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Abstract—The design of Open Radio Access Network (O-RAN)
compliant systems for configuring the virtualized Base Stations
(vBSs) is of paramount importance for network operators.
This task is challenging since optimizing the vBS scheduling
procedure requires knowledge of parameters, which are erratic
and demanding to obtain in advance. In this paper, we propose
an online learning algorithm for balancing the performance
and energy consumption of a vBS. This algorithm provides
performance guarantees under unforeseeable conditions, such
as non-stationary traffic and network state, and is oblivious to
the vBS operation profile. We study the problem in its most
general form and we prove that the proposed technique achieves
sub-linear regret (i.e., zero average optimality gap) even in a
fast-changing environment. By using real-world data and various
trace-driven evaluations, our findings indicate savings of up to
74.3% in the power consumption of a vBS in comparison with
state-of-the-art benchmarks.

Index Terms—O-RAN, Online Learning, Scheduling, Network
Optimization, Green Mobile Networks, Virtualization

I. INTRODUCTION

A. Background & Motivation

The importance of virtualizing the base stations is best
manifested by the current flurry of industrial activities aiming
to develop and standardize O-RAN architectures [1]. The
O-RAN Alliance is a global initiative that is devoted to
revolutionizing Radio Access Networks (RAN). Its goal is
to decentralize a field that has hitherto been dominated by
a small number of companies and decrease the entry barrier
for more potential firms. In this sophisticated system, RANs
are constructed on virtualized network modules, resulting in
virtualized Radio Access Networks. The focal point of these
components are the virtualized Base Stations, which can be
henceforward hosted on various devices, such as commodity
servers or tiny embedded devices, and offer the possibility of
significant operational/capital expenditure (OPEX/CAPEX) re-
ductions. Promising examples include the open-source srsLTE
[2] and OpenAirInterface (OAI) [3].

Indeed, there is a wide consensus that the vBS’ programma-
bility can bring crucial performance gains and add the much-
needed versatility to the otherwise-rigid, RAN systems. Alas,
these benefits come at a cost. These softwarized base stations
are found to have less predictable performance and more
volatile energy consumption [4], [5], [6], an effect that is am-
plified when instantiating them in general-purpose computing
infrastructure. Hence, it is imperative to understand how to
operate, or schedule, these vBSs in order to unblock their wide

adoption without raising the energy costs of mobile networks
to unsustainable levels.

First works aiming at this direction focus, and rightfully
so, on learning vBS meta-policies (details below). These rules
are decided at non-real-time scale and then imposed on the
real-time schedulers of each vBS. O-RAN proposals have
provisions for such two-level scheduling [7], [8]; and include
recommendations for employing learning tools to increase,
e.g., the long-term throughput. Nevertheless, to bridge the
gap between theoretical proposals and practical results, it is
necessary to learn effective policies without relying on strong
(and often unrealistic) assumptions such as knowing the full
vBS operation profile, the expected data traffic, or future
channel conditions. Otherwise, it is likely to be trapped in
highly-suboptimal vBS operation points; a finding that we
quantify here in terms of excess (i.e., unnecessary) energy
costs that can add up to 74% (details in Sec. IV).

The goal of this work is to take the next step in this crucial
problem by proposing and evaluating a robust algorithm that
identifies effective meta-policies (or, simply policies hereafter)
and is oblivious to information about the underlying vBS
operation, their hosting platforms, network conditions and
data traffic (or, user needs). The core idea is to model the
vBS scheduling as a bandit learning problem [9] and design
an algorithm that has provably-optimal performance under
extensive conditions. The optimality criterion we employ is a
combined objective of effective throughput (i.e., modulated by
the users’ traffic) and energy consumption, where the latter can
be prioritized via a tunable weight parameter. Moreover, unlike
prior works, our algorithm is lightweight and has minimal
overheads, hence can be easily implemented in practice.

B. Related Work

The idea of optimizing resource management in softwarized
networks is not new, and prior works have focused mainly on
(i) models that relate control knobs to performance functions,
(ii) model-free approaches that rely on training data, and
(iii) Reinforcement Learning (RL) techniques. Model-based
examples include [4] and [10], which maximize the served
traffic subject to vBS computing capacity. However, vBS op-
eration is heavily affected by the hosting platform and network
conditions [5], which renders such models impractical. Model-
free approaches employ, e.g., Neural Networks, to approximate
the performance functions of interest [11], and have been used
for network slicing [12], edge computing [13], etc. Yet, their
efficacy is conditioned on the availability of training data.978-1-6654-3540-6/22$31.00 © 2022 European Union
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Another prominent approach focuses on runtime observations
and is known as Reinforcement Learning. It is used, for
example, in interference management [14] and the deployment
of Software-Defined Networking (SDN) controllers [15]. RL
solutions, however, suffer from the curse of dimensionality and
do not offer performance guarantees.

Following an akin approach, contextual bandit algorithms
have been employed to decide video streaming rates [16] or
BS handover thresholds [17]; assign Central Processing Unit
(CPU) time to virtualized BSs [18]; and control millimeter
Wave (mmWave) networks [19]. These works require context-
related information (e.g., about network conditions and traffic),
which shapes the performance functions, to be known before
the system is configured. More recently, versatile Bayesian
learning techniques have been proposed for configuring vBSs
[6] —which is closer to the current work. Despite their
promise, these solutions require knowing the context, as
well as all system perturbations to be stationary over time.
Nonetheless, these assumptions are restrictive, especially for
heterogeneous and small-cell networks.

To overcome these obstacles, we follow a fundamentally
different path and design a vBS control scheme that builds
upon the seminal Exp3 algorithm [20]. Unlike all prior works,
our approach: (i) offers robust performance guarantees; (ii)
handles any type of network and load variations (even adver-
sarial); (iii) is oblivious to the (time-varying and unknown)
vBS performance functions; and (iv) exhibits low imple-
mentation complexity in terms of memory and computation
requirements. This latter feature is in stark contrast with RL
techniques (sizeable memory space required to store all space-
actions combinations) and Bayesian approaches [21] (heavy-
duty matrix inversions). The proposed policy belongs to the
class of adversarial bandit learning, cf. [9], which has been
successfully used in network routing [22] and power control
in Internet of Things (IoT) networks [23].

C. Contributions

We design a learning algorithm that decides thresholds for
key vBS operation knobs, namely for the vBS transmission
power, the eligible Modulation and Coding Scheme (MCS),
and the duty cycle (or airtime). The policy is updated at a near-
real-time scale and is subsequently fed to the real-time sched-
ulers that fine-tune the vBS parameters, see Fig. 1. This type of
meta-learning, i.e., deciding policies instead of fixing the vBS
values directly, is central in the O-RAN architecture and has
been recently proposed and studied experimentally, e.g., see
[6], [18] and references therein. The proposed algorithm relies
on bandit feedback and makes no assumptions about how these
knobs affect the vBS performance, nor assumes knowledge of
the users’ traffic during each scheduling period. This renders
it practical for different types of vBS, hosting platforms,
and network/traffic conditions. The main contributions of this
paper are summarized below:

• We study the vBS scheduling problem in its most general
form, i.e., in non-stationary adversarial conditions and with-
out knowledge of traffic and vBS operation functions.

• We design an algorithm that achieves sublinear regret w.r.t.
the (unknown) best vBS configuration and has minimal
computation and memory overhead. This is the first work
applying adversarial bandit learning to vBS control.

• We use real-world traffic traces and testbed measurements
to demonstrate the weaknesses of prior works [6], as well
as the efficacy of the proposed learning algorithm.

• We release the source code1 of our implementation online,
under a permissive free software license, along with detailed
documentation.
Paper Organization. The rest of this paper is organized

as follows. Sec. II discusses the model and formally states
the problem. Sec. III introduces the bandit learning algorithm
and Sec. IV presents its data/trace-driven evaluation. Sec. V
concludes our study.

II. SYSTEM MODEL AND PROBLEM STATEMENT

O-RAN Background. Our model follows the O-RAN pro-
posals [1], [7], [8], which have provisions for learning-based
resource management. “Opening” the RAN is a significant
initiative that aims to expand the vRAN ecosystem. It en-
ables multiple vendors to design components of the network
architecture, which was previously monopolized by a confined
number of large industries that provided end-to-end solutions.
We consider a virtualized Base Station comprising a Baseband
Unit (BBU) hosted by an off-the-shelf platform and being
attached to a Radio Unit (RU). BBU corresponds to a Long-
Term Evolution (LTE) eNodeB (eNB) for a 4G network and
to a New Radio (NR) gNodeB (gNB) for a 5G network. For
the latter, gNB is disaggregated into three focal components:
(i) the RU, (ii) the DU, and (iii) the CU.2 The architecture of
the implemented system can be seen in Fig. 1.

Our goal is to design performance/energy-optimizing con-
figuration policies that adapt to network conditions and user
needs. We assume that an rApp (Policy Decider - PD), see
Fig. 1, is instantiated at the Non-RT RIC and implements
an algorithm that learns to select efficient radio policies.
These are essentially adaptive threshold rules which guide
the underlying real-time schedulers towards the desirable vBS
operation. The policy is communicated via the R1 interface
to the Non-RT framework, and from there, it is provided to
the Near-RT RIC via the A1 interface. In the Near-RT RIC,
an xApp (Policy Enforcer - PE) forwards the radio policy to
the E2 nodes3 through the E2 interface. The optimal policy
depends on the network conditions and users’ load, both
of which may vary arbitrarily across time and are typically
unknown when the policy is decided. At the end of each
decision period t, the Near-RT RIC’s Data Monitor computes
a reward by aggregating the adopted performance and energy
cost metrics received via the E2 and feeds them to the PD
through the O1 interface, before the next decision round.

1https://github.com/MikeKalnt/BSvBS
2In the O-RAN ecosystem, the terms O-CU, O-DU, O-RU, and O-eNB are

used to denote the CU, DU, RU, and eNB, respectively.
3E2 nodes refer to RAN nodes, such as an O-CU, an O-DU, or an O-eNB.

https://github.com/MikeKalnt/BSvBS


Fig. 1. O-RAN-compliant architecture & workflow. The key building block
is the Non-Real-Time (Non-RT) RAN Intelligent Controller (RIC), hosted by
the Service Management and Orchestration (SMO) framework; and the Near-
Real-Time (Near-RT) RAN Intelligent Controller (RIC) [8]. The system has
three control loops: (i) Non-RT in the Non-RT RIC, which involves large-
timescale operations with execution time>1sec, (ii) Near-RT in the Near-RT
RIC (> 10msec), and (iii) RT (Real-Time) control loops in the E2 nodes
(<10msec).

vBS Controls. We consider time-slotted system operation
in alignment with O-RAN specs, where each slot represents a
period (range of a few seconds) over which a certain policy is
being applied. We optimize the system operation over a time
horizon of t = 1, . . . , T slots, where T can take arbitrarily
large values and is decided in advance.4 Without loss of
generality (WLOG), we assume unitary slot length.

Our policy includes thresholds for specific scheduling con-
trols that are key to vBS performance, in line with recent
measurement-based studies [6], [5], [18]. In detail, for the
downlink (DL) operation, we define the set of maximum al-
lowed vBS transmission power control (TPC) Pd = {pdi , ∀i ∈
[H]}, the set of highest eligible MCS Md = {md

i , ∀i ∈ [I]}
and the set of maximum vBS transmission airtime, or duty
cycle Ad = {adi , ∀i ∈ [J ]}, where H , I , and J denote the
number of transmission power, MCS, and airtime levels in DL,
respectively. Hence, in period t, we determine the DL control:

xdt ∈ Pd ×Md ×Ad.

For the uplink (UL) operation, we introduce the set Mu =
{mu

i , ∀i ∈ [K]} and Au = {aui , ∀i ∈ [L]}, where K and
L express the number of MCS and airtime levels in UL,
respectively.5 Thus, the UL control in period t is:

xut ∈Mu×Au.

4The assumption of fixing T can be dropped by employing the doubling
trick or time-adaptive learning parameters; details in next section.

5A UL TPC policy is not defined since the users’ transmission power has
less impact on the vBS power than the MCS and UL airtime.

Following 3GPP specs, we assume these controls take val-
ues from a finite set that includes all possible combinations:6

X = Pd×Md×Ad×Mu×Au.

Thus, the radio policy in period t is specified as:

xt = (xdt , x
u
t ) ∈ X .

Rewards & Costs. The first goal of the learner is to
maximize the effective DL and UL throughput, which depends
on the aggregate of the transmitted data and the backlog in
each direction. In particular, in line with prior works (see [6]
and references therein), we use the following utility function:

Ut(xt) = log

(
1+

Rdt (x
d
t )

ddt

)
+ log

(
1+

Rut (xut )

dut

)
, (1)

when ddt > 0 and dut > 0, with Ut(xt) = 0 otherwise. Rdt (·)
and Rut (·) denote the DL and UL transmitted data during
period t; and ddt and dut are the respective backlogs (i.e., the
user needs/requests during t). The logarithmic transformation
balances the system utility across each stream, but we note
that other mappings (e.g., linear) are eligible.

The second goal of the policy is to minimize the vBS
energy cost. To that end, we introduce the power cost function
Pt(xt), which depends on the configuration xt in an unknown
and possibly time-varying fashion. We kindly refer the reader
to our experimental study [5] regarding the challenges in
modeling the vBS power cost. We focus principally on (i)
the power consumption of the CPU at a vBS, which has the
lion’s share of the total power consumed at the BBU [5]; and
(ii) the total vBS power consumption (including the RU). We
consider these distinct cases to capture the scenarios (arising
in practice) where the DU (hosting the BBU) and RU have, or
do not have, a common power source. Therefore, we model
Pt(·) as a black-box with values observed in runtime.

Putting the above together, the performance criterion for the
PD is the reward function f̃t : X → R defined as:

f̃t(xt) = Ut(xt)− δPt(xt), (2)

where the parameter δ>0 is set by the PD to tune the relative
priority of the utilities and energy costs. It also serves as a
metric transformation, allowing a meaningful scalarization of
the function components. Further to that, we introduce, for
technical reasons, the scaled reward function ft : X → [0, 1]
since our learning algorithm operates on that interval. An easy-
to-implement mapping that ensures this normalization is:

ft(xt) =
(
f̃t(xt)− f̃min

)
/
(
f̃max − f̃min

)
. (3)

The scaling parameters f̃min and f̃max can be directly de-
termined beforehand based on the value of δ (depending on
the importance given to each component of the function), the
minimum/maximum value of the power cost function (might
be the minimum and maximum value of the monetary cost
associated with the vBS operation), the minimum/maximum

6For instance, the MCS values are predetermined, and similarly, one can
quantize the power and airtime values; see, e.g. [2] for the srsLTE vBS.



transmission power of the vBS, airtime, MCS and user loads.
The bounded reward assumption comes WLOG.

Environment & System Volatility. It is crucial to note that
both reward components vary with time. There are several
factors contributing to this effect. First, the user traffic that
shapes Ut changes, sometimes drastically —e.g., in small
cell networks where user churn is high. Second, the net-
work conditions might as well vary (in slow, fast, or mixed
timescales), and this affects the achieved data transmissions
(hence Ut changes even for fixed xt) but also impacts the
energy cost Pt (low Signal-to-Noise Ratio (SNR) induces more
BBU processing costs [5]). Third, the operation cost of the
vBS hosting platform is subject to the variations of external
computing loads (e.g., when co-hosting other services or other
vBS/DUs), changes in the monetary cost (or availability) of the
energy price, and so on. Importantly, all the above factors are
unknown at the beginning of each scheduling period t. Indeed,
it is challenging to predict the user loads, energy availability,
channel conditions, etc., over a few seconds. This, in turn,
means that often in practice, when we decide xt in each slot,
we do not have access to the function ft.

Learning Objective. The goal of the PD is to find a
sequence of configurations {xt}Tt=1 that aggregate rewards so
as to approach, asymptotically, the cumulative reward achieved
by the single best (ideal) configuration. Formally, we employ
the metric of static expected regret:

RT = max
x∈X

{
T∑
t=1

ft(x)

}
− E

[
T∑
t=1

ft(xt)

]
, (4)

where the first term describes the best configuration that can
be only selected with hindsight, i.e., with a priori knowledge
of all future reward functions until T ; and the second term
measures the achieved cumulative reward by our policy. Note
that the expectation is induced by any possible randomization
in the selection of {xt} that is introduced by the PD.

Eventually, our objective is to devise a rule that decides
the configurations in such a way that the average regret,7

for any possible realization of rewards {ft}Tt=1, diminishes
asymptotically to zero, i.e., limT→∞RT /T = 0. Furthermore,
we wish to ensure this condition without knowing the sequence
of rewards, not even having access to ft at the time xt is
being decided. This makes our policy applicable to a range
of practical scenarios, such as in highly volatile wireless
environments, locations with high user churn, or small-cells
where user demands are non-stationary [24].

III. BANDIT LEARNING ALGORITHM

Our PD builds on the seminal Exp3 algorithm [20] that
imposes no assumptions on the sequence of rewards {ft}Tt=1.
This, in turn, means that the obtained performance bounds
are guaranteed to hold independently of how the network
and environmental factors vary and/or affect the rewards and

7Due to the exploration phase of the algorithm proposed, it might happen
that Rt+1 > Rt because the algorithm in slot t+1 explored a configuration
that was under-performing compared to the configuration chosen in slot t.
However, the average regret could still diminish to zero as time evolves. More
information is available in Sec. III.

costs. Hence, unlike prior works such as [6] and [18], the
achieved performance is robust and valid for non-stationary
conditions. Besides, as we demonstrate in Sec. IV, the actual
performance is often substantially higher than these worst-case
bounds. Another prominent feature of our algorithm is that it
works with bandit feedback, i.e., it is adequate to observe the
outcome ft(xt) of the employed configuration xt —instead of
the entire ft(·), which remains unknown.8

In detail, the underlying idea is that we learn, on the
fly, the correct probability distribution yt (the sequence of
distributions) from which we can draw the configuration xt
for each period t:

xt ∼ P(xt = x′) = yt(x
′),∀x′ ∈ X .

The distributions {yt}t belong to the probability simplex:

Y =

{
y ∈ [0, 1]|X |

∣∣∣∣ ∑
x∈X

y(x) = 1

}
,

and are calculated in each round using the following carefully-
crafted explore/exploit rule:

yt(x) =
γ

|X |
+ (1− γ)

wt(x)∑
x wt(x)

, ∀x ∈ X . (5)

Parameter γ ∈ [0, 1] determines the extent to which the PD
samples a configuration randomly (exploration), or prioritizes
those configurations found to perform well (exploitation). The
latter happens with the help of the weight vector wt=

(
wt(x) :

x= 1, . . . , |X |
)

that tracks the success of each tested policy.
In particular, we update the weights at the end of each period,
using the exponential update:

wt+1(x) = wt(x) exp

(
γΦt(x)

|X |

)
, ∀x ∈ X , (6)

where Φt(x) is an unbiased function estimator defined as:

Φt(x) =

{
ft(xt)/yt(xt), if x = xt,

0, otherwise.
(7)

We recall that xt is the selected configuration in slot t. If the
estimator Φt(x) is used to estimate the actual reward ft(xt),
it is straightforward to see that:

E[Φt(x)|x1, x2, . . . , xt−1] = ft(xt),

where x1, . . . , xt−1 are the configurations chosen up to t− 1.
By weighting each observed value with its selection probabil-
ity, we ensure that the PD will eventually explore configura-
tions with a small probability.

The steps of the proposed learning scheme are summarized
in Algorithm 1, which takes as input the time horizon T over
which we optimize the vBS operation and the number of eli-
gible configurations |X |; this information suffices to optimize
the value of the exploration parameter γ. The performance of
the algorithm is summarized in the following lemma, which
holds for any possible sequence of functions {ft}Tt=1:

8Clearly, when applying xt we observe ft(xt) but do not learn how the
system would have performed for any other configuration x∈X , with x 6=xt.



Algorithm 1: Bandit Scheduling for vBS (BSvBS)
1 Input: Horizon T ; Configurations |X |;

2 Initialize: γ = min

{
1,

√
|X | ln |X |
(e− 1)T

}
;

w1(x)← 1, ∀x ∈ X .
3 for t = 1, 2, . . . , T do
4 Update the distribution using (5).
5 Sample next configuration: xt ∼ yt.
6 Receive & scale reward ft(xt).
7 Calculate weighted feedback using (7).
8 Update the weights using (6).

end

Lemma 1. Algorithm 1 for a fixed horizon T ensures expected
regret defined in (4):

RT ≤ 2
√

(e− 1)
√
T |X | ln |X | (8)

Proof. The proof follows by tailoring the main result of [20].
We provide a brief but sufficient explanation. In particular,
for selecting γ, we need to determine an upper bound g on
the cumulative reward of the best configuration until T . Given
that: (i) the horizon T is known in advance; and (ii) the rewards
ft(xt) for each chosen configuration xt at time t cannot be
greater than 1 (due to the proposed normalization described
in Sec. II), the value of g can be set equal to T , i.e., g=T .
Also, the number of bandit arms in our case corresponds to
the eligible configurations; hence it is equal to |X |.

We notice that the expected regret is indeed sublinear
RT = o(T ), which ensures that its time average diminishes
to zero. Hence, Algorithm 1 is guaranteed to achieve the
same performance as the (unknown) single best configuration,
without imposing any conditions on the system operation,
network conditions, or user demands. This robust behavior
fills the gap of recent related works [18], [6]. Moreover, we
highlight that the regret depends on the number of possible
meta-policies up to a square root factor. And while their
number is expected to be smaller than the number of policies
applied to the RT O-RAN level, this finding still points to an
interesting direction for further reducing this dependency.

IV. PERFORMANCE EVALUATION

Experimental Setup & Scenarios. We evaluate Algorithm
1 in a variety of scenarios using our recent dataset [6],
which includes measurements of the power consumption and
performance of vBS policies. The experiments have been
conducted using a srsRadio vBS [2], and we have used
its default schedulers for the underlying real-time decisions
(which comply with our meta-policies).9

9The dataset contains 32 797 measurements for different policies, fixed
for approximately one minute. The experiments are carried out on a small
factor general-purpose PC (Intel NUC BOXNUC8I7BEH with CPU i7-
8559U@2.70GHz), which deploys the BBU and is configured with a
bandwidth of 10MHz. This means that it supplies a maximum capacity of
approximately 32Mbps and 23Mbps for the downlink and uplink operation,
respectively. See [6] for details.

0.0 0.2 0.4 0.6 0.8 1.0
Time slot 1e4

0.4

0.6

0.8

1.0

1.2

1.4

1.6


T T

non-convergence state

BP-vRAN

(a)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

configuration

0

1

2

3

4

5

# 
ch

os
en

1e3

best

suboptimal

BP-vRAN

(b)

Fig. 2. BP-vRAN regret in Scenario B for |X |=16. (a): Evolution of RT /T
in non-stationary conditions. (b): Numbers of times each eligible policy was
chosen in a window of T = 10k slots.

The random perturbations in this setup emanate due to time-
varying UL and DL demands, {dut , ddt }t, and time-varying
CQIs (Channel Quality Indicators), {cut , cdt }t. The latter are
integer numbers sent from the User Equipment (UE) to the
network to designate how good or bad the channel quality is.
The dataset contains |X |=1080 configurations (policies), but
we use a subset of them because calculating the best configu-
ration in hindsight is computationally challenging when |X | is
large.10 For the power cost function, we set Pt(xt)=Vt, where
Vt is the total power consumed by the vBS. We also set δ = 1
to prioritize the minimization of the power consumption.

For the following analysis, we assume that the traffic loads
discerned in our system are sampled, either from ddt ∼
U(29, 32), dut ∼ U(20, 23) (high DL and UL demands,
respectively), or from ddt , d

u
t ∼ U(0.01, 1) (low DL and

UL demands, respectively). Similarly, the channel qualities
are drawn, either from cdt , c

u
t ∼ U(13, 15) (good channel

qualities11 in DL and UL, respectively), or from cdt , c
u
t ∼

U(1, 3) (poor channel qualities12 in DL and UL, respectively).
According to these distributions, we discern two scenarios:
• Scenario A: the demands and CQIs are consistently drawn

uniformly at random from the high distribution (stationary).
• Scenario B: the demands and CQIs are drawn randomly

from the high distribution in slots {2t− 1}dT/2et=1 and from
the low distribution in slots {2t}bT/2ct=1 .
The first scenario aligns with the experiments in recent

studies, e.g., [6], [5], [18]. The second one implements a ping-
pong strategy that corresponds to the most challenging-to-learn
adversarial scenario in regret analysis, cf. [9]. Clearly, an
algorithm that performs well under this case is expected (in
fact, guaranteed) to perform well in all other scenarios.

Gap in Prior work. We first show that state-of-the-
art works under-perform in commonly-encountered non-
stationary conditions. We focus on BP-vRAN [6], which relies
on the seminal GP-UCB algorithm, cf. [21]. To demonstrate
that even a simple case hampers its operation, we focus on a
subset of configurations: |Md|= |Mu|= |Au|= |Ad|= 2 and
|Pd|=1, thus |X |=16.

10We stress that this benchmark configuration is needed for the plots of
RT , but it is not required when one uses the algorithm in practice. Hence,
this limitation is related only to presenting the regret here.

11CQI 13 and 15 correspond to SNR of 25dB and 29dB, respectively.
12CQI 1 and 3 correspond to SNR of 1.95dB and 6dB, respectively.



BP-vRAN models the user demands and CQIs as context,
which are observed before a policy is decided. Given that the
context directly impacts the selection of the controls, we will
show how changes in the network conditions and demand will
affect the algorithm’s success. We present an example where
the context differs between its observation and application to
the system. This case might apply quite often in practice, given
that the slots of reference are of several seconds. For the plots
in this section, it is crucial to note that the reward function
ft(xt) is unbounded.13

We perform the experiments in Scenario B. Thus, even
though we detect low demands and CQIs in the first slot,
when the context is applied to the system, these values have
increased significantly because, for example, many users with
minimum noise interference arrived. In the next time slot, we
observe high demands and CQIs, but the actual context has
decreased when applied to the system because, for example,
few users are present and SNR is reduced. According to the
distributions mentioned above, the pattern remains the same
in the following slots, i.e., context altering between high and
low values in the observation and application to the system.

In Fig. 2(a), we underline that the expected average regret
does not decrease, even after T = 10k slots. This happens
because the algorithm takes decisions in each slot t by
assuming knowledge of ft, which might take arbitrarily low or
high values, depending on the network conditions. However,
due to the system’s volatility, the policy for each t should be
selected solely based on past values {fτ (xτ )}t−1τ=1. Fig. 2(b)
demonstrates that BP-vRAN insists on selecting configuration
#5 (approximately for 50 % of the slots) and picks the optimal
configuration #14 only for 590 out of the 10k slots. This
manifests its inability to explore the configuration space due
to the non-stationary demands and CQIs.

Evaluation of Algorithm 1. We consider both Scenarios
A and B in our experiments, and we set |X | = 256 for the
reasons mentioned above. Fig. 3 depicts the expected regret
for 20 independent runs in a window of T =50k slots. More
precisely, Fig. 3(a) plots the decay of RT for BSvBS in the
stationary and adversarial cases. During the first 12k slots,
the incurred regret for Scenario A is higher than the case
of Scenario B, i.e., we perceive a 7.5 % difference in slot
1k. As time evolves and confidence in the performance of
configurations is built, it is reasonable to observe the regret
of the stationary case (Scenario A) to be lower than the more
volatile system of Scenario B. That is, in slot 50k, the regret
for the adversarial case is 12.7 % greater than the stationary’s
Scenario in slot 50k. Furthermore, we see in Fig. 3(b) that the
experienced regret is by far lower than the upper’s bound; that
is 80.9 % and 78.1 % lower for Scenario A and B, respectively.

In Fig. 4, we show the effect of δ in the consumed power.
In detail, we plot the evolution of the power consumption in
Scenario B and we distinguish two cases: (i) the total power

13For that reason, we avoid showing the expected regret of BP-vRAN and
BSvBS in the same plots.
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Fig. 3. BSvBS regret in Scenarios A and B for |X | = 256.
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Fig. 4. BSvBS power consumption in Scenario B for |X | = 256.

consumption; and (ii) the BBU/CPU power consumption.14 We
run the algorithm for T =100k slots, and we define a hyper-
slot of 200-slots-length to facilitate the presentation of results.
Indeed, as δ increases, priority is given to the minimization of
the power instead of the maximization of the utility (see eq.
2). Thus, for the hyper-slot 500, we manage to save 6.8 % and
9.4 % in the total and CPU power consumption, respectively,
by using δ = 100 instead of δ = 5e−4. The operators of the
system can use our proposal for conserving energy.

Table I presents the power consumed by BP-vRAN and
BSvBS in Scenario B and compares the gains each of them
achieves w.r.t. the ideal-minimum-energy of the benchmark.
We set δ = 100 to prioritize the power costs strongly over the
accomplished utility. By running BSvBS for T = 50k slots,
we get 35.5 % and 38.8 % savings in the CPU and total power,
respectively, compared to BPvRAN. In other words, BSvBS
approaches closer to the minimum possible energy cost than
its competitor.15 Interestingly, we also see an increase in these
attained gains by observing the performance of BSvBS for
more time slots. That is, by doubling the number of slots, the
savings increase by more than 1.5× up to 57.9 % and 68.6 %
in the CPU and total consumption; and become 62.1 % and
74.3 %, respectively, for T = 200k slots. On the one hand, we
note that BSvBS performs better as time passes and reaches
closer to the consumption of the best configuration, even in
the adversarial scenario. On the other hand, the indication that
the power consumption of BP-vRAN almost doubles as the
slots are doubled means that the algorithm is stuck exploiting
under-performing configurations.

14The testbed uses a single energy source, so the total power consumption
aggregates the power of the entire platform and the radio component.

15It is worth noting that vBS consumes considerable power even under the
best configuration (Min column) or even when no user is active; thus, the
direct comparison of the power would not demonstrate the actual gains.



TABLE I
POWER COST (SCENARIO B)

Slots CPU (kW) Saving (%) Total (kW) Saving (%)BP-vRAN BSvBS Min BP-vRAN BSvBS Min

200k 1052.6 992.1 955.1 62.1 2735.6 2609.8 2566.2 74.3
100k 534.6 501.1 476.7 57.9 1375.2 1313.2 1284.7 68.6
50k 262.4 252.9 235.6 35.5 677.3 660.9 635.0 38.8

V. CONCLUSIONS AND FUTURE WORK

The virtualization of base stations and the design of O-RAN
systems lies at the forefront of research in mobile networks.
A milestone in this roadmap is finding scheduling policies
that maximize the performance of vBSs while restraining their
energy consumption. These policies should be practical, i.e.,
have minimal overheads, and applicable in realistic scenarios,
meaning they should not require strong assumptions about
the (often volatile) network conditions and/or user needs. The
proposed learning scheme is O-RAN-compatible, has robust
performance guarantees, offers a knob for prioritizing energy
cost reduction, and has lightweight implementation while
outperforming other computation-demanding policies (based
on different learning approaches). Indeed, our extensive data-
driven experiments showcase gains w.r.t. these state-of-the-
art competitors that range from 35.5% up to 74.3% in terms
of energy savings. To encourage future study in this field,
we have made the source code used in this work publicly
available. The significance of these results can be understood
by considering the number of base stations already deployed,
which is only expected to increase in the near future. Finally,
our analysis identifies exciting directions for future work, such
as improving the learning bounds by reducing further the
dependency on the policy dimension.
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