
GPU Programming 1 www.prace-ri.eu

H2020-Astronomy ESFRI and Research Infrastructure Cluster
(Grant Agreement number: 653477).

1st ASTERICS-OBELICS International School
6-9 June 2017, Annecy, France.

GPU Programming 2 www.prace-ri.eu

GPU Programming

SURFsara

Valeriu Codreanu

GPU Programming 3 www.prace-ri.eu

Today’s lecture
•  Introduction to the GPU ecosystem
•  The GPU HW architecture
•  GPU programming
•  GPUs & High-performance Libraries
•  GPU Debugging & Profiling
•  GPUs & Python

Tomorrow’s lecture
•  Slightly more advanced topics
•  Recent GPU features (Unified memory, Cooperative

threads, Tensor cores)
•  Multi-GPU/GPUDirect RDMA

Outline

GPU Programming 4 www.prace-ri.eu

SURFsara
History:
1971: Founded by the VU, UvA, and CWI
2013: SARA (Stichting Academisch
Rekencentrum A’dam) becomes part of SURF

 Cartesius (Bull supercomputer):
40.960 Ivy Bridge / Haswell cores: 1327 TFLOPS
56GBit/s Infiniband

64 nodes with 2 K40m GPUs each: 210 TFLOPS

Broadwell & KNL extension (Nov 2016)
177 BDW and 18 KNL nodes: 284TFLOPS

7.7 PB Lustre parallel file-system
Top500 position
#45 2014/11
#97 2016/11 Increasing number of deep

learning projects!

GPU Programming 5 www.prace-ri.eu

Introduction to the GPU ecosystem

GPU Programming 6 www.prace-ri.eu

CUDA Parallel Computing Platform

 Hardware
 Capabilities

GPUDirect SMX Dynamic Parallelism HyperQ

 Programming
 Approaches

Libraries

“Drop-in” Acceleration

Programming
Languages OpenACC Directives

Maximum Flexibility Easily Accelerate Apps

 Development
 Environment

Nsight IDE
Linux, Mac and Windows

GPU Debugging and Profiling

CUDA-GDB debugger
NVIDIA Visual Profiler

 Open Compiler
 Tool Chain

Enables compiling new languages to CUDA platform, and
CUDA languages to other architectures

GPU Programming 7 www.prace-ri.eu

CPU vs. GPU

GPU Programming 8 www.prace-ri.eu

GPU Programming 9 www.prace-ri.eu

GPU Programming 10 www.prace-ri.eu

GPU Programming 11 www.prace-ri.eu

The GPU hardware architecture

GPU Programming 12 www.prace-ri.eu

The Kepler GPU Architecture

GPU Programming 13 www.prace-ri.eu

Kepler Streaming MultiProcessor architecture

GPU Programming 14 www.prace-ri.eu

Kepler CUDA core

GPU Programming 15 www.prace-ri.eu

NVIDIA Pascal architecture

GPU Programming 16 www.prace-ri.eu

NVIDIA Pascal P100 architecture

GPU Programming 17 www.prace-ri.eu

NVIDIA Pascal P100 SM architecture

GPU Programming 18 www.prace-ri.eu

NVIDIA Pascal P100 system architecture

GPU Programming 19 www.prace-ri.eu

Architecture (MIMD vs SIMD)

CTRL

ALU

ALU CTRL

ALU

ALU

CTRL

CTRL ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU ALU

MIMD(CPU-Like) SIMD (GPU-Like)

CTRL

Flexibility
Horsepower

Ease of Use

GPU Programming 20 www.prace-ri.eu

GPUs are everywhere

GPU Programming 21 www.prace-ri.eu

GPUs in Gaming Cards

Image: Nvidia GTX 980

21

GPU Programming 22 www.prace-ri.eu

GPU in Mobile Processors

22

Image: Nvidia Jetson TX1 (Tegra X1 SOC)

GPU Programming 23 www.prace-ri.eu

GPU in High-Performance Computers

23

Image: Nvidia P100
(Pascal Architecture)

Chip-on-Wafer-on-Substrate

GPU Programming 24 www.prace-ri.eu

GPU programming

GPU Programming 25 www.prace-ri.eu

3 Ways to Accelerate Applications

Applications

Libraries

“Drop-in”
Acceleration

Programming
Languages

OpenACC
Directives

Maximum
Flexibility

Easily Accelerate
Applications

GPU Programming 26 www.prace-ri.eu

Libraries: Easy, High-Quality Acceleration

•  Ease of use: Using libraries enables GPU acceleration without in-depth
 knowledge of GPU programming

•  “Drop-in”: Many GPU-accelerated libraries follow standard APIs, thus
 enabling acceleration with minimal code changes (replacing MKL/IPP/FFTW/…)

•  Quality: Libraries offer high-quality implementations of functions
 encountered in a broad range of applications

•  Performance: NVIDIA libraries are tuned by experts

GPU Programming 27 www.prace-ri.eu

Some GPU-accelerated Libraries

NVIDIA cuBLAS NVIDIA cuRAND NVIDIA cuSPARSE NVIDIA NPP

Vector Signal
Image Processing

GPU
Accelerated

Linear Algebra

Matrix Algebra
on GPU and
Multicore

NVIDIA cuFFT

C++ STL
Features for

CUDA IMSL Library
Building-block
Algorithms for

CUDA
ArrayFire Matrix

Computations
Sparse Linear

Algebra

GPU Programming 28 www.prace-ri.eu

3 Steps to CUDA-accelerated application

•  Step 1: Substitute library calls with equivalent CUDA library calls
 saxpy (…) cublasSaxpy (…)

•  Step 2: Manage data locality
 - with CUDA: cudaMalloc(), cudaMemcpy(), etc.

 - with CUBLAS: cublasAlloc(), cublasSetVector(), etc.

•  Step 3: Rebuild and link your CUDA Library-accelerated application
 nvcc myobj.o –l cublas

GPU Programming 29 www.prace-ri.eu

Explore the CUDA (Libraries) Ecosystem

CUDA Tools and Ecosystem described in
detail on NVIDIA Developer Zone:
developer.nvidia.com/cuda-tools-ecosystem

CUDA libraries described in:
developer.nvidia.com/gpu-accelerated-
libraries

GPU Programming 30 www.prace-ri.eu

3 Ways to Accelerate Applications

Applications

Libraries

“Drop-in”
Acceleration

Programming
Languages

OpenACC
Directives

Maximum
Flexibility

Easily Accelerate
Applications

GPU Programming 31 www.prace-ri.eu

OpenACC Directives

Program myscience
 ... serial code ...
!$acc kernels
 do k = 1,n1
 do i = 1,n2
 ... parallel code ...
 enddo
 enddo
!$acc end kernels
 ...
End Program myscience

CPU GPU

Your original Fortran or C code

Simple Compiler hints

Compiler Parallelizes code

Works on many-core GPUs &
multicore CPUs

OpenACC
compiler

Hint

GPU Programming 32 www.prace-ri.eu

Easy: Directives are the easy path to accelerate compute intensive applications

Open: OpenACC is an open GPU directives standard, making GPU programming
straightforward and portable across parallel and multi-core processors

Powerful: GPU Directives allow complete access to the massive parallel power of a GPU

OpenACC: The Standard for GPU Directives

GPU Programming 33 www.prace-ri.eu

Real-Time Object
Detection

Global Manufacturer
of Navigation Systems

Valuation of Stock
Portfolios using Monte

Carlo

Global Technology
Consulting Company

Interaction of Solvents and
Biomolecules

University of Texas at San
Antonio

Directives: Easy & Powerful

Op#mizing	code	with	direc#ves	is	quite	easy,	especially	compared	to	CPU	threads	or	wri#ng	CUDA	
kernels.	The	most	important	thing	is	avoiding	restructuring	of	exis#ng	code	for	produc#on	applica#ons.	”

-- Developer at the Global Manufacturer of Navigation Systems

“

5x in 40 Hours 2x in 4 Hours 5x in 8 Hours

GPU Programming 34 www.prace-ri.eu

3 Ways to Accelerate Applications

Applications

Libraries

“Drop-in”
Acceleration

Programming
Languages

OpenACC
Directives

Maximum
Flexibility

Easily Accelerate
Applications

GPU Programming 35 www.prace-ri.eu

GPU Programming Languages

CUDA Fortran, OpenACC,
OpenMP4.5

Fortran

CUDA C, OpenCL, OpenACC,
OpenMP4.5

C

CUDA C++, Thrust, OpenCL,
OpenACC/OpenMP4.5

C++

PyCUDA/PyOpenCL, Numba, … Python

MATLAB, Mathematica, LabVIEW Numerical analytics

GPU Programming 36 www.prace-ri.eu

CUDA

•  Targeted software stack
•  Driver for loading computation programs

into GPU
 - Standalone Driver - Optimized for

computation
 - Explicit GPU memory management

l  “Compute Unified Device Architecture”
l  General purpose programming model

—  User kicks off batches of threads on the GPU
—  GPU = dedicated super-threaded, massively data parallel co-processor

GPU Programming 37 www.prace-ri.eu

CUDA Programming Model

The GPU is viewed as a compute device that:

Ø  Is a coprocessor to the CPU or host
Ø  Has its own DRAM (device memory)
Ø  Runs many threads in parallel

 - Hardware switching between threads (in 1 cycle) on long-latency memory reference
 - Overprovision (1000s of threads) à hide latencies

Ø  Data-parallel portions of an application are executed on the device as kernels which run

in parallel on many threads

Ø  Differences between GPU and CPU threads

- GPU threads are extremely lightweight
- Very little creation overhead

- GPU needs 1000s of threads for full efficiency
- Multi-core CPU needs only a few

GPU Programming 38 www.prace-ri.eu

Thread Batching: Grids and Blocks

Ø  Kernel executed as a grid of thread
blocks
- All threads share data memory space

Ø  Thread block is a batch of threads, can
cooperate with each other by:
- Synchronizing their execution:

- For hazard-free shared memory
accesses

- Efficiently sharing data through the
low latency shared memory

Ø  Two threads from two different blocks
cannot cooperate (until CUDA8/9 and
Volta)
- Unless thru slow global memory

Ø  Threads and blocks have IDs

Host

Kernel
1

Kernel
2

Device
Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Grid 2

Block (1, 1)

Thread
(0, 1) Thread

(1, 1) Thread
(2, 1) Thread

(3, 1) Thread
(4, 1)

Thread
(0, 2) Thread

(1, 2) Thread
(2, 2) Thread

(3, 2) Thread
(4, 2)

Thread
(0, 0) Thread

(1, 0) Thread
(2, 0) Thread

(3, 0) Thread
(4, 0)

GPU Programming 39 www.prace-ri.eu

Extended C syntax

Ø  Declspecs
global, device, shared,

local, constant

Ø  Keywords
threadIdx, blockIdx

Ø  Intrinsics
__syncthreads

Ø  Runtime API

Memory, symbol,
execution management

Ø  Function launch

__device__ float filter[N];

__global__ void convolve (float *image) {

 __shared__ float region[M];
 ...

 region[threadIdx] = image[i];

 __syncthreads()
 ...
 image[j] = result;
}

// Allocate GPU memory
void *myimage = cudaMalloc(bytes)

// 100 blocks, 10 threads per block
convolve<<<100, 10>>> (myimage);

GPU Programming 40 www.prace-ri.eu

CUDA Function Declarations

Executed on
the:

Only callable from the:

__device__ float DeviceFunc() device device

__global__ void KernelFunc() device Host/device (DP,cc35)

__host__ float HostFunc() host Host

__global__ defines a kernel function

- Must return void
__device__ and __host__ define device and host functions respectively

GPU Programming 41 www.prace-ri.eu

CUDA Device Memory Space Overview

Each thread can:
R/W per-thread registers
R/W per-thread local memory
R/W per-block shared memory
R/W per-grid global memory
Read only per-grid constant memory
Read only per-grid texture memory

(Device) Grid

Constant
Memory

Texture
Memory

Global
Memory

Block (0, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Host The host can R/W global,
constant, and texture memories

GPU Programming 42 www.prace-ri.eu

Global, Constant, and Texture Memories

Global memory
Main means of communicating R/W

data between host and device

Contents visible to all threads

Texture and Constant Memories

Constants initialized by host
Contents visible to all threads

(Device) Grid

Constant
Memory

Texture
Memory

Global
Memory

Block (0, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Host

Courtesy: NDVIA

GPU Programming 43 www.prace-ri.eu

Access times for various memories

Register – dedicated HW - single cycle
Shared Memory – dedicated HW - single cycle
Local Memory – DRAM, no cache - *slow*
Global Memory – DRAM, no cache - *slow*
Constant Memory – DRAM, cached, 1…10s…100s of cycles, depending on cache locality
Texture Memory – DRAM, cached, 1…10s…100s of cycles, depending on cache locality
Instruction Memory (invisible) – DRAM, cached

GPU Programming 44 www.prace-ri.eu

Calling Kernel Function – Thread Creation

A kernel function must be called with an execution configuration:

__global__ void KernelFunc(...);
dim3 DimGrid(100, 50); // 5000 thread blocks
dim3 DimBlock(4, 8, 8); // 256 threads per block
size_t SharedMemBytes = 64; // 64 bytes of shared memory
KernelFunc<<< DimGrid, DimBlock, SharedMemBytes >>>(...);

Any call to a kernel function is asynchronous (CUDA 1.0 & later), explicit synchronization

needed for blocking

Recursion in kernels supported (in 5.0/Kepler+)

GPU Programming 45 www.prace-ri.eu

Sample Code: Increment Array
main() { float *a_h, *a_d; int i, N=10; size_t size = N*sizeof(float);
 a_h = (float *)malloc(size);
 for (i=0; i<N; i++) a_h[i] = (float)i;

 // allocate array on device
 cudaMalloc((void **) &a_d, size);

 // copy data from host to device
 cudaMemcpy(a_d, a_h, sizeof(float)*N, cudaMemcpyHostToDevice);

 // do calculation on device:
 // Part 1 of 2. Compute execution configuration
 int blockSize = 4;
 int nBlocks = N/blockSize + (N%blockSize == 0?0:1);
 // Part 2 of 2. Call incrementArrayOnDevice kernel
 incrementArrayOnDevice <<< nBlocks, blockSize >>> (a_d, N);

 // Retrieve result from device and store in b_h
 cudaMemcpy(b_h, a_d, sizeof(float)*N, cudaMemcpyDeviceToHost);

 // cleanup
 free(a_h);
 cudaFree(a_d);
}

__global__ void incrementArrayOnDevice(float *a,
int N)
{
 int idx = blockIdx.x*blockDim.x + threadIdx.x;
 if (idx<N) a[idx] = a[idx]+1.f;
}

GPU Programming 46 www.prace-ri.eu

Using per-block shared memory

Variables shared across block
 int *begin, *end;

Scratchpad memory

 __shared__ int scratch[blocksize];
 scratch[threadIdx.x] = begin[threadIdx.x];
// … compute on scratch values …
begin[threadIdx.x] = scratch[threadIdx.x];

Communicating values between threads

 scratch[threadIdx.x] = begin[treadIdx.x];
 __syncthreads();
int left = scratch[threadIdx.x - 1];

Block
Per-block

Shared
Memory

GPU Programming 47 www.prace-ri.eu

Compiling CUDA

•  Call nvcc (driver) -- also C++/Fortran support
•  LLVM front end
 - generates separate GPU & CPU code
•  LLVM back end
 - generates GPU PTX assembly

•  Parallel Threads eXecution (PTX)
 - virtual machine and ISA
 - gets assembled into actual machine code

GPU Programming 48 www.prace-ri.eu

Execution model

Multiple levels of parallelism
•  Thread block
 - max. 1024 threads/block
 - communication through shared memory (fast)
 - thread guaranteed to be resident
 - threadIdx, blockIdx
 - __syncthreads()
 à barrier for this block only!
 avoid RAW/WAR/WAW hazards when ref’

 shared/global memory

•  Grid of thread blocks

 - F<<<nblocks, nthreads>>>(a, b, c)

GPU Programming 49 www.prace-ri.eu

Execution model

•  Each Block is executed as 32-
thread “warps”
–  An implementation decision,

not part of the CUDA
programming model

–  Warps are scheduling units
in SM

•  If 3 blocks are assigned to an
SM and each block has 256
threads, how many Warps are
there in an SM?
–  Each Block is divided into

256/32 = 8 Warps
–  There are 8 * 3 = 24 Warps

…
t0 t1 t2 … t31
…

…
t0 t1 t2 … t31
… Block 1 Warps Block 2 Warps

…
t0 t1 t2 … t31
… Block 3 Warps

•  Warp divergence?
•  Coalesced accesses?

GPU Programming 50 www.prace-ri.eu

Small Changes, Big Speed-up
Application Code

+

GPU CPU

Use GPU to
Parallelize

Compute-Intensive
Functions

Rest of Sequential
CPU Code

GPU Programming 51 www.prace-ri.eu

Why GPU Computing Matters?

Traditional CPUs are
not economically feasible

8.1 PFlops 4200 homes

4.2
Megawatts

4.2
Megawatts

CPU
Optimized for
Serial Tasks

GPU Accelerator
Optimized for Many

Parallel Tasks

10x performance/socket

> 5x energy efficiency

Era of GPU-accelerated
computing is here

Trinity - Cray XC40, Xeon E5-2698v3 16C
2.3GHz, Cray Inc. 4.2MW

DGX SATURNV - NVIDIA DGX-1, XeonE5-2698v4
20C 2.2GHz + 8x Tesla P100, NVIDIA. 350KW

3.3 PFlops

GPU Programming 52 www.prace-ri.eu

Tesla Products Tesla K40 Tesla M40 Tesla P100
GPU GK110 (Kepler) GM200 (Maxwell) GP100 (Pascal)
SMs 15 24 56
TPCs 15 24 28
FP32 CUDA Cores / SM 192 128 64
FP32 CUDA Cores / GPU 2880 3072 3584
FP64 CUDA Cores / SM 64 4 32
FP64 CUDA Cores / GPU 960 96 1792
Base Clock 745 MHz 948 MHz 1328 MHz
GPU Boost Clock 810/875 MHz 1114 MHz 1480 MHz
FP64 GFLOPs 1680 213 5304
Texture Units 240 192 224
Memory Interface 384-bit GDDR5 384-bit GDDR5 4096-bit HBM2
Memory Size Up to 12 GB Up to 24 GB 16 GB
L2 Cache Size 1536 KB 3072 KB 4096 KB
Register File Size / SM 256 KB 256 KB 256 KB
Register File Size / GPU 3840 KB 6144 KB 14336 KB
TDP 235 Watts 250 Watts 300 Watts
Transistors 7.1 billion 8 billion 15.3 billion
GPU Die Size 551 mm² 601 mm² 610 mm²
Manufacturing Process 28-nm 28-nm 16-nm

GPU architecture evolution

GPU Programming 53 www.prace-ri.eu

GPUs & High-performance Libraries

GPU Programming 54 www.prace-ri.eu

GPU Programming 55 www.prace-ri.eu

GPU Programming 56 www.prace-ri.eu

GPU Programming 57 www.prace-ri.eu

GPU Programming 58 www.prace-ri.eu

GPU Profiling and Debugging Tools

GPU Programming 59 www.prace-ri.eu

NVIDIA Visual Profiler

•  Standalone application with CUDA
Toolkit

•  Visualize performance
•  Timeline
•  Power, clock, thermal profiling
•  Concurrent profiling
•  Profile activity on both GPU and

CPU
•  nvprof - command line tool

GPU Programming 60 www.prace-ri.eu

GPU Debugging Solutions

GPU Programming 61 www.prace-ri.eu

GPU Usage from Python

•  PyCUDA/PyOpenCL

 - Developed by Andreas Klöckner
 - Built on top of CUDA Driver API

•  Numba
•  Anaconda Accelerate offers bindings to the important CUDA libraries:

 - cuBLAS
 - cuFFT
 - cuSPARSE
 - cuRAND
 - ….

•  Many high-level libraries use these under the hood:
 - this abstracts complexity even more
 - take for example deep/machine learning frameworks:
 - seamless multi-GPU programming

61

GPU Programming 62 www.prace-ri.eu 62

PyCUDA example

•  More examples in the Hands-on!

GPU Programming 63 www.prace-ri.eu

THANK YOU FOR YOUR ATTENTION

www.prace-ri.eu

GPU Programming 64 www.prace-ri.eu

H2020-Astronomy ESFRI and
Research Infrastructure
Cluster (Grant Agreement
number: 653477).

Acknowledgement

