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Today’s lecture 
•  Introduction to the GPU ecosystem 
•  The GPU HW architecture 
•  GPU programming  
•  GPUs & High-performance Libraries 
•  GPU Debugging & Profiling 
•  GPUs & Python 
 
Tomorrow’s lecture 
•  Slightly more advanced topics 
•  Recent GPU features (Unified memory, Cooperative 

threads, Tensor cores) 
•  Multi-GPU/GPUDirect RDMA 

Outline 
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SURFsara 
History: 
1971: Founded by the VU, UvA, and CWI 
2013: SARA (Stichting Academisch 
Rekencentrum A’dam) becomes part of SURF 
 
 Cartesius  (Bull supercomputer): 
40.960 Ivy Bridge / Haswell cores: 1327 TFLOPS 
56GBit/s Infiniband 

64 nodes with 2 K40m GPUs each: 210 TFLOPS 

Broadwell & KNL extension (Nov 2016) 
177 BDW and 18 KNL nodes: 284TFLOPS 

7.7 PB Lustre parallel file-system 
Top500 position 
#45 2014/11 
#97 2016/11 Increasing number of deep 

learning projects! 
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Introduction to the GPU ecosystem 
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CUDA Parallel Computing Platform 

       Hardware  
      Capabilities 

GPUDirect SMX Dynamic Parallelism HyperQ 

    Programming  
     Approaches 

Libraries 

“Drop-in” Acceleration 

Programming 
Languages OpenACC Directives 

Maximum Flexibility Easily Accelerate Apps 

    Development 
    Environment 

Nsight IDE 
Linux, Mac and Windows 

GPU Debugging and Profiling 

CUDA-GDB debugger 
NVIDIA Visual Profiler 

   Open Compiler 
       Tool Chain 

Enables compiling new languages to CUDA platform, and 
CUDA languages to other architectures 
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CPU vs. GPU 
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The GPU hardware architecture 
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The Kepler GPU Architecture 
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Kepler Streaming MultiProcessor architecture 
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Kepler CUDA core 
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NVIDIA Pascal architecture 
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NVIDIA Pascal P100 architecture 
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NVIDIA Pascal P100 SM architecture 
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NVIDIA Pascal P100 system architecture 
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Architecture (MIMD vs SIMD) 

CTRL 

ALU 

ALU CTRL 

ALU 

ALU 

CTRL 

CTRL ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU ALU 

MIMD(CPU-Like) SIMD (GPU-Like)

CTRL 

Flexibility
Horsepower

Ease of Use
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GPUs are everywhere 
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GPUs in Gaming Cards 

Image: Nvidia GTX 980 

21 
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GPU in Mobile Processors 

22 

Image: Nvidia Jetson TX1 (Tegra X1 SOC) 
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GPU in High-Performance Computers 

23 

Image: Nvidia P100 
(Pascal Architecture) 

Chip-on-Wafer-on-Substrate 
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GPU programming 
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3 Ways to Accelerate Applications 

Applications 

Libraries 

“Drop-in” 
Acceleration 

Programming 
Languages 

OpenACC 
Directives 

Maximum 
Flexibility 

Easily Accelerate 
Applications 
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Libraries: Easy, High-Quality Acceleration 

•  Ease of use:  Using libraries enables GPU acceleration without in-depth   
 knowledge of GPU programming 

•  “Drop-in”:   Many GPU-accelerated libraries follow standard APIs, thus   
 enabling acceleration with minimal code changes (replacing MKL/IPP/FFTW/…) 

•  Quality:  Libraries offer high-quality implementations of functions   
 encountered in a broad range of applications  

•  Performance:  NVIDIA libraries are tuned by experts      
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Some GPU-accelerated Libraries 

NVIDIA cuBLAS NVIDIA cuRAND NVIDIA cuSPARSE NVIDIA NPP 

Vector Signal 
Image Processing 

GPU 
Accelerated 

Linear Algebra 

Matrix Algebra 
on GPU and 
Multicore 

NVIDIA cuFFT 

C++ STL 
Features for 

CUDA IMSL Library 
Building-block 
Algorithms for 

CUDA 
ArrayFire Matrix 

Computations 
Sparse Linear 

Algebra 
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3 Steps to CUDA-accelerated application 

•  Step 1: Substitute library calls with equivalent CUDA library calls 
  saxpy ( … )            cublasSaxpy ( … ) 
  

•  Step 2: Manage data locality 
  - with CUDA:  cudaMalloc(), cudaMemcpy(), etc. 

        - with CUBLAS: cublasAlloc(), cublasSetVector(), etc. 

•  Step 3: Rebuild and link your CUDA Library-accelerated application 
 nvcc myobj.o –l cublas  
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Explore the CUDA (Libraries) Ecosystem 

CUDA Tools and Ecosystem described in 
detail on NVIDIA Developer Zone: 
developer.nvidia.com/cuda-tools-ecosystem  
 
 
CUDA libraries described in: 
developer.nvidia.com/gpu-accelerated-
libraries 
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3 Ways to Accelerate Applications 

Applications 

Libraries 

“Drop-in” 
Acceleration 

Programming 
Languages 

OpenACC 
Directives 

Maximum 
Flexibility 

Easily Accelerate 
Applications 
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OpenACC Directives 

Program myscience 
  ... serial code ... 
!$acc kernels 
  do k = 1,n1 
    do i = 1,n2 
      ... parallel code ... 
    enddo 
  enddo 
!$acc end kernels  
  ... 
End Program myscience 

CPU GPU 

Your original Fortran or C code 

Simple Compiler hints 

Compiler Parallelizes code 

Works on many-core GPUs & 
multicore CPUs 

OpenACC 
compiler 

Hint 
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Easy:  Directives are the easy path to accelerate compute intensive applications 
 
Open: OpenACC is an open GPU directives standard,  making GPU programming 
straightforward and portable across parallel and multi-core processors 
 
Powerful: GPU Directives allow complete access to the massive parallel power of a GPU 
 
 

OpenACC: The Standard for GPU Directives 
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Real-Time Object 
Detection 

Global Manufacturer 
of Navigation Systems 

Valuation of Stock 
Portfolios using Monte 

Carlo  

Global Technology 
Consulting Company 

Interaction of Solvents and 
Biomolecules 

University of Texas at San 
Antonio 

Directives: Easy & Powerful 

Op#mizing	code	with	direc#ves	is	quite	easy,	especially	compared	to	CPU	threads	or	wri#ng	CUDA	
kernels.	The	most	important	thing	is	avoiding	restructuring	of	exis#ng	code	for	produc#on	applica#ons.	” 

-- Developer at the Global Manufacturer of Navigation Systems  

“ 

5x in 40 Hours 2x in 4 Hours 5x in 8 Hours 
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3 Ways to Accelerate Applications 

Applications 

Libraries 

“Drop-in” 
Acceleration 

Programming 
Languages 

OpenACC 
Directives 

Maximum 
Flexibility 

Easily Accelerate 
Applications 
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GPU Programming Languages 

CUDA Fortran, OpenACC, 
OpenMP4.5 

Fortran 

CUDA C, OpenCL, OpenACC,  
OpenMP4.5 

C 

CUDA C++, Thrust, OpenCL,  
OpenACC/OpenMP4.5  

C++ 

PyCUDA/PyOpenCL, Numba, … Python 

MATLAB, Mathematica, LabVIEW Numerical analytics 
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CUDA 

•  Targeted software stack 
•  Driver for loading computation programs 

into GPU 
 - Standalone Driver - Optimized for 

computation  
 - Explicit GPU memory management 

 

l  “Compute Unified Device Architecture” 
l  General purpose programming model 

—  User kicks off batches of threads on the GPU 
—  GPU = dedicated super-threaded, massively data parallel co-processor 
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CUDA Programming Model 

The GPU is viewed as a compute device that: 
 
Ø  Is a coprocessor to the CPU or host 
Ø  Has its own DRAM (device memory) 
Ø  Runs many threads in parallel 

 - Hardware switching between threads (in 1 cycle) on long-latency memory reference 
 - Overprovision (1000s of threads) à hide latencies 

 
Ø  Data-parallel portions of an application are executed on the device as kernels which run 

in parallel on many threads 
 
Ø  Differences between GPU and CPU threads  

- GPU threads are extremely lightweight 
- Very little creation overhead 

- GPU needs 1000s of threads for full efficiency 
- Multi-core CPU needs only a few 



GPU Programming 38 www.prace-ri.eu 

Thread Batching: Grids and Blocks 

Ø  Kernel executed as a grid of thread 
blocks 
- All threads share data memory space 

Ø  Thread block is a batch of threads, can 
cooperate with each other by: 
- Synchronizing their execution: 

- For hazard-free shared memory 
accesses 

- Efficiently sharing data through the 
low latency shared memory 

Ø  Two threads from two different blocks 
cannot cooperate (until CUDA8/9 and 
Volta) 
- Unless thru slow global memory 

Ø  Threads and blocks have IDs 
 

Host 

Kernel 
1 

Kernel 
2 

Device 
Grid 1 

Block 
(0, 0) 

Block 
(1, 0) 

Block 
(2, 0) 

Block 
(0, 1) 

Block 
(1, 1) 

Block 
(2, 1) 

Grid 2 

Block (1, 1) 

Thread 
(0, 1) Thread 

(1, 1) Thread 
(2, 1) Thread 

(3, 1) Thread 
(4, 1) 

Thread 
(0, 2) Thread 

(1, 2) Thread 
(2, 2) Thread 

(3, 2) Thread 
(4, 2) 

Thread 
(0, 0) Thread 

(1, 0) Thread 
(2, 0) Thread 

(3, 0) Thread 
(4, 0) 
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Extended C syntax 

Ø  Declspecs 
global, device, shared, 

local, constant 

Ø  Keywords 
threadIdx, blockIdx 

Ø  Intrinsics 
__syncthreads 

 
Ø  Runtime API 

Memory, symbol, 
execution management 

 
Ø  Function launch 

__device__ float filter[N];  
 
__global__ void convolve (float *image)  { 
 
  __shared__ float region[M]; 
  ...  
 
  region[threadIdx] = image[i];  
 
 
  __syncthreads()   
  ...  
  image[j] = result; 
} 
 
// Allocate GPU memory 
void *myimage = cudaMalloc(bytes) 
 
// 100 blocks, 10 threads per block 
convolve<<<100, 10>>> (myimage); 



GPU Programming 40 www.prace-ri.eu 

CUDA Function Declarations 

Executed on 
the: 

Only callable from the: 

__device__ float DeviceFunc() device device 

__global__ void  KernelFunc() device Host/device (DP,cc35) 

__host__   float HostFunc() host Host 

 
 
__global__ defines a kernel function 

- Must return void 
__device__ and __host__ define device and host functions respectively 
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CUDA Device Memory Space Overview 

Each thread can: 
R/W per-thread registers 
R/W per-thread local memory 
R/W per-block shared memory 
R/W per-grid global memory 
Read only per-grid constant memory 
Read only per-grid texture memory 

(Device) Grid 

Constant 
Memory 

Texture 
Memory 

Global 
Memory 

Block (0, 0) 

Shared Memory 

Local 
Memory 

Thread (0, 0) 

Registers 

Local 
Memory 

Thread (1, 0) 

Registers 

Block (1, 0) 

Shared Memory 

Local 
Memory 

Thread (0, 0) 

Registers 

Local 
Memory 

Thread (1, 0) 

Registers 

Host The host can R/W global, 
constant, and texture memories 
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Global, Constant, and Texture Memories 

Global memory 
Main means of communicating R/W 

data between host and device 
 
Contents visible to all threads 

 
 
 
 
Texture and Constant Memories 

Constants initialized by host  
Contents visible to all threads 

(Device) Grid 

Constant 
Memory 

Texture 
Memory 

Global 
Memory 

Block (0, 0) 

Shared Memory 

Local 
Memory 

Thread (0, 0) 

Registers 

Local 
Memory 

Thread (1, 0) 

Registers 

Block (1, 0) 

Shared Memory 

Local 
Memory 

Thread (0, 0) 

Registers 

Local 
Memory 

Thread (1, 0) 

Registers 

Host 

Courtesy: NDVIA 
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Access times for various memories 

Register – dedicated HW - single cycle 
Shared Memory – dedicated HW - single cycle 
Local Memory – DRAM, no cache - *slow* 
Global Memory – DRAM, no cache - *slow* 
Constant Memory – DRAM, cached, 1…10s…100s of cycles, depending on cache locality 
Texture Memory – DRAM, cached, 1…10s…100s of cycles, depending on cache locality 
Instruction Memory (invisible) – DRAM, cached 
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Calling Kernel Function – Thread Creation 
 
 
A kernel function must be called with an execution configuration: 
 
__global__ void KernelFunc(...); 
dim3   DimGrid(100, 50);    // 5000 thread blocks  
dim3   DimBlock(4, 8, 8);   // 256 threads per block  
size_t SharedMemBytes = 64; // 64 bytes of shared memory 
KernelFunc<<< DimGrid, DimBlock, SharedMemBytes >>>(...); 

 
 
 
Any call to a kernel function is asynchronous (CUDA 1.0 & later), explicit synchronization 

needed for blocking 
 
Recursion in kernels supported (in 5.0/Kepler+) 
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Sample Code: Increment Array 
main() { float *a_h, *a_d; int i, N=10; size_t size = N*sizeof(float);
  a_h = (float *)malloc(size);
  for (i=0; i<N; i++) a_h[i] = (float)i;

  // allocate array on device 
  cudaMalloc((void **) &a_d, size);
  
  // copy data from host to device 
  cudaMemcpy(a_d, a_h, sizeof(float)*N, cudaMemcpyHostToDevice);
  
  // do calculation on device:
  // Part 1 of 2. Compute execution configuration
  int blockSize = 4;
  int nBlocks = N/blockSize + (N%blockSize == 0?0:1);
  // Part 2 of 2. Call incrementArrayOnDevice kernel 
  incrementArrayOnDevice <<< nBlocks, blockSize >>> (a_d, N);
  
  // Retrieve result from device and store in b_h
  cudaMemcpy(b_h, a_d, sizeof(float)*N, cudaMemcpyDeviceToHost);

  // cleanup
  free(a_h); 
  cudaFree(a_d); 
}
 

__global__ void incrementArrayOnDevice(float *a, 
int N)
{
  int idx = blockIdx.x*blockDim.x + threadIdx.x;
  if (idx<N) a[idx] = a[idx]+1.f;
}
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Using per-block shared memory 

Variables shared across block 
 int *begin, *end; 

 
Scratchpad memory 

 __shared__ int scratch[blocksize]; 
 scratch[threadIdx.x] = begin[threadIdx.x]; 
// … compute on scratch values … 
begin[threadIdx.x] = scratch[threadIdx.x]; 

 
Communicating values between threads 

 scratch[threadIdx.x] = begin[treadIdx.x]; 
 __syncthreads(); 
int left = scratch[threadIdx.x - 1]; 

Block 
Per-block 

Shared 
Memory 
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Compiling CUDA 

•  Call nvcc (driver) -- also C++/Fortran support 
•  LLVM front end  
       - generates separate GPU & CPU code 
•  LLVM back end  
       - generates GPU PTX assembly 

•  Parallel Threads eXecution (PTX) 
       - virtual machine and ISA 
       - gets assembled into actual machine code 
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Execution model 

Multiple levels of parallelism 
•  Thread block 
      - max. 1024 threads/block  
      - communication through shared memory (fast) 
      - thread guaranteed to be resident 
      - threadIdx, blockIdx 
      - __syncthreads() 
               à barrier for this block only! 
               avoid RAW/WAR/WAW hazards when ref’             

   shared/global memory 
 
•  Grid of thread blocks 
       
      - F<<<nblocks, nthreads>>>(a, b, c) 
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Execution model 

 
•  Each Block is executed as 32-
thread “warps” 
–  An implementation decision, 

not part of the CUDA 
programming model 

–  Warps are scheduling units 
in SM 

•  If 3 blocks are assigned to an 
SM and each block has 256 
threads, how many Warps are 
there in an SM? 
–  Each Block is divided into 

256/32 = 8 Warps 
–  There are 8 * 3 = 24 Warps  

… 
t0 t1 t2 … t31 
… 

… 
t0 t1 t2 … t31 
… Block 1 Warps Block 2 Warps 

… 
t0 t1 t2 … t31 
… Block 3 Warps 

•  Warp divergence? 
•  Coalesced accesses? 
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Small Changes, Big Speed-up 
Application Code 

+ 

GPU CPU 

Use GPU to 
Parallelize 

Compute-Intensive 
Functions 

Rest of Sequential 
CPU Code 
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Why GPU Computing Matters? 

Traditional CPUs are 
not economically feasible 

8.1 PFlops 4200 homes 

4.2 
Megawatts 

4.2 
Megawatts 

CPU 
Optimized for  
Serial Tasks 

GPU Accelerator 
Optimized for Many  

Parallel Tasks 

10x performance/socket 

> 5x energy  efficiency 

Era of GPU-accelerated  
computing is here 

Trinity - Cray XC40, Xeon E5-2698v3 16C 
2.3GHz, Cray Inc. 4.2MW 

DGX SATURNV - NVIDIA DGX-1, XeonE5-2698v4 
20C 2.2GHz + 8x Tesla P100, NVIDIA. 350KW 

3.3 PFlops 
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Tesla Products Tesla K40 Tesla M40 Tesla P100 
GPU GK110 (Kepler) GM200 (Maxwell) GP100 (Pascal) 
SMs 15 24 56 
TPCs 15 24 28 
FP32 CUDA Cores / SM 192 128 64 
FP32 CUDA Cores / GPU 2880 3072 3584 
FP64 CUDA Cores / SM 64 4 32 
FP64 CUDA Cores / GPU 960 96 1792 
Base Clock 745 MHz 948 MHz 1328 MHz 
GPU Boost Clock 810/875 MHz  1114 MHz 1480 MHz 
FP64 GFLOPs 1680 213 5304 
Texture Units 240 192 224 
Memory Interface 384-bit GDDR5 384-bit GDDR5 4096-bit HBM2 
Memory Size Up to 12 GB Up to 24 GB 16 GB 
L2 Cache Size 1536 KB 3072 KB 4096 KB 
Register File Size / SM 256 KB 256 KB 256 KB 
Register File Size / GPU 3840 KB 6144 KB 14336 KB 
TDP 235 Watts 250 Watts 300 Watts 
Transistors 7.1 billion 8 billion 15.3 billion 
GPU Die Size 551 mm² 601 mm² 610 mm² 
Manufacturing Process 28-nm 28-nm 16-nm 

GPU architecture evolution 
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GPUs & High-performance Libraries 
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GPU Profiling and Debugging Tools 
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NVIDIA Visual Profiler 

•  Standalone application with CUDA 
Toolkit 

•  Visualize performance 
•  Timeline 
•  Power, clock, thermal profiling 
•  Concurrent profiling 
•  Profile activity on both GPU and 

CPU 
•  nvprof - command line tool 
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GPU Debugging Solutions 
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GPU Usage from Python 
 
 
•  PyCUDA/PyOpenCL 

 - Developed by Andreas Klöckner 
 - Built on top of CUDA Driver API 

•  Numba 
•  Anaconda Accelerate offers bindings to the important CUDA libraries: 

 - cuBLAS 
 - cuFFT 
 - cuSPARSE 
 - cuRAND 
 - …. 

•  Many high-level libraries use these under the hood: 
 - this abstracts complexity even more 
 - take for example deep/machine learning frameworks: 
  - seamless multi-GPU programming 

61 



GPU Programming 62 www.prace-ri.eu 62 

PyCUDA example 

•  More examples in the Hands-on! 
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THANK YOU FOR YOUR ATTENTION 

www.prace-ri.eu 
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