_ Astronomy ESFRI & Research Infrastructure Cluster
‘\ ASTERICS - 653477
ESFRI & \jcluilcr

2" ASTERICS-OBELICS International School

4-8 June 2018, Annecy, France.

Astronomy ESFRI & Res rch Infrastructure, Cluster

H2020-Astronomy ESFRI and Research Infrastructure Cluster (Grant Agreement
number: 653477).

01/06/2018 ASTERICS-OBELICS School 2018 / Annecy 1

(GGood code practice In
Python

Zheng Meyer & Tammo Jan Dijkema
ASTRON

Best Practices for Scientific Computing

ASTRON

Netherlands Institute for Radio Astronomy

Write programs for people, not computers.

a) A program should not require its readers to hold more than a handful of facts in

memory at once.

b) Make names consistent, distinctive, and meaningful.
c) Make code style and formatting consistent.

ASTRON

Netherlands Institute for Radio Astronomy

Let the computer do the work.

a) Make the computer repeat tasks.
b) Save recent commands in a file for re-use.
c) Use a build tool to automate workflows.

ASTRON

Netherlands Institute for Radio Astronomy

Make incremental changes.

a) Work in small steps with frequent feedback and course correction.

b) Use a version control system.,
c) Put everything that has been created manually in version control.

ASTRON

Netherlands Institute for Radio Astronomy

Don’t repeat yourself (or others).

a) Every piece of data must have a single authoritative representation in the
system.

b) Modularize code rather than copying and pasting.

c) Re-use code instead of rewriting it.

ASTRON

Netherlands Institute for Radio Astronomy

Plan for mistakes.

a) Add assertions to programs to check their operation.
b) Use an off-the-shelf unit testing library.

c) Turn bugs into test cases.

d) Use a symbolic debugger.

ASTRON

Netherlands Institute for Radio Astronomy

Optimize software only after it works correctly.

a) Use a profiler to identify bottlenecks.
b) Write code in the highest-level language possible.

ASTRON

Netherlands Institute for Radio Astronomy

Document design and purpose, not mechanics.

a) Document interfaces and reasons, not implementations.
b) Refactor code in preference to explaining how it works.
c) Embed the documentation for a piece of software in that software.

ASTRON

Netherlands Institute for Radio Astronomy

Collaborate.

a) Use pre-merge code reviews.

b) Use pair programming when bringing someone new up to speed and when tackling
particularly tricky problems.

c) Use an issue tracking tool.

ASTRON

Netherlands Institute for Radio Astronomy

PEPs (Python Enhancement Proposals)

PEP 8 Style Guide for Python code
PEP 20 The Zen of Python

ASTRON

Netherlands Institute for Radio Astronomy

PEP 8 Style GUIDE for Python Code

The guidelines are intended to improve the readability of code
Consistency is the KEY

* Consistency with the style guide is important.
* Consistency within a project is more important.
* Consistency within one module or function is the most important.

A Foolish Consistency Is the Hobgoblin of Little Minds

ASTRON

Netherlands Institute for Radio Astronomy

Code Lay-out — Indentation & Line break

Indentation
* Use 4 spaces per indentation level.
* Spaces are the preferred indentation method.
Should a line break before or after a binary operator?
* Consistency is the key

income = (gross_wages
+ taxable interest
+ (dividends — qualified_dividends)
— 1lra_deduction
— student loan interest)

ASTRON

Netherlands Institute for Radio Astronomy

Code Lay-out — Blank Lines

Blank Lines
* Surround top-level function and class definitions with two blank lines.
* Method definitions inside a class are surrounded by a single blank line.

from setuptools import setup
from setuptools.command.test import test as TestCommand

class PyTest (TestCommand) :
user_options = [('pytest—-args=', 'a', "Arguments to pass into
py.test")]

def initialize_options(self):
TestCommand.initialize_options(self)

self.pytest_args = [] AST((ON

Netherlands Institute for Radio Astronomy

Code Lay-out — Imports

Imports should usually be on separate lines, e.g.:

Yes:

import os

import sys

No:

import sys, os

Imports are always put at the top of the file
Absolute imports are recommended
import mypkg.sibling

from mypkg import sibling

from mypkg.sibling import example

Wildcard imports (from module import *) should be avoided

ASTRON

Netherlands Institute for Radio Astronomy

Code Lay-out — Comments

Comments that contradict the code are worse than no comments.
Always make a priority of keeping the comments up-to-date when the code

changes!
Comments should be complete sentences.
Write your comments in English.

ASTRON

Netherlands Institute for Radio Astronomy

Code Lay-out — Comments Contd.

Block Comments

* Block comments generally apply to some (or all) code that follows them, and are indented to the
same level as that code.

* Each line of a block comment starts with a # and a single space.

Code examples for Good code practice in Python.
Inline Comments
* Use inline comments sparingly.

* Inline comments are unnecessary and in fact distracting if they state the obvious. DON’T do this:

x = x + 1 # Increment x

ASTRON

Netherlands Institute for Radio Astronomy

Code Lay-out — Comments Contd.

Block Comments

* Block comments generally apply to some (or all) code that follows them, and are indented to the
same level as that code.

* Each line of a block comment starts with a # and a single space.

Code examples for Good code practice in Python.
Inline Comments
* Use inline comments sparingly.

* Inline comments are unnecessary and in fact distracting if they state the obvious. DON’T do this:

x = x + 1 # Increment x

ASTRON

Netherlands Institute for Radio Astronomy

Code Lay-out — Comments Contd.

Documentation Strings (a.k.a. "docstrings”)

* Adocstring Is a string literal that occurs as the first statement in a module, function, class,

or method definition.
* Such a docstring becomes the __doc__ special attribute of that object.
* PEP 257 describes good docstring conventions.

Most importantly, the """ that ends a multiline docstring should be on a line by itself
For one liner docstrings, please keep the closing """ on the same line.

"""Return a foobang.

Optional plotz says to frobnicate the bizbaz first.

wwmnw

ASTRON

Netherlands Institute for Radio Astronomy

Docstring Versus Block Comments

This function slows down program execution for some reason.
def square_and_ rooter (x):
"""Return the square root of self times self."""

The leading comment block is a programmer’s note.
The docstring describes the operation of the function or class and will be shown in
an interactive Python session when the user types

help (square_and_rooter)

ASTRON

Netherlands Institute for Radio Astronomy

Self-Documenting Code - Naming

A variable, class, or function name should speak for themselves.

decay ()
decay_constant ()
get_decay_constant ()

p = 100
pressure = 100

ASTRON

Netherlands Institute for Radio Astronomy

Self-Documenting Code — Simple functions

Functions must be small to be understandable and testable.
It should do ONLY one thing.

import numpy as np

def initial cond (N, Dim):
"""Generates 1initial conditions for N unity masses at rest
starting at random positions 1n D—-dimensional space.
min
position0 = np.random.rand (N, Dim)
velocity0 = np.zeros((N, Dim), dtype=float)
mass = np.ones (N, dtype=float)
return position0O, velocityO, mass

ASTRON

Netherlands Institute for Radio Astronomy

PEP 20 The Zen of Python

By Tim Peters

ASTRON

Netherlands Institute for Radio Astronomy

Beautiful is better than ugly.
Explicit Is better than implicit.

The Zen of Python

ASTRON

Netherlands Institute for Radio Astronomy

Explicit is better than implicit

Bad Good
def make_complex (*args) : def make_complex(x, y):
X, y = args return {'x': x, 'y': y}

return dict (**locals())

ASTRON

Netherlands Institute for Radio Astronomy

Simple Is better than complex.
Complex is better than complicated.
Sparse Is better than dense.

The Zen of Python

ASTRON

Netherlands Institute for Radio Astronomy

Make only one statement per line

Bad Good
print ('one'); print('two') print ('one')
print ('two')
if x == 1: print ('one')
if x ==
if <complex comparison> and print ('one')
<other complex comparison>:
do something condl = <complex comparison>
cond2 = <other complex comparison>

if condl and cond2:
do something

ASTRON

Netherlands Institute for Radio Astronomy

Errors should never pass silently.
Unless explicitly silenced.

The Zen of Python

ASTRON

Netherlands Institute for Radio Astronomy

There should be one-- and preferably only
one — obvious way to do It.

Although that way may not be obvious at
first unless you're Dutch.

The Zen of Python

ASTRON

Netherlands Institute for Radio Astronomy

If the Implementation Is hard to explain,

It's a bad idea.
If the Implementation Is easy to explain, It

may be a good Idea.
The Zen of Python

ASTRON

Netherlands Institute for Radio Astronomy

>>> 1mport this

Want to see the complete list of The Zen of Python?

ASTRON

Netherlands Institute for Radio Astronomy

Argparse — Command line option and
argument parsing

ASTRON

Netherlands Institute for Radio Astronomy

The argparse module

Added to Python 2.7 as a replacement for optparse.
The API for argparse is similar to the one provided by optparse.

The parser class is ArgumentParser.
The constructor takes several arguments to set up the description used in the help text for the program.

argparse IS a complete argument processing library.
import argparse

parser = argparse.ArgumentParser(description='Short sample app')

parser.add argument('-a', action="store true", default=False)
parser.add argument('-b', action="store", dest="b")
parser.add argument('-c', action="store", dest="c", type=int)

print (parser.parse args(['-a', '-bval', '-c', '3'])) AST({ON

Netherlands Institute for Radio Astronomy

Structuring Your Project

ASTRON

Netherlands Institute for Radio Astronomy

Sample repository by Kenneth Reitz

samplemod

— LICENSE

— MANIFEST.in

— Makefile

— README.rst

— docs

— Makefile

— conf.py

— index.rst
L— make.bat
requirements.txt
sample

F— __init__.py
— core.py

L— helpers.py
setup.py

tests

— __init__.py
— context.py
I— test_advanced.py
L— test_basic.py

|
|
|
|
—
—
|
|
|
—
—

ASTRON

Netherlands Institute for Radio Astronomy

Pitfalls to avoid

Multiple and messy circular dependencies
Hidden coupling

Modifying code in one class breaks many tests in unrelated test cases
Heavy use of global state or context
Spaghetti code

Multiple pages of nested if clauses and for loops with a lot of copy-pasted
procedural code and no proper segmentation
Ravioli code

Consists of hundreds of similar little pieces of logic without proper structure

ASTRON

Netherlands Institute for Radio Astronomy

Decorators

Dynamically alter the functionality of a function, method, or class without having to
change the source code of the function being decorated
Helps separate business logic from administrative logic

from python_toolbox.caching import cache

@cache ()

def f (x):
print ('Calculating...')
return x ** x

ASTRON

Netherlands Institute for Radio Astronomy

Dynamic Typing

Avoid using the same variable name for different things
Good discipline: assign a variable only once
Check your code: Pylint, Pyflakes, Flakes8, Pychecker

Bad Good
a = 1 count = 1
a = 'a string' msg = 'a string'
def a(): def func():
pass # Do something pass # Do something
items = 'a b ¢ d! items_string = 'a b ¢ d'
items = items.split (' ") items_list = items_string.split (' ")
items = set (items) items = set (items 1list)

ASTRON

Netherlands Institute for Radio Astronomy

References (1)

* Best Practices for Scientific Computing
Wilson G, Aruliah DA, Brown CT, Chue Hong NP, Davis M, et al. (2014) Best Practices for
Scientific Computing. PLOS Biology 12(1): e1001745.https://
doi.org/10.1371/journal.pbio.1001745

* Best Practices in Scientific Computing — Software Carpentry
http://swcarpentry.github.io/slideshows/best-practices/#slide-0

* The Hitchhacker’s guide to Python by Kenneth Reitz, Tanya Schlusser. Publisher: O'Reilly
Media, Inc.

http://python-guide-pt-br.readthedocs.io/en/latest/

ASTRON

Netherlands Institute for Radio Astronomy

https://doi.org/10.1371/journal.pbio.1001745
https://doi.org/10.1371/journal.pbio.1001745
http://swcarpentry.github.io/slideshows/best-practices/#slide-0
http://swcarpentry.github.io/slideshows/best-practices/#slide-0
http://python-guide-pt-br.readthedocs.io/en/latest/
http://python-guide-pt-br.readthedocs.io/en/latest/
http://python-guide-pt-br.readthedocs.io/en/latest/

References (2)

* Transforming Code into Beautiful, Idiomatic Python by Raymond Hettinger — PyCon 2013
https://www.youtube.com/watch?v=0SGv2VnC0go

* Raymond Hettinger - Beyond PEP 8 -- Best practices for beautiful intelligible code - PyCon
2015

https://www.youtube.com/watch?v=wif-BgAjZb8M
» Effective Computation in Physics by Anthony Scopatz, Kathryn D. Huff. Publisher: O'Reilly
Media, Inc.

http://physics.codes/

ASTRON

Netherlands Institute for Radio Astronomy

https://www.youtube.com/watch?v=OSGv2VnC0go
https://www.youtube.com/watch?v=OSGv2VnC0go
https://www.youtube.com/watch?v=OSGv2VnC0go
https://www.youtube.com/watch?v=wf-BqAjZb8M
http://physics.codes/

_ Astronomy ESFRI & Research Infrastructure Cluster
‘\ ASTERICS - 653477
ESFRI & \jCluilcr

Acknowledgement

« H2020-Astronomy ESFRI and Research
Infrastructure Cluster (Grant Agreement number:
653477).

01/06/2018 ASTERICS-OBELICS School 2018 / Annecy 42

	Slide 1
	Slide 2
	Slide 3
	Write programs for people, not computers.
	Let the computer do the work.
	Make incremental changes.
	Don’t repeat yourself (or others).
	Plan for mistakes.
	Optimize software only after it works correctly.
	Document design and purpose, not mechanics.
	Collaborate.
	Slide 12
	PEP 8 Style GUIDE for Python Code
	Code Lay-out – Indentation & Line break
	Code Lay-out – Blank Lines
	Code Lay-out – Imports
	Code Lay-out – Comments
	Code Lay-out – Comments Contd.
	Code Lay-out – Comments Contd.
	Code Lay-out – Comments Contd.
	Docstring Versus Block Comments
	Self-Documenting Code - Naming
	Self-Documenting Code – Simple functions
	Slide 24
	Slide 25
	Explicit is better than implicit
	Slide 27
	Make only one statement per line
	Errors should never pass silently. Unless explicitly silenced.
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Sample repository by Kenneth Reitz
	Pitfalls to avoid
	Decorators
	Dynamic Typing
	References (1)
	References (2)
	Acknowledgement

