
Astronomy ESFRI & Research Infrastructure Cluster
 ASTERICS - 653477

01/06/2018 1ASTERICS-OBELICS School 2018 / Annecy

H2020-Astronomy ESFRI and Research Infrastructure Cluster
(Grant Agreement number: 653477).

2nd ASTERICS-OBELICS International School
4-8 June 2018, Annecy, France.

Version Control using git
Maximilian Nöthe

Astroparticle Physics, TU Dortmund

2nd Asterics-Obelics School 2 – 4th of June 2018

Overview

What is version control and why do we need it?

Git

Git Hosting Services

Continuous Integration

git compared to other VCS

M. Nöthe – TU Dortmund VC with Git 2 / 40

What is version control and why do
we need it?

M. Nöthe – TU Dortmund VC with Git – What is version control and why do we need it? 3 / 40

What is Version Control?

→ Version Control tracks changes of a (collection of) document(s)
→ This can basically be anything: software, legal documents, documentation,

scientific paper
→ We will call a snapshot of such a collection a “revision”.
→ Revisions are the complete history of our projects

M. Nöthe – TU Dortmund VC with Git – What is version control and why do we need it? 4 / 40

Why Use Version Control?

→ Allows us to go back to arbitrary revisions
→ Shows differences between revisions
→ Enables collaborative working
→ Acts as backup if used together with a remote server

M. Nöthe – TU Dortmund VC with Git – What is version control and why do we need it? 5 / 40

Why Use Version Control?

Most Version Control Systems (VCS) make answering the following questions easy:

What? What changed from revision a to revision b?
Who? Who made a change? Who contributed?
Why? VCS usually encourage or even force adding explanations to changes.
When? In which revision was a bug introduced or fixed?

Version Control is a basic requirement for reproducible
science

M. Nöthe – TU Dortmund VC with Git – What is version control and why do we need it? 6 / 40

Why Use Version Control?

Most Version Control Systems (VCS) make answering the following questions easy:

What? What changed from revision a to revision b?
Who? Who made a change? Who contributed?
Why? VCS usually encourage or even force adding explanations to changes.
When? In which revision was a bug introduced or fixed?

Version Control is a basic requirement for reproducible
science

M. Nöthe – TU Dortmund VC with Git – What is version control and why do we need it? 6 / 40

M. Nöthe – TU Dortmund VC with Git – Git 7 / 40

→ Created by Linus Torvalds in 2005 for the Linux Kernel
→ Most widely used VCS in FOSS
→ Distributed, allows offline usage
→ Much better branching model than precursors like SVN, more later

M. Nöthe – TU Dortmund VC with Git – Git 8 / 40

https://github.com/torvalds/linux

The Git Repository

M. Nöthe – TU Dortmund VC with Git – Git 9 / 40

Central Concept: Repository

→ git init creates a git repository in the current working directory
→ All git data is stored in the .git directory.
→ Git has three different areas, changes can reside in:

Working directory

Staging

History

What actually is on disk in the current
working directory.

Changes that are saved to go into the
next commit.

The history of the project. All changes
ever made. A Directed Acyclic Graph of
commits.

M. Nöthe – TU Dortmund VC with Git – Git 10 / 40

Central Concept: Repository

Working directory

Staging

History

git add

git commit

M. Nöthe – TU Dortmund VC with Git – Git 11 / 40

Central Concept: Repository

Working directory

Staging

History

git add

git commit

M. Nöthe – TU Dortmund VC with Git – Git 11 / 40

Central Concept: Repository

Working directory

Staging

History

git add

git commit

M. Nöthe – TU Dortmund VC with Git – Git 11 / 40

Remotes

Remotes are central places, e.g. servers, where repositories can be saved and
which can be used to synchronize different clients.

History

Remote

git pushgit pull

The main remote is canonically named origin.

git remote add <name> <url>, e.g.
git remote add origin https://github.com/maxnoe/myrepo

M. Nöthe – TU Dortmund VC with Git – Git 12 / 40

History

ICRC 2017

a b c d master

f

→ Commit: State/Content at a given time
→ Contains a commit message to describe the changes
→ Commits always point to their parent(s)
→ Commits are identified by a hash of the content, message, author(s), parent(s)

→ Branch: A named pointer to a commit
→ Development branches
→ Main branch: master
→ Moves to the next child if a commit is added

→ Tag: Fixed, named pointer to a commit
→ For important revisions, e.g. release versions or version used for a certain paper

M. Nöthe – TU Dortmund VC with Git – Git 13 / 40

History

ICRC 2017

a b c d master

e foo

→ Commit: State/Content at a given time
→ Contains a commit message to describe the changes
→ Commits always point to their parent(s)
→ Commits are identified by a hash of the content, message, author(s), parent(s)

→ Branch: A named pointer to a commit
→ Development branches
→ Main branch: master
→ Moves to the next child if a commit is added

→ Tag: Fixed, named pointer to a commit
→ For important revisions, e.g. release versions or version used for a certain paper

M. Nöthe – TU Dortmund VC with Git – Git 13 / 40

History

ICRC 2017

a b c d e f

g

h i master

j foo

→ Commit: State/Content at a given time
→ Contains a commit message to describe the changes
→ Commits always point to their parent(s)
→ Commits are identified by a hash of the content, message, author(s), parent(s)

→ Branch: A named pointer to a commit
→ Development branches
→ Main branch: master
→ Moves to the next child if a commit is added

→ Tag: Fixed, named pointer to a commit
→ For important revisions, e.g. release versions or version used for a certain paper

M. Nöthe – TU Dortmund VC with Git – Git 13 / 40

History

ICRC 2017

a b c d e f

g

h i master

j foo

→ Commit: State/Content at a given time
→ Contains a commit message to describe the changes
→ Commits always point to their parent(s)
→ Commits are identified by a hash of the content, message, author(s), parent(s)

→ Branch: A named pointer to a commit
→ Development branches
→ Main branch: master
→ Moves to the next child if a commit is added

→ Tag: Fixed, named pointer to a commit
→ For important revisions, e.g. release versions or version used for a certain paper

M. Nöthe – TU Dortmund VC with Git – Git 13 / 40

Typical single-branch workflow

If new Create or clone repository : git init, git clone <url>
If exists git pull

1. Work
1.1 Edit files and build/test
1.2 Add changes to the next commit: git add
1.3 Save added changes in the history as commit: git commit

2. Download commits that happend in the meantime: git pull
3. Upload your own: git push

M. Nöthe – TU Dortmund VC with Git – Git 14 / 40

git init, git clone

git init Creates a new git repo in the CWD
git clone <url> Clones (downloads) the repo from url
rm -rf .git Deletes all traces of git from the repository

M. Nöthe – TU Dortmund VC with Git – Git 15 / 40

git status, git log

git status Shows current state of the repository (New, changed, deleted,
renamed, untracked files)

git log List the commits of the current branch

M. Nöthe – TU Dortmund VC with Git – Git 16 / 40

git add, git mv, git rm, git reset

git add <file> … Add files to the staging
git add -p … Powerfull tool to only add parts of a file
git mv like mv, stages automatically
git rm like rm, stages automatically
git reset <file> Removes changes/files from the staging area

M. Nöthe – TU Dortmund VC with Git – Git 17 / 40

git diff

git diff Show difference between CWD and
staging

git diff --staged Show difference between staging and
last commit

git diff <commit1> <commit2> Show difference between two commits

M. Nöthe – TU Dortmund VC with Git – Git 18 / 40

git commit

git commit Create a new commit from the changes in the
stagin area, opens your favourite editor to
compose the commmit message

git commit -m "message" Create a new commit giving the message on
the commandline

git commit --amend Change the last commit (Adds staging to last
commit, message editable)

Never change commits that are already pushed

→ Style guide for commits
→ First line is title/summary for the commit and should be < 60 characters
→ Followed by one empty line
→ Longer description of the changes, e.g. using bullet points.

→ Commits should be small, logical units
→ git add -p very handy

→ “Commit early, commit often”

M. Nöthe – TU Dortmund VC with Git – Git 19 / 40

git pull, git push

git fetch Download commits from the remote
git pull Download commits and merge current branch with the remote
git push Upload commits

M. Nöthe – TU Dortmund VC with Git – Git 20 / 40

git checkout

git checkout <commit> Load a certain commit from the history into the
CWD (check with git log)

git checkout <file> Reset <file> to the last commit, throwing any
changes away

M. Nöthe – TU Dortmund VC with Git – Git 21 / 40

Working using multiple branches – GitHub Workflow

There are multiple models of working together with git using branches

Simplest and most popular: “GitHub-Workflow”

→ Nobody directly commits into the master branch
→ For each new feature / change / bugfix a new branch is created
→ Branches should be rather shortlived
→ Merge into master as soon as possible, then delete branch
→ Master should always contain a working version

M. Nöthe – TU Dortmund VC with Git – Git 22 / 40

Branches

git branch <name> Create a new branch pointing to the current
commit

git checkout <name> Switch to branch <name>
git checkout -b <name> Create a new branch and change to it
git merge <other> Merge the changes of branch <other> into the

current branch

M. Nöthe – TU Dortmund VC with Git – Git 23 / 40

Beware: Merge conflicts

Happens when git can’t merge automatically, e.g. two people edited the same line.

1. Open the files with conflicts
2. Find the lines with conflicts and resolve by manually editing them

<<<<<<< HEAD
foo
||||||| merged common ancestors
bar
=======
baz
>>>>>>> Commit-Message

3. Commit merged changes:
3.1 git add …
3.2 git commit

Usefull: git config --global merge.conflictstyle diff3

M. Nöthe – TU Dortmund VC with Git – Git 24 / 40

git stash

git stash Reset CWD to last commit but save the changes in the
“stash”

git stash pop Get the saved changes back

M. Nöthe – TU Dortmund VC with Git – Git 25 / 40

.gitignore

Many files or filetypes should not be put under version control

→ Compilation results
→ Files reproducibly created by scripts
→ Config files containing credentials
→ ...

→ .gitignore in the base of a repository
→ One file or glob pattern per line for files that git should ignore

Example:
build/
*.so
__pycache__/

Github provides a default .gitignore for most programming languages:
github.com/github/gitignore

M. Nöthe – TU Dortmund VC with Git – Git 26 / 40

https://github.com/github/gitignore

Global .gitignore

For some files it makes sense to ignore them globally, for every repository

git config --global core.excludesfile $HOME/.gitignore

E.g. strange macOS files or editor backup files

__MACOSX # weird mac directory
.DS_STORE # weird mac metadata file
*.swp # vim backup files
*~ # nano / gedit backup files

M. Nöthe – TU Dortmund VC with Git – Git 27 / 40

Git Hosting Services

M. Nöthe – TU Dortmund VC with Git – Git Hosting Services 28 / 40

Git Hosting Providers

→ Several Providers and self-hosted server solutions available
→ Usually provide much more than just hosting the repositories

→ Issue tracking
→ Code review using pull requests
→ Wiki
→ Project Management, e.g. Canban boards
→ Continuous integration
→ Releases

M. Nöthe – TU Dortmund VC with Git – Git Hosting Services 29 / 40

Git Hosting Providers

→ Largest Hoster

→ Many Open Source
Projects, e.g. Python

→ Unlimited private
repositories for students
and reasearch
organisations
education.github.com

→ open-source community
edition

→ paid enterprise edition
with more features

→ unlimited private
repositories

→ Self hosted or as service
at gitlab.com

→ Unlimited private repos
with up to 5 contributors

→ Lacks far behind GitHub
and GitLab

“Now, everybody sort of gets born with a GitHub account” –
Guido van Rossum commenting on Python’s move to GitHub

M. Nöthe – TU Dortmund VC with Git – Git Hosting Services 30 / 40

https://github.com
https://gitlab.com
https://bitbucket.org
https://education.github.com
https://gitlab.com

Git Hosting Providers

→ Largest Hoster

→ Many Open Source
Projects, e.g. Python

→ Unlimited private
repositories for students
and reasearch
organisations
education.github.com

→ open-source community
edition

→ paid enterprise edition
with more features

→ unlimited private
repositories

→ Self hosted or as service
at gitlab.com

→ Unlimited private repos
with up to 5 contributors

→ Lacks far behind GitHub
and GitLab

“Now, everybody sort of gets born with a GitHub account” –
Guido van Rossum commenting on Python’s move to GitHub

M. Nöthe – TU Dortmund VC with Git – Git Hosting Services 30 / 40

https://github.com
https://gitlab.com
https://bitbucket.org
https://education.github.com
https://gitlab.com

SSH Keys

Git can communicate using two ways with a remote:

HTTP Works out of the box, requires entering credentials at every
push/pull

SSH Using keys, you only need to enter the key password once per
session

SSH-Keys:

1. ssh-keygen -t rsa -b 4096 -C "GitHub Key for <username>
at <machine>" -f /.ssh/id_rsa.github

2. Passwort wählen
3. cat ~/.ssh/id_rsa.github.pub
4. Add key to profile

M. Nöthe – TU Dortmund VC with Git – Git Hosting Services 31 / 40

Forking

→ Using git and hosting providers, it’s easy to contribute to projects you do not
have write access to.

→ This is arguably the most important reason for git’s success.
→ Forking means to create a copy of the main repository in your namespace,

e.g. http://github.com/matplotlib/matplotlib to
http://github.com/maxnoe/matplotlib

→ You can then make changes and create a pull request in the main repository!
→ To keep you fork up to date, you should add both your fork and the main

repo as remotes.

M. Nöthe – TU Dortmund VC with Git – Git Hosting Services 32 / 40

http://github.com/matplotlib/matplotlib

Forks

git clone <your fork> Clone your fork
git add remote upstream <main repo> Add the main repo
git fetch upstream Download changes from the

main repo
git reset --hard upstream/master Reset the current branch to

the master of the main repo
to synchronize with the
changes

M. Nöthe – TU Dortmund VC with Git – Git Hosting Services 33 / 40

Integration with Issue Tracking

Start working on fixing a bug, that was documented in issue 42.
$ git checkout -b fix_42

... do stuff to fix bug ...

$ git add src/foo.cxx
$ git commit -m "Fix segmentation fault when doing stuff, fixes #42"
$ git push -u origin fix_42

If this commit get’s merged into master, issue 42 will automatically be closed.

M. Nöthe – TU Dortmund VC with Git – Git Hosting Services 34 / 40

Continuous Integration

M. Nöthe – TU Dortmund VC with Git – Continuous Integration 35 / 40

Continuous Integration

→ Automatically run your test suite on new pushes and pull requests
→ Let’s you see if a PR will break or fix stuff
→ Automatically create releases on tagged versions
→ Build and upload documention
→ ...

M. Nöthe – TU Dortmund VC with Git – Continuous Integration 36 / 40

Travis-CI

→ Travis provides free CI linux servers for public github repositories
→ Configured by a .travis.yml file in the repo

Simple Python example:

language: python
python: # run tests on python 3.5 and 3.6

- "3.5"
- "3.6"

install:
- pip install .

script:
- pytest -v

Much more complex tasks are possible: e.g. deploy to PyPI on tags, build and
upload documentation etc.

M. Nöthe – TU Dortmund VC with Git – Continuous Integration 37 / 40

Git compared to other VCS

M. Nöthe – TU Dortmund VC with Git – git compared to other VCS 38 / 40

Git compared to other VCS

→ Only widely used alternative is SVN.
→ Outdated and not maintained anymore e. g. CVS (last release 13 years ago)
→ Mercurial (hg) rarely used alternative (Python just moved from hg to

Git(Hub))

M. Nöthe – TU Dortmund VC with Git – git compared to other VCS 39 / 40

Git vs. SVN

Git
+ Faster
+ Full history available offline
+ Cheap branching
+ Much better tooling
(GitHub/GitLab)

+ Branch/Fork → Pull Request
Workflow (Outside Contribution,
Code Review)

SVN
+ Simpler

- Harder to learn - Slower
- Accessing the history needs
server connections

- Branching/Merging is expensive
and not well supported

M. Nöthe – TU Dortmund VC with Git – git compared to other VCS 40 / 40

Astronomy ESFRI & Research Infrastructure Cluster
 ASTERICS - 653477

Acknowledgement
• H2020-Astronomy ESFRI and Research

Infrastructure Cluster (Grant
Agreement number: 653477).

2ASTERICS-OBELICS School 2018 / Annecy01/06/2018

	What is version control and why do we need it?
	Git
	Git Hosting Services
	Continuous Integration
	git compared to other VCS

