
Evaluation of standard
monitoring tools(including log
analysis) for control systems
at Cern

August 2013

Author:
Vlad Vintila

Supervisor(s):
Fernando Varela Rodriguez

CERN openlab Summer Student Report 2013

CERN openlab Summer Student Report 2013

Project Specification
The goal of this Openlab Summer Student project was to assess the implications and the
benefits of integrating two standard IT tools, namely Icinga and Splunkstorm with the
existing production setup for monitoring and management of control systems at CERN.

Icinga – an open source monitoring software based on Nagios would need to be
integrated with an in-house developed WinCC OA application called MOON, that is
currently used for monitoring and managing all the components that make up the control
systems.

Splunkstorm – a data analysis and log management online application would be used
stand alone, so it didn’t need integration with other software, only understanding of
features and installation procedure.

Abstract
The aim of this document is to provide insights into installation procedures, key features
and functionality and projected implementation effort of Icinga and Splunkstorm IT tools.
Focus will be on presenting the most feasible implementation paths that surfaced once
both software were well understood.

CERN openlab Summer Student Report 2013

Table of Contents
Project specification .. 2

Abstract .. 2

1 Introduction .. 4

2 Icinga ... 5

2.1 Overview .. 5

2.2 Features and advantages .. 7

2.3 Installation .. 7

2.4 Integration .. 8

3 Splunkstorm ... 9

3.1 Overview .. 9

3.2 Features and advantages .. 9

3.3 Installation and integration ... 10

4 Conclusions ... 11

4.1 Icinga .. 11

4.2 Splunkstorm ... 11

5 Annexes ... 12

5.1 A - Installation of Icinga .. 12

5.2 B – Xinetd livestatus configuration. .. 14

5.3 C – sockey.py ... 15

5.4 D – tcp.py ... 16

6 Bibliography ... 17

CERN openlab Summer Student Report 2013

1 Introduction

Two key components of the existing monitor and management system in place for
industrial controls needed to be looked at, namely the monitoring of servers’ health,
processes, parameters and log centralization for all log producing entities in the control
systems setups.

Figure 1. Current setup

For montoring the standard setup (Figure 1.) is currently as follows: FMC(Farm
Monitoring and Control) agents running on each server that monitor cpu, disk, memory,
processes health etc. These agents do specialized tasks, so there is a different one for each
different check that needs to be done. They act as DIM (Distributed Information
Management System – a CERN developed protocol) servers to which the monitoring
system, called MOON connects to obtain the raw data that each agent is producing.

This was a proven, robust system. However the problem with this is that it takes a lot of
time to maintain the existing FMC agents and to develop new ones. Being C or C++
programs written by CERN personnel, they do exactly what they need to do and were
surely the right choice to go with at the time of their introduction. With years going by,
open source projects aiming to provide monitoring tools began to appear and mature.
Also, with more and more companies developing complex computer infrastructures,
CERN’s needs stopped standing out as special and quickly became standard. Taking all
these into account, it was a logical step to look into the replacement of FMC agents with
one of the ‘standard’ open source solutions.

4 | P a g e

CERN openlab Summer Student Report 2013

For logging there is no current solution in place. Taking into account that being able to
visualize and analyse log messages in a centralized system or tool is a proven, powerful
way to debug flaws in software applications and to single out the causes of a failure it
was mandatory that a centralized log analysis solution would be looked at.

We will be looking at Icinga and Splunkstorm one by one and see the discoveries made
by studying the implementation of these two.

2 Icinga

2.1 Overview

Icinga is an open source network and computer system monitoring application. It was
originally created as a fork of the Nagios monitoring application in 2009. Icinga tries to
address the shortcomings of Nagios by adding functionality and trying to create more
ways of integrating with other software, all while keeping configuration and plugin
compatibility with Nagios.

Figure 2. Icinga architecture

Building on top of a proven monitoring tool, with the goal of being more easily
extendable and easier to integrate, Icinga was the choice that stood out of the crowd, so it
was chosen for evaluation.

5 | P a g e

CERN openlab Summer Student Report 2013

Overly simplified, Icinga just runs scripts and checks the exit status, saves that and the
provided output

Ex:

value = example_probe_metric()

if value >= critical_threshold:
 print “CRITICAL – Value is bigger than %d” % critical_threshold
 sys.exit(2)

elif value >= warning_threshold:
 print “WARNING - Value is bigger than %d” % warning_threshold
 sys.exit(1)

elif
 print “OK – All ok”
 sys.exit(0)

The exit status code meaning is:

 0 - OK

 1 – WARNING

 2 - CRITICAL

 3 - UNKNOWN

Using the same logic, to run checks remote scripts (plugins) on other hosts the
check_nrpe script is used. It sends a command to the listening NRPE daemon on the
monitored server, the script for that particular command is run and the output and exit
status are forwarded to Icinga. See Figure 3.

Figure 3. Execution model

6 | P a g e

CERN openlab Summer Student Report 2013

2.2 Features and advantages

The advantages of replacing FMC agents with Icinga consisted of shifting the
development and maintenance efforts from CERN employees to the community around
the product, thus enabling them to concentrate on other areas. There is also potential for
added functionality over the FMC setup. We’re going to look through some of the
features that are appealing and relevant to the EN-ICE-SCD section.

As we can see from Figure 2. it is not a monolithic application, but rather a set of
components doing specific jobs. This allows for flexibility in the setup Icinga requires for
installation and also aids scalability quite a lot. For example you can have multiple
icinga-core instances running on different servers using the same database.

Another advantage of this structure is that a large number of communication points can
be opened. You can access Icinga data directly from the core, using the Event Broker
API, use the REST API, access the database, etc.

Full compatibility with nagios-plugins means that Icinga benefits from the large
ecosystem of existing nagios plugins to monitor a wide variety of metrics and
components and also from the simplicity of the structure of nagios monitoring scripts. To
create a plugin only an exit status and a output is required. All you need to focus on is the
logic behind obtaining the value or values for what a particular check.

Another aspect that is worth mentioning as an advantage is the small effort required in
understanding and building the configuration for monitoring your setup. Here is an
example of a service(check) definition:

define service{
 host_name linux-server
 service_description check-disk-sda1
 check_command check-disk!/dev/sda1
 use generic-service
 }

One interesting here to note here is the “use” directive, which means that our service
inherits different settings from a template, called generic-service, thus removing clutter
and speeding up configuration time.

2.3 Installation
We are going to briefly explain the installation procedure of an Icinga setup. For a full
command by command how to and config file details please see Annex A – Installation
of Icinga

7 | P a g e

http://nagios.sourceforge.net/download/contrib/documentation/misc/NEB%202x%20Module%20API.pdf
http://nagios.sourceforge.net/download/contrib/documentation/misc/NEB%202x%20Module%20API.pdf

CERN openlab Summer Student Report 2013

Icinga server:

- Install oracle compatibility on the server, including ocilib, which has to be
compiled

- Install icinga package from rpmforge repository
- Install idoutils – needed for writing data in the database - by downloading icinga

binary and compiling only idoutils. This must be done because the idoutils
package from rpmforge doesn’t include oracle support

- Configure both icinga and idoutils and start both
- Create the schema needed for icinga on the database
- Install nagios-plugins and relevant individual nagios plugins to be used in

monitoring (ex: nagios-plugins-ssh, nagios-plugins-disk, etc.)

Monitored server:

 For LINUX:

- Install nagios-nrpe from rpmforge repository
- Install nagios-plugins (see above)
- Configure and start
- Open port 5666 tcp(this is what the nrpe daemon binds on)

 For WINDOWS:

- Install NSClient++
- Configure and start

2.4 Integration
After installing and understanding Icinga, the best way to integrate it with the current
setup soon stood out. This was using a plugin which uses the Event Broker API to talk
directly with the icinga-core, and providing a simplified but powerful API available for
querying, providing control on the output type of the information. This is to be used
together with a WinCC OA program that queries this plugin to get the data out of Icinga
and in to moon.

This plugin is called Livestatus. For details on installing it, please see
http://docs.icinga.org/latest/en/int-mklivestatus.html and Annex A. One thing to note is that by
default Livestatus binds to a Unix socket, so in order to make it network accessible is to use a
xinetd configuration to create a “wrapper” that redirects traffic from a tcp socket to the Unix
socket. You can find the configuration in Annex B – Xinetd livestatus configuration.

Advantages of Livestatus include performance, full functionality and the fact that it doesn’t need
a database to operate. For full features and functionality, see http://docs.icinga.org/latest/en/int-
mklivestatus.html.

Two scripts were created to showcase the functionality of Livestatus. The first one (Annex C)
connects to the UNIX socket and does a query. One thing to note is that this can be run only on
the same host. The second (Annex D), a bit more complex, queries the tcp socket provided by

8 | P a g e

http://nagios.sourceforge.net/download/contrib/documentation/misc/NEB%202x%20Module%20API.pdf
http://docs.icinga.org/latest/en/int-mklivestatus.html
http://docs.icinga.org/latest/en/int-mklivestatus.html
http://docs.icinga.org/latest/en/int-mklivestatus.html

CERN openlab Summer Student Report 2013

xinetd, and also formats the output. This can be run from anywhere as long as it has connectivity
with the icinga server on the desired port.

3 Splunkstorm

3.1 Overview
Splunkstorm is a paid tool offering log centralization and analysis. It can be used either
with clients only, accessing a web interface hosted by Splunk that shows all gathered
data, or with clients and servers, where the servers and web interface are administered by
customers. The pricing model is based on amount of data per month. Since this is surely
better than not having log centralization and analysis at all, for Splunkstorm we had to
evaluate if the features it provided would be of use, in such a way that it justifies the
amount of money paid for the service.

3.2 Features and advantages
Ease of setup must be named as one of Splunkstorm strongest suits. If running in client
only mode, all that needs to be done is to install the software on a certain machine, and
tell it, either via command line or configuration file to get data from a specific log file or
folder into the application.

Next come the benefits of log centralization:

Having data all in one place and ordered by time of appearance makes it very easy to
visualize and to correlate log events from multiple server, an action that is always needed
when debugging an issue.

Here we can see log events of the same application, PVSS, but from 3 different servers,
namely enice-icinga-s1, enice-icinga-w, enice-icinga-c1.

9 | P a g e

CERN openlab Summer Student Report 2013

The provided search is very powerful, letting you filter log events using complex queries.

Splunkstorm tries to parse log event fields as best as it can. However, custom fields can
be added. By providing some examples of values of a certain field the application
automatically builds a search expression for it, allowing for review before saving. With
this we were able to save the level of severity of each event to a custom field. Having a
field saved adds functionality to search for different values of said field and also

increases performance.

3.3 Installation and integration
Installation and configuration of splunkstorm is easy, it is supported both in *NIX and Windows
systems. Installation and configuration procedure are explained at length here:
http://docs.splunk.com/Documentation/Storm/latest/User/AboutforwardingdatatoStorm

10 | P a g e

http://docs.splunk.com/Documentation/Storm/latest/User/AboutforwardingdatatoStorm

CERN openlab Summer Student Report 2013

4 Conclusions

4.1 Icinga
After understanding all the factors with Icinga it became apparent that the easiest way to replace
the FMC agents by querying raw data from the servers using SNMP protocol, which is natively
supported in WinCC OA applications.

The longer term solution would be to implement Icinga with a custom program that queries
icinga-core using Livestatus. This is still likely to be used, since Icinga provides good features
that can extend the current functionality of the present setup.

4.2 Splunkstorm

Splunkstorm is very likely to be implemented. The costs of operating are high, but by
collecting only the most important and relevant log files the data volume can be kept
reasonable, and as a result keep the price reasonable.

11 | P a g e

CERN openlab Summer Student Report 2013

5 Annexes

5.1 A - Installation of Icinga
https://wiki.icinga.org/display/howtos/Icinga+and+Oracle+Part1+-

 +Installing+Oracle

Install oracle support
yum --enablerepo=slc6-cernonly install oracle-instantclient-basic oracle-
instantclient-devel oracle-instantclient-jdbc oracle-instantclient-odbc oracle-
instantclient-precomp oracle-instantclient-sqlplus oracle-instantclient-
tnsnames.ora cx_Oracle php-oci8 tora

cd /usr/src/
wget
http://downloads.sourceforge.net/project/orclib/OCILIB%20Sources/3.12.1/ocilib-
3.12.1-
gnu.tar.gz?r=http%3A%2F%2Fsourceforge.net%2Fprojects%2Forclib%2Ffiles%2FOCILIB%

 2520Sources%2F3.12.1%2F&ts=1375103363&use_mirror=garr

tar xvfz ocilib-3.12.1-gnu.tar.gz

cd ocilib-3.12.1

#./configure --with-oracle-headers-path=/usr/include/oracle/11.2.0.3.0/client -
-with-oracle-home=/usr/lib64/oracle/11.2.0.3.0/client
make
make install

Install Icinga software

yum install --enablerepo=rpmforge icinga

Relevant config files:
/etc/icinga/*

##On Linux client, install nagios-nrpe-server:

yum --enablerepo=rpmforge install nagios-nrpe

Relevant config files:
/etc/nagios/nrpe.cfg

##On Windows client, install nsclient++

http://www.nsclient.org/nscp/wiki/doc/installation

With NRPE support

Check scripts, on both client and server

yum install --enablerepo=rpmforge nagios-plugins nagios-plugins-ping nagios-
plugins-ssh nagios-plugins-disk nagios-plugins-load nagios-plugins-swap nagios-
plugins-procs nagios-plugins-http nagios-plugins-dummy nagios-plugins-nrpe

Idoutils - used for storing info in a db:
Idomod: Icinga event manager, writes in a unix socket in a language ido2db
understands
Ido2db: Reads from idomod's socket and writes to a specified database(mysql,
psql, oracle supported)

12 | P a g e

https://wiki.icinga.org/display/howtos/Icinga+and+Oracle+Part1+-+Installing+Oracle
https://wiki.icinga.org/display/howtos/Icinga+and+Oracle+Part1+-+Installing+Oracle
http://downloads.sourceforge.net/project/orclib/OCILIB%20Sources/3.12.1/ocilib-3.12.1-gnu.tar.gz?r=http%3A%2F%2Fsourceforge.net%2Fprojects%2Forclib%2Ffiles%2FOCILIB%2520Sources%2F3.12.1%2F&ts=1375103363&use_mirror=garr
http://downloads.sourceforge.net/project/orclib/OCILIB%20Sources/3.12.1/ocilib-3.12.1-gnu.tar.gz?r=http%3A%2F%2Fsourceforge.net%2Fprojects%2Forclib%2Ffiles%2FOCILIB%2520Sources%2F3.12.1%2F&ts=1375103363&use_mirror=garr
http://downloads.sourceforge.net/project/orclib/OCILIB%20Sources/3.12.1/ocilib-3.12.1-gnu.tar.gz?r=http%3A%2F%2Fsourceforge.net%2Fprojects%2Forclib%2Ffiles%2FOCILIB%2520Sources%2F3.12.1%2F&ts=1375103363&use_mirror=garr
http://downloads.sourceforge.net/project/orclib/OCILIB%20Sources/3.12.1/ocilib-3.12.1-gnu.tar.gz?r=http%3A%2F%2Fsourceforge.net%2Fprojects%2Forclib%2Ffiles%2FOCILIB%2520Sources%2F3.12.1%2F&ts=1375103363&use_mirror=garr

CERN openlab Summer Student Report 2013

idoutils from rpmforge repo didn't have oracle compatibility, I had to download
the same all of the icinga package with the same version(1.8.4) and compile
idoutils from that

cd /usr/src/
wget http://downloads.sourceforge.net/project/icinga/icinga/1.8.4/icinga-
1.8.4.tar.gz?r=http%3A%2F%2Fsourceforge.net%2Fprojects%2Ficinga%2Ffiles%2Ficing
a%2F1.8.4%2F&ts=1375103171&use_mirror=switch
tar xvfz icinga-1.8.4.tar.gz
yum install icinga-idoutils-libdbi-mysql.x86_64 --enablerepo=rpmforge
./configure --with-command-group=icinga-cmd --enable-idoutils --enable-oracle
make idoutils
make install-idoutils
/etc/init.d/icinga start
/etc/init.d/ido2db start

Relevant config files:
/etc/icinga/idomod.cfg
/etc/icinga/ido2db.cfg
vim /etc/icinga/modules/idoutils.cfg
/etc/init.d/icinga
/etc/init.d/ido2db

Install livestatus
http://docs.icinga.org/latest/en/int-mklivestatus.html

yum --enablerepo=rpmforge install check-mk-livestatus
/etc/init.d/icinga/restart
chmod 666 /var/spool/icinga/live.sock

Relevant config files:
/etc/icinga/modules/livestatus.cfg

Install xinetd
yum install xinetd
/etc/init.d/xinetd start

Relevant config files:
/etc/xinetd.d/livestatus

13 | P a g e

CERN openlab Summer Student Report 2013

5.2 B – Xinetd livestatus configuration.
service livestatus
{
 type = UNLISTED
 port = 6557
 socket_type = stream
 protocol = tcp
 wait = no
limit to 100 connections per second. Disable 3 secs if above.
 cps = 100 3
set the number of maximum allowed parallel instances of unixcat.
Please make sure that this values is at least as high as
the number of threads defined with num_client_threads in
etc/mk-livestatus/nagios.cfg
 instances = 500
limit the maximum number of simultaneous connections from
one source IP address
 per_source = 250
Disable TCP delay, makes connection more responsive
 flags = NODELAY
 user = nagios
 server = /usr/bin/unixcat
 server_args = /var/lib/nagios/rw/live
configure the IP address(es) of your Nagios server here:
only_from = 127.0.0.1 10.0.20.1 10.0.20.2
 disable = no
}

14 | P a g e

CERN openlab Summer Student Report 2013

5.3 C – sockey.py
#!/usr/bin/python

Sample program for accessing the Livestatus Module
from a python program
import socket

socket_path = "/var/spool/icinga/live.sock"

Create a UNIX socket object.
s = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM)

Conect to livestatus's socket.
s.connect(socket_path)

Write command to socket.
s.send(
 "GET services\n"
 "Columns: host_alias display_name state plugin_output\n"
 "Filter: host_alias != localhost\n"
 "OutputFormat: json\n"
)

Important: Close sending direction. That way
the other side knows we are finished.
s.shutdown(socket.SHUT_WR)

Now read the answer
answer = s.recv(100000000) # this is max buffer size
print answer

15 | P a g e

CERN openlab Summer Student Report 2013

5.4 D – tcp.py

#!/usr/bin/python

Sample program for accessing the Livestatus Module
from a python program
from collections import defaultdict
import simplejson as json
import socket
from prettyprint import pp

host = 'enice-icinga-s'
port = 6557

Create a TCP socket object.
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

Conect to livestatus's socket.
s.connect((host, port))

Write command to socket.
s.send(
 "GET services\n"
 "Columns: host_alias display_name last_check plugin_output state perf_data
process_performance_data\n"
 "Filter: host_alias != localhost\n"
 "OutputFormat: json\n"
)

Important: Close sending direction. That way
the other side knows we are finished.
s.shutdown(socket.SHUT_WR)

Now read the answer.
answer = ''
answer_chunk = True
while answer_chunk:
 answer_chunk = s.recv(4096)
 answer += answer_chunk

Load the data in a dict(hash)
answer_json = json.loads(answer)
answer_ddict = defaultdict(lambda : defaultdict(dict))

Add some meaning and structure to the displayed values.
for row in answer_json:
 answer_ddict[row[0]][row[1]]['last_check'] = row[2]
 answer_ddict[row[0]][row[1]]['plugin_output'] = row[3]
 answer_ddict[row[0]][row[1]]['state'] = row[4]
 answer_ddict[row[0]][row[1]]['perf_data'] = row[5]
 answer_ddict[row[0]][row[1]]['process_performance_data'] = row[6]

Print it nicely.
pp(answer_ddict)

16 | P a g e

CERN openlab Summer Student Report 2013

6 Bibliography
Icinga: http://docs.icinga.org/latest/en/

Event handlers: http://docs.icinga.org/latest/en/eventhandlers.html

Performance data: http://docs.icinga.org/latest/en/perfdata.html

Idoutils: http://docs.icinga.org/latest/en/db_components.html

Livestatus: http://mathias-kettner.de/checkmk_livestatus.html

Oracle tablespace: https://wiki.icinga.org/display/howtos/Icinga+and+Oracle+Part3+-
+Configuration#IcingaandOraclePart3-Configuration-createtablespacesanduser

Splunkstorm: http://docs.splunk.com/Documentation

17 | P a g e

http://docs.icinga.org/latest/en/
http://docs.icinga.org/latest/en/eventhandlers.html
http://docs.icinga.org/latest/en/perfdata.html
http://docs.icinga.org/latest/en/db_components.html
http://mathias-kettner.de/checkmk_livestatus.html
https://wiki.icinga.org/display/howtos/Icinga+and+Oracle+Part3+-+Configuration%23IcingaandOraclePart3-Configuration-createtablespacesanduser
https://wiki.icinga.org/display/howtos/Icinga+and+Oracle+Part3+-+Configuration%23IcingaandOraclePart3-Configuration-createtablespacesanduser
http://docs.splunk.com/Documentation

	Evaluation of standard monitoring tools(including log analysis) for control systems at Cern
	August 2013
	Author:
	Vlad Vintila
	Supervisor(s):
	Fernando Varela Rodriguez
	CERN openlab Summer Student Report 2013

	Project Specification
	Table of Contents
	1 Introduction
	2 Icinga
	2.1 Overview
	2.2 Features and advantages
	2.3 Installation
	2.4 Integration

	3 Splunkstorm
	3.1 Overview
	3.2 Features and advantages
	3.3 Installation and integration

	4 Conclusions
	4.1 Icinga
	4.2 Splunkstorm

	5 Annexes
	5.1 A - Installation of Icinga
	5.2 B – Xinetd livestatus configuration.
	5.3 C – sockey.py
	5.4 D – tcp.py

	6 Bibliography

