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PERSONALIZED PROGNOSIS & TREATMENT USING LUSTED-JAYNES MACHINES:
AN EXAMPLE STUDY ON CONVERSION

FROM MILD COGNITIVE IMPAIRMENT TO ALZHEIMER’S DISEASE

Abstract

The present work presents a statistically sound, rigorous, and model-free algorithm –
called “Lusted-Jaynes machine” in homage to these two pioneers – for use in personalized
medicine. The algorithm is designed first to learn from a dataset of clinical with relevant
predictors and predictands, and then to assist a clinician in the assessment of prognosis &
treatment for new patients. It allows the clinician to input, for each new patient, additional
patient-dependent clinical information, as well as patient-dependent information about
benefits and drawbacks of available treatments. We apply the algorithm in a realistic
setting for clinical decision-making, incorporating clinical, environmental, imaging, and
genetic data, using a data set of subjects suffering from mild cognitive impairment and
Alzheimer’s Disease. We show how the algorithm is theoretically optimal, and discuss some
of its major advantages for decision-making under risk, resource planning, imputation of
missing values, assessing the prognostic importance of predictors, and further uses.

Key words: Clinical decision making, Utility theory, Probability theory, Artificial Intelli-
gence, Machine Learning, Base-rate fallacy
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1. Introduction: Personalized prognosis, treatment, and computer algorithms

1.0. Prologue: Four unique patients

Meet Olivia, Ariel, Bianca, Curtis.1 These four persons don’t know each other, but they have
something in common: they all suffer from a mild form of cognitive impairment, and are afraid
that their impairment will turn into Alzheimer’s Disease within a couple of years. This is why
each of them recently underwent a wide range of clinical examinations and tests, including brain
imaging. Today they are receiving the results. Based on their individual results, on available clinical
statistical data, and on other relevant information, their clinician will assess their risk of developing
Alzheimer’s Disease. Then, together with the patients and their relatives, the clinician will make a
decision among four distinct preventive-treatment options, available to each patient.2 In these tasks,
the clinician will be helped by a computer algorithm.

Besides a shared diagnosis of Mild Cognitive Impairment and associated worries, these patients
have other things in common – but also some differences. Let’s take Olivia as reference, and list the
similarities and differences between her and the other three patients:

• Olivia and Ariel have identical results on the clinical and laboratory measures and age. They
would also incur similar benefits and losses from the four available treatment options. Ariel,
however, comes from a different geographical region, which presents a higher rate of conversion
from Mild Cognitive Impairment to Alzheimer’s Disease. And unlike Olivia, Ariel comes from
a family with a heavy history of Alzheimer’s Disease. Because of this geographical and family
background and some relevant statistics found in some publications, the clinician judges, before
seeing the clinical data, that there’s a 65% probability that Ariel’s cognitive impairment will
convert to Alzheimer’s Disease.

• Olivia and Bianca have identical clinical results and age; they also come from the same geographical
region and have very similar family histories. In fact, we shall see that they have the same
probability of developing Alzheimer’s Disease. Bianca, however, suffers from several allergies and
additional clinical conditions that render some of the treatment options slightly riskier for her.

• Olivia and Curtis have different results on all measures included in the clinical and laboratory
examinations; Olivia is also more than 10 years older than Curtis. They otherwise come from the
same geographical region, have very similar family histories, and would incur similar benefits or

1These are purely fictive characters but with clinically realistic conditions; any reference to real persons is purely
coincidental.

2In the present paper, we use “prognosis” in a general sense to include also “diagnosis”, and “treatment” quite
loosely to mean any course of action a clinician might take, including preventive treatment or even “additional tests”.
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losses from the treatment options. Note that the imaging result for Curtis (hippocampal volume)
is missing.

Considering the similarities and differences among these patients, which of the four available
treatments will be optimal for each of them? The clinician will find that, despite the many factors
in common among our four patients – even despite Olivia’s, Ariel’s, and Bianca’s identical clinical
results, and Olivia’s and Bianca’s identical probability of conversion to Alzheimer’s Disease – the
optimal treatment for each patient is different from those for the other three – how come?

1.1. Assistive computer algorithms: personalized input and output

In the example above, we said “in these tasks, the clinician will be helped by a computer
algorithm”. The need for such computational help is clear from the vast amount of clinical statistical
data and the large number of clinical predictors today available to clinicians. But how should such
an assistive computer algorithm be designed in order to take fully into account patient differences?

Although the example above concerns specifically Alzheimer’s Disease,
the differences among patients described there apply more generally to
most, if not all, clinical problems of prognosis and treatment. These
differences can be broadly categorized as “difference in auxiliary or supple-
mentary tests and background information” (Olivia vs Ariel), “difference
in benefit and availability of treatments” (Olivia vs Bianca), “difference
in clinical predictors” (Olivia vs Curtis), as schematized in the side figure.
Each of these difference categories can affect the clinician’s final choice of optimal treatment. An
assistive algorithm should therefore reflect these differences in its input, its output, or both:

• In principle, there could be three kinds of input “slots”, where the clinician can input the current
patient’s specific values as regards clinical predictors, auxiliary information, and treatment options
& benefits.

• If input slots are only available for one or two of the categories above, the output should at least
be of such a kind as to allow the clinician to integrate the current patient’s specific values of the
missing input categories.

To appreciate these requirements, one should contrast the input and output of many kinds
of machine-learning classification algorithms. These typically only allow the input of a patient’s
clinical predictors, with no space for patient-specific auxiliary information or for adjustments of
differences in background statistics (think of Olivia vs Ariel). And they typically output only a
discrete prognostic label (say, “stable Mild Cognitive Impairment” vs “conversion to Alzheimer’s
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Disease”), but no measure of the uncertainty about that label. Unfortunately, such output does not
allow the clinician to assess treatment benefits and losses for the current patient, for this assessment
depends not on the presence (present or future) of a disease, but on the risk of its presence. We
shall discuss these points at length in §§ 3.2 and 3.3.

The purpose of the present work is to present an assistive algorithm that meets the requirements
above. This algorithm is designed to first learn from a dataset of clinical data with relevant predictors
and predictand3, and then assist a clinician in the assessment of prognosis & treatment for new
patients. It offers these ten features:

1. It can work with clinical predictors comprising any combination of categorical and one-dimensional
(continuous, discrete ordinal, unbounded or bounded, uncensored or censored) variates. The
predictand can also be any combination of categorical and one-dimensional variates.

2. It treats predictor and predictand variates on equal footing, in the sense that the clinician can at
any moment decide to infer some other variate given the rest.

3. It does not require that the current patient be considered in all respects as a member of the
population underlying the learning dataset. The patient can be considered a member only
conditionally on particular variate values.

4. It accepts three inputs:
(a) the clinical-predictor values for the current patient;
(b) information about which predictand-predictor relationships learned from the dataset can be

generalized to the current patient, and a prior prognostic probability representing auxiliary
information;

(c) a set of treatment options and their benefits and losses for the current patient.
5. It yields three basic outputs:

(a) any prognostic probabilities or likelihoods about predictors and predictand desired by the
clinician, given input 4a;

(b) final prognostic probabilities, given inputs 4a–4b;
(c) optimal treatment, given inputs 4a–4c;

6. Its input and outputs are modular, in the sense that the clinician can, for instance, give inputs 4a–
4b only, get a prognostic probability 5b as output, and then proceed to treatment assessment by
other means or algorithms.

7. It works even if predictor data are missing, both in the learning dataset and for the current

3literally “quantity to be predicted” or, more generally, inferred (cf. measurand in metrology, jcgm 2012, 2.3). We
find this term, used in meteorology and climate science, more precise and less obscure or misleading than “dependent
variate”, “response variate”, “outcome variable”, or similar.
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patient.
8. It can quantify the uncertainty of its own outputs, allowing for sensitivity analyses. For example,

it can tell how much a prognostic probability could have been different if the learning dataset had
been larger, or whether the optimal treatment could be different if a particular missing predictor
for the current patient were available.

9. It can make various kinds of long-term forecasts, such as frequency of prognoses with given
probabilities, frequency of prescribed treatments, and similar – provided that the dataset used for
its learning can be considered representative of the full population.

10. It is model-free and extracts the maximal amount of information theoretically contained in the
learning dataset, and therefore achieves the maximal prognostic power that the predictors can
yield. In other words, it is unbeatable.

Let us comment on some of these features. We believe that the capability of working with
complex predictands, feature 1, is important for a more realistic and nuanced approach to prognosis.
In the case of Alzheimer’s Disease, for instance, a simple dichotomy “has disease” vs. “doesn’t have
disease” is possibly an oversimplification4. Without feature 3, the capability of auxiliary contextual
information, the algorithm would be of no use in the often occurring case of patients having peculiar
clinical contexts. The capability of dealing with missing data, feature 7, is important for a concrete
implementation in a clinical setting, typically afflicted by imputation problems. Feature 8 is extremely
important for a clinician to assess the reliability of final decisions and honestly inform the patient of
the possibility of unwanted outcomes. Finally, features 2 and 10, the fact that this algorithm yields
the maximal amount of information jointly contained in all variates, makes it valuable in general
clinical research. The algorithm can, for example, forecast the maximal accuracy obtainable by any
inference algorithm based on the same predictors or a subset of those predictors; and it attains, by
construction, that maximal accuracy. Further features of interest in Machine Learning are discussed
in the next section.

We call this algorithm a Lusted-Jaynes machine, for reasons explained in the next section. It is
at the moment available as a collection of scripts5 in the R programming language (R Core Team,
2023), which we plan to assemble into a clinician-friendly R package soon.

The methodology underlying this algorithm has been successfully demonstrated for Alzheimer’s
Disease with a smaller number of predictors (Antoniano-Villalobos et al., 2014), is used in many
applications in astrophysics (Event Horizon Telescope Collaboration, 2019, 2022; Del Pozzo et al.,
2018), and its advantages in neurocritical care have recently been emphasized (Jawa and Maslove,

4see e.g. Edmonds et al. (2015, 2020), whose methods we find, however, inconclusive.

5doi:10.17605/osf.io/zb26t, https://github.com/pglpm/ledley-jaynes_machine.

https://doi.org/10.17605/osf.io/zb26t
https://github.com/pglpm/ledley-jaynes_machine
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2023).
The next section 2 gives an intuitive understanding of the Lusted-Jaynes machine’s underlying

principles and workings. The machine’s concrete application is shown in § 3, using the four-patient
fictitious scenario of § 1.0 as a concrete example, and subsection 3.4 discusses further applications
to general medical research. A summary and discussion is given in § 4. Mathematical details and
proofs on which the present work is grounded are given in a companion technical note6, which also
explains how to use the R scripts.

We apologize to readers who may find some discussions or explanations too obvious, or some
mathematical details too scarce. We wanted the present work to be accessible to a wide audience,
from clinicians and students of medicine to researchers in machine learning and probability theory.

2. The Lusted-Jaynes machine

This section can be especially of interest to readers from Machine Learning and Artificial
Intelligence. It is largely independent of the next one, which describes the machine’s application. It
can be read after § 3 by readers who would like to see the machine in action first.

2.1. Underlying theory and characteristics

The method to solve clinical decision-making problems such as the one of § 1 is none other
than Decision Theory: the combination of probability theory and utility theory. It integrates
available clinical statistical data with each patient’s unique combination of clinical results, auxiliary
information, and treatment benefits, in a mathematical framework, completely determined by basic
self-consistency requirements.7

Medicine has the distinction of having been one of the first fields to adopt Decision Theory, with
the pioneering work by Ledley – who, incidentally, died of Alzheimer’s Disease (Shah et al., 2013) –
and Lusted (Ledley and Lusted, 1959a,b, 1960; Lusted and Ledley, 1960; Lusted, 1967), who also
promoted its algorithmic implementation (Lusted, 1968; Ledley, 1959, 1960, § 1-5 p. 21). Clinical
decision-making is today explained and exemplified in brilliant textbooks for medical students and
clinicians (Weinstein and Fineberg, 1980; Sox et al., 2013; Hunink et al., 2014). An outline is given
in § 3.3.

6https://github.com/pglpm/ledley-jaynes_machine/raw/main/omni-predictor_machine.pdf

7Jaynes (2003, chs 13–14); von Neumann and Morgenstern (1955); Cox (1946); Savage (1972); Luce and Raiffa
(1957); Raiffa and Schlaifer (2000); Raiffa (1970); Lindley (1988); Kreps (1988).

https://github.com/pglpm/ledley-jaynes_machine/raw/main/omni-predictor_machine.pdf
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The “Lusted-Jaynes machine” is an algorithmic implementation, as dreamed by Lusted and
Ledley8, of the main calculations underlying the clinical decision-making process: from the comparison
of a patient’s specific predictors with the statistics offered by a clinical database, to the choice of
optimal treatment. The name is a homage to Lusted and to Jaynes (2003), who brilliantly explained
the inductive logic underlying such a “robot”.

Decision theory is also the normative foundation for the construction of an Artificial Intelligence
agent capable of rational inference and decision making (Russell and Norvig 2022, part IV; Jaynes
2003, chs 1–2, 13–14). The Lusted-Jaynes machine can therefore be seen as an ideal machine-learning
algorithm. It is “ideal” in the sense of being free from special modelling assumptions (this is why we
do not call it a “model”) and from limitations of informational output which affect most common
machine-learning algorithms; not “ideal” in the sense of being impracticable. Quite the opposite, the
present work shows that this ideal machine-learning algorithm can today be used in a wide range of
inference problems at insubstantial computational cost.

More concretely, the Lusted-Jaynes machine is ideal because it computes the probability distribution
over all possible long-run frequency distributions from which the learning dataset can originate, these
frequency distributions being joint ones for all predictor and predictand variates.9 This is the
maximum possible amount of information that can be extracted from the learning dataset, in a
strict information-theoretic sense. From this probability distribution, the Lusted-Jaynes machine
can indeed calculate any quantity outputted by other machine-learning algorithms. For example (for
terminology see e.g. Murphy, 2012, § 8.6):

• “Discriminative” algorithms: the probability p(Y |X) of any set of predictands Y given any set of
input predictors X.

• “Generative” algorithms: the probability p(X | Y ) of any set of input predictors X given any set
of predictand values Y .

More generally, the machine can compute any joint, marginal, or conditional probabilities
p(Z ′, Z ′′), p(Z ′), p(Z ′ | Z ′′) for any desired subsets of variates Z ′, Z ′′.

• Regression or classification: the expected value E(Y | X) of any set of variates Y , given any
other set of variates X, including the particular case of Y predictand, and X predictors. The
uncertainty or variability around such an average is also automatically computed.

• Functional regression: if the predictand Y or any other variate of interest turns out to be a

8cf. the Appendices in Lusted 1968.

9This goes by the Sibylline technical name of “Bayesian nonparametric density regression”; see e.g. Rodríguez et al.
(2009); Bhattacharya and Dunson (2010); and Walker’s (2010) witty overview.
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function f of variates X, then their conditional probability will be a delta distribution: p(Y |X) =

δ[Y − f(X)]. Thus the Lusted-Jaynes machine always recovers a functional relationship if there is
one, as well as its noise distribution.

Furthermore, the machine also quantifies the uncertainty of all outputs above. More precisely, it
takes into account how the statistical properties of the learning dataset could be different from those
of its original population, owing to sampling fluctuations; and it can compute how much any of the
outputs above would probably change if more learning data were collected.

In the next section we explain intuitively how the Lusted-Jaynes machine computes the general
probability distribution over long-run frequencies. A couple of special characteristics brought about by
such computation can already be summarized here. First, in contrast to machine-learning algorithms
such as neural networks, random forests, Gaussian processes, support-vector machines, or generalized
linear models, the Lusted-Jaynes machine does not assume the existence of a function (possibly
contaminated by a little noise) from predictors to predictands. This is a very strong assumption,
justifiable in the presence of informationally very rich predictors such as images, but otherwise
quite unrealistic for many kinds of predictors considered in medicine, especially those that are more
readily available and less invasive and, therefore, more desirable. Second, in contrast to algorithms
such as neural networks, random forests, support-vector machines, logistic regression, or generalized
linear models, the Lusted-Jaynes machine does not do an optimization during the learning phase,
searching for the minimum of some objective function. It does a full hypothesis-space survey. The
optimization done by most machine-learning algorithms is an approximate form of this survey, based
on the assumption or hope that the most relevant portion of the hypothesis space will be around
the extremum (MacKay, 1992a; Murphy, 2012, ch. 16; see also Self and Cheeseman, 1987). The
underlying necessity of a more extensive survey, however, becomes manifest in many of the obligatory
procedures that go together with the training of most machine-learning algorithms, cross-validation
being a prominent example (MacKay, 1992b). This leads to a third special characteristic of the
Lusted-Jaynes machine: it does not need validation sets, test sets, or other data splits; nor does it
need cross-validation procedures. Intuitively this is the case because the underlying hypothesis-space
survey realizes a sort of full-fledged cross-validation and data partition. It can indeed be proven
that one of the internal computations of the machine is mathematically equivalent to doing k-fold
cross-validations for all possible data splits and k (Porta Mana, 2019; Fong and Holmes, 2020).

Such flexibility and informationally rich output come, of course, at a computational cost. Until
some years ago, the cost would have been prohibitive in all but the simplest inferential problems. But
today an inference problem involving 13 variates and 700 datapoints, such as the example considered
in the present work, takes less than six hours of computation on an office computer workstation. We
discuss computational limitations further in § 4.2.
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2.2. Intuitive understanding of the learning algorithm

The calculations by which the Lusted-Jaynes machine learns and operates are univocally determ-
ined by Cox’s theorem10, which yields quantitative inference rules from self-consistency requirements,
and by de Finetti’s theorem11, which further constrains these rules in the case of “generalization
from similar cases”. These calculations have a very intuitive interpretation.

We consider a patient to be a member of some population of similar past, present, and future
patients. Suppose we knew the joint frequency distribution of all possible combinations of predictor
and predictand values in such a population. We would then judge the probability for a patient’s
variate values to be equal to their corresponding population frequency. Pure symmetry considerations
lead to this result (Johnson, 1924, Appendix on eduction; Johnson, 1932; de Finetti, 1930; Dawid,
2013; Bernardo and Smith, 2000, §§ 4.2–4.3). The same would be true for conditional and marginal
probabilities and frequencies.12 This population frequency distribution would bound the maximal
prognostic power attainable with the given predictors in the population. A higher prognostic power
could only be attainable by using additional or different predictors having sharper conditional
frequencies for the predictand in the population. Given knowledge of such frequency distribution,
there would be no problem of “generalizing” to new patients, because each new patient would already
be counted in the known frequencies. An inference algorithm would only need to enumerate and
memorize, rather than to learn and generalize.

Learning and generalization come into play because the frequency distribution for the population
is unknown: we only have a sample from it, the “learning dataset”. Thus we can, at most, assign a
probability to each possible frequency distribution. This is precisely what the Lusted-Jaynes machine
does.

The way in which the machine assigns a probability to each “candidate” true frequency distribution
is also intuitive. It combines two factors: (i) how well the candidate fits the sample dataset, (ii) how
biologically or physically reasonable the candidate is. The first factor is easily computed: it is the
joint probability of the dataset if it were sampled from a population having that candidate frequency.
The second factor is a prior probability expressing how reasonable that candidate is.13 The most

10Cox, 1946, 1961; Pólya, 1954, 1968; Tribus, 1969; Fine, 1973; Rosenkrantz, 1977; Paris, 2006; Snow, 1998; Halpern,
1999; Arnborg and Sjödin, 2001; Snow, 2001; Clayton and Waddington, 2017; see also Hailperin, 1996; and Van Horn,
2003 for a review.

11de Finetti, 1930, 1937; Bernardo and Smith, 2000, §§ 4.2–4.3; for a review see Dawid, 2013.

12If there were a functional relationship from predictors to predictand, then the predictand value corresponding
to the function output would have conditional frequency and probability equal to 1, and all other values having 0.
Therefore, this point of view still encompasses a functional relationship as a particular case.

13Some notion of “reasonable candidate” is unavoidable and clearly present in the construction or testing of any
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Figure 1: Samples of initially probable
candidates of the true population fre-
quency distribution of an integer variate
(for example RAVLT-del or RAVLT-rec,
to be introduced in § 3.0).
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Figure 2: Illustration of the two factors determining the final
probability of a candidate population-frequency distribution
represented as a blue scatterplot. Upper-left : an example
dataset (yellow points) with two variates. Upper-right : can-
didate frequency distribution with high final probability; it
fits the data and is reasonable. Lower-left : candidate distri-
bution with low final probability; it is reasonable but does
not fit the data. Lower-right : candidate distribution with
low final probability; it fits the data but is not reasonable.

general natural requirement for “reasonableness” is that the candidate should have some degree of
smoothness, owing to physical and biological reasons. This prior probability prevents overfitting
and underfitting; in fact, it actually defines mathematically what can be considered “overfitting”
and “underfitting”. Figure 1 shows samples of what the machine has been programmed to consider
“reasonable candidates” for the population frequency distribution of a discrete variate. This choice
can be altered by the clinician. Note that no frequency distributions are excluded; they are only
given higher or lower probabilities.

The product of the two factors (i), (ii), normalized, yields the probability of each possible
frequency distribution. An illustration of factors (i), (ii) at work is given in fig. 2 for an example
problem with two variates. The Lusted-Jaynes machine outputs the distribution of these final

inference algorithm. How can we otherwise judge that an algorithm is over- or under-fitting, given that we do not
know the ground truth? (if we knew the latter we would not be making inferences.) Such judgement implies that we
have a preconceived reasonable reference distribution in the back of our minds. The fit is either qualitatively compared
with this reasonable reference; or it is compared with a known ground-truth, which was in turn chosen because of its
similarity with the reasonable reference.
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probabilities in the form of a large sample (the amount is decided by the user) drawn from it. In this
form, all other marginal or conditional probabilities and averages of interest are calculated via Monte
Carlo integration. This methodology has been successfully demonstrated for Alzheimer’s Disease
with a smaller number of predictors (Antoniano-Villalobos et al., 2014), and it is the same, but in
nonparametric form, used in various inferences about the black holes M87 and Sagittarius A* (Event
Horizon Telescope Collaboration, 2019, 2022). Further mathematical and computational details are
given in appendix A.

We close this section emphasizing that the inferential steps of the machine, from input to output,
consist of, literally, no more than the reiterated application of just four inductive-logic rules:

p(A |A and I) = 1 p(not-A | I) = 1− p(A | I)

p(A and B | I) = p(A |B and I) p(B | I) p(A or B | I) = p(A | I) + p(B | I)− p(A and B | I) .

3. Example application

In this section we illustrate how the Lusted-Jaynes machine is applied in the example case
outlined in § 1.0. Although the patients are fictitious, the dataset is real and briefly discussed in the
next subsection. The main inferential and decision-making steps are summarized in table 1. Steps
1.–3. are modular: the clinician is free to stop after any of them and use their output in other ways
or with other algorithms.

These steps are illustrated in the next three subsections, preceded by an explanation of their
rationale. They are presented in chronological order as the clinician would apply them. Steps 1.–3.
could also be presented in reverse order; which would be more suited to their logical dependence,
as the procedure in each step is actually motivated by the one in the next. We suggest that
readers familiar with the principles of clinical decision-making read the following subsections in
3.0–3.1–3.2–3.3 order; whereas readers unfamiliar with these principles read them in 3.0–3.3–3.2–3.1
order.

3.0. Predictors, predictand, and learning dataset

The dataset used in our example comes from the study by the Alzheimer’s Disease Neuroimaging
Initiative (adni).14 This longitudinal multicentre study is designed to develop and validate neuroima-
ging and biochemical biomarkers for the early detection, monitoring, and treatment of Alzheimer’s

14http://adni.loni.usc.edu. A complete listing of ADNI investigators can be found at http://adni.loni.usc.
edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.

http://adni.loni.usc.edu
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
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Table 1: Main inferential and decision-making steps

0. Find or build an appropriate dataset of clinical cases comprising values of the predictors and predictand
of interest. Datapoints with partially missing values are allowed.

Input the dataset into the Lusted-Jaynes machine and let it infer the joint full-population frequencies
of predictors and predictand underlying the dataset.

1. Measure the present patient’s predictor values and input them in the Lusted-Jaynes machine. Partially
missing values are allowed.

2. Assess which conditional statistics of the dataset can be applied to the present patient, and any
auxiliary clinical information available. Quantify the latter in a prior probability.

Input the relevant statistics and auxiliary information for the present patient into the Lusted-Jaynes
machine.

Upon request, the machine can now output the final probability of the predictand’s true value for
the patient, as well as any other probabilities and likelihoods of interest.

3. Assess the clinical courses of action (treatments, more tests, and so on) available for the present patient,
and the utility (benefit and loss) of each course of action, depending on each possible predictand value
for the patient.

Input the patient’s utilities into the Lusted-Jaynes machine. The machine outputs the course of
action having maximal expected utility.

Upon request, the machine can output the probability of gaining different utilities, perform
sensitivity analyses for missing data, and do other similar tasks.
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Disease (Petersen et al., 2010). The present dataset consists of 704 adni subjects constrained,
according to adni criteria, to be between 55 and 90 years old. These subjects were chosen to meet
the criteria for Mild Cognitive Impairment at their first, baseline assessment, and to have a minimum
of two additional following study visits and three mri examinations. Each subject’s diagnostic status
was reevaluated at each study visit. This longitudinal diagnostic label is used as the predictand
variate cAD in our study; it categorizes each subject as either converting to Alzheimer’s Disease
after the first study visit: cAD= Y, or remaining stable with Mild Cognitive Impairment: cAD= N.
The dataset has 325 subjects (46.2%) with cAD= Y and 379 (53.8%) with cAD= N. Criteria used for
classifying subjects as having Mild Cognitive Impairment or Alzheimer’s Disease, as well as adni’s
general criteria for subject inclusion, are described in McKhann et al. (1984); Petersen et al. (2010).

The 12 predictor variates consist of the results from seven cognitive-test measures: a reading test
(ANART), a word category fluency test (CFT), trail-making tests of executive function (TMTA, TMTB),
the immediate-memory, delayed-recall and recognition-subsets of memory function (RAVLT-imm,
RAVLT-del, RAVLT-rec); a geriatric depression scale (GDS); the presence of the APOE-e4 risk allele
(Liu et al., 2013); a normalized measure of the sum of left and right hippocampal volume (HV); Age;
Sex. Further details about these variates and their selection can be found in Rye et al. (2022). The
cognitive and GDS variates are integer-valued, hippocampal volume and Age are continuous, and
APOE4 and Sex are binary. The values of one or two of these predictors were missing for 30 subjects
in the dataset.

The Lusted-Jaynes machine took less than five hours (on a 16-core Intel Core i9-12900K CPU)
to calculate the probability distribution for the possible joint population-frequency distributions of
the 13 variates.

Some results can already be visualized after this inference. Figure 3 shows, on the left, the
inferred distributions of RAVLT-del, RAVLT-imm, GDS, and hippocampal volume for the subpopulation
of patients that will convert to Alzheimer’s Disease (red) and the subpopulation that will remain with
stable Mild Cognitive Impairment (blue). On the right, the inferred frequency of conversion in the
full population is plotted (grey), conditional on the same predictors. The thin curves are 100 samples
of highly probable population-frequency distributions; the thicker lines are their means, which are
also the predictive conditional probabilities. The two subpopulations of patients are clearly distinct
in the RAVLT-del, RAVLT-imm, HV variates. These predictors can yield probabilities of conversion as
high as 70% or as low as 10%. The two subpopulations are practically indistinguishable in the GDS

variate, which, therefore, always gives very uncertain predictions.
The learning dataset comprises enough data to greatly reduce our uncertainty about the population

distributions, as evident from the very narrow spread of the curves. In fact it leads to identical
answers, within numerical-computation error, even if we drastically change the prior illustrated in



Psychometrika Submission February 9, 2023 15

0 2 4 6 8 10 12 14

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

RAVLT−del

po
pu

la
tio

n 
fr

eq
ue

nc
y

will convert to AD
data histogram

stable MCI
data histogram

0 2 4 6 8 10 12 14

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

RAVLT−del

po
pu

la
tio

n 
fr

eq
ue

nc
y 

of
 c

on
ve

rs
io

n 
to

 A
D

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

RAVLT−imm

po
pu

la
tio

n 
fr

eq
ue

nc
y

will convert to AD
data histogram

stable MCI
data histogram

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

RAVLT−imm

po
pu

la
tio

n 
fr

eq
ue

nc
y 

of
 c

on
ve

rs
io

n 
to

 A
D

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

GDS

po
pu

la
tio

n 
fr

eq
ue

nc
y

will convert to AD
data histogram

stable MCI
data histogram

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

GDS

po
pu

la
tio

n 
fr

eq
ue

nc
y 

of
 c

on
ve

rs
io

n 
to

 A
D

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

0
50

100
150
200
250
300
350
400
450
500
550
600
650
700

HV

po
pu

la
tio

n 
fr

eq
ue

nc
y 

de
ns

ity

will convert to AD
data histogram

stable MCI
data histogram

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

HV

po
pu

la
tio

n 
fr

eq
ue

nc
y 

of
 c

on
ve

rs
io

n 
to

 A
D

Figure 3: Inferred distributions of some predictor variates, for the subpopulation of patients that
will convert to Alzheimer’s Disease (red dashed) and the subpopulation with stable Mild Cognitive
Impairment (solid blue).
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fig. 1, for example favouring more unimodal distributions or more multimodal distributions.
These simple results show the great usefulness of the Lusted-Jaynes machine for general medical

research.

3.1. Patient’s clinical information

The 12 predictor values for our four patients are reported in table 2, top. Note that Curtis’s
value for the Hippocampal Volume is missing; this is not a problem for the Lusted-Jaynes machine.
Given these predictor values the Lusted-Jaynes machine can output any probabilities of interest to
the clinician. Table 2, bottom, reports three probabilities that are important for the step of the next
subsection:15

• p(cAD= Y | predictors): the probability that the patient will convert to Alzheimer’s Disease, given
the patient’s specific predictors and that the patient comes from the same population as the
learning dataset.

• p(predictors | cAD= Y): the probability that a patient who will convert to Alzheimer’s Disease
would have these specific predictor values. In other words, the likelihood16 of conversion to
Alzheimer’s Disease, given the predictors.

• p(predictors | cAD= N): the probability that a patient who will remain with stable Mild Cognitive
Impairment would have these specific predictor values. In other words, the likelihood of stable
Mild Cognitive Impairment, given the predictors.

The Lusted-Jaynes machine can also answers other questions of interest to the clinician. For
instance, what could be the value of Curtis’s Hippocampal Volume? The answer is given in fig. 4,
which also shows the full-population distribution as comparison (dashed grey); with 95% probability
Curtis’s value is between 2.8 and 5.3, with a median of 3.8. And what is the frequency of conversion
to Alzheimer’s Disease among the subpopulation having Olivia’s, Ariel’s, or Bianca’s predictors? The
answer is given in the histogram of fig. 5: with 95% probability, the fraction of this subpopulation
that eventually converts to Alzheimer’s Disease is between 0.19 and 0.43; this uncertainty range is
due to the limited size of the learning dataset. The probability p(cAD= Y | predictors) is equal to the
average of such a distribution (e.g. Bernardo and Smith, 2000, §§ 4.2–4.3), provided the patient and
dataset can be considered as belonging to the same population.

15All relative uncertainties of the results caused by numerical computation error are below 0.8%, Curtis’s two
likelihoods being an exception at 2%.

16p(A |B) is the probability of A given B, as well as the likelihood of B given A (Good, 1950, § 6.1).
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Olivia Ariel Bianca Curtis

Age 75.4 75.4 75.4 63.8
Sex F F F M
HV/10−3 4.26 4.26 4.26 [missing]
APOE4 N N N Y
ANART 18 18 18 15
CFT 21 21 21 14
GDS 3 3 3 2
RAVLT-imm 36 36 36 20
RAVLT-del 5 5 5 0
RAVLT-rec 10 10 10 3
TMTA 21 21 21 36
TMTB 114 114 114 126

p(cAD= Y | predictors) 0.302 0.302 0.302 0.703
p(predictors | cAD= Y)/10−12 8.97 8.97 8.97 1.14
p(predictors | cAD= N)/10−12 18.6 18.6 18.6 0.343

Table 2: Predictor values for the four patients (see § 3.0), and resulting conditional probabilities.
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Figure 4: Probability distribution for Curtis’s Hip-
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distribution (dashed grey) is also plotted for ref-
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3.2. Assessment of relevant subpopulation and auxiliary information

Rationale

As already mentioned, and as will be argued more concretely in the next section, the clinician
needs a probability in order to choose a treatment or other course of action for the current patient.
This probability is computed by generalizing associations between predictors and predictand hidden
in a dataset of similar patients, as discussed in § 2. The way this generalization is made, however,
can differ from patient to patient in two respects:

• Only some particular directed associations can be generalized to the current patient, whereas
others would be inappropriate to generalize. In some cases, for example when the learning dataset
is artificially assembled with balancing or stratification methods, some associations cannot be
generalized to any patients at all.

• There can be additional information available for the current patient, for instance some clinical
predictors not included in the learning dataset, or other “softer” information such as family history
or geographic background.

There is no sharp separation between these two items. The presence of additional information often
automatically implies that some associations cannot be generalized from the learning dataset to the
current patient.
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Let us explain with a familiar example why particular associations
cannot be generalized. Most students of medicine learn about the base-rate
fallacy (Bar-Hillel, 1980; Jenny et al., 2018; Sprenger and Weinberger,
2021; Matthews, 1996). Consider a large set of clinical trials, illustrated in
the upper table on the side, where each dot represents, say, 10 000 patients.
In this sample dataset it is found that, among patients having a particular
value “+” of some predictors (left column), 71.4% of them (or 5/7, upper
square) eventually developed a disease. The fallacy lies in judging that a
new real patient from the full population, who has predictor value “+”, also
has a 71.4% probability of developing that disease. In fact, this probability
will in general be different. In our example, it is 33.3% (5/15), as can be
seen in the lower table illustrating the full population. This difference
would be noticed as soon as the inappropriate probability was used to
make prognoses in the full population. A similar situation happens for the
predictor value “−”.

There is a discrepancy in the conditional frequencies of predictand given predictors, between the
sample dataset and the full population, because the proportion of positive vs negative disease cases
in the latter has some value, 16.7%/83.3% in our example, whereas the samples for the trials (dashed
line in the lower table) were hand-chosen so as to have a 50%/50% proportion. This sampling
procedure is called “class balancing” in machine learning (Provost, 2000; Drummond and Holte, 2005;
Weiss and Provost, 2003). More generally this discrepancy can appear whenever a population and
a sample dataset from it do not have the same frequency distribution for the predictand. In this
case, we cannot rely on the probabilities of “predictand given predictors” obtained from the sample
dataset, which we symbolically write as

p(predictand | predictors, dataset) (1)

A little counting in the side figure reveals, however, that other frequencies may be relied upon.
Consider the full population. Among all patients who developed the disease, 83.3% of them (or 5/6,
upper row) had the predictor value “+”, while among those who did not develop the disease, 33.3%
(or 1/3, lower row) had the predictor value “−”. And these frequencies are the same in the sample
dataset. These frequencies from the clinical trials can therefore be used to make a prognosis using
Bayes’s theorem. For brevity, denote the predictors by X, the predictand by Y , the dataset or trials
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by D, and the full-population base rate by B. Bayes’s theorem yields

p(Y |X,D,B) =
p(X | Y,D) · p(Y |B)∑

Y

p(X | Y,D) · p(Y |B)
(2)

In our example we find

p(Y =+ |X =+, D,B) =
p(X =+ | Y =+, D) · p(Y =+ |B)

p(X =+ | Y =+, D) · p(Y =+ |B)p(X =+ | Y =−, D) · p(Y =− |B)

≈ 0.833 · 0.167
0.833 · 0.167 + 0.333 · 0.833

= 0.33

(3)

which is indeed the correct full-population frequency.
If the samples of the clinical trials had been chosen with the same frequencies as the full population

(no “class balancing”), then the probability p(predictand | predictors, dataset) from the dataset would
be the appropriate one to use. But the probabilities p(predictors | predictand, dataset) together with
Bayes’s theorem as in eq. (2) would also lead to exactly the same probability. We thus see that using
the probabilities

p(predictors | predictand, dataset)

from the dataset is preferable to using p(predictand | predictors, dataset). The former yield the same
results as the latter when use of the latter is appropriate, and allow us to apply corrections when use
of the latter is inappropriate. The superiority of using p(predictors | predictand, dataset) probabilities
(called “generative” in machine learning, see e.g. Murphy, 2012, § 8.6) is illustrated with a toy example
in table 3.

The use of dataset probabilities different from p(predictand | predictors, dataset) can be necessary
even when the dataset has statistics identical with the population it is sampled from. Typical cases
are the prognosis of a patient that comes from a peculiar subpopulation or even from a different
population (Lindley and Novick 1981; Quintana et al. 2017; Sox et al. 2013, ch. 4; Hunink et al.
2014, ch. 5). For instance, the first case happens when the clinician has additional information not
included among the predictor variates, such as the result of an additional clinical test, or family
history; the second case happens when the patient comes from a different geographical region. There
is of course no sharp distinction between these two cases.

What is important is that, in either case, it can still be possible to use statistical information
from the sample dataset to make prognoses. It is sufficient that some conditional statistics may be
applicable to the specific patient. For a patient coming from a different region, for example, it may be
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Table 3: superiority of the “predictors ||| predictand” (or “generative”) approach

We split our learning dataset into two subsets:

• One with 361 subjects and a ratio of 29.9%/70.1% of subjects with cAD= Y vs cAD= N.
• One with 343 subjects and a ratio of 63.3%/36.7% of subjects with cAD= Y vs cAD= N. This subset is

used as a fictive full population.

This partition was made with no systematic sampling of any variates except the predictand cAD.
After training on the learning dataset, we make a prognosis for each of the 343 “new” patients, through
four separate approaches: (a) using the probabilities p(predictand | predictors, dataset), as typical of
machine-learning algorithms; (b) using p(predictors | predictand, dataset) together with the base rate,
as explained above; (c) tossing a coin; (d) always prognosing “cAD= Y”, which guarantees 63.3% correct
prognoses owing to the base rate of the full population. Finally, the accuracies (number of prognoses
giving more than 50% probability to the correct outcome) of these four approaches are calculated. Here
are the results from lowest to highest:

predictand | predictors coin toss always predict conversion predictors | predictand & base rate

37.3% 50% 63.3% 73.2%

The “predictand | predictors” approach (“discriminative” in machine-learning parlance) leads to worse
results than a coin toss because of its underlying base-rate fallacy. The “predictors | predictand” approach
(“generative” in machine-learning parlance) leads to better results than simply always prognosing the most
common base-rate outcome; this shows that the dataset can still provide useful statistical information
despite its mismatched base rate. Inference algorithms that only yield “predictand | predictors” outputs,
unlike the Lusted-Jaynes machine, are incapable of extracting this useful information.
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judged that the conditional probabilities p(predictand | predictors, dataset) still apply. In other words,
the patient may still be considered a member of the subpopulation having those specific predictor
values. Using more technical language we say that a new patient can be considered exchangeable with
the patients constituting the dataset, but only conditional on particular variates. See Lindley (2014,
especially around §§ 7.3, 8.6; 1981) for a clear and logically impeccable presentation not obscured
by technical language (more technical references are de Finetti 1930, 1937; Dawid 2013; Bernardo
and Smith 2000, §§ 4.2–4.3, 4.6; see also Malinas and Bigelow 2016, Sprenger and Weinberger 2021
about confounding and Simpson’s paradox, to which this topic is tightly related).

This topic is complex and of extreme importance for inference, but its detailed study is not the
goal of the present work. Our main point here is that population variability and auxiliary clinical
information are important factors that differentiate patients, and a personalized approach ought to
take them into account. The method here presented does this naturally, allowing a great flexibility in
selecting which statistical features of the sample dataset should be used for each new patient, and the
integration of auxiliary clinical information in the form of a prior probability. As discussed in § 3.1,
the Lusted-Jaynes machine allows us to quickly calculate conditional probabilities p(Y |X, dataset)

for any desired variate subsets Y and X required by the patient’s relevant population.

Application to the example study

In our example of § 1.0, all statistics of the dataset are considered relevant for Olivia, Bianca,
and Curtis. For these patients the clinician can therefore use Bayes’s theorem with the likelihoods
of table 2 and the dataset conversion rate of 0.463 – or equivalently directly the probabilities
p(cAD= Y | predictors, dataset) provided in the same table.

For Ariel, however, the clinician judges that a different base rate or prior probability of conversion
should be used, equal to 65%, because of her different geographical origin and family history. In her
case the clinician uses Bayes’s theorem with the likelihoods of table 2 and the prior probability of
0.65.

The final probabilities of conversion to Alzheimer’s Disease for our four patients are reported in
table 4. Note how the final probability for Ariel is higher than that for Olivia and Bianca, even if
the predictor data are the same for these three patients.
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Olivia Ariel Bianca Curtis

initial probability p(cAD= Y | aux info) 0.463 0.65 0.463 0.463
final probability p(cAD= Y | predictors, dataset, aux info) 0.302 0.47 0.302 0.703

Table 4: Final probabilities of conversion computed from dataset and auxiliary information

3.3. Assessments of treatments and benefits; final decision

Rationale

A crucial point in clinical decision-making is this: the clinician needs to assess, not the presence
(present or future) of a disease, but the risk of its presence. Is there a difference between these two
problems? and why is the difference important?

In clinical practice, we can rarely diagnose or prognose a medical condition with full certainty.
Perfect classification is therefore impossible. But also a “most probable” classification, which may be
enough in other contexts, is inadequate in clinical ones. The problem is that the clinician has to
decide among different courses of action, such as different treatments, more tests, and so on, and
the optimal one depends on how probable the medical condition is, not just on whether it is more
probable than not.

Two examples illustrate this point. Suppose there is a dangerous treatment that extends the
patient’s lifetime by 1 year if the disease is on its course, but shortens the patient’s lifetime by 5
years if the disease is not present. Also suppose that some algorithm tells the clinician whether
the disease’s presence is “more probable than not”, given some predictor values; in which case the
clinician administers the dangerous treatment. It turns out that 60 out of 100 treated patients
having these same predictor values eventually develop the disease, so “more probable than not” is
correct. However, the final result is that the clinician has added 1× 60 = 60 years but also subtracted
5 × 40 = 240 years from the combined lifespans of the treated patients! The conclusion is that the
treatment cannot be prescribed just because the disease is “more probably present than not”. As an
opposite example, suppose that a less dangerous treatment extends the patient’s lifespan by five
years if the disease is on its course, but shortens it by one month if the disease is not present. In
this case, it may be advisable to undergo the treatment even if the disease is less probably present
than not. If the clinician administer the treatment to 100 similar patients, and 20 of them develop
the disease, then the clinician has added 5 × 20 = 100 and subtracted 1

12 × 60 = 5 years to their
combined lifespans.

In both examples, it is clearly important to assess the probability – having precise connections
with the population frequency – that the patient will develop the disease. In the first example, the
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treatment should only be administered if the probability is higher than 83.3%; in the second, it can
be administered if the probability is at least 1.6%. The Lusted-Jaynes machine, as explained in the
previous sections, tells the clinician the specific probability for the current patient.

But the choice between treatments depends not only on the probability of the medical condition.
Here is where differences between patients vary and matter the most. Consider again the second
example above, about the less dangerous treatment. Let us add that the treatment would extend the
lifespan by five years, but would also somewhat worsen the quality of life of the patient and of the
patient’s family. Suppose our patient is quite old and tired, has had a happy life, and is now looking
with a peaceful mind towards death as a natural part of life. Such a patient may prefer to forego the
bother of the treatment and the additional five years, even if the probability for the disease is quite
high.

The benefits of the different treatments, and the probability thresholds at which one treatment
becomes preferable to another, must therefore be judged and quantified primarily by the patient.
Utility theory and maximization of expected utility allow clinician and patient to make such
judgements and decisions in a coherent way (Sox et al. 2013; Hunink et al. 2014; Lusted 1968; see
also the clear and charming exposition by Lindley 1988, and O’Hagan et al. 2006).

We summarize the main, patient-dependent procedure for decision-making, and show how our
computations so far fit perfectly with it.

The clinician first assesses and lists the mutually exclusive courses of action available for the
specific patient. These could be preventive or curative treatments, more tests, doing nothing, and so
on. Often there are sequences of decisions available, but the utility framework can be applied to them
as well (see references above and Raiffa, 1970). In the present work we are calling these heterogeneous
alternatives simply “treatments” for simplicity (see footnote 2, p. 3). The list treatments is already
patient-dependent: some alternatives may not be medically suitable (say, owing to allergies or other
clinical conditions), some may be economically too costly, and so on.

Each treatment will have different consequences, which additionally depend on the patient’s
unknown clinical condition of interest. A treatment may have some consequences if the patient
has or will develop the disease, and different consequences otherwise. The patient quantifies, with
the clinician’s guidance, the benefits and costs – technically called “utilities” – of such possible
consequences. The quantification of utilities is not within the scope of the present work. The
references cited above offer guidelines and rules for numerically translating factors such as quality of
life and expected lifespan into utilities.

The treatments, uncertain clinical conditions, and the quantified utilities U of their consequences
can be organized into a table of this form:
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clinical condition a clinical condition b . . .

treatment α Uαa Uαb . . .

treatment β Uβa Uβb . . .

. . . . . . . . . . . .

which can be compactly represented by a so-called utility matrix
(
Uij), the row index i enumerating

the treatments, and the column index j the clinical conditions. Note that the number of possible
treatments and clinical conditions do not need to be equal; generally, they are not.

The expected utility Ūi of a treatment i is calculated as the expectation of its utilities Uia, Uib, . . .

with respect to the probabilities p(a), p(b), . . . of the clinical conditions a, b, . . . :

Ūi := Uia p(a) + Uib p(b) + · · · (4)

Note that this corresponds to a matrix multiplication between the matrix of utilities and the vector
of probabilities.

Finally, the recommended treatment is the one having maximal expected utility.

Application to the example study

At present there are no cures for Alzheimer’s Disease, although some recent pharmacological
agents are shown to delay onset of pathology related to Alzheimer’s Disease17. But for the sake of
our case study let us imagine that in the near future there are three mutually exclusive treatment
options for prevention or retardation of the disease; call them β, γ, δ, the simple option of “no
treatment” being denoted by α. The clinical conditions to be considered are just two: the patient
will convert to Alzheimer’s Disease (cAD= Y), or will remain with stable Mild Cognitive Impairment
(cAD= N).

We have therefore 4× 2 = 8 possible consequences of the four treatments depending on the two
clinical conditions. Our four patients and the clinician quantify the utilities, arriving at the utility
matrices shown in table 5, top. Olivia, Ariel, and Curtis quantify the benefits of the treatments in
exactly the same way, but Bianca’s quantification differs slightly, because of the interaction of the
treatments with several allergies and additional clinical conditions, as explained in § 1.0.

The probabilities for the two medical conditions are those found in the previous subsection, table 4.
For brevity, we denote just by p(cAD) the probability of conversion given a patient’s predictor values,

17e.g. lecanemab, a monoclonal antibody infusion given every two weeks, targeting amyloid beta plaques;
see https://www.fda.gov/news-events/press-announcements/fda-grants-accelerated-approval-alzheimers-
disease-treatment.

https://www.fda.gov/news-events/press-announcements/fda-grants-accelerated-approval-alzheimers-disease-treatment
https://www.fda.gov/news-events/press-announcements/fda-grants-accelerated-approval-alzheimers-disease-treatment
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Utility matrices

Olivia Ariel Bianca Curtis

treatment α
treatment β
treatment γ
treatment δ

cAD
N Y
10 0
9 3
8 5
0 10


cAD

N Y
10 0
9 3
8 5
0 10


cAD

N Y
10 0
8 3
7 5
0 10


cAD

N Y
10 0
9 3
8 5
0 10


Expected utilities and optimal treatments

Olivia Ariel Bianca Curtis

treatment α
treatment β
treatment γ
treatment δ

optimal

6.98
7.19
7.09
3.02

β

5.27
6.16
6.58
4.73

γ

6.98
6.49
6.40
3.02

α

2.97
4.78
5.89
7.03

δ

Table 5: Utility matrices, expected utilities, and optimal treatments for our four patients

and by p(sMCI) ≡ 1− p(cAD) the complementary probability of stable Mild Cognitive Impairment,
given the same predictor values. The expected utilities of each treatment for each patient can then
be easily computed. For example, for Olivia the expected utility of treatment β is

Ūβ = 9 · p(cAD= N | predictors, dataset, aux info) + 3 · p(cAD= Y | predictors, dataset, aux info)

= 9 · (1− 0.463) + 3 · 0.463 = 7.19
(5)

The results for all patients are reported in table 5, bottom, with the maximal expected utilities in
boldface.

A summary of the clinician’s inputs, the Lusted-Jaynes machine’s outputs, and the final decisions
is given in table 6 on page 34.

3.4. Additional information provided by the Lusted-Jaynes machine

As discussed in § 2, the output of the Lusted-Jaynes machine concerns the full population of
past, present, and future patients, with all its statistics. This output can therefore be used for
additional purposes such as resource planning, imputation of missing data, sensitivity checks, and
the investigation of each predictor’s importance in the prognosis. We briefly discuss these possible
uses.
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Figure 6: Possible distribution of prognostic probabilities of conversion in the full patient population

Resource planning

Let us ask the following question: if the learning dataset were representative of the full population,
then how often, in the long run, would a clinician prognose a conversion to Alzheimer’s Disease with
probability between 0%–2%, or 2%–4%, and so on, with 50 bins up to 98%–100%?

The Lusted-Jaynes machine can answer this question probabilistically; the answer is plotted
in fig. 6. Note that the calculation assumes that the Lusted-Jaynes machine will not be regularly
updated with new patients’ data (the calculation could also be made with the opposite assumption).
The light-blue bands are 95% uncertainty coverage intervals 18; this uncertainty comes from the fact
that we are not certain about the full-population frequencies. We see that it is very improbable that
many patients will be prognosed with probabilities around 30%, smaller than 5%, or larger than
75%. The full population is likely to be grouped into three to five “conversion-probability clusters”,
as evident from the peaks.

This kind of information allows us to make other forecasts of various kinds. For instance, it would
be useful to forecast in which proportions the treatments α, β, γ, δ (see § 3.3) will be prescribed,

18for terminology see jcgm (2008, C.2.30). A p% coverage interval or credible interval is an interval containing the
true value with p% probability. Note that it is different from a “confidence interval”, which cannot be interpreted in
such a simple way (Pratt, 1961, pp. 165–166; Jaynes, 1976; MacKay, 2005, § 37.3)
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assuming that the full population has on average the utility matrix of Olivia, table 5. We find these
coverage intervals with a 90% probability that the true future proportion will be within each:

α: 21%–28% β: 2%–6% γ: 31%–42% δ: 31%–40% (6)

Again, despite the obvious uncertainties, we can be quite sure that treatments γ, δ will be prescribed
more often than α, and that β will be only prescribed in 5% of cases. Semi-quantitative forecasts
such as this can be very useful for resource planning.

This kind of analysis, as recommended by Smith and Winkler (2006), can also be made for
a single patient to avoid the “optimizer’s curse”. It tells the clinician how much and with which
probability the final utility that a patient will gain could deviate from optimality, allowing the
clinician to honestly inform the patient about the possibility and extent of unwanted outcomes.

Imputation of missing data

As mentioned in §§ 1.1 and 2, the Lusted-Jaynes machine treats all variates of the learning
dataset on the same footing. This is why it can output probabilities “predictand | predictors”,
“predictors | predictand”, and other combinations with equal ease, exploiting them to correct subpop-
ulation mismatches as discussed in § 3.2. This feature allows us to impute missing data for one or
more patients, giving a probability distribution of what those data could be. We saw and example
of this possibility in § 3.1 for Curtis’s Hippocampal Volume, fig. 4. Such imputation can be done at
prognostic time for sensitivity checks, as discussed in more detail in the next section. The imputation
can also be done a posteriori, possibly years later, when the actual predictand value becomes known.
This can be useful for many purposes, for instance, for the comparison of biological hypotheses.

Sensitivity checks

The imputation of missing data at prognostic time is useful for various kinds of sensitivity
analysis regarding the current patient. Let us consider for instance the case of Curtis, whose value of
Hippocampal Volume is missing (table 2). His clinician thus wonders if the acquisition of this value
would lead to a different and more beneficial treatment choice. The Lusted-Jaynes machine can
answer this question by outputting the probability distribution of Curtis’s expected utilities (table 5)
if the Hippocampal Volume had been known. The result is that the expected utilities for the four
treatments in Curtis’s case must be within the following coverage intervals with 90% probability:

α: 2.97%–2.98% β: 4.78%–4.79% γ: 5.89%–5.90% δ: 7.02%–7.03% (7)
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(the four corresponding probability histograms, if plotted jointly, would look like distinct vertical
lines). It is clear that knowledge of the Hippocampal Volume is extremely unlikely to change Curtis’s
optimal treatment from δ. Considering that the negligible information gained would not outweigh
the economic costs (involving an mri-scan) for obtaining this predictor, the clinician decides to
proceed without it.

Predictor importance

The question about Curtis in the previous subsection can be generalized to a whole population.
Predictors that are too invasive or too expensive to obtain, but that are uninformative for the
prognosis, could be dropped altogether. So how important, in general, is each predictor in prognosing
the conversion to Alzheimer’s Disease?

As posed, this question is too vague (ill-posed) because it does not exactly specify how a predictor
is used, and what “important” means. Let us see why these details matter.

X1

X
2

The schematic picture on the side illustrates the necessity of
specifying a predictor’s context. Individuals in this population
can be either blue circles ⃝ or red triangles △, and have two
predictors X1 and X2. Predictor X1, if used by itself, is worthless in
distinguishing the two subpopulations, because these have identical
marginal distributions (depicted underneath the grey horizontal
line). If used in conjunction with X2, however, predictor X1 allows
us to identify an individual’s subpopulation with full certainty, as
is clear from the two-dimensional view. It is therefore an essential
predictor in this case: dropping it would lead to a complete loss of
predictive power. An analogous discussion holds for X2 in the present case. The converse can also
happen (not illustrated): a predictor might be “good” if used by itself, and yet it might be discarded
without any loss if used in combination with others.

In our question about a predictor’s importance, we want to know what happens if the predictor
is dropped from the set of all predictors.

Regarding the meaning of “importance” or “prognostic power”, we must specify a relevant metric,
and predictors could be ranked differently by different metrics. From our discussion so far it is clear
that in clinical decision-making the canonical metric is the final expected utility – and therefore
the choice of optimal treatment – which a predictor’s presence or absence leads to (see § 3.3). This
point was illustrated with Curtis’s example in the previous subsection. What if we want to make a
similar assessment, not for a single patient, but for the full population? which utility matrix should
we use? It can be proved, again from decision-theoretic principles, that the population average
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of all utility matrices should be used in this case (cf. Dyrland et al., 2022a, § 4.1). This seems a
quantity very difficult to assess, but it can also be shown (Dyrland et al., 2022a, § 4.2) that even a
semi-quantitative assessment leads to better results than using some other general-purpose metric.

The Lusted-Jaynes machine allows us to compute the expected value of virtually any prognostic-
importance metric, and for any subset of predictors available in the dataset. This computation has
moreover two properties of paramount importance: (a) the prognostic power of a set of predictors
found with the Lusted-Jaynes machine is the maximum possible obtainable by any inference algorithm,
or in other words it is an intrinsic property of that set of predictors; (b) the Lusted-Jaynes machine
achieves this maximum power. Thus, if the Lusted-Jaynes machine says that the accuracy obtainable
with a given set of predictors is 70%, then we know that no other inference algorithm can reach
a higher accuracy than 70%; inference algorithms that reach lower accuracy can in principle be
improved upon. The Lusted-Jaynes machine, by construction, will reach this accuracy. Note that we
mean accuracy in the long run, over the full population; an inference algorithm could reach higher
accuracies in some test dataset thanks to sampling fluctuations; in fact this is bound to happen from
time to time.19

Let us illustrate this kind of “predictor importance” assessment for our dataset. We use (a)
two metrics: the accuracy and the mutual information (Shannon, 1948; Cover and Thomas, 2006)
between a set of predictors and the cAD predictand; (b) 27 different sets of predictors:

• every predictor, used individually (12 sets);

• all cognitive-test predictors used together, jointly with information about depression (GDS) and
demographics (Age and Sex).

• APOE4 and Hippocampal Volume, jointly with demographic information;

• all predictors jointly excluding one, each single predictor being excluded in turn (12 sets);

• all predictors jointly.

Use of the accuracy assumes that the population of patients has only two available treatments
having average utility matrix

[
1 0
0 1

]
. Mutual information is a model-free measure of the relation

between two sets of variates, with diverse operational interpretations (MacKay, 2005; Woodward, 1964;
Minka, 2003; Good, 1961; Good and Toulmin, 1968; Kelly, 1956; Kullback, 1978) and international
standards (iso, 2008). A set of predictors and a binary variate (such as our conversion to Alzheimer’s
Disease) have a mutual information of 1 Sh if and only if there is a non-constant deterministic
function from the former to the latter.

19The Lusted-Jaynes machine can also calculate, with a somewhat expensive computation, the size of such fluctuations,
given the size of the test dataset.
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Our specific questions are the following: “What is the expected value of the accuracy for the next
new patient, if we use the given set of predictors?” and “What is the mutual information between
the given set of predictors and the predictand, given the presently available data?”.

The answers to these questions are reported in fig. 7, ordered from bottom to top according to
increasing metric. The ordering of mutual information and accuracy agree within the uncertainty of
the numerical computation (Monte Carlo integration). The latter is reported as coverage intervals of
± two standard deviations.

The plots reveal several findings, valid within the population selected for the dataset, which can
be compared with the analysis in Rye et al. (2022, see especially Fig. 3 and Table 3):

• The set of 12 predictors considered in the present work and in Rye et al. (2022) can at most
yield a prognostic accuracy of around 67.7%± 0.7% over the full population, for any inference
algorithm. This fact agrees with the (completely independent) findings in Rye et al. (2022), where
a maximal accuracy of 68.3% on a test dataset was found using an ensemble model. The present
analysis also shows that the ensemble model managed to achieve the maximal accuracy possible
with these predictors (but see § 4 for limitations of that model).

• The mutual information using all 12 predictors is quite low at (0.140± 0.008) Sh, indicating that
we cannot reasonably consider the predictand to be an approximate function of the predictors
(0 Sh corresponds to a coin toss, 1 Sh to a perfect function). Machine-learning algorithms based
on functional regression, such as neural networks, are therefore not appropriate for this prognostic
problem.

• APOE4, GDS, Age, Sex, and to some degree ANART are poor predictors (within this population)
when used alone and when used in combination with all other predictors. The latter point is
evident from the fact that the mutual information and accuracy of the combined predictors barely
decreases if any one of these four predictors is omitted.

• The combined cognitive and demographic variates are better predictors than the joint use of
Hippocampal Volume, APOE4, and demographic variates.

• RAVLT-imm, RAVLT-del, and to a lesser degree RAVLT-rec are good predictors, both when used
alone and when used jointly with all other predictors. Hippocampal Volume is a poorer predictor
than any of the RAVLT when used alone, and likely also when used in combination with all others
(contrast this with Rye et al., 2022). This last finding is also clear in Curtis’s case: fig. 8 shows
that his probability of conversion to Alzheimer’s Disease, given his current predictors, would
practically be the same for all values of Hippocampal Volume; and it would probably be the same
even if the learning dataset contained more points.
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Figure 7: Expected accuracy for the next new patient (left), and mutual information (right), of
several sets of predictors for the prognosis of conversion to Alzheimer’s Disease. Each graph has
been vertically ordered according to increasing values; the two rankings agree within the respective
uncertainties. The all predictor set is mathematically guaranteed to be optimal according to both
metrics and has therefore been ranked first. Bars show the uncertainty interval (± two standard
deviations).
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Curtis’s known predictors and different possible
values of his unknown Hippocampal Volume. The
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ing dataset. Compare this figure with fig. 3, p. 15,
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The Lusted-Jaynes machine shows that the omission of any one of the 12 predictors, except
RAVLT-del and possibly RAVLT-imm, does not lead to an appreciable decrease in accuracy (relative
decrease of 0.3% or less) or in mutual information (relative decrease of less than 3%). This puts the
prognostic-importance analysis of Rye et al. (2022) into perspective. The exact quantification of
these subtle differences is computationally quite expensive, and we did not carry it out further.

4. Discussion

Which requirements does a personalized approach to prognosis and treatment impose on assistive
computational technology? This is an important question, because with the increasing amount of
statistical clinical data and clinical predictors available for medical care, assistive computational
technology is today not merely a useful option, but a necessity in clinical practice.

In the present work we started from the perspective of the clinician’s ultimate task, decision-
making under risk, and saw that patients’ differences relevant to prognosis and treatment can be
approximately divided into three categories:

• differences in the values – and availability – of a core set of clinical predictors, for which we have
population-wide statistical information;

• differences in the availability and values of auxiliary and usually semi-quantitative clinical inform-
ation, such as geographical or family background;

• differences in the availability and values or “utilities” of clinical courses of action, such as preventive
treatments or further tests; such values can have a highly variable, patient-dependent subjective
component.

Luckily there is a theory that takes into account and integrates these differences towards the final
goal: Decision Theory, which is the subject of several good textbooks on clinical decision-making
(Weinstein and Fineberg, 1980; Sox et al., 2013; Hunink et al., 2014) after the pioneering work of
Lesley & Lusted (1959a; 1959b; 1960; 1960; 1968) (a summary and references were given in § 3.3).

Decision-making under risk requires any assistive algorithm to work, explicitly or implicitly,
in terms of probabilities, having precise connections with population statistics (§ 3.3). Without
this condition the integration of patient-dependent treatment utilities would be impossible. The
handling of these probabilities should moreover be enough flexible to take into account peculiar
but common subpopulations of patients having special contexts or auxiliary information (§ 3.2),
and the common possibility of missing values for some clinical predictors (§ 3.1). Most, if not all,
popular machine-learning algorithms either do not meet these requirements, or they do so at the
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Table 6: Summary of the clinician’s patient-dependent inputs and the Lusted-Jaynes machine’s
outputs. Input data and final results that distinguish Ariel, Bianca, Curtis from Olivia are in red.

Olivia Ariel Bianca Curtis

Clinician’s patient-dependent inputs

Predictor values

Age 75.4 75.4 75.4 63.8
Sex F F F M
HV/10−3 4.26 4.26 4.26 [missing]
APOE4 N N N Y
ANART 18 18 18 15
CFT 21 21 21 14
GDS 3 3 3 2
RAVLT-imm 36 36 36 20
RAVLT-del 5 5 5 0
RAVLT-rec 10 10 10 3
TMTA 21 21 21 36
TMTB 114 114 114 126

Additional information

auxiliary info none family history, base rate none none
applicable dataset subpopulation all predictor | predictand all all
prior probability of conversion 0.463 0.65 0.463 0.463

Available treatments and utilities

treatment α
treatment β
treatment γ
treatment δ

cAD
N Y
10 0
9 3
8 5
0 10


cAD

N Y
10 0
9 3
8 5
0 10


cAD

N Y
10 0
8 3
7 5
0 10


cAD

N Y
10 0
9 3
8 5
0 10


Outputs of Lusted-Jaynes machine

p(cAD= Y | predictors, dataset) 0.302 0.302 0.302 0.703
p(predictors | cAD= Y, dataset)/10−12 8.97 8.97 8.97 1.14
p(predictors | cAD= N, dataset)/10−12 18.6 18.6 18.6 0.343

final probability of conversion
p(cAD= Y|predictors, dataset, aux info) 0.302 0.47 0.302 0.703

exp. utility treatment α
exp. utility treatment β
exp. utility treatment γ
exp. utility treatment δ

Optimal treatment

6.98
7.19
7.09
3.02

β

5.27
6.16
6.58
4.73

γ

6.98
6.49
6.40
3.02

α

2.97
4.78
5.89
7.03

δ
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cost of unrealistic modelling assumptions. Unfortunately they tend to overly simplify the problem of
decision-making under risk, as if it were a simple classification or regression task.

We presented an assistive algorithm, the “Lusted-Jaynes machine”, that meets all these require-
ments (§ 2) and carries out the calculations required by decision theory. This algorithm is moreover
model-free, not making a-priori assumptions about functional dependencies or particular distributions
in the variates. The inference principles on which it is based have recently been recommended
for the study of Alzheimer’s Disease (Temp et al., 2021; see also asa, 2016, 2019), and have been
successfully demonstrated in a simpler predictor setting (Antoniano-Villalobos et al., 2014). We
showed its application in an example of prognosis and treatment of conversion from Mild Cognitive
Impairment to Alzheimer’s Disease for four different patients, where all three categories of differences
listed above appeared. The patients were fictitious but the underlying learning database, originating
from adni, is real, and was explored in a previous work (Rye et al., 2022).

The Lusted-Jaynes machine was also shown to have uses that go beyond individual clinical
decision-making but are still of importance to personalized medicine. For instance, it can assess
the maximum possible prognostic power of particular sets of predictors, potentially allowing us to
discard clinical predictors that are too invasive or expensive and yet prognostically unimportant.

In actual deployment, we would recommend the hospital, medical centre, or clinician using a
Lusted-Jaynes machine to keep a database of incoming patients, with their predictor values, adding
the true values of their predictand later in time, once they become known. The Lusted-Jaynes
machine can then be retrained on such local database when the latter reaches a size comparable to the
original one’s, and periodically retrained afterwards. All inferences would thus become increasingly
more reliable, because the machine would base them on updated population statistics that are
characteristic to the specific hospital.

4.1. Counters to possible critiques

Any inference or decision-making algorithm aspiring to take into account patient differences must
perforce have some open “input slots” for such differences. We saw that the Lusted-Jaynes machine
requires inputs about a patient’s specific predictors, relevant statistical relations and auxiliary data,
and treatment utilities.

The most difficult input to quantify is probably the third: translating benefits and drawbacks of
different treatments into numbers. On this complex topic we refer the reader to specially dedicated
textbooks on clinical decision making, for example Sox et al.’s (2013) and Hunink et al.’s (2014).

But some readers may wonder: “can all these additional inputs be avoided?”, fearing that errors
could sneak in through them.
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This question is answered by a mathematical theorem at the very core of decision theory 20,
which is too seldom emphasized: Any decision we make, either (A) comes explicitly or implicitly
through some set of utilities and maximization of their expectations, or (B) is logically inconsistent.
There is no third alternative. Thus the choice is not between using utilities or not using utilities,
but between choosing them explicitly or letting them be chosen in a way we do not know. If we
use a decision-making algorithm that does not ask us for utilities, then the algorithm is internally
supplying utilities not chosen by us (and probably divorced from our specific problem), or, worse, is
committing logical inconsistencies.

The first advantage of explicitly operating through utilities, probabilities, decision theory, is that
we are, at the very least, sure of not acting in a self-contradictory way. The second advantage is that
the utilities used to arrive at a decision appear openly in front of us. We can analyse and change
them if we find them inappropriate to a specific problem. If they are hidden, it is more difficult to
analyse which are inappropriate and how they should be changed.

The fact that an algorithm works according to decision theory is also an assurance of striving
towards theoretical optimality. This point has very subtle consequences. Consider a non-optimal
algorithm that leads to saving 85 000 patients out of 100 000. Given these numbers it might be
deemed a success. But what if a theoretically optimal algorithm leading to 95 000 saved patients is
feasible? What shall we say to the families of the 10 000 patients who could have been saved but
weren’t?

The most difficult input to quantify is probably the third: translating benefits and drawbacks of
different treatments into numbers. On this complex topic we refer the reader to specially dedicated
textbooks on clinical decision making, for example Sox et al.’s (2013) and Hunink et al.’s (2014).

4.2. Range of application of Lusted-Jaynes machines

First let us emphasize, even if it is obvious, that the quality of the results obtained with the
Lusted-Jaynes machine depends on the quality of the learning dataset. Any peculiar sampling biases
(or numerical errors) in the dataset that are unknown to the clinician will affect the final results.
This is of course true for any inference algorithm. But we saw that the Lusted-Jaynes machine allows
the clinician to correct for particular sampling biases present in the dataset, if they are known.

The range of application of the Lusted-Jaynes machine has two kinds of bounds: computational
and theoretical.

The fact that the Lusted-Jaynes machine extracts all available information from the dataset
makes it computationally expensive (see § 2). At present it cannot be used with high-dimensional

20Savage (1972); Luce and Raiffa (1957); Raiffa and Schlaifer (2000); Atkinson et al. (1964); Ferguson (1967); Lindley
(1988, 1977); Kreps (1988); Bernardo and Smith (2000); Pratt et al. (1996); Lindley (2014); Pettigrew (2019)
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predictors: if our dataset had included a predictor such as a 128× 128× 128 greyscale mri image,
the learning stage would have taken around 100 years. Approximate but much faster algorithms
such as neural networks and random forests are thus, at present, still the only options with such
predictors. There is, however, the interesting possibility of combining these fast algorithms together
with a Lusted-Jaynes machine, as a post-processor of their raw output. The machine extracts useful
information usually hidden in their output at a low computational cost (Dyrland et al., 2022b); this
information can then be used for clinical decision-making as illustrated in the present work.

The sole assumption underlying the Lusted-Jaynes machine’s inference and its practical use
with new patients, is that the latter can be assumed to come, at least in some respects, from
the same population as the learning dataset (in probability-theory jargon, partial or conditional
exchangeability applies; see § 3.2). This precludes using the Lusted-Jaynes machine to forecast how
the statistics of the full population could change in the future. However, the machine can be used
for time-dependent (longitudinal) inferences within a stable population, such as forecasts of the
future time of disease onset, expected lifelength, and similar. For instance, if data about the time of
conversion to Alzheimer’s Disease were available in the dataset, the Lusted-Jaynes machine could
forecast not only whether, but also when the conversion could take place (cf. e.g. De la Cruz-Mesía
et al., 2007).

Finally, the machine is not meant to handle sequences of decisions in a clinical decision tree (Sox
et al., 2013, ch. 6; Hunink et al., 2014, ch. 1) – it would be impossible in a personalized approach,
because such a tree is fully patient-dependent – but it could be used in individual decision branches.

A. Further mathematical and computational details about the example application of
the Lusted-Jaynes machine

The Lusted-Jaynes machine surveys the space of possible distributions of frequencies of all 13
variates discussed in § 3.0, for the full population of patients from which the dataset originates (see
§ 3.2). In the present study, it does so by mathematically representing a generic joint frequency
distribution F (Y,X1, X2, . . . ) as a convex mixture of appropriate kernels products:

F (Y,X1, X2, . . . ) =
∑
i

wiK(Y | υi)K(X1 | ξi1)K(X2 | ξi2) · · · ,

along the ideas in Dunson and Bhattacharya (2011) and Ishwaran and Zarepour (2002); see also
Rossi (2014); Rasmussen (1999). This representation uses a total of 1535 independent parameters
(wi,υi, ξi1, . . . ), with roughly 190 parameters for each continuous or integer variate. As a crude
intuition, it is as if we divided the range of each variate into 190 bins, and considered all possible
frequency histograms over these. The actual parametrization is smarter, incrementally using
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parameters to represent less and less smooth traits of the distribution. We indeed expect the
distribution for a full population to have some degree of smoothness, owing to physical and biological
reasons. Actually, the number of parameters used is in principle infinite, because the machine gives
a warning if the data indicate that more parameters are needed. In the present study, the data
indicate, on the contrary, that fewer than 250 parameters would be enough. Note that the machine
constructs the kernels K( | ) and their product automatically, depending on how many and what
kinds of variates the dataset comprises.

The probability of a candidate frequency distribution F is determined by its “fit” F (D) of the
data D and a prior-expectation factor p(F ), as explained in § 2.2:

p(F |D) ∝ F (D) p(F ) .

Finally, the predictive conditional probability for any two sets of variates Z ′, Z ′′, given the dataset, is
given by the expectation over the unknown F , as required by the probability calculus and de Finetti’s
theorem (Bernardo and Smith, 2000, § 4.6):

p(Z ′ | Z ′′, D) =

∫
F (Z ′ | Z ′′) p(F |D) dF

where the conditional frequencies F (Z ′ | Z ′′) := F (Z ′, Z ′′)/F (Z ′′).
The frequency-space survey and the calculation of the probabilities p(F |D) for the population-

frequency distributions was done via Gibbs sampling (Neal, 1993, ch. 4; MacKay, 2005, § 29.5; Casella
and George, 1992) with the R package Nimble (de Valpine et al., 2021), using 1024 independent
Markov chains. Stationarity was assessed by common diagnostic measures (Gilks et al., 1998),
especially integrated autocorrelation time (Christen and Fox, 2010) and Hellinger distance (Boone
et al., 2014), as well as visual inspection. An automated method for stationarity check was developed,
to be discussed in future publications.

Conflict of Interest Statement

The authors declare that the research was conducted in the absence of any commercial or financial
relationships that could be construed as a potential conflict of interest.

Author Contributions

The authors were too immersed in the development of the present work to keep a detailed record
of who did what.



Psychometrika Submission February 9, 2023 39

Funding

The study was supported by grants from the Trond Mohn Research Foundation, grant number
BFS2018TMT0, and from The Research Council of Norway, project number 294594.

Acknowledgements

PGLPM thanks Soledad Gonzalo Cogno and Iván Davidovich for inspiring discussions; Maja,
Mari, Miri, Emma for continuous encouragement and affection; Buster Keaton and Saitama for filling
life with awe and inspiration; and the developers and maintainers of Nimble, LATEX, Emacs, AUCTEX,
Open Science Framework, R, Inkscape, LibreOffice, Sci-Hub for making a free and impartial scientific
exchange possible.

Computations underlying the Lusted-Jaynes machine were initially performed on resources
provided by Sigma2 – the National Infrastructure for High Performance Computing and Data
Storage in Norway (project NN8050K).

Clinical-data collection and sharing for this project was funded by the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD
ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the
National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and
through generous contributions from the following: AbbVie, Alzheimer’s Association; Alzheimer’s
Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb
Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company;
EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE
Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research Development, LLC.; Johnson
& Johnson Pharmaceutical Research Development LLC.; Lumosity; Lundbeck; Merck Co., Inc.; Meso
Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals
Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition
Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI
clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the
National Institutes of Health (www.fnih.org). The grantee organization is the Northern California
Institute for Research and Education, and the study is coordinated by the Alzheimer’s Therapeutic
Research Institute at the University of Southern California. ADNI data are disseminated by the
Laboratory for Neuro Imaging at the University of Southern California.

Software-availability Statement

The R scripts used for this study can be found in the Open Science Framework project doi:
10.17605/osf.io/zb26t (see also the repository https://github.com/pglpm/ledley-jaynes_mac

https://doi.org/10.17605/osf.io/zb26t
https://doi.org/10.17605/osf.io/zb26t
https://github.com/pglpm/ledley-jaynes_machine
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hine). We hope to assemble them into an R package soon.
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