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ABSTRACT
The paper describes the simulation environment for the autonomous
battery management system for drones called Droneport. First, the
problem of battery management is briefly described, and specific
experimental and commercial solutions are listed. Then the concept
of the proposed Droneport system is described. The next section is
fully dedicated to the description of the individual components of
the simulation: simulation of the drone, Droneport, the outer envi-
ronment, and the traffic controller. The function of the individual
components is illustrated by the example of two drones performing
a predefined mission.

CCS CONCEPTS
•Computer systems organization→Robotics; •Applied com-
puting→Transportation; •Computingmethodologies→Real-
time simulation.
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1 INTRODUCTION
In many drone applications, it is advantageous and sometimes
necessary to operate several drones at once for long periods of
time [5, 8]. This can be challenging as the number of drones grows,
but also risky from the standpoint of safety and costly with respect
to the number of human operators.

After robust control, the most important element for ensuring
the drone stays airborne is the power-supply. In most applications,
the drone cannot be physically connected to the ground for constant
power replenishment due to, for example, the consequent limitation
of operational area and the increase in weight of the whole system
due to the weight of the distribution system. Therefore, the drone
must carry its own power source. However, with a power source
that has great capacity, the overall weight of the system increases,
which leads to an increase in power consumption. The vast majority
of drones are powered by electricity from lithium polymer (LiPo)
batteries. These batteries typically allow a maximum flight time in
the lower tens of minutes.

One option to keep the drone operational is to recharge the bat-
tery, which can be done automatically without human involvement
[5, 11]. However, that solution requires the drone to remain on
the ground for long periods of time and results in blocking the
charging station for other drones. Hence it is suitable for single
drone systems where the drone does not need to be in the air most
of the time but is flying at given intervals. Another solution is to
leave the battery replacement to a human operator, who can also
operate the charging station. However, this is not the most suitable
as drones are mostly employed to increase safety while reducing
costs.

A more convenient option is to replace the battery with an auto-
matic station. There are several experimental [6, 10] but nowadays
also commercial solutions [1]. Experimental systems are tightly
coupled to a particular type of drone or battery. Commercial drone-
in-box systems vary greatly in parameters and support for different
drones (most commonly the DJI Mavic 2). They focus on safety,
autonomy, and ease of user accessibility. A few systems even sup-
port battery swapping. Our proposed system called Droneport (DP)
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was introduced in [2]. It can operate various drones with Vertical
Take-Off and Landing (VTOL) ability. It is capable of swapping
batteries of different sizes and shapes. Unlike the above-mentioned
commercial systems, DP will be open-source with published source
code for the traffic controller, MAVLink API description, etc.

In addition, DP will adaptively rally drones for battery swap-
ping according to their status and mission progress. Thus, it does
not need to control the drone’s mission directly but only monitor
progress, initiate a battery replacement event based on the current
state, and afterward return the drone to its original mission.

The article is structured as follows. The next section briefly
introduces the DP system and all its components. The next section
describes the DP with respect to simulating the entire system in a
virtual environment. Finally, the future development of the system
is outlined.

2 CONCEPT
This section will briefly describe the concept of the DP system,
which was introduced in more detail in [2]. The system is developed
in cooperation between the University of West Bohemia and the
company SmartMotion s.r.o. and it consists of both software and
hardware components.

The backbone component of the entire system is the Droneport
which is a landing port equipped with a smart battery charger and
a manipulator that removes the drone’s battery, places it in the
charger, and then inserts another charged battery into the drone.
The DP is also equipped with an ArUco marker, which is used as
a landing marker. Another HW component is the computer that
communicates with the drones, tasks the exchange platform, and
runs Droneport Traffic Control (DPTC). The drones themselves are
required to communicate using the MAVLink protocol [4] and be
equipped with a down-facing camera to guarantee a precise landing
on the device.

Software components include DPTC and a precision landing
control system. The DPTC evaluates data about the drones and
the battery charging system to make decisions about scheduling
battery swaps. The precision landing control system processes the
camera image to detect the ArUco marker and then estimates the
position and orientation of the drone relative to the platform, with
subsequent calculation of adequate control commands. The simula-
tion of the DP system, which will be presented in more detail in the
following section, is a component that is especially crucial for test-
ing and debugging other software components, testing the physical
parameters of the system, and guaranteeing smooth operation of
the entire project.

3 SIMULATION
In the first part of this section, the whole simulation, including com-
munication between individual building blocks, will be described.
Then the description will be focused on each building block sepa-
rately.

The whole project uses REXYGEN as amain real-time control sys-
tem. It is based on the programming without hand-coding using the
libraries of the functional blocks, which are predefined for certain
uses, or there is an opportunity to use some special blocks which the
user can code by himself. REXYGEN provides the whole package

of software needed for automation. First, there is a multi-platform
run-time core of the whole system – RexCore –, the algorithms are
configured via REXYGEN Studio and compiled for real-time usage
using RexComp. The bundle contains HMI Designer, which is used
for the configuration of the web-based human-machine interface.

The next part of our prototype is the control system for our
drones, the open-source flight software PX4 is used for drones
and other unmanned vehicles. The main benefit, in addition to
open-source license, is an active community and lots of industrial
applications. Thus, the PX4 is very reliable and also easy to use,
even for very specific applications. PX4 uses MAVLink protocol for
communication with other devices, so it is very easy to use, such as
Raspberry Pi or UpBoard with REXYGEN installed. With this setup,
we are able to command a drone with more advanced tasks like
autonomous inspection or traffic control for swapping batteries.
PX4 includes a Software-in-the-loop (SITL) simulator, which is one
of the key components for the simulation.

For environment simulation purposes, we use GAZEBO, which
is the entire solution for robot simulation. It consists of features
like dynamic simulation, 3D graphics, sensors, and noises, custom
plugins for specific applications, predefined robot models, TCP/IP
transport, and also cloud simulations. We use it mainly for rapid
prototyping our control algorithm and ensuring that everything
works as expected. When you deal with unmanned aerial vehicles,
there is a huge, dangerous potential, so simulations are necessary.
Gazebo library also consists of plugins for PX4 systems, which are
essential for our work.

3.1 Drone

Figure 1: Drone simulation

The system was designed to work with drones that can commu-
nicate over the MAVLink interface. Usually, the flight controller
is based on the PX4 or ArduPilot. The drone must be able to land
very precisely. Thus standard GPS is not sufficient. The drone must
be equipped with a small camera and software which is able to de-
tect ArUco based markers to improve navigation accuracy during
landing.

Our drone uses a combination of flight controller PX4 and com-
panion computer (Aaegon UpBoard) with REXYGEN. The compan-
ion computer processes the image from the camera using OpenCV
algorithms. There is a Python-based service with the MAVLink
interface that periodically sends the position of ArUco markers
seen in the scene. Such a message is processed in the companion
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computer using REXYGEN. Then the flight controller of the drone
is commanded via Offboard mode for precise landing.

The simulation of the drone uses environment simulation in
Gazebo (see section 3.3), SITL of the PX4 project, and one RexCore
process as a simulation of the companion computer.

On top of the standard PX4 SITL, there is a small component
that simulates the battery. This subsystem is injected between the
traffic controller and PX4 simulation in the REXYGEN instance.

The drone simulator listens on predefined UDP port. The com-
munication is routed via the MAVLink router, which is a part of the
REXYGEN system. The messages are either routed directly to the
PX4 instance via an additional UDP (in simulation mode) or serial
line (in real device) connection. In the simulation, the messages
regarding the battery status from PX4 are filtered, and new sim-
ulated messages are created in the REXYGEN subsystem. We can
achieve battery discharge simulation which is not done properly in
the PX4.

The remaining parts of the drone simulation use only PX4 SITL
with no changes.

3.2 Droneport simulation
The current version of the Droneport simulation is focused on
communication interface definition, support of the drone landing
algorithms development, designing of the high-level controller.

Real DP will contain a standalone battery charger (we assume
SKY RC Q200) which is capable of charging four batteries at once.
Thus the simulator is able to mock the SKY RC API with the simple
simulation of the charging and discharging process of the Li-pol
batteries. In Figure 2, the SW control block of the battery holder.
Each holder can contain one battery. If the holder is connected to
the charging station, it manages the connected battery. So when the
robotic manipulator inserts the battery into the holder, the charging
process starts automatically.

Figure 2: Battery holder subsystem interface

The DP simulator also includes the interface with the drone
and traffic controller. DP can receive commands over the MAVLink
network, and it also broadcast its state. Thus the 3D model in the
environmental simulation can be adjusted accordingly in real-time.

3.3 Environment simulation
The next step in the simulation is to prepare a simulation environ-
ment capable of 3D visualization and physics simulation. There
is multiple software that can be used for this task. For example,
the AirSim [7] simulator developed by Microsoft or Flightmare [9]
simulator can be mentioned. The third option that we used in this

particular case is Gazebo [3], a well-known simulator in the robotic
community. One of the reasons that we have chosen Gazebo is the
PX4-SITL_gazebo1 plugin suite which is supposed to enable PX4
drone simulation in Gazebo.

Thus, it is possible to simulate drones such as the Iris drone in
Gazebo with the PX4 controller. Besides the drone, the goal was to
develop a simulation of the Droneport device. In order to fulfill this
goal, several steps had to be addressed. The development of the DP
simulation model was the first one. Models in Gazebo are created
using Simulation Description Format2 (SDF), which is based on
Extensible Markup Language (XML). In Figure 3, there is the most
recent version of the Droneport simulation model in its closed state.

Figure 3: Droneport simulation model - closed state

In the closed state, it can be used as a landing port for the drone,
but it cannot change batteries. On the other hand, this can be done
when the Droneport is open. It is shown in Figure 4.

Figure 4: Droneport simulation model - open state

Besides the simulation model, it was necessary to develop a plu-
gin for communication with other parts of the simulation, such as
the PX4 controller, and for visualization of the battery charging pro-
cess. The plugin is called gazebo_Droneport_plugin. It is based on
MAVLink interface plugin from the PX4-SITL_gazebo plugin suite.
The plugin contains MAVLink based communication over both the
UTP and TCP protocols – the only one that should be selected
for the simulation. In particular, it receives information about the
state of the batteries plugged into the Droneport, from the battery
simulator described above, in a message called BATTERY_STATUS.
1https://github.com/PX4/PX4-SITL_gazebo
2http://sdformat.org/spec
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Simultaneously, it provides its own GPS coordinates using a
MAVLink message called HIL_GPS back to the simulation network.
It enables the possibility of working in the same GPS coordinates
in both the Gazebo and the QGround Control software used for
planning drones missions. Mission planning and traffic control will
be described in detail in the next section of this paper.

3.4 Droneport Traffic Control

Figure 5: Simulation of two drones with traffic controller

If Droneport is the backbone of thewhole system, thenDroneport
Traffic Control is the brain. In the current version, DPTC monitors
the status of the drones and withdraws them to the Droneport as
needed when the battery State-of-Charge (SoC) is low. DPTC was
tested in a simulated scenario with two drones, where each drone
is assigned to its own Droneport. Two different missions were de-
signed for testing in the simulation, in which the park and adjacent
buildings are monitored. Thanks to this simplification, there is no
need to schedule battery swaps yet to avoid collisions. In standard
mode, the drone flies a predefined cyclic mission. At SoC 10% the
drone is withdrawn to DP to change the battery and then continues
the mission from the last waypoint. A simplified state diagram of
the drone is shown in Figure 6.

DPTC is implemented in Python and utilizes the pymavlink3
library to communicate with drones and the platform. For test-
ing, a simple console user interface was designed using the Urwid
library4.

The monitoring of the whole simulation is depicted in Figure 7,
which shows QGroundControl (QGC) as a standard control cen-
ter (that could be used on the client-side), the simulation of the
physical devices in Gazebo, and the previously mentioned DPTC
interface. In Figure 8, you can see the two drones, Droneports, the
area under consideration, the specified missions, and other standard
information provided by QGC.
3https://github.com/ArduPilot/pymavlink
4http://urwid.org/

Figure 6: Simplified chart of drone states

Figure 7: Running simulation

drone 2drone 1

Droneports

battery status

Figure 8: View from QGroundControl
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drone ID

status

commands

output

Figure 9: User Interface of Traffic Controller

The console user interface contains information and commands
for both drones, and it is easily adaptable for more drones. Figure 9
shows the part that relates to the first drone. The header indicates
the drone ID. Below that is the status, which consists of heart-
beat information, whether the drone is armed or disarmed, battery
SoC, mission progress, and finally, a number and description of
the drone’s status. Drone commands are also included. You can
navigate between commands by using the arrow keys and selecting
the command by pressing the Enter key. It is possible to specify the
name of a mission file, which can then be uploaded to the drone but
also saved from the drone to the file, delete the mission from the
drone, and also start the mission from the first waypoint. There are
also commands to reset the drone’s battery, which will instantly
change the SoC to 100%, and to reset the drone’s state machine
to wait for the first heartbeat. Finally, the output is shown with
previous drone states and the confirmation of the last command,
e.g., start mission from waypoint 0.

The SoC indication of DP’s batteries is made directly in Gazebo
(see Figure 10, where green corresponds to a fully charged battery
and red to a fully discharged battery. The simulation also indicates
in which slot the battery is located. Figure 10a shows the drone
landing with a discharged battery, and it can be seen that the batter-
ies in all slots of the DP are green, i.e., fully charged. In Figure 10b,
the drone is taking off with the battery already replaced. One slot of
Droneport with a charged battery has been freed, and a previously
empty one has been fitted with the battery, which is now being
recharged.

4 CONCLUSION
The paper described the Droneport systemwith an emphasis on sim-
ulation. First, the concept of the whole system was outlined. Next,
the key components of the simulation were described. The drone
was described with its upboard computer, extensions compared
to the standard PX4 equipped machine, and the role of REXYGEN
as the main real-time control system was presented. Then, a real
Droneport with the considered charger and a simulation of the
Droneport as an interface were briefly described. Next, the simu-
lation environment created in Gazebo was described with all its
main features, such as communication or battery status visualiza-
tion. Finally, the current version of traffic control was described,

(a) Drone landing on the Droneport with discharged battery

(b) Drone taking off from Droneport with the fully charged
battery

Figure 10: Indication of battery State-of-Charge on
Droneport in simulation

and a simple example of a simulation with two drones and two
Droneports was given.

The described simulation will allow easier testing and devel-
opment of the real-world system. Future work on the Droneport
system will include completing and describing the hardware com-
ponents and extending the traffic control with a time-scheduler for
optimal utilization of the entire system.
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