
RE S EARCH ART I C L E

Model checking C++ programs

Felipe R. Monteiro1 | Mikhail R. Gadelha2 | Lucas C. Cordeiro3

1Federal University of Amazonas, Manaus,
Brazil
2Igalia, A Coruña, Spain
3University of Manchester, Manchester, UK

Correspondence
Lucas C. Cordeiro, University of Manchester,
Manchester, UK.
Email: lucas.cordeiro@manchester.ac.uk

Funding information
Engineering and Physical Sciences Research
Council; Nokia Institute of Technology; UK
Research and Innovation

Summary
In the last three decades, memory safety issues in system programming
languages such as C or C++ have been one of the most significant sources of
security vulnerabilities. However, there exist only a few attempts with limited
success to cope with the complexity of C++ program verification. We describe
and evaluate a novel verification approach based on bounded model checking
(BMC) and satisfiability modulo theories (SMT) to verify C++ programs.
Our verification approach analyses bounded C++ programs by encoding into
SMT various sophisticated features that the C++ programming language
offers, such as templates, inheritance, polymorphism, exception handling, and
the Standard Template Libraries. We formalize these features within our for-
mal verification framework using a decidable fragment of first-order logic and
then show how state-of-the-art SMT solvers can efficiently handle that. We
implemented our verification approach on top of ESBMC. We compare
ESBMC to LLBMC and DIVINE, which are state-of-the-art verifiers to check
C++ programs directly from the LLVM bitcode. Experimental results show
that ESBMC can handle a wide range of C++ programs, presenting a higher
number of correct verification results. Additionally, ESBMC has been applied
to a commercial C++ application in the telecommunication domain and
successfully detected arithmetic-overflow errors, which could potentially lead
to security vulnerabilities.

KEYWORDS
C++, memory safety, model checking, SMT, software verification

1 | INTRODUCTION

Software verification plays an essential role in ensuring overall product reliability as security becomes a major concern
[1]. For more than 30 years now, memory safety issues in system programming languages such as C or C++ have been
among the major sources of security vulnerabilities [2]. For instance, the Microsoft Security Response Center reported
that approximately 70% of their security issues every year are due to memory-safety violations in their C and C++ code
[3]. Beyond memory safety, undefined behaviour (e.g., signed-integer overflow) also represents another crucial source
of errors that could potentially lead to security vulnerabilities [4].

Over the last 15 years, formal techniques dramatically evolved [5], its adoption in industry has been growing [6-9],
and several tools to formally verify C programs have been proposed [10]. However, there exist only a few attempts with
limited success to cope with the complexity of C++ program verification [11-18]. The main challenge here is to support
sophisticated features that the C++ programming language offers, such as templates, sequential and associative
template-based containers, strings & streams, inheritance, polymorphism, and exception handling. Simultaneously, to
be attractive for mainstream software development, C++ verifiers must handle large programs, maintain high speed
and soundness, and support legacy designs.

Received: 24 May 2021 Revised: 5 August 2021 Accepted: 6 August 2021

DOI: 10.1002/stvr.1793

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided
the original work is properly cited.
© 2021 The Authors. Software Testing, Verification & Reliability published by John Wiley & Sons Ltd.

Softw Test Verif Reliab. 2022;32:e1793. wileyonlinelibrary.com/journal/stvr 1 of 30
https://doi.org/10.1002/stvr.1793

 10991689, 2022, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.1793 by C

ochrane G
reece, W

iley O
nline L

ibrary on [26/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://orcid.org/0000-0001-9420-9056
https://orcid.org/0000-0001-6540-6587
https://orcid.org/0000-0002-6235-4272
mailto:lucas.cordeiro@manchester.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/stvr
https://doi.org/10.1002/stvr.1793
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fstvr.1793&domain=pdf&date_stamp=2021-09-08

In an attempt to cope with ever-growing system complexity, bounded model checking (BMC) based on satisfiability
modulo theories (SMT) has been introduced as a complementary technique to Boolean satisfiability (SAT) for
alleviating the state explosion problem [19]. In this paper, we describe and evaluate a novel SMT-based BMC approach
to verify C++ programs integrated into ESBMC [20-23], a state-of-the-art context-bounded model checker. ESBMC
can check for undefined behaviours and memory safety issues such as under- and overflow arithmetic, division-by-zero,
pointer safety, array out-of-bounds violations, and user-defined assertions.

Our major contributions are twofold: (i) we present a C++ operational model, an abstract representation of the
Standard Template Libraries (STL) that reflects their semantics and enables ESBMC to verify specific properties
related to C++ structures (e.g., functional properties of standard containers) via function contracts (i.e., pre- and post-
conditions), in addition to memory safety properties; (ii) we also describe and evaluate novel approaches to handle
exceptions in C++ programs (e.g., exception specification for functions and methods), which previous approaches
could not handle [12,14,15]. We also present an overview of ESBMC’s type-checking engine and how it handles tem-
plates, inheritance, and polymorphism. Finally, we compare our approach against LLBMC [12], a state-of-the-art
bounded model checker based on SMT solvers, and DIVINE [16], a state-of-the-art explicit-state model checker, both
for C and C++ programs. Our experimental evaluation contains a broad set of benchmarks with over 1500 instances,
where ESBMC reaches a success rate of 84.27%, outperforming LLBMC and DIVINE.

This article is a substantially revised and extended version of a previous contribution by Ramalho et al. [24]. The
major differences here are (i) we extend the C++ operational model structure to handle new features from the STL
(e.g., associative template-based containers); (ii) we provide details about the C++ rules used to throw and catch excep-
tions; (iii) we support terminate and unexpected handlers; and (iv) we extend approximately 36% of our experi-
mental evaluation with a completely new set of benchmarks.

The remainder of this article is organized as follows. Section 2 gives a brief introduction to BMC and describes the
background theories of the SMT solvers relevant to our contributions. In Section 3, we describe the aspects of C++
handled in type-checking; that is, our current approach to support templates and the mechanism to support inheritance
and polymorphism. We then present the main contributions, Section 4 presents the operational model to replace the
STL in the verification process; and Section 5 describes the exception handling encoding. Section 6 presents the results
of our experimental evaluation. Finally, in Section 7, we discuss the related work, and we conclude in Section 8 along
with our future research directions.

2 | BACKGROUND THEORY

ESBMC is a bounded model checker based on CProver framework [25] aimed to support SMT solvers natively.
ESBMC generates verification conditions (VCs) for a given C or C++ program and encodes them using different SMT
background theories (i.e., linear-integer and real arithmetic and bit-vectors) and solvers (i.e., Boolector [26], Z3 [27],
Yices [28], MathSAT [29], and CVC4 [30]). ESBMC represents one of the most prominent BMC tools for software veri-
fication, according to the last editions of the Intl. Competition on Software Verification (SV-COMP) [31] and the Intl.
Competition on Software Testing [32]; in particular, it was ranked at the top three verifiers in the overall ranking of
SV-COMP 2020 [31]. ESBMC has been applied to verify (embedded) software in digital filters [33] and digital control-
lers [34], and unmanned aerial vehicles [35].

2.1 | Bounded model checking

In BMC, the program to be analysed is modelled as a state transition system, which is extracted from the control-flow
graph (CFG) [36]. This graph is built as part of a translation process from program code to static single assignment
(SSA) form. A node in the CFG represents either a (non-) deterministic assignment or a conditional statement, while an
edge in the CFG represents a possible change in the program’s control location.

Given a transition system M, a property ϕ, and a bound k, BMC unrolls the system k times and translates it into a
VC ψ , such that ψ is satisfiable if and only if ϕ has a counterexample of length k or less [19]. The associated model
checking problem is formulated by constructing the following logical formula:

ψk ¼ Iðs0Þ^
k̂�1

i¼0

Tðsi,siþ1Þ^
_k
i¼0

¬ϕðsiÞ, ð1Þ

given that ϕ is a safety property, I is the set of initial states of M and T(si, si + 1) is the transition relation of M between
steps i and i + 1. Hence, Iðs0Þ^

V j�1
i¼0Tðsi,siþ1Þ represents the executions of M of length j and the formula (1) can be

2 of 30 MONTEIRO ET AL.

 10991689, 2022, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.1793 by C

ochrane G
reece, W

iley O
nline L

ibrary on [26/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

satisfied if and only if, for some j ≤ k, there exists a reachable state at step j in which ϕ is violated. If the formula (1) is
satisfiable, then the SMT solver provides a satisfying assignment, from which we can extract the values of the program
variables to construct a counterexample. A counterexample for a property ϕ is a sequence of states s0, s1,…, sk with
s0�S0 and T(si, si+ 1) with 0 ≤ i< k.

If the formula (1) is unsatisfiable, we can conclude that no error state is reachable in k steps or less. In this case,
BMC techniques are not complete because there might still be a counterexample that is longer than k. Completeness
can only be ensured if we know an upper bound on the depth of the state space. This means that if we can ensure that
we have already explored all the relevant behaviour of the system, and searching any deeper only exhibits states
that have already been verified [37].

2.2 | Satisfiability modulo theories

SMT decides the satisfiability of a fragment of quantifier-free first-order formulae using a combination of different
background theories. It generalizes propositional satisfiability by supporting uninterpreted functions, linear and non-
linear arithmetic, bit-vectors, tuples, arrays, and other decidable first-order theories. Given a theory τ and a quantifier-
free formula ψ , we say that ψ is τ-satisfiable if and only if there exists a structure that satisfies both the formula and the
sentences of τ, or equivalently if τ [{ψ} is satisfiable [38]. Given a set Γ [{ψ} of formulae over τ, we say that ψ is a
τ-consequence of Γ, and write Γ⊧τψ , if and only if every model of τ [Γ is also a model of ψ . Checking Γ⊧τψ can be
reduced in the usual way to checking the τ-satisfiability of Γ [{¬ ψ}.

ESBMC heavily uses the (non-extensional) theory of arrays T A based on the McCarthy axioms [39], to properly
encode properties and behaviours of the STL models (cf. Section 4) and the C++ exception handling features
(cf. Section 5). We define conditional expressions [40] over bitvectors using the ite(c, t1, t2) operator, where c is the con-
dition expression, t1 is the consequent branch iteð> , t1, t2Þ¼ t1, and t2 is the alternative branch ite(⊥ , t1, t2)= t2. The
operation select(a, i) denotes the value of an array a at index position i and store(a, i, v) denotes an array that is exactly
the same as array a except that the value at index position i is v. Formally, the functions select and store can then be
characterized by the following two axioms [27,30,41]:

i¼ j) selectðstoreða, i,vÞ, jÞ¼ v

¬ ði¼ jÞ) selectðstoreða, i,vÞ, jÞ¼ selectða, jÞ

Finally, an important component of our models is the memcpy pattern through lambda terms introduced by Preiner,
Niemetz, and Biere [40]. It allows us to reason about operations over multiple indices without the need for quantifiers.
Here, the memcpy(a, b, i, k, n) operation denotes a copy of n elements from array a starting at position i to array b at
the position k.

3 | STATIC TYPE CHECKING OF C++ PROGRAMS

The first steps when verifying C++ programs are the source-code parser and the type-checker, which are language-
specific in ESBMC (see Figure 1). For C++, the parser is heavily based on the GNU C++ Compiler (GCC) [42], which
allows ESBMC to find and report most of the syntax errors already reported by GCC. Type-checking provides all
information used by the model; thus, a better type-checker means it is possible to model more programs. The code is
statically analysed on type-checking, including assignment checks, type-cast checks, pointer initialization checks, and
function call checks. Furthermore, ESBMC handles three major C++ features on type-checking: template instantiation
(i.e., after type-checking, all referenced templates are instantiated with concrete types), compile-time and runtime poly-
morphism, and inheritance (i.e., it replicates the methods and attributes of the base classes to the inherited class, which
will have direct access).

By the end of the type-check, the Intermediate Representation (IR) creation is completed and used by the GOTO
converter to generate the GOTO program. The verification of C programs is slightly different as it uses clang as a
front-end to parse and type-check the program, as described in our previous work [22,23]; the output, however, it is the
same: a type-checked IR.

The GOTO converter converts the type-checked IR into GOTO expressions; this conversion simplifies the IR of the
original program (e.g., replacing of switch and while by if and goto statements). The symbolic engine converts
the GOTO program into SSA form by unrolling loops up to bound k. Assertions are inserted into the resulting SSA
expressions to verify memory-safety properties (e.g., array out-of-bounds access, arithmetic under- and overflow,

MODEL CHECKING C++ PROGRAMS 3 of 30

 10991689, 2022, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.1793 by C

ochrane G
reece, W

iley O
nline L

ibrary on [26/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

memory leaks, double frees, division-by-zero, etc.). Also, most of the exception handling is carried out in this step, such
as the search for valid catch, assignment of a thrown object to a valid catch object, replacement of throw state-
ments by GOTO expressions and exception specs for function calls (cf. Section 5).

Finally, two sets of quantifier-free formulae are created based on the SSA expressions: C for the constraints and P
for the properties, as previously described. The two sets of formulae will be used as input for an SMT solver that will
produce a counterexample if there exists a violation of a given property, or an unsatisfiable answer if the property
holds.

3.1 | Template instantiation

Templates are not runtime objects [43]. When a C++ program is compiled, classes and functions are generated from
templates. Those templates are removed from the final executable. ESBMC has a similar process in which templates
are only used until the type-checking phase, where all templates are instantiated and the classes and functions are gener-
ated. Any instantiated functions and classes are no longer templates. Hence, at the end of the type-checking phase, all
templates are completely discarded. In ESBMC, the entire verification process of C++ programs, which make use of
templates, is essentially split into two steps: creation of templates and template instantiation. The creation of templates is
straightforward. It happens during the parsing step when all generic data types of the generated C++ IR are properly
marked as generic and each specialization is paired with its corresponding primary template. No instantiated func-
tion or class is created during parsing because ESBMC does not know which template types will be instantiated.

A template instantiation happens when a template is used, instantiated with data types (e.g., int, float, or
string). ESBMC performs an in-depth search in the C++ IR during the type-checking process to trigger all instantia-
tions. When a template instantiation is found, ESBMC firstly identifies which type of template it is dealing with
(i.e., either class or function template) and which template arguments are used. It then searches whether an IR of
that type was already created, i.e., whether its arguments have been previously instantiated. If so, no new IR is created;
this avoids duplicating the IR, thus reducing the memory requirements of ESBMC. If there is no IR of that type, a new
IR is created, used in the instantiation process, and saved for future searches. To create a new IR, ESBMC must select
the most specialized template for the set of template arguments; therefore, ESBMC performs another search in the IR
to select the proper template definition. ESBMC then checks whether there is a (partial or explicit) template specializa-
tion, matching the set of data types in the instantiation. If ESBMC does not find any template specialization, which

F I GURE 1 ESBMC architectural overview. White rectangles represent input and output; grey rectangles represent the steps of the verification

4 of 30 MONTEIRO ET AL.

 10991689, 2022, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.1793 by C

ochrane G
reece, W

iley O
nline L

ibrary on [26/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

matches the template arguments, it will select the primary template definition. Once the most specialized template is
selected, ESBMC performs a transformation to replace all generic types for the data types specified in the instantiation;
this transformation is necessary because, as stated previously, at the end of the C++ type-checking phase, all templates
are removed.

In order to concretely demonstrate the instantiation process in ESBMC, Figure 2 illustrates an example of function
templates usage, which is based on the example spec29 extracted from the GCC test suite.1 The first step, the template
creation, happens when the declaration of a template function (lines 5–19) is parsed. At this point, the generic IR of the
template is created with a generic type. The second step, template instantiation, happens when the template is used. In
Figure 2, the template is instantiated twice (lines 23 and 24). It is also possible to determine the type implicitly (line 23)
or explicitly (line 24). In implicit instantiation, the data type is determined by the types of the used parameters. In con-
trast, in the explicit instantiation, the data type is determined by the value passed between the < and > symbols.

Figure 3 illustrates the generic IR and the instantiated IRs generated from the code in Figure 2. Figure 3a illustrates
the generic IR generated from the qCompare function template and its specialization, while Figure 3b shows the IRs
created from instantiating this template with data type float (line 23) and int (line 24). The function body is omitted
in this figure, but it follows the same instantiation pattern. The generic IR is built with the function name, which is used
as a key for future searches, the IR’s arguments and return type, as can be seen in Figure 3a. Note that the data type is
labelled as generic, which means that the type is generic. In Figure 3b, the data types that were previously labelled as
generic are now labelled as float for the first instantiation and int for the second instantiation, which means that
these instantiated IRs are not templates anymore and will not be removed at the end of the type-check phase. Finally,
as described earlier, at the end of the type-check phase, the generic IR illustrated in Figure 3a is discarded.

After the template instantiation, the verification process resumes, as described by Cordeiro et al. [44]. ESBMC is
currently able to handle the verification of C++ programs with template functions, class templates, and (partial and
explicit) template specialization, according to the C++03 standard [45]. The implementation of template instantiation
in ESBMC is based on the formalization previously presented by Siek and Taha [46] who introduced the first proof of
type safety of the template instantiation process for C++03 programs.

3.2 | Inheritance

In contrast to Java, which only allows single inheritance, where derived classes have only one base class, C++ also
allows multiple inheritances, where a class may inherit from one or more unrelated base classes [47]. This particular

F I GURE 2 Function template example

1https://github.com/nds32/gcc/

MODEL CHECKING C++ PROGRAMS 5 of 30

 10991689, 2022, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.1793 by C

ochrane G
reece, W

iley O
nline L

ibrary on [26/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://github.com/nds32/gcc/

feature makes C++ programs harder to model check than programs in other object-oriented programming languages
(e.g., Java) since it disallows the direct transfer of techniques developed for other, simpler programming languages
[48,49]. Multiple inheritance in C++ includes features that raise exciting challenges for model checking such as
repeated and shared inheritance of base classes, object identity distinction, and dynamic dispatch [50].

In ESBMC, inheritance is handled by replicating the methods and attributes of the base classes to the derived class,
obeying the rules of inheritance defined in the C++03 standard [45]. In particular, we follow these specifications to han-
dle multiple inheritance and avoid issues such as name clashing when replicating the methods and attributes. For exam-
ple, if two or more base classes implement a method that is not overridden by the derived class, every call to this
method must specify which “version” inherited it is referring to. The rules are checked in the type-check step of the veri-
fication (cf. Section 3).

A formal description to represent the relationship between classes can be described by a class hierarchy graph. This
graph is represented by a triple ⟨C, ≺s, ≺r⟩, where C is the set of classes, ≺s ⊆ C � C refers to shared inheritance edges
(i.e., if there exists a path from class X to class Y whose first edge is virtual), and ≺r ⊆ C � C are replicated inheritance
edges (i.e., if a class inherits from a base class that does not contain virtual methods). We also define the set of all
inheritance edges ≺ sr ¼ ≺ s[≺ r. Thus, C, ≤ srð Þ is a partially ordered set [51] and ≤sr is anti-symmetric (i.e., if one
element A of the set precedes B, the opposite relation cannot exist). Importantly, during the replication process of
all methods and attributes from the base classes to the derived ones, the inheritance model considers the access
specifiers related to each component (i.e., public, protected, and private) and its friendship [47]; therefore, we
define two rules to deal with such restrictions: (i) only public and protected class members from base classes are
joined in the derived class and (ii) if class X�C is a friend of class Y�C, all private members in class X are joined in
class Y.

As an example, Figure 4 shows an UML diagram that represents the Vehicle class hierarchy, which contains mul-
tiple inheritance. The replicated inheritance in the JetCar class relation can be formalized by ⟨C, ;, {(JetCar, Car),
(JetCar, Jet)}⟩.

ESBMC creates an intermediate model for single and multiple inheritance, handling replicated and shared inheri-
tance where all classes are converted into structures and all methods and attributes of its parent classes are joined. This
approach has the advantage of having direct access to the attributes and methods of the derived class and thus allows
an easier validation, as the tool does not search for attributes or methods from base classes on each access. However,
we replicate information to any new class, thus wasting memory resources.

F I GURE 3 Example of IR creation

6 of 30 MONTEIRO ET AL.

 10991689, 2022, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.1793 by C

ochrane G
reece, W

iley O
nline L

ibrary on [26/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

In addition, we also support indirect inheritance, where a class inherits features from a derived class with one or
more classes not directly connected. Indirect inheritance is automatically handled due to our replication method: any
derived class will already contain all methods and attributes from their base classes, which will be replicated to any class
that derives from them. In Figure 4, we have JetCar≤srCar and Car≤srVehicle. Thus, the JetCar class can access
features from the Vehicle class, but they are not directly connected.

In object-oriented programming, the use of shared inheritance is very common [47]. In contrast to other approaches
(e.g., the one proposed by Blanc, Groce, and Kroening [14]), ESBMC is able to verify this kind of inheritance. A pure
virtual class does not implement any method and, if an object tries to create an instance of a pure virtual class, ESBMC
will fail with a CONVERSION ERROR message (since it is statically checked during type-checking).

3.3 | Polymorphism

In order to handle polymorphism, that is, allowing variable instances to be bound to references of different types,
related by inheritance [52], ESBMC implements a virtual function table (i.e., vtable) mechanism [53]. When a class
defines a virtual method, ESBMC creates a vtable, which contains a pointer to each virtual method in the class. If a
derived class does not override a virtual method, then the pointers are copied to the virtual table of the derived class. In
contrast, if a derived class overrides a virtual method, then the pointers in the virtual table of the derived class will point
to the overridden method implementation. Whenever a virtual method is called, ESBMC executes the method pointed
in the virtual table. ESBMC also supports the unary scope resolution operator (i.e., ::), which, in this context, enables
a derived class to access members from its parents, a key component to support multiple inheritance.

Consider the program in Figure 5, which contains a simplified version of the class hierarchy presented in Figure 4.
In the program, a class Vehicle is base for two classes, Motorcycle and Car. The class Vehicle defines a pure vir-
tual method number_of_wheel(), and both classes Motorcycle and Car implement the method, returning 2 and
4, respectively. The program creates an instance of Motorcycle or Car, depending on a nondeterministic choice, and
assigns the instance to a Vehicle pointer object v. Finally, through the polymorphic object v, the program calls
number_of_wheel() and checks the returned value. We omit a call to delete (that would free the pointer v) to
simplify the GOTO instructions.

Figure 6a shows the GOTO program (resulted from the type-checking phase) generated for the program in
Figure 5. Note that, when building the polymorphic object v, the vtable’s pointer for the method
number_of_wheel() is first assigned with a pointer to the method number_of_wheel() in class Vehicle
(see lines 10 and 17 in Figure 6a); this happens because the constructor for both Car and Motorcycle first call the
base constructor in the original program (see lines 13 and 20 in Figure 5). They are then assigned the correct method
address (see lines 12 and 19 in Figure 6a) in the constructors of the derived classes, that is, Motorcycle and Car,
respectively.

In the SSA form shown in Figure 6b, every branch creates a separate variable, which are then combined when the
control-flow merges. In Figure 6b, we generate two branches (i.e., v1 and v2) and a ϕ-node (i.e., v3) to merge both

F I GURE 4 Vehicle class hierarchy UML diagram

MODEL CHECKING C++ PROGRAMS 7 of 30

 10991689, 2022, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.1793 by C

ochrane G
reece, W

iley O
nline L

ibrary on [26/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

branches. For instance, the variable v1 represents the branch, where the polymorphic variable v gets assigned an object
of type Motorcycle, while v2 represents the branch, where v gets assigned an object of type Car. They are then mer-
ged into v3, depending on the initial nondeterministic choice (see line 13 in Figure 6b). There exists no side-effect in the
SSA form, as it can use the correct definition of number_of_wheels() in the ϕ-node. The type-checker does all
the heavy lifting.

4 | C++ OPERATIONAL MODEL

The C++ programming language offers a collection of libraries, called STL, to provide most of the functionalities
required by a programmer [45]. However, the direct inclusion of the STL into the verification process overcomplicates
the analysis of C++ programs, as it contains code fragments not relevant for verification (e.g., optimized assembly
code) [18,24]. Its implementation is based on a pointer structure that degrades the verification performance [14].
In particular, existing BMC tools adopt two different memory models: a fully byte-precise [12] or an object-based
[54,55] memory model. Note that BMC tools reduce bounded program traces to a decidable fragment of first-order
logic, which requires us to eliminate pointers in the model checker. They use static analysis to approximate each
pointer variable the set of data objects (i.e., memory chunks) at which it might point at some stage in the program exe-
cution. For a fully byte-precise memory model, BMC tools treat all memory as a single byte array, upon which all
pointer accesses are decomposed into byte operations. This can lead to performance problems due to the repeated
updates to the memory array that needs to be reflected in the SMT formula. For an object-based memory model, this
approach’s performance suffers if pointer offsets cannot be statically determined, for example, if a program reads a byte
from an arbitrary offset into a structure. The resulting SMT formula is large and unwieldy, and its construction is
error-prone.

To reduce verification complexity, ESBMC uses an abstract representation of the STL, called the C++ Operational
Model (COM), which adds function contracts [56] (i.e., pre- and post-conditions) to all STL function/method calls.
Thus, all those function contracts are verified by ESBMC. The purpose of the verification is to check whether a given

F I GURE 5 C++ program using a simplified version of the UML diagram in Figure 4. The program nondeterministically cast the derived class
to a base class. The goal is to check if the correct number_of_wheels() is called, from the base class

8 of 30 MONTEIRO ET AL.

 10991689, 2022, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.1793 by C

ochrane G
reece, W

iley O
nline L

ibrary on [26/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

program uses STL correctly without hitting a bogus state (e.g., calling vector::operator[] with an out-of-range
parameter leads to undefined behaviour). A similar technique, proposed by Blanc et al. [14], has been used to verify pre-
conditions on programs. However, ESBMC extends that approach by also checking the post-conditions, which
improves its effectiveness, as shown in our experimental evaluation (cf. Section 6).

Figure 7a shows a code snippet considered as the best-accepted answer for a Stack Overflow question.2 Neverthe-
less, line 10 could lead to an out-of-bound violation (CWE-125 vulnerability) [57]. ESBMC detects the erroneous state
through the operational model for vector::operator[] (see Figure 7b), which contains an assertion to check for
out-of-bound accesses. The model also keeps track of the values stored in the container using a buffer (buf), so it also
guarantees the post-condition for the operator, that is, return a reference to the element at specified location i.

F I GURE 7 Example from Stack Overflow (best accepted answer) that contains improper input validation (CWE-20) and out-of-bounds read
(CWE-125) vulnerabilities

2Available at https://stackoverflow.com/questions/41028862.

F I GURE 6 Internal representations of the program in Figure 5

MODEL CHECKING C++ PROGRAMS 9 of 30

 10991689, 2022, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.1793 by C

ochrane G
reece, W

iley O
nline L

ibrary on [26/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://stackoverflow.com/questions/41028862

Our COM mimics the structure of the STL, as shown in Table 1. All ANSI-C libraries are natively supported by
ESBMC, as described by Cordeiro et al. [20]. For all libraries under categories General, Language Support,
Numeric, and Localization, COM adds pre-conditions extracted directly from documentation [45], specifically
designed to detect memory-safety violations (e.g., nullness and out-of-bounds checks).

One of the challenges of modelling COM is the support for containers, strings, and streams, which requires the injec-
tion of pre- and post-conditions to check for functional properties correctly, as shown in the example illustrated in
Figure 7b (cf. the pre-conditions in lines 4–5). In this specific example, we check the vector upper and lower bounds
before retrieving its content to detect an out-of-bounds read in line 10 of Figure 7a. COM models sequential and asso-
ciative containers along with their iterators. In particular, libraries list, bitset, deque, vector, stack, and
queue belong to the sequential group, while libraries map, multimap, set, and multiset belong to the associative
group. COM models strings and streams objects as arrays of bytes to properly encode them using the theory of arrays
(cf. Section 2.2); therefore, string and all Stream I/O libraries also belong to the sequential group.

4.1 | Core language

The gist of COM enables ESBMC to encode features of standard containers, strings, and streams using the theory of
arrays T A. To properly formalize the verification of our model, we extend the previous core container language pres-
ented by Ramalho et al. [24] to include a representation for keys, which allows us to reason about associative containers
as well. The core language defines the syntactic domains values V, keys K, iterators I, pointers P, container C and inte-
gers ℕ as follows,

V :¼ v j ∗ iv
K :¼ k j ∗ ik
I :¼ i j C:insertðI ,VÞ j C:insertðK ,VÞ

C:searchðKÞ j C:searchðVÞ
C:eraseðIÞ

P :¼ p j Pðþ j �ÞP j cv j ck j iv j ik
C :¼ c

ℕ :¼ n j ℕðþ j ∗ j…Þℕ j size j pos

TABLE 1 Overview of the C++ operational model

Standard C++03 libraries—operational model

C standard libraries General Streams input/output Containers Language support Numeric Strings Localization

cassert memory ios bitset exception complex string locale

cctype stdexcept iomanip deque limits random

cerrno utility iosfwd list new valarray

cfloat functional iostream map typeinfo numeric

ciso646 istream multimap

climits ostream set

clocale streambuf multiset

cmath sstream vector

complex fstream stack

csetjmp queue

csignal algorithm

cstdarg iterator

cstddef

cstdio

cstdlib

cstring

ctime

10 of 30 MONTEIRO ET AL.

 10991689, 2022, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.1793 by C

ochrane G
reece, W

iley O
nline L

ibrary on [26/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Here v, k, p, i, c and n are classes of variables of type V, K, P, I, C and ℕ, respectively. For iterators, we use the notation
∗iv to denote the value stored in the memory location iv. Based on such domains, we also define P(+ j �)P as valid
pointer operations and ℕðþ j ∗ j…Þℕ as valid integer operations. Each operation shown in the core container syntax
(e.g., C.insert(I,V)) is explained in Sections 4.2 and 4.3.

All methods from the sequential and associative groups can be expressed as combinations/variations of three main
operations: insertion (C.insert(I, V)), deletion (C.erase(I)), and search (C.search(V)). Each operation is described in our
model as a Hoare triple fPg C fQg that represents the function contract scheme implemented by COM. Normally all
side-effects would be stated in the post-condition Q for verification. However, as part of the SSA transformation, side
effects on iterators and containers are made explicit. Operations return new iterators and containers with the same con-
tents, except for the fields that have just been updated. Thus, the translation function C contains primed variables
(e.g., c0 and i0) to represent the state of model variables after the respective operation. Finally, all models take advantage
of memcpy pattern through lambda terms [40], which enables us to describe array operations over multiple indices in a
clear and concise manner (cf. Section 2.2).

4.2 | Sequential containers

Sequential containers are built into a structure to store elements with a sequential order [47]. In our model, a sequential
container c consists of a pointer cv that points to a valid memory location and an integer size that stores the number of
elements in the container. Similarly, an iterator i is modelled using two variables: an integer ipos, which contains the
index value of the container pointed by the iterator and a pointer iv, which points to the memory location referred by
the iterator. In our model, the defined notation ∗i is equivalent to select(iv, ipos). Figure 8 gives an overview of our
abstraction for all sequential containers.

The statement c.insert(i, v) becomes ðc0, i0Þ ¼ c:insertði,vÞ increases the container size, move all elements from posi-
tion i.pos one memory unit forward, and then insert v into the specified position. Therefore,3

C ððc0, i0Þ ¼ c:insertði,vÞÞ :¼
c0:size¼ c:sizeþ1

^ memcpyðc:cv, c0:cv, i:pos, i:posþ1, c:size� i:posÞ
^ storeðc0:cv, i:pos, vÞ

ð2Þ

that induces the following pre- and post-conditions,

P ððc0, i0Þ ¼ c:insertði,vÞÞ :¼
v ≠ null

^ c:cv ≠ null

^ i:iv ≠ null

^ 0 ≤ i:pos < c0:size

ð3Þ

F I GURE 8 Abstraction for sequential containers

3Note that SMT theories only have a single equality predicate (for each sort). However, here we use the notation “:=” to indicate an assignment of nested equality
predicates on the right-hand side of the formula.

MODEL CHECKING C++ PROGRAMS 11 of 30

 10991689, 2022, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.1793 by C

ochrane G
reece, W

iley O
nline L

ibrary on [26/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Q ððc0, i0Þ ¼ c:insertði,vÞÞ :¼
selectði0:iv, i0:posÞ ¼ v

^ i0:iv ¼ c0:cv
^ i0:pos¼ i:pos

ð4Þ

where null represents an uninitialized pointer/object. Thus, we define as pre-conditions P that v and i cannot be uni-
nitialized objects as well as i.pos must be within c0.cv bounds; similarly, we define as post-conditions Q that v was cor-
rectly inserted in the position specified by i as well as c0.cv and i0.iv are equivalent, that is, both point to the same
memory location. Importantly, we implement the memory model for containers essentially as arrays, therefore, the
range to select elements from memory varies from 0 to c.size� 1. Furthermore, the main effect of the insert method is
mainly captured by Equation (2) that describes the contents of the container array c0.cv after the insertion in terms of
update operations to the container array c.cv before the insertion.

The erase method works similarly to the insert method. It uses iterator positions, integer values, and pointers, but it
does not use values since the exclusion is made by a given position, regardless of the value. It also returns an iterator
position (i.e., i0), pointing to the position immediately after the erased part of the container [45]. Therefore,

C ððc0, i0Þ ¼ c:eraseðiÞÞ :¼
memcpyðc:cv, c0:cv, i:posþ1, i:pos, c:size�ði:posþ1ÞÞ
^ c0:size¼ c:size�1

^ i0:pos¼ i:posþ1

ð5Þ

that induces the following pre- and post-conditions,

P ððc0, i0Þ ¼ c:eraseðiÞÞ :¼
i:iv ≠ null

^ c:cv ≠ null

^ 0 ≤ i:pos < c:size

^ c:size≠ 0) c:cv ≠ null

ð6Þ

Q ððc0, i0Þ ¼ c:eraseðiÞÞ :¼
selectðc0:cv, i0:posÞ ¼ selectðc:cv, i:posþ1Þ
^ i0:iv ¼ c0:cv

ð7Þ

where we assume as pre-conditions P that i must be a valid iterator pointing to a position within the bounds of array c.
cv and c must be non-empty; similarly, we assume as post-conditions Q that i0 must point to the element immediately
after the erased one and c0.cv and i0.iv point to the same memory location. Finally, a container c with a call c.search(v)
performs a search for an element vin the container. Then, if such an element is found, it returns an iterator that points
to the respective element; otherwise, it returns an iterator that points to the position immediately after the last con-
tainer’s element (i.e., select(c0.cv, c0.size)). Hence,

Cððc0, i0Þ ¼ c:searchðvÞÞ :¼
iteðc:size¼ 0,

i0:pos¼ c:size,

iteðselectðc:cv,0Þ¼ v,

i0:pos¼ 0,

:::

iteðselectðc:cv,c:size�1Þ¼ v,

i0:pos¼ c:size�1,

i0:pos¼ c:sizeÞ ::: ÞÞ

ð8Þ

that induces the following pre- and post-conditions,

12 of 30 MONTEIRO ET AL.

 10991689, 2022, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.1793 by C

ochrane G
reece, W

iley O
nline L

ibrary on [26/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Pððc0, i0Þ ¼ c:searchðvÞÞ :¼
v ≠ null

ð9Þ

Q ððc0, i0Þ ¼ c:searchðvÞÞ :¼
c0:cv ¼ c:cv
^ c0:size¼ c:size

^ i0:iv ≠ c0:cv
^ iteðselectði0:iv, i0:posÞ ¼ selectðc0:cv, i0:posÞ,

selectði0:iv, i0:posÞ¼ v,

selectði0:iv, i0:posÞ¼ selectðc0:cv, c0:sizeÞÞ

ð10Þ

where we assume as pre-conditions P that v and c cannot be an uninitialized objects; similarly, we assume as post-
conditions Q that c0 is equivalent to its previous state c, c0.cv and i0.iv point to the same memory location, and i0 must
point to the found element or to select(c0.cv, c0.size).

4.3 | Associative containers

Associative containers consist of elements with a key k and a value v, where each value is associated with a unique key.
All elements are internally sorted by their keys based on a strict weak ordering rule [45]. In our model, an associative con-
tainer c consists of a pointer cv, for the container’s values, a pointer ck, for the container’s keys, and an integer size, for
the container’s size. Figure 9 gives an overview of our abstraction for all associative containers. The relationship between
ck and cv is established by an index; thus, an element in a given position n in ck (i.e., select(c.ck, n)) is the key associated
with the value in the same position n in cv (i.e., select(c.cv, n)). Similarly, iterators for associative containers consist of a
pointer ik that points to the same memory location as ck, a pointer iv that points to the same memory location as cv, and
an integer ipos that indexes both ik and iv. All operations for associative containers can be expressed as a simplified varia-
tion of the three main ones, that is, insertion (C.insert(K, V)), deletion (C.erase(I)), and search (C.search(K)).

F I GURE 9 Abstraction for associative containers

MODEL CHECKING C++ PROGRAMS 13 of 30

 10991689, 2022, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.1793 by C

ochrane G
reece, W

iley O
nline L

ibrary on [26/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

The order of keys matters in the insertion operation for associative containers. Therefore, given a container c, the
method calls c.insert(k, v) inserts the value v associated with the key k into the right order (i.e., obeying a strict weak
ordering rule). Here, we use the operator ≺ to represent precedence; thus, x ≺ y means x precedes y. The insertion
returns an iterator that points to the inserted position. However, if k exists, the insertion is not performed and the
method returns an iterator that points to the existing element. We checked for three cases, which correspond to each ite
condition: (i) the empty case first, then (ii) we check whether each position contains a corresponding key or (iii) if we
should insert the value based on its precedence. Thus,

Cððc0, i0Þ ¼ c:insertðk,vÞÞ :¼
iteðc:size¼ 0,

i0:pos¼ 0

^ storeðc0:ck, i0:pos, kÞ
^ storeðc0:cv, i0:pos, vÞ
^ c0:size¼ c:sizeþ1,

iteðselectðc:ck,0Þ¼ k,

i0:pos¼ 0,

iteðk≺ selectðc:ck,0Þ,
i0:pos¼ 0

^ memcpyðc:ck, c0:ck, i0:pos, i0:posþ1, c:size� i0:posÞ
^ storeðc0:ck, i0:pos, kÞ
^ memcpyðc:cv, c0:cv, i0:pos, i0:posþ1, c:size� i0:posÞ
^ storeðc0:cv, i0:pos, vÞ
^ c0:size¼ c:sizeþ1,

…

iteðselectðc:ck,c:size�1Þ¼ k,

i0:pos¼ c:size�1,

iteðk≺ selectðc:ck, c:size�1Þ, i0:pos¼ c:size�1, i0:pos¼ c:sizeÞ
^ memcpyðc:ck, c0:ck, i0:pos, i0:posþ1, c:size� i0:posÞ
^ storeðc0:ck, i0:pos, kÞ
^ memcpyðc:cv, c0:cv, i0:pos, i0:posþ1, c:size� i0:posÞ
^ storeðc0:cv, i0:pos, vÞ
^ c0:size¼ c:sizeþ1Þ… ÞÞÞ

ð11Þ

that induces the following pre- and post-conditions,

Pððc0, i0Þ ¼ c:insertðk,vÞÞ :¼
k ≠ null

^ v ≠ null

^
Vc:size�2

j¼0
selectðc:ck, jÞ≺ selctðc:ck, jþ1Þ

 ! ð12Þ

Qððc0, i0Þ ¼ c:insertðk,vÞÞ :¼
i0:ik ¼ c0:ck
^ i0:iv ¼ c0:cv

^
^c:size�1

j¼0

selectðc:ck, jÞ≠ k

 !
) c0:size¼ c:sizeþ1

^
^c:size�1

j¼1

selectðc:ck, j�1Þ≺ selctðc:ck, jÞ
 !

ð13Þ

14 of 30 MONTEIRO ET AL.

 10991689, 2022, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.1793 by C

ochrane G
reece, W

iley O
nline L

ibrary on [26/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

where we assume as pre-conditions P that v and k must be initialized objects, as well as the order of
elements, obey a strict weak ordering rule. Similarly, we assume as post-conditions Q that the iterator i0 will point
to the container c0, and the strict weak ordering rule will be maintained. We also check whether the size of the
container will grow if the key k was not used before; however, this check is bypassed for containers that allow
multiple keys.

Remove operations are represented by c.erase(i), where i is an iterator that points to the element to be removed.
Similarly to sequential containers (cf. Section 4.2), the model for such operation basically shifts backwards all elements
followed by that specific position i. Thus,

Cððc0, i0Þ ¼ c:eraseðiÞÞ :¼
memcpyðc:ck, c0:ck, i:posþ1, i:pos, c:size�ði:posþ1ÞÞ
^ memcpyðc:cv, c0:cv, i:posþ1, i:pos, c:size�ði:posþ1ÞÞ
^ c0:size¼ c:size�1

^ i0:pos¼ i:posþ1

ð14Þ

that induces the following pre- and post-conditions,

Pððc0, i0Þ ¼ c:eraseðiÞÞ :¼
i:ik ≠ null

i:iv ≠ null

^ 0 ≤ i:pos < c:size

^ c:size≠ 0)ðc:ck ≠ null^ c:cv ≠ nullÞ

ð15Þ

Qððc0, i0Þ ¼ c:eraseðiÞÞ :¼
i0:ik ¼ c0k
^ i0:iv ¼ c0v
^ selectðc0:ck, i0:posÞ ¼ selectðc:ck, i:posþ1Þ
^ selectðc0:cv, i0:posÞ ¼ selectðc:cv, i:posþ1Þ

ð16Þ

which have similar properties as the ones held by the erase method from sequential containers, except that i0.ik must
point to the position immediately after the erased one and the equivalency of c0.ck and i0.ik. Finally, search operations
over associative containers are modelled by a container c with a method call c.search(k). Then, if an element with key
k is found, the method returns an iterator that points to the corresponding element; otherwise, it returns an iterator that
points to the position immediately after the last container’s element. Hence,

Cððc0, i0Þ ¼ c:searchðkÞÞ :¼
iteðc:size¼ 0,

i0:pos¼ c:size,

iteðselectðc:ck,0Þ¼ k,

i0:pos¼ 0,

:::

iteðselectðc:ck,c:size�1Þ¼ k,

i0:pos¼ c:size�1,

i0:pos¼ c:sizeÞ ::: ÞÞ

ð17Þ

that induces the following pre- and post-conditions,

Pððc0, i0Þ ¼ c:searchðkÞÞ :¼
k ≠ null

ð18Þ

MODEL CHECKING C++ PROGRAMS 15 of 30

 10991689, 2022, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.1793 by C

ochrane G
reece, W

iley O
nline L

ibrary on [26/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Qððc0, i0Þ ¼ c:searchðvÞÞ :¼
c0:ck ¼ c:ck
^ c0:cv ¼ c:cv
^ c0:size¼ c:size

^ i0:ik ≠ c0:ck
^ i0:iv ≠ c0:cv
^ iteðselectði0:ik, i0:posÞ ¼ selectðc0:ck, i0:posÞ,

selectði0:ik, i0:posÞ¼ k,

selectði0:ik, i0:posÞ¼ selectðc0:ck, c0:sizeÞÞ
^ iteðselectði0:iv, i0:posÞ ¼ selectðc0:cv, i0:posÞ,

selectði0:iv, i0:posÞ¼ v,

selectði0:iv, i0:posÞ¼ selectðc0:cv, c0:sizeÞÞ

ð19Þ

that are also similar to the properties held by the search operation from sequential containers, except that the search
happens over keys.

5 | EXCEPTION HANDLING

Exceptions are unexpected circumstances that arise during the execution of a program, e.g., runtime errors [47]. In C+
+, the exception handling is split into three (basic) elements: a try block, where a thrown exception can be directed to
a catch statement; a set of catchstatements, where a thrown exception can be handled; and a throw statement that
raises an exception.

To accurately define the verification of exception handling in C++, we formally define two syntactic domains,
including exceptions E and handlers H as follows:

E :¼ e j e½� j ef ðÞ j e ∗ j enull
H :¼ h j h½� j hf ðÞ j h ∗ j hv j h::: j hnull

In this context, e and h are classes of variables of type E and H, respectively. We use the notation e[] to denote a thrown
exception of type array, ef () is a thrown exception of type function, e∗ is a thrown exception of type pointer, and enull is
an empty exception used to track when a throw expression does not throw anything. Similarly, we use the notation h[]
to denote a catch statement of type array, hf () is a catch statement of type function, h∗ is a catch statement of type
pointer, hv is a catchstatement of type void pointer (i.e., void *), h… is a catch statement of type ellipsis [45], and
hnull is an invalid catch statement used to track when a thrown exception does not have a valid handler.

Based on such domains, we must define a 2-arity predicate M(e, h), which evaluates whether the type of thrown
exception e is compatible with the type of a given handler h as shown in Equation (20). Furthermore, we declare the
unary function ζ : H* ↦ H that removes qualifiers const, volatile, and restrict from the type of a catch
statement c. We also define the 2-arity predicates unambiguous base U(e, h) and implicit conversion Q(e, h). On one
hand, U(e, h) determines whether the type of a catch statement h is an unambiguous base [45] for the type of a thrown
exception e as shown in Equation (21). On the other hand, Q(e, h) determines whether a thrown exception e can be
converted to the type of the catch statement h, either by qualification or standard pointer conversion [45] as shown in
Equation (22).

Mðe,hÞ ¼def
> , type of e is matches to the type of h

⊥ , otherwise

�
ð20Þ

Uðe,hÞ ¼def
> , c is an unambiguous base of e

⊥ , otherwise

�
ð21Þ

Qðe,hÞ ¼def
> , e can be implicit converted to h

⊥ , otherwise

�
ð22Þ

16 of 30 MONTEIRO ET AL.

 10991689, 2022, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.1793 by C

ochrane G
reece, W

iley O
nline L

ibrary on [26/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

The C++ language standard defines rules to connect throw expressions and catchstatements [45], which are all
described in Table 2. Each rule represents a function rk : E ↦ H for k¼ ½1 :: 9�, where a thrown exception e is mapped
to a valid catch statement h. ESBMC evaluates every thrown exception e against all rules and all catch statements
in the program through the (n+ 1)-arity function handler H. As shown in Equation (23), after the evaluation of all rules
(i.e., hr1 ,…,hr9), ESBMC returns the first handler hrk that matched the thrown exception e.

Hðe,h1,…,hnÞ :¼
hr1 ¼ r1ðe,h1,…,hnÞ
^…

^ hr9 ¼ r9ðe,h1,…,hnÞ
^ iteðhr1 ≠ hnull,hr1 ,

iteðhr2 ≠ hnull,hr2 ,

…

iteðhr9 ≠ hnull,hr9 ,hnullÞ…Þ

ð23Þ

To support exception handling in ESBMC, we extended our GOTO conversion code and the symbolic engine. In
the former, we had to define new instructions and model the throw expression as jumps. In the latter, we implemented
the rules for throwing and catching exceptions, as shown in Table 2, and the control flows for the unexpected and termi-
nate handlers (cf. Section 5.2).

The GOTO conversion slightly modifies the exception handling blocks H. The following instructions model a try
block: a CATCH instruction to represent the start of the try block, the instructions representing the code inside the
try block, a CATCH instruction to represent the end of the try block and a GOTO instruction targeting the instruc-
tions after the try block. Each catch statement is represented using a label, the instructions representing the exception
handling and a GOTO instruction targeting the instructions after the catch block.

We use the same CATCH instruction to mark the beginning and end of the try block. However, CATCH instructions
at the beginning and at the end differ by the information they hold; the CATCH instruction that marks the beginning of
a try block has a map from the types of the catch statements and their labels in the GOTO program, while the second
CATCH instruction has an empty map. The GOTO instruction targeting the instructions after the catch block shall be

TABLE 2 Rules to connect throw expressions and catch blocks

Rule Behaviour Formalization

r1 Catches an exception if the type of the thrown exception e is equal to the
type of the catchh.

iteð9h � Mðe,hÞ,hr1 ¼ h,hr1 ¼ hnullÞ

r2 Catches an exception if the type of the thrown exception e is equal to the
type of the catchh, ignoring the qualifiers const, volatile, and restrict.

iteð9h � Mðe,ζðhÞÞ,hr2 ¼ h,hr2 ¼ hnullÞ

r3 Catches an exception if its type is a pointer of a given type x and the type
of the thrown exception is an array of the same type x.

iteð9h � e¼ e½� ^h¼ h ∗ ^Mðe½�,h ∗ Þ,hr3 ¼ h ∗ ,hr3 ¼ hnullÞ

r4 Catches an exception if its type is a pointer to function that returns a given
type x and the type of the thrown exception is a function that returns
the same type x.

iteð9h � e¼ ef ðÞ ^h¼ hf ðÞ ^Mðef ðÞ,hf ðÞÞ,hr4 ¼ hf ðÞ,hr4 ¼ hnullÞ

r5 Catches an exception if its type is an unambiguous base type for the type
of the thrown exception.

iteð9h � Uðe,hÞ,hr5 ¼ h,hr5 ¼ hnullÞ

r6 Catches an exception if the type of the thrown exception e can be
converted to the type of the catchh, either by qualification or
standard pointer conversion [45].

iteð9h � e¼ e ∗ ^h¼ h ∗ ^Qðe ∗ ,h ∗ Þ,hr6 ¼ h ∗ ,hr6 ¼ hnullÞ

r7 Catches an exception if its type is a void pointer hv and the type of the
thrown exception e is a pointer of any given type.

iteð9h � e¼ e ∗ ^h¼ hv,hr7 ¼ hv,hr7 ¼ hnullÞ

r8 Catches any thrown exception if its type is ellipsis. iteð8e � 9h � h¼ h:::,hr8 ¼ h:::,hr8 ¼ hnullÞ
r9 If the throw expression does not throw anything, it should re-throw the

last thrown exception e�1, if it exists.
iteðe¼ enull ^e�1 ≠ enull ,
h
0
r1 ¼ r1ðe�1,h1,…,hnÞ
^ …

^ h
0

r9 ¼ r9ðe�1,h1,…,hnÞ,
hr9 ¼ hnullÞ

MODEL CHECKING C++ PROGRAMS 17 of 30

 10991689, 2022, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.1793 by C

ochrane G
reece, W

iley O
nline L

ibrary on [26/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

called in case no exception is thrown. The GOTO instructions at the end of each catch are called so that only the
instructions of the current catch is executed, as shown in Figure 10.

During the SSA generation, when the first CATCH instruction is found, the map is stacked because there might be
nested try blocks. If an exception is thrown, ESBMC encodes the jump to a catch statement according to the rules
defined in Table 2, including a jump to an invalid catch that triggers a verification error; that is, it represents an excep-
tion thrown that cannot be caught. If a suitable exception handler is found, then the thrown value is assigned to the
catch variable (if any); otherwise, if there exists no valid exception, an error is reported. If the second CATCH instruc-
tion is reached and no exception was thrown, the map is freed for memory efficiency. The try block is handled as any
other block in a C++ program. Destructors of variables in the stack are called by the end of the scope. Furthermore,
by encoding throws as jumps, we also correctly encode memory leaks. For example, suppose an object is allocated
inside a try block, and an exception is thrown and handled. In that case, it will leak unless the reference to the allo-
cated memory is somehow tracked and freed.

Our symbolic engine also keeps track of function frames, that is, several pieces of information about the function it
is currently evaluating, including arguments, recursion depth, local variables, and others. These pieces of information
are essential not only because we want to handle recursion or find memory leaks but also allow us to connect exceptions
thrown outside the scope of a function and handle exception specification (as described in Section 5.1).

5.1 | Exception specification

The exception specification (illustrated in Figure 11) defines which exceptions can be thrown by a function or method
(including constructors). It is formed by an exception list and can be empty, i.e., the function or method cannot throw an
exception. Exceptions thrown and handled inside a function or method are not affected by the exception specification.

F I GURE 1 0 Example of try-catch conversion to GOTO instructions

F I GURE 1 1 Example of exception specification

18 of 30 MONTEIRO ET AL.

 10991689, 2022, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.1793 by C

ochrane G
reece, W

iley O
nline L

ibrary on [26/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

To support the verification of programs with exception specifications, an instruction THROW_DECL is inserted at the
beginning of the given function or method. This instruction contains a list of allowed exceptions that are checked when-
ever an exception is thrown outside the scope of the function or method. Similar to the catch map, they are stacked
due to the possibility of nested exception specifications and are freed at the end of the function or method.

An exception thrown from inside a function follows the same rules defined in Table 2. Exception specifications
check any exception thrown outside the function scope. If the type of the exception was not declared in the exception
specialization, a different exception is raised and a separate path in the program is taken: the unexpected handler.

5.2 | Terminate and unexpected handlers

During the exception handling process, errors can occur, causing the process to be aborted for any given reason
(e.g., throwing an exception outside a try block or not catching a thrown exception). When this happens, the terminate
handler is called.

Figure 12a shows the terminate handler implementation. The terminate handler is a function that has the default
behaviour of calling the abort function. However, this behaviour can be slightly changed by the developer, using the
function set_terminate(f), where f is a function pointer to a function that has no parameter and no return value
(type void). By setting the new terminate function, it will be called before the abort function.

For the verification of programs that override the terminate handler, we define a function
__default_terminate(), as illustrated in Figure 12a, that contains the default termination behaviour, calling
abort. ESBMC also keeps a global function pointer to the terminate function, which can either point to the default
behaviour or the user-defined behaviour. Finally, when the terminate function is called, we should guarantee that the
abort function will be called, even if the terminate function is replaced (as shown in label E in Figure 12a).

However, there is one case where the unexpected handler is called instead of the terminate handler. When an excep-
tion not allowed by the exception specification (Section 5.1) is thrown by a function or method, when this happens, the
unexpected handler is called.

F I GURE 1 2 Examples of terminate and unexpected handlers

MODEL CHECKING C++ PROGRAMS 19 of 30

 10991689, 2022, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.1793 by C

ochrane G
reece, W

iley O
nline L

ibrary on [26/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

The unexpected handler works similarly to the terminate handler. It will either call terminate or re-throw the not
allowed exception. Similar to set_terminate, there exists a function set_unexpected(f), where f is function
pointer to a function that has no parameter and no return value (type void).

Figure 12b illustrates the unexpected handler implementation. The default behaviour is to re-throw the thrown
exception, and, as the exception specification already forbids it, we should call terminate to finish the program. ESBMC
also keeps a global function pointer to the unexpected function, which either points to the default behaviour or the
user-defined behaviour. If the unexpected handler was replaced, we must still guarantee that an exception will be
thrown, so the forbidden exception will be re-thrown (as shown in line 27 in Figure 12b). If the replaced unexpected
function throws an exception that is not forbidden by the function, the code will not terminate.

Finally, we also need to model the unexpected behaviour when using bad_exception. Figure 13 shows an exam-
ple of code using bad_exception. In this example, the user replaced the unexpected function with a function con-
taining a re-throw. The code then calls myfunction(), which tries to throw a forbidden char exception. At this
moment, myunexpected function is called and tries to re-throw the char exception, which is forbidden. ESBMC
matches the compiler’s behaviour and checks whether bad_exception is one of the allowed exceptions in the excep-
tion specification; if this is true, a bad_exception exception will be thrown instead of the original forbidden
exception.

6 | EXPERIMENTAL EVALUATION

Our experimental evaluation compares ESBMC against LLBMC and DIVINE regarding correctness and performance
in the verification process of C++03 programs; DIVINE was developed by Baranov�a et al. [16], and LLBMC was
developed by Merz, Falke, and Sinz [12]. Section 6.1 shows a detailed description of all tools, scripts, and benchmark
dataset, while Section 6.2 presents the results and our evaluation. Our experiments are based on a set of publicly avail-
able benchmarks. All tools, scripts, benchmarks, and results of our evaluation are available on a replication package
[58], including all data to generate the percentages. More information about ESBMC is also available at the project’s
webpage https://esbmc.org/.

6.1 | Experimental design, materials and methods

Our experiments aim at answering two experimental questions regarding correctness and performance of ESBMC:

i. (EQ-I) How accurate is ESBMC when verifying the chosen C++03 programs?
ii. (EQ-II) How does ESBMC performance compare to other existing model checkers?

To answer both questions, we evaluate all benchmarks with ESBMC v2.1, DIVINE v4.3, and LLBMC v2013.1.
ESBMC v2.1 contains the last stable version of our C++ front-end, since the changes necessary to introduce a new C

F I GURE 1 3 Fragment of code using bad exception

20 of 30 MONTEIRO ET AL.

 10991689, 2022, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.1793 by C

ochrane G
reece, W

iley O
nline L

ibrary on [26/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://esbmc.org/

front-end on ESBMC v3.0 were disruptive. The new C front-end is based on the clang’s AST [22], which completely
changes the way ESBMC processes source files. Update the C++ front-end to also use clang’s AST is part of our future
work (cf. Section 8). We use LLBMC v2013.1 in our evaluation since it is the latest publicly available version of the
LLBMC tool. We also applied CBMC [25] (v5.3) in our benchmark set. However, we do not detail the results in
the experimental evaluation because the tool aborts during parser in 1500 cases and reproduces false-negative results in
the remaining 3. The vast majority of our benchmarks use STL functionalities, which CBMC does not support. The
lack of support for C++ features in CBMC was also reported by Merz et al. [12], Monteiro et al. [18], and Ramalho
et al. [24].

To tackle modern aspects of the C++ language, the comparison is based on a benchmark dataset that consists of
1513 C++03 programs. In particular, 290 programs were extracted from the book “C++ How to Program” [47],
432 were extracted from C++ Resources Network [59], 16 were extracted from NEC Corporation [60], 16 programs
were obtained from LLBMC [12], 39 programs were obtained from CBMC [25], 55 programs were obtained from the
GCC test suite [42], and the others were developed to check several features of the C++ programming language [24].
The benchmarks are split into 18 test suites: algorithm contains 144 benchmarks to check the Algorithm library func-
tionalities; cpp contains 357 general benchmarks, which involves C++03 libraries for general use, such as I/O streams
and templates; this category also contains the LLBMC benchmarks and most NEC benchmarks. The test suites deque
(43), list (72), queue (14), stack (14), priority_queue (15), stream (66), string (233), vector (146), map (47), multimap (45),
set (48), and multiset (43) contain benchmarks related to the standard template containers. The category try_catch con-
tains 81 benchmarks to the exception handling and the category inheritancecontains 51 benchmarks to check inheri-
tance and polymorphism mechanisms. Finally, the test suites cbmc (39), templates (23), and gcc-template (32) contain
benchmarks from the GCC4 and CBMC5 test suite, which are specific to templates.

Each benchmark is tested and manually inspected in order to identify and label bugs. Thus, 543 out of the 1513
benchmarks contain bugs (i.e., 35.89%) and 970 are bug-free (i.e., 64.11%). This inspection is essential to compare veri-
fication results from each model checker and properly evaluates whether real errors were found. We evaluate three
types of properties: (i) memory-safety violations (e.g., arithmetic overflow, null-pointer dereferences, and array out-of-
bounds), (ii) user-specified assertions, and (iii) proper use of C++ features (e.g., exception-handle violations). We only
exclude LLBMC from the evaluation of exception handling since the tool does not support this feature. All tools sup-
port all the remaining features and properties under evaluation.

All experiments were conducted on a computer with an i7-4790 processor, 3.60GHz clock, with 16GB RAM and
Ubuntu 14.04 64-bit OS. ESBMC, LLBMC, and DIVINE were set to a time limit of 900 s (i.e., 15 min) and a memory
limit of 14GB. All presented execution times are CPU times; that is, only the elapsed periods spent in the allocated
CPUs. Furthermore, memory consumption is the amount of memory that belongs to the verification process and is cur-
rently present in RAM (i.e., not swapped or otherwise not-resident). Both CPU time and memory consumption were
measured with the times system call (POSIX system). Neither swapping nor turbo boost was enabled during experi-
ments and all executed tools were restricted to a single process.

The tools were executed using three scripts: the first one for ESBMC,6 which reads its parameters from a file and
executes the tool; the second one for LLBMC, which first compiles the program to bitcode, using clang,7 then it reads
the parameters from a file and executes the tool8; and the last one for DIVINE, which also first pre-compiles the C++
program to bitcode, then performs the verification on it.9 The loop unrolling defined for ESBMC and LLBMC
(i.e., the B value) depends on each benchmark. In order to achieve a fair comparison with ESBMC, an option from
LLBMC had to be disabled. LLBMC does not support exception handling and all bitcodes were generated without
exceptions (i.e., with the -fno-exceptions flag of the compiler). If exception handling is enabled, then LLBMC
always aborts the verification process.

6.2 | Results and discussion

In this section, we present the results using percentages (concerning the 1513 C++ benchmarks), as shown in Figure 14.
Correct represents the positive results, that is, percentage of benchmarks with and without bugs correctly verified. False
positives represent the percentage of benchmarks reported as correct, but they are incorrect; similarly, False negatives
represent the percentage of benchmarks reported as incorrect, but that are correct. Finally, Unknown represents the

4https://github.com/nds32/gcc/tree/master/gcc/testsuite/
5https://github.com/diffblue/cbmc/tree/develop/regression
6esbmc *.cpp –unwind B –no-unwinding-assertions -I /libraries/
7clang++ -c -g -emit-llvm *.cpp -fno-exceptions -o main.bc
8llbmc *.o -o main.bc –ignore-missing-function-bodies –max-loop-iterations=B –no-max-loop-iterations-checks
9divine verify *.cpp

MODEL CHECKING C++ PROGRAMS 21 of 30

 10991689, 2022, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.1793 by C

ochrane G
reece, W

iley O
nline L

ibrary on [26/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://github.com/nds32/gcc/tree/master/gcc/testsuite/
https://github.com/diffblue/cbmc/tree/develop/regression

benchmarks where each tool aborted the verification process due to internal errors, timeout (i.e., the tool was killed
after 900 s) or a memory out (i.e., exhausted the maximum memory allowed of 14GB). In the Exception Handling cate-
gory, LLBMC is excluded since it does not support this feature; if exception handling is enabled, then LLBMC continu-
ously aborts the verification process. Furthermore, to better present the results of our experimental evaluation, the test
suites were grouped into four categories:

• Standard Containers—formed by algorithm, deque, vector, list, queue, priority_queue, stack, map, multimap, set and
multiset test suites (631 benchmarks);

• Inheritance and Polymorphism—formed by the inheritance test suite (51 benchmarks).
• Exception Handling—formed by the try_catch test suite (81 benchmarks);
• C++03—formed by cpp, string, stream, cbmc, gcc-templates and templates test suites (750 benchmarks).

On the Standard Containers category (see Figure 14), ESBMC presented the best results and reached a successful
verification rate of 78.45%, while LLBMC reported 70.36% and DIVINE 44.69%. ESBMC’s noticeable results for con-
tainers are directly related to its COM. The majority of the benchmarks for this category contain standard assertions to
map the support of container-based operations, for example, to check whether the operator[] from a vector object
is called with an argument out of range, which is undefined behaviour [45]. We place standard C++ assertions in the
benchmarks to evaluate how each verifier handles container-based operations. ESBMC reports a false-positive rate of
2.54% and a false-negative rate of 8.87%, which is due to internal implementation issues during pointer encoding
(cf. Section 4). We are currently working to address them in future versions. ESBMC also reported 10.14% of unknown
results due to limitations in templates-related features such as SFINAE [45] and nested templates. LLBMC reports a
false-positive rate of 2.85% and a false-negative rate of 17.60%, mostly related to erroneously evaluating assertions
(e.g., assertions to check whether a container is empty or it has a particular size). It also reports an unknown rate of
9.19% regarding timeouts, memory outs, and crashes when performing formula transformation [12]. DIVINE does not
report any timeout, memory out, or false-positive results for this category, but an expressive false-negative rate of
49.92%, resulting from errors to check assertions (similarly to LLBMC). DIVINE also reports an unknown rate
of 5.39% due to errors with pointer handling, probably due to imprecise (internal) encoding.

On the Inheritance and Polymorphism category (see Figure 14), ESBMC presented the best results and reached a
successful verification rate of 84.32% while LLBMC reported 68.63% and DIVINE 54.90%. ESBMC does not report
any timeout or memory out, but it reports a false-negative rate of 15.68%, due to implementation issues to handle
pointer encoding. LLBMC does not report any false positives, timeouts, or memory outs results. However, it reports a
false-negative rate of 5.88%, which is related to failed assertions representing functional aspects of inherited classes. It
also reported an unknown rate of 25.49% regarding multiple inheritance. DIVINE does not report any timeout, mem-
ory out, or false-positive results for this category, but a false-negative rate of 23.53% and an unknown rate of 21.57%,
which is a result of errors when handling dynamic casting, virtual inheritance, multiple inheritance, and even basic cases
of inheritance and polymorphism.

On the Exception Handling category (see Figure 14), ESBMC presented the best results and reached a successful
verification rate of 87.66% while DIVINE reported 62.96%. ESBMC does not report any timeout or memory out, but
it reports a false-positive rate of 3.70% and a false-negative rate of 2.47%. These bugs are related to the implementation
of rule r6 from Table 2 in ESBMC, that is, “catches an exception if the type of the thrown exception e can be converted
to the type of the catch h, either by qualification or standard pointer conversion”; we are currently working on fixing
these issues. ESBMC also presents an unknown rate of 3.70% due to previously mentioned template limitations.
DIVINE does not report any timeout or memory out. However, it reports a false-positive rate of 7.40% and a false-
negative rate of 17.30%. It incorrectly handles re-throws, exception specification, and the unexpected as well as termi-
nate function handlers. DIVINE also presents an unknown rate of 12.34% due to errors when dealing with exceptions
thrown by derived classes, instantiated as base classes, which is probably related to the imprecise encoding of vtables.

To evaluate how these model checkers perform when applied to general C++03 benchmarks, we evaluate them
against the category C++03. In this category, model checkers deal with benchmarks that make use of the features dis-
cussed in this paper (e.g., exception handling and containers), and a wider range of libraries from the STL, manipula-
tion of strings and streams, among other C++03 features. ESBMC presented the highest successful verification rate,
89.20%, followed by DIVINE 67.20% and LLBMC 62.27%. The successful expressive rate of ESBMC in this category
not only correlates to its support for core C++03 features (i.e., templates, inheritance, polymorphism, and exception
handling) or its ability to check functional aspects of the standard containers but also because COM contains abstrac-
tions for all standard libraries shown in Table 1. For instance, the operational model for the string library enables
ESBMC to achieve a success rate of 99.14% in the string test suite, which contains benchmarks that target all methods
provided in C++03 for string objects. Note that running ESBMC without COM over the benchmarks, 98.08% fail
since the majority uses at least one standard template library. ESBMC does not report any memory out, but it reports a

22 of 30 MONTEIRO ET AL.

 10991689, 2022, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.1793 by C

ochrane G
reece, W

iley O
nline L

ibrary on [26/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

false-positive rate of 1.26%, a false-negative rate of 3.00%, and an unknown rate of 6.54%, which are all due to the same
issues pointed by the previous experiments. DIVINE does not report any false positives, timeout, or a memory out, but
a false-negative rate of 22.27%, which is a result of errors when checking assertions representing functional properties
of objects across all STL (similar to LLBMC). DIVINE reports one false positive regarding the instantiation of func-
tion template specialization and an unknown rate of 10.13% due to crashes when handling pointers. LLBMC reports a
false-positive rate of 1.73% and a false-negative rate of 26.00%, which is related to errors when checking assertions that
represent functional properties of objects (e.g., asserting the size of a string object after an operation) or dealing with
stream objects in general. It also reported an unknown rate of 10.00%, mainly regarding operator overloading errors
and the ones mentioned in the previous categories.

A small number of counterexamples generated by the three tools were manually checked, but we understand that
this is far from ideal. The best approach is to use an automated method to validate the counterexample, such as the wit-
ness format proposed by Beyer et al. [61]; however, the available witness checkers do not support the validation of C+
+ programs. Implementing such a witness checker for C++ would represent a significant development effort, which we
leave it for future work.

Figure 15 illustrates the accumulative verification time and memory consumption for the tools under evaluation.
All the tools take more time to verify the test suites algorithm, string, and cpp, due to a large number of test cases and
the presence of pointers and iterators. ESBMC is the fastest of the three tools, 3.2 times faster than LLBMC and only
155.7 s faster than DIVINE. In terms of verification time, DIVINE is the only tool that did not use more than the
defined limit of 900 s, while ESBMC and LLBMC aborted due to timeout in 4 and 25 benchmarks, respectively.
DIVINE is the only tool that did not use more than the defined limit of 14GB per benchmark in terms of memory con-
sumption. At the same time, ESBMC and LLBMC aborted due to exhaustion of the memory resources in 3 and 11 of
them, respectively. Even so, LLBMC consumes less memory overall (614.92GB) when compared with DIVINE
(627.97GB) and ESBMC (2210.91GB).

Overall, ESBMC achieved the highest success rate of 84.27% in 15,761.90 s (approximately 4 h and 23 min), faster
than LLBMC and DIVINE, which positively answers our experimental questions EQ-I and EQ-II. LLBMC correctly
verified 62.52% in 50,564.10 s (approximately 14 h) and can only verify the programs if exception handling is disabled,
which is not a problem for both ESBMC and DIVINE. DIVINE correctly verified 57.17% in 15,917.60 s (approxi-
mately 4 h and 26 min). Regarding memory usage, ESBMC has the highest usage among the three tools, which is
approximately 3.5 times higher than DIVINE and LLBMC, respectively. This high consumption is due to the genera-
tion process of SSA forms (cf. Section 3). However, its optimization is under development for future versions.

F I GURE 1 4 Experimental results for ESBMC v2.1, DIVINE v4.3, and LLBMC v2013.1

MODEL CHECKING C++ PROGRAMS 23 of 30

 10991689, 2022, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.1793 by C

ochrane G
reece, W

iley O
nline L

ibrary on [26/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

In conclusion, our experimental evaluation indicates that ESBMC outperforms two state-of-the-art model checkers,
DIVINE and LLBMC, regarding the verification of inheritance, polymorphism, exception handling, and standard con-
tainers. The support for templates in ESBMC needs improvements. However, the current work-in-progress clang front-
end will not only cover this gap (because clang will instantiate all the templates in the program) but will also allow
ESBMC to handle new versions of the language (e.g., C++11). Even with its current support for templates, our experi-
mental results allow us to conclude that ESBMC represents the state-of-the-art regarding applying model checking in C
++ programs.

6.3 | Sniffer application

This section describes the results of the verification process using ESBMC and LLBMC in a sniffer program. We were
unable to use DIVINE to verify the code because the tool does not offer support for the verification of some libraries
used in the program (e.g., boost10), which makes the verification process an infeasible task; that is, DIVINE would
report incorrect results. Nokia Institute of Technology (INdT) made this program available. Sniffer is responsible for
capturing and monitoring traffic conditions of a network, which supports Message Transfer Part Level 3 User Adapta-
tion Layer (M3UA) [62]. This service offers the transport of SS7 protocols (Signalling System No.7) and makes use of
the services provided by the Stream Control Transmission Protocol (SCTP). The Snifferprogram contains 20 classes,
85 methods, and 2800 lines of C++ code.

The following properties were verified in the sniffer program: arithmetic underflow and overflow, division by zero,
and array bounds violation. Due to confidentiality issues, we were only able to verify 50 of 85 methods since INdT did
not provide some classes required by the unverified methods. From the verified code, ESBMC was able to identify five
errors, related to arithmetic under- and overflow while LLBMC was able to identify only three of them. All errors were
reported to developers, who confirmed them. As an example of an error found, Figure 16 shows the getPayloadSize
method from the PacketM3UA class. In this method, an arithmetic overflow can occur. The method returns ntohs, an
unsigned int, but the getPayloadSize method must return a signed int. In this case, a possible solution is to
change the return type of the getPayloadSize method to unsigned int.

F I GURE 1 5 Comparison of accumulative verification time and accumulative memory consumption among ESBMC v2.1, DIVINE v4.3, and
LLBMC v2013.1 throughout the verification process of all benchmarks

10https://www.boost.org/

24 of 30 MONTEIRO ET AL.

 10991689, 2022, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.1793 by C

ochrane G
reece, W

iley O
nline L

ibrary on [26/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://www.boost.org/

7 | RELATED WORK

Conversion of C++ programs into another language makes the verification process easier since C++ model checkers
are still in the early development stages. There are more stable verification tools written for other programming lan-
guages, such as C [10]. Numerous verification tools use the LLVM infrastructure to verify programs (e.g., SMACK
[17], DIVINE [16], and Seahorn [63]), often verifying the LLVM bitcode or converting it to an intermediate representa-
tion (e.g., Boogie [64]). Such approaches pose a few challenges. For instance, undefined constructs (according to the
C/C++ specification) are baked into the bitcode (e.g., the order in which function call arguments are evaluated). In
addition, types are also baked in the bitcode. Note that this is less of an issue since we have to fix it on a bit-width
implementation. However, context information might be lost (e.g., variable, class, and function names are mangled in
C++) or source location information.

When it comes to the verification of C++ programs, most of the model checkers available in the literature focus
their verification approach on specific C++ features, such as exception handling, and end up neglecting other features
of equal importance, such as the verification of the STL [66,67]. Table 3 shows a comparison among other studies avail-
able in the literature and our approach.

Merz, Falke, and Sinz [12,65] describe LLBMC, a tool that uses BMC to verify C++ programs. The tool first con-
verts the program into LLVM intermediate representation, using clang as an off-the-shelf front-end. This conversion
removes high-level information about the structure of C++ programs (e.g., the relationship between classes). However,
the code fragments that use the STL are inlined, which simplifies the verification process. From the LLVM intermediate
representation, LLBMC generates a quantifier-free logical formula based on bit-vectors. This formula is further simpli-
fied and passed to an SMT solver for verification. The tool does not verify programs with exception handling, making
it challenging to verify C++ programs realistically since exceptions must be disabled during the generation of the
LLVM intermediate representation. The biggest difference between the tool described by the authors and the purpose
of this work is related to the beginning of the verification process. In LLBMC, the conversion of the source program
into an intermediate representation LLVM is required. The biggest obstacle to this approach is the need for a constant
tool adjustment to new versions of the LLVM intermediate representation that the clang generates. For instance, a sym-
bolic virtual machine built on top of the LLVM compiler, named as KLEE [68], still uses an old version of LLVM
(v3.4) due to the significant effort to update its internal structure.

Developed by NASA, the MCP Model Checker [11] is yet another model checking tool based on the LLVM infra-
structure specifically design to C++ programs. Authors claim the tool has full support for the C++ language; however,
the tool is not publicly available and could not be included in our experimental evaluation. The tool does not extract a
model from the source code, but it instruments the code with assertions through an LLVM-to-LLVM transformation.
MCP then executes the code trying all possible interleaving in order to hit the injected assertions.

Blanc, Groce, and Kroening [14] describe the verification of C++ programs using containers via predicate abstrac-
tion. A simplified operational model using Hoare logic is proposed to support C++ programs that make use of the

F I GURE 1 6 Arithmetic overflow in the typecast operation from the getPayloadSize method

TABLE 3 Related work comparison

C++ programming language support

Related work
Conversion to
intermediate languages Templates

Standard Template
Libraries

Inheritance and
Polymorphism

Exception
Handling

LLBMC [65] LLVM Yes Yes Yes No

MCP [65] LLVM Yes Yes Yes YES

SATABS [14] No Yes Yes No No

CBMC [25] No Yes No No No

DIVINE [16] LLVM Yes Yes Yes Yes

ESBMC v2.0 [24] No Yes Yes Yes Yes

MODEL CHECKING C++ PROGRAMS 25 of 30

 10991689, 2022, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.1793 by C

ochrane G
reece, W

iley O
nline L

ibrary on [26/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

STL. The purpose of the operational model is to simplify the verification process using the SATABS tool [69]. SATABS
is a verification tool for C and C++ programs that supports classes, operator overloading, references, and templates
(but without supporting partial specification). In order to verify the correctness of a program, the authors show that it
is sufficient to use an operational model by proving that, if the pre- and post-conditions hold, the implementation model
also holds. The approach is efficient in finding trivial errors in C++ programs. The preconditions are modelled to ver-
ify the library containers using an operational model similar to the ESBMC tool’s model for the same purpose. Regard-
ing the operational model, the authors present only preconditions. In contrast, our operational model verifies
preconditions and replicates the STL behaviour, which increases the range of applications that can be adequately veri-
fied by the tool (i.e., postconditions).

Clarke, Kroening, and Lerda [25] present CBMC, which implements BMC for C/C++ programs using SAT/SMT
solvers. CBMC uses its parser, based on Flex/Bison [20], to build an AST. The type-checker of CBMC’s front-end
annotates this AST with types and generates a language-independent intermediate representation of the original source
code. The intermediate representation is then converted into an equivalent GOTO-program (i.e., control-flow graphs)
that the symbolic execution engine will process. ESBMC improves the front-end, the GOTO conversion and the sym-
bolic execution engine to handle the C++03 standard. CBMC and ESBMC use two functions C and P that compute
the constraints (i.e., assumptions and variable assignments) and properties (i.e., safety conditions and user-defined asser-
tions), respectively. Both tools automatically generate safety conditions that check for arithmetic overflow and
underflow, array bounds violations, and null pointer dereferences, in the spirit of sites’ clean termination [70]. Both
functions accumulate the control-flow predicates to each program point and use these predicates to guard both the con-
straints and the properties so that they properly reflect the semantics of the program. A VC generator (VCG) then
derives the verification conditions from them. CBMC is a well-known model checker for C programs, but its support
for C++ is rather incomplete (cf. Section 6). In particular, CBMC has problems instantiating template correctly and
lacks support for STL, exception specialization and terminate/unexpected functions.

Baranov�a et al. [16] present DIVINE, an explicit-state model checker to verify single- and multi-threaded programs
written in C/C++ (and other input formats, such as UPPAAL11 and DVE12). Another language supported by DIVINE
is the LLVM intermediate representation; for this reason, the base of its verification process is the translation of C++
programs into that representation. Using clang as front-end, DIVINE translates C++ programs into the LLVM inter-
mediate representation, thereby, applying its implementation of the C and C++ standard libraries in order to ensure a
consistent translation. Nonetheless, this translation process might cause some irregularities to the verification process
once it loses high-level information about the C++ program structure (i.e., the relationship between the classes). To
tackle such issues in the verification process of exception handling structures, Štill, Ročkai and Barnat [67] propose a
new API for DIVINE to properly map and deal with exception handling in C++ programs, based on a study about the
C++ and LLVM exception handling mechanisms [66]. The authors also claim DIVINE as the first model checker that
can verify exception handling in C++ programs, as opposed to what has been stated by Ramalho et al. [24]. However,
ESBMC v1.23 (i.e., the version used by Ramalho et al. [24]) is able to correctly verify the example presented by Ročkai,
Barnat and Brim [67], generating and verifying 10 VCs in less than 1 s. Our experimental evaluation shows that
ESBMC outperforms DIVINE in handling exceptions as well as for the support of standard containers, inheritance,
and polymorphism (cf. Section 6).

8 | CONCLUSIONS AND FUTURE WORK

We described a novel SMT-based BMC approach to verify C++ programs using ESBMC. We started with an overview
of ESBMC’s type-checking engine, which includes our approach to support templates (similar to conventional com-
pilers) that replaces the instantiated templates before the encoding phase. We also describe our type-checking mecha-
nism to handle single and multiple inheritance and polymorphism in C++ programs. We then present the significant
contributions of this work: the C++ operational models (COM) and the support for exception handling. We describe
an abstraction of the STL, which replaces them during the verification process. The purpose is twofold: reduce com-
plexity while checking whether a given program uses the STL correctly. Finally, we present novel approaches to handle
critical features of exception handling in C++ (e.g., unexpected and termination function handlers).

To evaluate our approach, we extended our previous experimental evaluation [24] by approximately 36%.
ESBMC is able to verify correctly 84.27%, in approximately 4 h, outperforming two state-of-art verifiers, DIVINE
and LLBMC (cf. Section 6). ESBMC and DIVINE were also able to verify programs with exceptions enabled, a
missing feature of LLBMC that decreases the verification accuracy of real-world C++ programs. ESBMC was able

11https://www.uppaal.org
12https://divine.fi.muni.cz/index.html

26 of 30 MONTEIRO ET AL.

 10991689, 2022, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.1793 by C

ochrane G
reece, W

iley O
nline L

ibrary on [26/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://www.uppaal.org
https://divine.fi.muni.cz/index.html

to find undiscovered bugs in the Sniffer code, a commercial application of medium-size used in the telecommunica-
tions domain. The developers later confirmed the respective bugs. LLBMC was able to discover a subset of the bugs
discovered by ESBMC, while DIVINE was unable to verify the application due to a lack of support for the Boost
C++ library [71].

Our verification method depends on the fact that COM correctly represents the original STL. Indeed, the correct-
ness of such a model to trust in the verification results is a significant concern [18,72-76]. The STL is specified by the
ISO International Standard ISO/IEC 14882:2003(E) – Programming Language C++ [45]. Similar to conformance test-
ing [77,78], to certify the correlation between STL and COM, we rely on the translation of the specification into asser-
tions, which represents the pre- and post-conditions of each method/function in the SCL. Although COM is an entirely
new implementation, it consists in (reliably) building a simplified model of the related STL, using the C/C++ program-
ming language through the ESBMC intrinsic functions (e.g., assert and assume) and the original specification,
which thus tends to reduce the number of programming errors. Besides, Cordeiro et al. [20,79,80] presented the sound-
ness for such intrinsic functions already supported by ESBMC. Although proofs regarding the soundness of the entire
operational model could be carried out, it represents a laborious task due to the (adopted) memory model [81]. Confor-
mance testing concerning operational models would be a suitable approach [18,78] and represents a promising research
direction.

For future work, we intend to extend ESBMC coverage in order to verify C++11 programs. The new standard is a
huge improvement over the C++03, which includes the replacement of exception specialization by a new keyword
noexcept, which works in the same fashion as an empty exception specialization. The standard also presents new
sequential containers (array and forward_list), new unordered associative containers (unordered_set,
unordered_multiset, unordered_map and unordered_multimap), and new multithreaded libraries
(e.g., thread) in which our COM does not yet support. Finally, we will develop a conformance testing procedure to
ensure that our COM conservatively approximates the STL semantics.

Furthermore, we intend to improve the general verification of C++ programs, including improved support for tem-
plates. Although the current support of templates was sufficient to verify real-world C++ applications (cf. Section 6) it
is still work-in-progress. For instance, the handling of SFINAE [45] in ESBMC is limited, and limitations on the sup-
port of nested templates, as shown in the experiments, directly affect the verification process. This limitation is because
template instantiation is notoriously hard, especially if we consider recent standards. Although our front-end can han-
dle many real-world C++ programs, maintaining the C++ front-end in ESBMC is a herculean task. For that reason,
we decided to rewrite our front-end using clang to generate the program AST. Importantly, we do not intend to use the
LLVM intermediate representation but the AST generated by clang. In particular, if we use clang to generate the AST,
then it solves several problems: (i) the AST generated by clang contains all the instantiated templates so we only need
to convert the instantiated classes/functions and ignore the generic version; (ii) supporting new features will be as easy
as adding a new AST conversion node from the clang representation to ESBMC representation; (iii) we do not need to
maintain a full C++ front-end since ESBMC will contain all libraries from clang. Thus, we can focus on the main goal
of ESBMC, the SMT encoding of C/C++ programs.

We already took the first step towards that direction and rewrote the C front-end [22], and the C++ front-end is
currently under development.

ACKNOWLEDGEMENTS
The work in this paper is partially funded by the EPSRC grants EP/T026995/1, EP/V000497/1, EU H2020 ELEGANT
957286, Nokia Institute of Technology (INdT), and Soteria project awarded by the UK Research and Innovation for
the Digital Security by Design (DSbD) Programme.

DATA AVAILABILITY STATEMENT
Data sharing is not applicable to this article as no new data were created or analyzed in this study.

ORCID
Felipe R. Monteiro https://orcid.org/0000-0001-9420-9056
Mikhail R. Gadelha https://orcid.org/0000-0001-6540-6587
Lucas C. Cordeiro https://orcid.org/0000-0002-6235-4272

REFERENCES
1. Chong N, Cook B, Kallas K, Khazem K, Monteiro FR, Schwartz‐Narbonne D, et al. Code‐level model checking in the software development

workflow. In 42nd International Conference on Software Engineering (ICSE): Seoul, Korea (South), 2020.
2. Szekeres L, Payer M, Wei T, Song D. SoK: Eternal war in memory. In IEEE Symposium on Security and Privacy: Berkeley, CA, USA, 2013;

48–62.

MODEL CHECKING C++ PROGRAMS 27 of 30

 10991689, 2022, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.1793 by C

ochrane G
reece, W

iley O
nline L

ibrary on [26/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://orcid.org/0000-0001-9420-9056
https://orcid.org/0000-0001-9420-9056
https://orcid.org/0000-0001-6540-6587
https://orcid.org/0000-0001-6540-6587
https://orcid.org/0000-0002-6235-4272
https://orcid.org/0000-0002-6235-4272

3. Miller M. Trends, challenges, and strategic shifts in the software vulnerability mitigation landscape. In Technical Report, Microsoft Security
Response Center, 2019.

4. Hathhorn C, Rosu G. Dealing with C's original sin. IEEE Softw. 2019;36:24–8.
5. Clarke EM, Henzinger TA, Veith H. Handbook of model checking. Springer International Publishing, 2018; p.1–26.
6. Cook B, Khazem K, Kroening D, Tasiran S, Tautschnig M, Tuttle MR. 2018. Model checking boot code from AWS data centers. In Computer

aided verification; 467–86.
7. Distefano D, Fahndrich M, Logozzo F, O'Hearn PW. Scaling static analyses at Facebook. Commun ACM. 2019;62:62–70.
8. Sadowski C, Aftandilian E, Eagle A, Miller‐Cushon L, Jaspan C. Lessons from building static analysis tools at Google. Commun ACM. 2018;

61:58–66.
9. Chong N, Cook B, Eidelman J, Kallas K, Khazem K, Monteiro FR, et al. Code‐level model checking in the software development workflow at

Amazon web services. Softw Pract Exper. 2021;51(4):772–97.
10. Beyer D. 2019. Automatic verification of C and java programs: SV‐COMP 2019. In Tools and algorithms for the construction and analysis of

systems, LNCS, vol. 11429; 133–55.
11. Thompson S, Brat G. Verification of C++ flight software with the MCP model checker. In 2008 IEEE Aerospace Conference: Big Sky, MT,

USA, 2008; 1–9.
12. Merz F, Falke S, Sinz C. 2012. LLBMC: Bounded model checking of C and C++ programs using a compiler IR. In Verified software: Theories,

tools, and experiments, LNCS, vol. 7152; 146–61.
13. Yang J, Balakrishnan G, Maeda N, Ivančič F, Gupta A, Sinha N, et al. 2012. Object model construction for inheritance in C++ and its applica-

tions to program analysis. In Compiler construction, LNCS, vol. 7210; 144–64.
14. Blanc N, Groce A, Kroening D. 2007. Verifying C++ with STL containers via predicate abstraction. In Automated software engineering; 521–4.
15. Prabhu P, Maeda N, Balakrishnan G. Interprocedural exception analysis for C++. In European conference on object‐oriented programming,

LNCS, vol. 6813, 2011; 583–608.
16. Baranová Z, Barnat J, Kejstová K, Kučera T, Lauko H, Mrázek J, et al. 2017. Model checking of C and C++ with DIVINE 4. In Automated

technology for verification and analysis, LNCS, vol. 10482; 201–7.
17. Carter M, He S, Whitaker J, Rakamari�c Z, Emmi M. SMACK software verification toolchain. In International Conference on Software

Engineering, 2016; 589–92.
18. Monteiro FR, Garcia MAP, Cordeiro LC, de Lima Filho EB. Bounded model checking of C++ programs based on the Qt cross‐platform

framework. Softw Test Verif Reliab. 2017;27(3): 24.
19. Biere A, Heule M, van Maaren H, Walsh T. Handbook of satisfiability: Volume 185 frontiers in artificial intelligence and applications (1st edn.),

vol. 185. IOS Press, 2009.
20. Cordeiro LC, Fischer B, Marques‐Silva J. SMT‐based bounded model checking for embedded ANSI‐C software. IEEE Trans Softw Eng. 2012;

38(4):957–74.
21. Morse J, Cordeiro LC, Nicole DA, Fischer B. Applying symbolic bounded model checking to the 2012 RERS greybox challenge. Softw Tools

Technol Trans. 2014;16(5):519–29.
22. Gadelha MR, Monteiro FR, Morse J, Cordeiro LC, Fischer B, Nicole DA. 2018. ESBMC 5.0: An industrial‐strength C model checker.

In Automated software engineering; 888–91.
23. Gadelha MR, Monteiro F, Cordeiro L, Nicole D. 2019. ESBMC v6.0: Verifying C programs using k‐induction and invariant inference. In Tools

and algorithms for the construction and analysis of systems, LNCS, vol. 11429; 209–13.
24. Ramalho M, Freitas M, Sousa F, Marques H, Cordeiro LC, Fischer B. 2013. SMT‐based bounded model checking of C++ programs. In

Engineering of computer based system; 147–56.
25. Clarke E, Kroening D, Lerda F. 2004. A tool for checking ANSI‐C programs. In Tools and algorithms for the construction and analysis of

systems, LNCS, vol. 2988; 168–76.
26. Niemetz A, Preiner M, Biere A. Boolector 2.0. J Satisfiab, Boolean Model Comput. 2014;9:53–8.
27. De Moura L, Bjørner N. 2008. Z3: An efficient SMT solver. In Tools and algorithms for the construction and analysis of systems, LNCS,

vol. 4963; 337–40.
28. Dutertre B. 2014. Yices 2.2. In Computer‐aided verification, LNCS, vol. 8559; 737–44.
29. Cimatti A, Griggio A, Schaafsma B, Sebastiani R. 2013. The mathSAT5 SMT solver. In Tools and algorithms for the construction and analysis

of systems, LNCS, vol. 7795; 93–107.
30. Barrett C, Conway C, Deters M, Hadarean L, Jovanovi�c D, King T, et al. 2011. CVC4. In Computer‐aided verification, LNCS, vol. 6806;

171–7.
31. Beyer D. 2020. Advances in automatic software verification: SV‐COMP 2020. In Tools and algorithms for the construction and analysis of

systems, LNCS, vol. 12079; 347–67.
32. Beyer D. 2020. Second competition on software testing: Test‐comp 2020. In Fundamental approaches to software engineering, LNCS,

vol. 12076; 505–19.
33. Abreu RB, Gadelha MR, Cordeiro LC, Filho EBL, da Silva Jr. WS. Bounded model checking for fixed‐point digital filters. J Brazilian Comput

Soc. 2016;22(1):1:1–20.
34. de Bessa IV, Ismail HI, Cordeiro LC, Filho JEC. Verification of delta form realization in fixed‐point digital controllers using bounded model

checking. In Brazilian Symposium on Computing Systems Engineering: Manaus, Brazil, 2014; 49–54.
35. Chaves LC, Bessa I, Ismail H, dos Santos Frutuoso AB, Cordeiro LC, de Lima Filho EB. DSVerifier‐aided verification applied to attitude

control software in unmanned aerial vehicles. IEEE Trans Reliab. 2018;67(4):1420–41.
36. Muchnick SS. Advanced compiler design and implementation (1st edn.) Morgan Kaufmann Publishers Inc., 1997.
37. Kroening D, Ouaknine J, Strichman O, Wahl T, Worrell J. 2011. Linear completeness thresholds for bounded model checking. In Computer‐

aided verification, LNCS, vol. 6806; 557–72.
38. Bradley AR, Manna Z. The calculus of computation: Decision procedures with applications to verification(1st edn.) Springer‐Verlag: New York,

Inc., 2007.
39. McCarthy J. Program verification: Fundamental issues in computer science. Springer Netherlands, 1993; p.35–56.
40. Preiner M, Niemetz A, Biere A. Better lemmas with lambda extraction. In Proceedings of the 15th Conference on Formal Methods in Computer‐

Aided Design, FMCAD'15: Austin, TX, USA, 2015; 128–35.

28 of 30 MONTEIRO ET AL.

 10991689, 2022, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.1793 by C

ochrane G
reece, W

iley O
nline L

ibrary on [26/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

41. Brummayer R, Biere A. 2009. Boolector: An efficient SMT solver for bit‐vectors and arrays. In Tools and algorithms for the construction and
analysis of systems, LNCS, vol. 5505 Springer: Berlin, Heidelberg; 174–7.

42. GCC, the GNU compiler collection, 2015. https://gcc.gnu.org/. [Online; accessed August‐2019].
43. Stroustrup B. The C++ programming language (3rd edn.) Addison‐Wesley Longman Publishing Co., Inc., 2000.
44. Cordeiro LC, Fischer B, Marques‐Silva J. Continuous verification of large embedded software using SMT‐based bounded model checking,

2010; 160–9.
45. ISO. C++ standard, 2003. ISO/IEC 14882:2003.
46. Siek J, Taha W. 2006. A semantic analysis of C++ templates. In European conference on object‐oriented programming, LNCS, vol. 4067

Springer: Berlin, Heidelberg; 304–27.
47. Deitel HM, Deitel PJ. C++ how to program (6th edn.) Prentice Hall Press, 2007.
48. Pasareanu CS, Visser W. 2004. Verification of java programs using symbolic execution and invariant generation. In Model checking of software,

LNCS, vol. 2989 Springer: Berlin, Heidelberg; 164–81.
49. Anand S, P�as�areanu CS, Visser W. 2007. JPF‐SE: A symbolic execution extension to java pathfinder. In Tools and algorithms for the construc-

tion and analysis of systems, LNCS, vol. 4424; 134–8.
50. Ramananandro T, Dos Reis G, Leroy X. Formal verification of object layout for C++ multiple inheritance. In Symposium on Principles of

Programming Languages, 2011; 67–80.
51. Neggers J, Kim H. Basic posets (1st edn.) World Scientific, 1999.
52. Alexander RT, Offutt J, Bieman JM. Fault detection capabilities of coupling‐based OO testing. In 13th International Symposium on Software

Reliability Engineering, 2002. Proceedings: Annapolis, MD, USA, 2002; 207–2.
53. Driesen K, Hölzle U. The direct cost of virtual function calls in C++. In Proceedings of the 11th ACM SIGPLAN conference on Object‐oriented

programming, systems, languages, and applications, 1996; 306–23.
54. Kroening D, Tautschnig M. CBMC ‐ C bounded model checker. In International Conference on Tools and Algorithms for the Construction and

Analysis of Systems, vol. 8413, 2014; 389–91.
55. Morse J, Ramalho M, Cordeiro LC, Nicole D, Fischer B. ESBMC 1.22. In International Conference on Tools and Algorithms for the Construc-

tion and Analysis of Systems, vol. 8413, 2014; 405–7.
56. Dos Reis G, García JD, Logozzo F, Fahndrich M, Lahiri S. Simple contracts for C++, 2015. http://www.open‐std.org/jtc1/sc22/wg21/docs/

papers/2016/p0287r0.pdf. [Online; accessed May‐2020].
57. Verdi M, Sami A, Akhondali J, Khomh F, Uddin G, Motlagh AK. An empirical study of C++ vulnerabilities in crowd‐sourced code examples,

2019.
58. Monteiro FR, Gadelha MR, Cordeiro LC. Model checking C++ programs—Replication package, 2021. https://doi.org/10.5281/zenodo.

4579853. [Online; accessed March‐2021].
59. Reference of the C++ language library, 2013. http://www.cplusplus.com. [Online; accessed August‐2019].
60. Xusheng X, Gogul B, Franjo I, Naoto M, Aarti G. NECLA benchmarks: C++ programs with C++ specific bugs, 2013. http://citeseerx.ist.psu.

edu/viewdoc/download?doi=10.1.1.410.7773&rep=rep1&type=pdf. [Online; accessed August‐2019].
61. Beyer D. Software verification and verifiable witnesses—(report on SV‐COMP 2015). In International Conference on Tools and Algorithms for

the Construction and Analysis of Systems, vol. 9035, 2015; 401–16.
62. Morneault K, Pastor‐Balbas J. Signaling system 7 (SS7) message transfer part 3 (MTP3)‐user adaptation layer (m3UA). In Technical Report,

The Internet Society, 2006.
63. Gurfinkel A, Kahsai T, Komuravelli A, Navas JA. The seahorn verification framework. In International Conference on Computer Aided

Verification, vol. 9206, 2015; 343–61.
64. Barnett M, Chang B‐YE, DeLine R, Jacobs B, Leino KRM. Boogie: A modular reusable verifier for object‐oriented programs. In Symposium

on formal methods for components and objects, vol. 4111, 2006; 364–87.
65. Falke S, Merz F, Sinz C. The bounded model checker LLBMC. In 2013 28th IEEE/ACM International Conference on Automated Software

Engineering (ASE), 2013; 706–9.
66. Ročkai P, Barnat J, Brim L. Model checking C++ programs with exceptions. Sci Comput Programm. 2016;128:68–85.
67. Štill V, Ročkai P, Barnat J. Using off‐the‐shelf exception support components in C++ verification. In 2017 IEEE International Conference on

Software Quality, Reliability and Security (QRS): Prague, Czech Republic, 2017; 54–64.
68. Cadar C, Dunbar D, Engler D. KLEE: Unassisted and automatic generation of high‐coverage tests for complex systems programs. In Sympo-

sium on operating systems design and implementation, 2008; 209–24.
69. Clarke E, Kroening D, Sharygina N, Yorav K. SATABS: SAT‐based predicate abstraction for ANSI‐C. In International Conference on Tools

and Algorithms for the Construction and Analysis of Systems, vol. 3440, 2005; 570–4.
70. Sites RL. Some thoughts on proving clean termination of programs. In Technical Report, Computer Science Department, Stanford University,

1974.
71. Boost C++ libraries documentation, 2005. http://www.boost.org/doc/. [Online; accessed August‐2019].
72. van der Merwe H, Tkachuk O, van der Merwe B, Visser W. Generation of library models for verification of android applications. Softw Eng

Notes. 2015;40(1):1–5.
73. Monteiro FR, Cordeiro LC, de Lima Filho EB. Bounded model checking of C++ programs based on the Qt framework. In Global Conference

on Consumer Electronics, 2015; 179–80.
74. Pereira P, Albuquerque H, da Silva I, Marques H, Monteiro FR, Ferreira R, et al. SMT‐based context‐bounded model checking for CUDA

programs. Concurrency Comput Pract Exper. 2017;29(22):e3934.
75. Garcia M, Monteiro FR, Cordeiro LC, de Lima Filho EB. ESBMCQtOM: A bounded model checking tool to verify qt applications. In SPIN,

LNCS, vol. 9641, 2016; 97–103.
76. Monteiro FR, Alves EHS, Silva IS, Ismail HI, Cordeiro LC, Filho EBL. ESBMC‐GPU a context‐bounded model checking tool to verify

CUDA programs. Sci Comput Programm. 2018;152:63–9.
77. de la Cámara P, Gallardo M‐M, Merino P, Sanán D. Checking the reliability of socket based communication software. Softw Tools Technol

Trans. 2009;11(5):359–74.
78. Cámara P, Castro JR, Gallardo M‐M, Merino P. Verification support for ARINC‐653‐based avionics software. Softw Test Verif Reliab. 2011;

21(4):267–98.

MODEL CHECKING C++ PROGRAMS 29 of 30

 10991689, 2022, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.1793 by C

ochrane G
reece, W

iley O
nline L

ibrary on [26/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://gcc.gnu.org/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0287r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0287r0.pdf
https://doi.org/10.5281/zenodo.4579853
https://doi.org/10.5281/zenodo.4579853
http://www.cplusplus.com
http://citeseerx.ist.psu.edu/viewdoc/download?doi%3D10.1.1.410.7773%26rep%3Drep1%26type%3Dpdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi%3D10.1.1.410.7773%26rep%3Drep1%26type%3Dpdf
http://www.boost.org/doc/

79. Cordeiro LC, Fischer B. Verifying multi‐threaded software using SMT‐based context‐bounded model checking. In International Conference on
Software Engineering: Honolulu, HI, USA, 2011; 331–40.

80. Cordeiro LC. SMT‐based bounded model checking for multi‐threaded software in embedded systems. In International Conference on Software
Engineering: Cape Town, South Africa, 2010; 373–6.

81. Mehta F, Nipkow T. Proving pointer programs in higher‐order logic. Inform Comput. 2005;199(1):200–27.

How to cite this article: Monteiro FR, Gadelha MR, Cordeiro LC. Model checking C++ programs. Softw Test
Verif Reliab. 2022;32:e1793. https://doi.org/10.1002/stvr.1793

30 of 30 MONTEIRO ET AL.

 10991689, 2022, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/stvr.1793 by C

ochrane G
reece, W

iley O
nline L

ibrary on [26/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1002/stvr.1793

	Model checking C++ programs
	1 INTRODUCTION
	2 BACKGROUND THEORY
	2.1 Bounded model checking
	2.2 Satisfiability modulo theories

	3 STATIC TYPE CHECKING OF C++ PROGRAMS
	3.1 Template instantiation
	3.2 Inheritance
	3.3 Polymorphism

	4 C++ OPERATIONAL MODEL
	4.1 Core language
	4.2 Sequential containers
	4.3 Associative containers

	5 EXCEPTION HANDLING
	5.1 Exception specification
	5.2 Terminate and unexpected handlers

	6 EXPERIMENTAL EVALUATION
	6.1 Experimental design, materials and methods
	6.2 Results and discussion
	6.3 Sniffer application

	7 RELATED WORK
	8 CONCLUSIONS AND FUTURE WORK
	ACKNOWLEDGEMENTS
	 DATA AVAILABILITY STATEMENT

	REFERENCES

