; example:
http://dc.g-vo.org/bgds/q/sia/siap.xml?
"""

from io import BytesIO

import requests
PyVO convenience functions don't let us access the RESOURCE that we
need here.
from astropy.io.votable import parse as vot_parse

import vohelper

def get_parameter_description(access_url):
	"""returns tuples of name, unit, ucd, type, description, values for
	the (custom) parameters of the service at access_url.
	"""
	if not "?" in access_url:
		# is a standards violation, but it's a cheap mitigation:
		access_url = access_url+'?'

	vot = vot_parse(
		requests.get(
			access_url, {"REQUEST": "doQuery", "FORMAT": "Metadata"}, stream=True
).raw.read)
	for param in vot.resources[0].params:
		if param.name.lower().startswith("input:"):
			type_desc = param.datatype
			if param.arraysize:
				type_desc = "{}[{}]".format(type_desc, param.arraysize)
			yield (
				param.name[6:],
				param.unit or "",
				param.ucd or "",
				type_desc,
				param.description,
				param.values)

def print_parameter_description(access_url):
	for param_desc in get_parameter_description(access_url):
		print("\n{0} [{1}] {3} -- {2}\n{4}".format(*param_desc))
		values = param_desc[5]
		if values.min and values.max:
			print("{} .. {}".format(values.min, values.max))
		if values.options:
			print("|".join(o[1] for o in values.options))

def parse_command_line():
	import argparse
	parser = argparse.ArgumentParser(
		description="Print a VO service's custom parameters")
	parser.add_argument("access_url", type=str,
		help="The service's access URL")
	return parser.parse_args()

if __name__=="__main__":
	print_parameter_description(
		parse_command_line().access_url)

Helpers for using PyVO and astropy, as used by the PyVO talk(s) given
by GAVO Heidelberg.
#
This code is in the public domain.

import contextlib
import functools
import itertools
import re
import tempfile
import traceback
import warnings

astropy's votable code is overzealous in complaining about things
-- that's worthless for a consumer, so let's turn it off.
warnings.filterwarnings('ignore', module="astropy.io.votable.*")

try:
	from astropy.vo.samp import SAMPIntegratedClient, SAMPProxyError
except ImportError:
	from astropy.samp import SAMPIntegratedClient, SAMPProxyError

import numpy as np
import pyvo
import requests

import os

def show_exception(func):
	"""decorates func such that any exceptions coming out of it are
	shown in the terminal (and then re-raised).
	"""
	def _(*args, **kwargs):
		try:
			return func(*args, **kwargs)
		except Exception:
			traceback.print_exc()
			raise

	return functools.update_wrapper(_, func)

def send_table_to(conn, dest_client_id, astropy_table, name="data"):
	"""sends astropy_table via SAMP.

	dest_client_id can be obtained with find_client. This does the
	exchange through the file system and thus assumes that the
	target client shares it with us.
	"""
	with samp_accessible(astropy_table) as table_url:
		message = {
			"samp.mtype": "table.load.votable",
			"samp.params": {
				"url": table_url,
				"name": name,
			}}
		conn.call_and_wait(dest_client_id, message, "10")

def send_product_to(conn, dest_client_id, data_url, mtype, name="data"):
	"""sends SAMP messages to load data.

	This is a helper for send_spectrum_to and send_image_to, which work
	exactly analogous to each other, except that the mtypes are different.

	If dest_client_id, this is a broadcast (and we don't wait for any
	responses). If dest_client_id is given, we wait for acknowledgement
	by the receiver.
	"""
	message = {
		"samp.mtype": mtype,
		"samp.params": {
			"url": data_url,
			"name": name,
		}}
	if dest_client_id is None:
		conn.notify_all(message)
	else:
		conn.call_and_wait(dest_client_id, message, "10")

def send_spectrum_to(conn, dest_client_id, spectrum_url, name="data"):
	"""asks a spectrum client to open a remote spectrum via SAMP.

	Pass dest_client_id=None to do a broadcast.
	"""
	send_product_to(conn,
		dest_client_id,
		spectrum_url,
		"spectrum.load.ssa-generic",
		name)

def send_image_to(conn, dest_client_id, image_url, name="data"):
	"""asks an image client to open a remote image via SAMP.

	Pass dest_client_id=None to do a broadcast.

	It's likely that anything that's not a FITS file won't work here,
	so try to avoid that.
	"""
	send_product_to(conn,
		dest_client_id,
		image_url,
		"image.load.fits",
		name)

def find_client(conn, samp_name):
	"""returns the SAMP id of the client with samp.name samp_name.

	This will raise a KeyError if the client is not on the hub.
	"""
	for client_id in conn.get_registered_clients():
		if conn.get_metadata(client_id).get("samp.name")==samp_name:
			return client_id
	raise KeyError(samp_name)

@contextlib.contextmanager
def samp_accessible(astropy_table):
	"""a context manager making astropy_table available under a (file)
	URL for the controlled section.

	This is useful with uploads.
	"""
	handle, f_name = tempfile.mkstemp(suffix=".xml")
	with os.fdopen(handle, "w") as f:
		astropy_table.write(output=f,
			format="votable")
	try:
		yield "file://"+f_name
	finally:
		os.unlink(f_name)

@contextlib.contextmanager
def SAMP_conn(
		client_name="pyvo client",
		description="A generic PyVO client",
		**kwargs):
	"""a context manager to give the controlled block a SAMP connection.

	The program will disconnect as the controlled block is exited.
	"""
	client = SAMPIntegratedClient(
		name=client_name,
		description=description,
		**kwargs)
	client.connect()
	try:
		yield client
	finally:
		client.disconnect()

TODO: use resultset.fieldname_with_ucd instead
def get_name_for_ucd(ucd, table):
	"""returns the name of a column having ucd in table.

	If there are multiple such columns, a random one is returned. If there
	are none, a key error is raised.
	"""
	ucd = ucd.lower()

	for col in table.columns.values():
		if col.meta.get("ucd", "").lower()==ucd:
			return col.name
	raise KeyError(ucd)

SOME_SQL_RESERVED_WORDS = set(
	"area box centroid circle coordsys distance exp log point region"
	" avg case cross current date day desc distinct double exists"
	" found full global group hour key left level max min month"
	" precision prior public real right second set size sum"
	" time timestamp to true upper user value when where year".split())

def quote_if_necessary(identifier):
	"""returns a delimited version of identifier if it doesn't look it would
	pass for a SQL regular identifier.

	We actually allow dots since we don't want to parse table references
	with schema names. If someone is devious enough to break this
	with a simple dot, they have waived their moaning rights.

	We only check for a few of the most tempting SQL keywords, though.

	This function shouldn't really be necessary here as TAP operators ought
	to give pre-quoted identifiers in tap_schema and friends. They don't
	yet, though.
	"""
	if re.match('".*"$', identifier):
		# we are already quoted
		return identifier

	elif (re.match("[A-Za-z][A-Za-z0-9_.]*$", identifier)
			and not identifier.lower() in SOME_SQL_RESERVED_WORDS):
		return identifier
	
	else:
		return '"{}"'.format(
			identifier.replace('"', '""'))

def compute_multi_join(sky_coords, radius):
	"""does an len(sky-coords)-way crossmatch of rows in sky_coords and returns
	the indices to match up.

	This is essentially an n-way symmetric crossmatch. It's not efficient,
	though, and also exclusively positional.

	You probably want to use a real clustering algorithm here. Astroml,
	http://www.astroml.org/, for instance, looks like a nice package.
	"""
	# match all tables against all tables for now
	matches = set()
	for left, right in itertools.permutations(range(len(sky_coords)), 2):
		idx, dist2, _ = sky_coords[left
].match_to_catalog_sky(sky_coords[right])

		pairs = np.array([np.arange(len(idx)), idx]).transpose()
		for left_ind, right_ind in pairs[dist2<radius]:
			matches.add(((left, left_ind), (right, right_ind)))

	# aggregate the matches (i.e., put everything matched to the same thing
	# in one box
	to_join = {}
	for ob1, ob2 in matches:
		if (ob1 in to_join and ob2 in to_join
				and to_join[ob1] is not to_join[ob2]):
			to_join[ob1] = to_join[ob2] = to_join[ob1] | to_join[ob2]
		elif ob2 in to_join:
			to_join[ob1] = to_join[ob2]
			to_join[ob1].add(ob1)
		elif ob1 in to_join:
			to_join[ob2] = to_join[ob1]
			to_join[ob2].add(ob2)
		else:
			to_join[ob1] = to_join[ob2] = set([ob1, ob2])
	
	return set(frozenset(v) for v in to_join.values())

def run_sync_resilient(svc, *sync_args, **sync_kw_args):
	"""runs a sync query in a TAP service svc, catching and logging all
	kinds of errors.

	On error, this just returns None.

	In particular, this catches ^C so people can cancel individual
	queries.

	This is really intended for all-VO-queries where we don't and shouldn't
	care about a couple of broken services.
	"""
	try:
		return svc.run_sync(*sync_args, **sync_kw_args)
	except (
			pyvo.dal.DALServiceError,
			pyvo.dal.DALQueryError,
			requests.ConnectionError) as ex:
		print("{}:{}".format(svc.baseurl, ex))
		return
	except KeyboardInterrupt: # Let the user abort slow queries
		return

