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Abstract 

The percentage of the world population living in urban settlements is expected to increase to 
70% of 9.7 billion by 2050. Historically, as cities grew, the development of new water 
infrastructures followed as needed. However, these developments had less to do with real 
planning than with reacting to crisis situations and urgent needs, due to the inability of urban 
water planners to consider long-term, deeply uncertain and ambiguous factors affecting urban 
development and water demand. The “Smart Water Futures: Designing the Next Generation of 
Urban Drinking Water Systems” or “Water-Futures” project, which was funded by the 
European Research Council (ERC), aims to develop a new theoretical framework for the 
allocation and development decisions on drinking water infrastructure systems so that they 
are: (i) socially equitable, (ii) economically efficient, and (iii) environmentally resilient, as 
advocated by the UN Agenda 2030, Sustainable Development Goals. The ERC Synergy grant 
project tackles the “wicked problem” of transitioning water distribution systems in a holistic 
manner, involving civil engineering, control engineering, machine learning, decision theory 
and environmental economics expertise. Developing a theoretical foundation for designing 
smart water systems that can deliver optimally robust and resilient decisions for short/long-
term planning is one of the biggest challenges that future cities will be facing. This paper 
presents an overview of related past research on this topic, the knowledge gaps in terms of 
investigating the problem in a holistic manner, and the key early outcomes of the project. 
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Drinking water networks, transitioning, real-time monitoring, long-term design, sustainability, deep 
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1 INTRODUCTION 

Nearly 80% of the world’s population is exposed to high levels of threat to water security due to 
anthropogenic climate change [1]. Latest studies confirm that considerable changes in freshwater 
resources have been occurring across the globe, indicating a future in which already limited water 
resources will become even more precious [2]. On the other hand, the continuous expansion of 
the urban footprint means that an estimated 70% of the world’s population will live in urban areas 
by 2050 [3]. The dramatically increased water demands resulting from this unprecedented 
urbanization, together with increasingly uncertain climate conditions indicate the need for a 
holistic, intelligent decision-making framework for managing water infrastructures in the cities 
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of the future. This framework needs to ensure that allocation and development decisions on water 
infrastructure systems will be made in a socially equitable, economically efficient and 
environmentally resilient way as advocated by the UN Agenda 2030, Sustainable Development 
Goals, SDGs [4]. Consequently, there is a need for a new approach to designing the next generation 
of urban drinking water systems that applies not only to the planning and management of mature 
water infrastructure systems such as those found in developed countries, but also to developing 
countries where the fastest population growth is predicted over the next 50 years. We need a 
framework that can: (i) adapt to evolving urban water networks, new sensing technologies and 
consumer behaviours; (ii) integrate real-time monitoring and control with long-term planning 
and policy-making; (iii) assimilate water quality issues with water supply problems; and (iv) 
incorporate economic, social, ethical and environmental considerations. Moreover, the new 
framework needs to be human-centric so that intelligent algorithmic solutions are explainable 
and acceptable by human policymakers, managers, operators and consumers. 

The “Smart Water Futures: Designing the Next Generation of Urban Drinking Water Systems” or 
“Water-Futures” project, which was funded by the European Research Council (ERC), aims to 
develop a new theoretical framework for the allocation and development decisions on drinking 
water infrastructure systems [5]. We consider four challenges for the development of the 
framework for drinking water systems: scenario-based staged development, real-time smart 
operation, explainable machine learning and economic considerations. This paper presents an 
overview of related past research on this topic, the knowledge gaps in terms of investigating the 
problem in a holistic manner, and the key early outcomes of the project. 

2 SCENARIO-BASED STAGED DEVELOPMENT OF DRINKING WATER SYSTEMS 

2.1 Staged development   

World cities are facing crucial policy decisions about how to achieve long-term water security 
considering their ageing water infrastructures. The key challenges are based on whether cities: 
(i) can anticipate the future growth trends; (ii) will adopt a long-term perspective; (iii) will take 
into account decision robustness; (iv) will consider policy flexibility; and (v) are keen to develop 
strategic visions to support water infrastructure planning decisions [6]. Most of the early planning 
models were based on financial criteria and considered only pipes as network elements for 
replacement or renewal at a particular future time, i.e., a static, one-stage problem of deciding 
when it is economic to replace a pipe [7],[8],[9]. Engelhardt et al. [10]reviewed long-term planning 
strategies for water infrastructures and identified key advantages of implementing an 
optimisation-based, holistic approach to infrastructure planning. Several studies have since 
optimised mainly small benchmark systems considering one, or at most a limited number of the 
following issues: (i) a single-objective economic criterion; (ii) a static, one-stage problem; (iii) 
ideal foresight; i.e., the correct prediction of future; (iv) only pipes as decision variables; and 
(v) perfect rationality of decision-makers [11], as seen in Figure 1. What is currently missing, is 
extending the problem of planning and management into the more generalized problem of 
sustainable transitioning of urban water systems, considering multiple objectives and decision 
variables (e.g., pricing, investment, number of sensors to install), while considering both hydraulic 
and quality dynamics as well as deep uncertainties. 

Staged design of drinking water networks may be defined as the problem of identifying a sequence 
of design decisions that need to be taken over several consecutive stages during the planning 
horizon, to optimize benefits and costs, subject to specific constraints at each stage [12]. 
Optimization tools are often used to seek the best sequence of interrelated designs, which cannot 
be optimized individually as each of them encompasses the solutions from previous stages. The 
main advantage of staged development is the ability to use an adaptive design strategy to make 
decisions that adapt over time to changing circumstances rather than base them on a fixed design 
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over the entire planning horizon.  This is particularly important when decisions have to be made 
under deep uncertainty with multiple possible futures, such as in the case of increased climate 
variation. 

 

Figure 1. Approaches to long-term planning strategies for water infrastructure, the standard approach vs. 
the approach taken by the Water-Futures project 

With the realisation that climate change poses fundamental threats to infrastructures, people and 
urbanised areas, the last 20 years have witnessed an increase in research related to the impact of 
deep uncertainty on the long-term security of water infrastructure systems [13]. Combined with 
that, two key considerations have to be incorporated into the adaptive design of drinking water 
networks: 

1) Design flexibility - the ability to implement the first-stage design while keeping a view of 
the long-term system development, and 

2) Design robustness - the ability of a design to satisfy as many future scenarios as possible. 

2.2 Long-term scenarios  

While several researchers have developed approaches to introduce flexibility and/or robustness 
to infrastructure planning [14], [15], [16] [17], the ultimate goal of integrating short-term and 
long-term planning activities in a holistic theoretical decision-making framework under deep 
uncertainty (e.g., climate, demographic or economic projections) has not been addressed. 

Engineers are accustomed to using historical data in the design of infrastructure. For example, 
demand projections based on past realisations are used to assess the need for new infrastructure. 
However, predicting the long-term future is extremely difficult and often ends up with wrong 
predictions. For example, when twenty-seven top US scientists in the sixties predicted what the 
world would look like in 20 years; out of 335 predictions, nearly all were wrong [18]. Multiple 
scenarios are used instead to provide a better understanding of the range of possible 
environments the water infrastructure system must contend with in the future. Using multiple 
scenarios avoids the situation when building a water infrastructure project specifically for one 
(wrong) scenario, but uses a diversity of scenarios over which the project should perform robustly 
and satisfactorily [13]. 

3 REAL-TIME SMART MANAGEMENT OF WATER DISTRIBUTION SYSTEMS 

Decision making in urban water distribution networks can be viewed in terms of the long-term 
planning and management, discussed in the previous section, as well as in terms of the operational 
management of the water system, which is characterized by real-time and short-term decisions. 
Real-time decision making is typically implemented by automated systems or algorithms and 
supervised by water operators during the everyday monitoring and control of the system. In this 
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section, we focus on some of the key issues that need to be addressed in real-time monitoring and 
control of urban drinking water distribution systems, especially in view of new technological 
advances that are starting to become widely available for the management of water distribution 
systems.  

The objectives of monitoring and control of water systems include detecting and resolving 
unanticipated events in the system, controlling the system parameters to minimize losses and 
safeguard quality, optimising resource allocation and making sure the system works in the most 
efficient way (e.g., energy efficiency). On the other hand, real-time monitoring and control must 
be aligned with the long-term management and planning decisions, as well as the general high-
level policies. This includes monitoring how the risk of abnormal events changes in time and how 
to reconfigure the system in order to mitigate extreme events, which may be of low probability 
but high impact. At the same time, it is crucial that future technology developments (e.g., new 
embedded sensors and actuators) will not increase risks to urban water systems (e.g., malicious 
attacks). 

Various aspects of the real-time monitoring and control problem have been investigated in water 
systems [19]. In practice, usually, the system parameters are unknown, therefore the models need 
to be calibrated using an optimization method [20],[21]. Since water consumption affects the 
flows in a network, consumers play an important role in the dynamics of drinking water 
distribution systems, and their behaviour has been studied and modelled [22][23][24].  Moreover, 
placement problems have been studied, to determine where to optimally install water quality and 
hydraulic sensors, to improve event detectability [25],[26]. Using sensor information, various 
methods have been proposed for contamination diagnosis [27],[28],[29], as well as leakage 
detection and localization [30]. In parallel to monitoring, feedback control methods have been 
proposed for water quality control [31],[32], pump scheduling [33] and pressure valve control 
[34][35].  

From a monitoring and control perspective, water distribution systems are cyber-physical-social 
systems [36] with multiple interactive dynamics and feedback loops:  

• Physical part –  this includes all the physical components that are required for the 
normal operation of a water distribution system, such as pipes, tanks, valves, etc 

• Cyber part –  this includes all the algorithms that are required for monitoring the 
operation of the water system and for autonomously controlling the behaviour of the 
physical system.   

• Social part –  this includes the human behaviour that influences the operation of the 
water system, such as the water demand of consumers, behaviour of operators and 
policy makers, etc.   

The cyber-physical-social framework for the design and analysis of real-time monitoring and 
control methods for water distribution systems facilitates a holistic approach that takes into 
consideration the embedded nature of the cyber-physicals parts of the system, while at the same 
time incorporating human behaviour (social part), which is an integral part of the operation of 
water systems. The dynamics of drinking water distribution networks include the hydraulic 
dynamics (e.g., flows and pressures) and the water quality dynamics (concentration of various 
chemical substances and biological species). Due to the conventional decay of chemicals over time, 
the hydraulic dynamics affect the water quality dynamics.  

During the last few years, there have been significant advances in the development of new sensing 
devices that measure various hydraulic and quality parameters of water systems. These sensing 
devices are often deployed in an Internet-of-Things (IoT) setting, with the capability to be 
embedded and integrated with real-time decision and control algorithms.  
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It is anticipated that this technological trend will continue in the future with further proliferation 
of IoT technology and the advancement of information and communication technologies and data 
analytics. This will result in novel sensing devices for measuring water quality and hydraulic 
parameters, which are expected to be smaller, cheaper and possibly easier to install and maintain. 
Moreover, these devices will be connected to the internet, so the information will be available for 
processing in real-time, both to human operators as well as to algorithms for automated decision 
making. Other advances that are affecting the operation and smart management of water 
distribution systems are the development of virtual sensors, which are based on algorithmic 
methods for measuring parameters at certain locations (in contrast to hardware devices)[37], and 
IoT actuators, which are internet-enabled devices that can enhance the automation and 
supervision processes of water distribution systems.  

While these technological advances provide the potential for significantly enhancing the 
capability for real-time smart management of water distribution systems, they also pose some key 
challenges and risks. For example, with the wide deployment of internet of things devices, there 
are risks associated with privacy issues, which need to be seriously addressed. Moreover, there 
are significant risks associated with the potential of malicious cyber-physical attacks. Since water 
systems are critical infrastructures (similar to energy and power grids, telecommunication 
networks, transportation systems, etc), it is crucial that they are protected against any potential 
cyber-physical attack that may compromise its smooth operation, or even worse, cause 
contamination of the drinking water. Therefore, in addition to handling normal operation, real-
time monitoring and control algorithms are required to be able to detect malicious attacks and to 
be able to distinguish between normal or accidental faults (e.g., sensor faults, actuator faults) and 
malicious attacks (e.g., replay attacks). 

4 EXPLAINABLE MACHINE LEARNING 

Although hydraulic equations of water distribution systems (WDS) are well understood, and 
powerful simulation technologies of WDS exist [38], modelling of real networks is subject to 
severe uncertainties: More than 16% of water pipes have surpassed their useful lives and face 
serious ageing and deterioration challenges, where the exact state is usually unknown [39].   
Moreover, optimal planning and control depend on expected future demand, a widely unknown 
quantity in particular in the light of yet unclear effects caused by global warming or growth of 
cities [40]. In such settings, data-driven modelling and prediction constitute one possibility to 
match formal models to reality.  

The increase of digital information including historical data on water demand as well as real-time 
sensor information, which mirrors the current state of the network, has led to a rise of data-driven 
methods, in particular machine learning models, in WDS. These offer crucial technologies, which 
are capable of enhancing physical simulation and control by information relevant for decisions 
which depend on the specific network state ¡Error! No se encuentra el origen de la referencia.. 
Tasks which have been addressed by machine learning in this context are widespread: estimating 
the condition of water pipelines, leakage detection and localization, prediction and management 
of pipe failures, modelling of water quality, demand prediction, optimization of water treatment 
plans, early warning systems, or efficient data-driven optimization, to name just a few 
[39],[40],[41],[42],[43],[44]. Besides classical machine learning methods such as Bayesian 
modelling, random forests, or kernel methods, recent approaches often rely on deep learning 
[45],[46],[47].  

In the context of WDS, a number of specific challenges arise, which cause the need for adaptations 
of common workflows in machine learning:  

1) Heterogeneous data format – while most machine learning technologies have been 
designed for homogeneous vectorial data, measurements in the domain of WDS include 
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heterogeneous sensor data, which are subject to spatial and temporal characteristics. 
Mixed real-valued and discrete representations can render optimization difficult, and 
data heterogeneity causes the need for data assimilation [48]. In recent years, 
dedicated models which can directly deal with temporal or spatial data such as deep 
recurrent and graph neural networks have led to promising results [48],[49], but it is 
yet unclear how to best represent digital information in the light of underlying domain 
knowledge in WDS [58].  

2) Imbalanced data and changing distribution – the frequency of observed phenomena 
does not necessarily scale with their relevance in WDS. As an example in the context of 
prediction and management, pipe failures are observed much less frequently than 
normal behaviour, hence the data distribution is skewed. As a consequence, machine 
learning models need to correct for such biases and deal with imbalanced data [43]. In 
real-time dynamic systems, another challenge is given by data drift, i.e., the fact that the 
data-generating process might change over time, caused by sensor fatigue or changing 
demands in developing cities, for example. Such phenomena lead to a violation of one 
of the fundamental assumptions of classical machine learning, the assumption that data 
are identically distributed and representative of the underlying regularity. Here special 
care has to be taken to continuously adapt machine learning models to possibly 
changing demands using online learning technologies [51][52][53]. 

3) Necessity of human-centred design – WDS as critical infrastructure directly affect 
humans in their daily life. Thereby, humans have different roles: (i) as customers to 
whom service is provided, (ii) as actors who determine the development of WDS via 
their behaviour (e.g. exhaustive consumption of water) and decisions (e.g. price policy), 
and (iii) as engineers who need to guarantee a sustainable quality of service. Human-
centred design in WDS needs to take these roles into account to achieve robust 
functionality and sustainability of WDS [54]. While machine learning technologies can 
help in short-term control and long-term planning of WDS, the black-box nature of 
modern technologies such as deep networks adds a possible complication here: 
humans might be incapable of understanding the rationale behind decisions made by 
ML technologies, and human intention and objectives implemented in ML systems 
might be severely misaligned [55]. Hence human-centred design in WDS faces the 
challenge to make ML technologies transparent to humans. 

4.1 Explainable AI (XAI) 

Explainable AI (XAI) or, more specifically, explainable machine learning refers to methods which 
substantiate black box technologies with components which can be understood by humans [56]. 
Commonly, one distinguished global XAI methods, which provide insight into the global function 
of a model (such as the most relevant rules which characterize a leakage), and local XAI methods, 
which explain a single decision only (such as an explanation of why a specific sensor signal should 
be interpreted as a leakage rather than normal behaviour). In recent years, a variety of different 
technologies have been proposed, whereby they differ w.r.t the form of explanation (such as 
feature-based versus exemplar-based methods), the algorithmic choices used to compute the 
explanation (such as post-hoc methods versus embedded methods), and the objective of the 
explanation (such as proposing actions how to repair an observed fault versus explanations which 
specify who should be held liable for an observed failure).  

Most local XAI technologies for deep models have been proposed in the last few years only; hence, 
in WDS, existing XAI approaches mostly focus on global models: as an example, natively 
interpretable global XAI methods have been proposed in the form of neuro-fuzzy-systems [41], 
i.e., extensions of logical rules to continuous measurements, which characterize conditions of 
water pipelines. Global hybrid explanation methods are presented in the work [58]: more 
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specifically, leakage detection methods combine hydraulic transient modelling and machine 
learning technologies to extract the most relevant features based on which to design the model. 
Post-hoc technologies, which determine the most relevant features to decide the water quality in 
the context of Algal bloom for trained machine learning models, have been proposed in the work 
[57]. These latter methodologies belong to the class of feature-relevance-determination methods, 
using different principles to account for possible redundancies and correlations of the information 
which is contained in diverse sets of features. 

In a recent approach, local explanation technologies have successfully been used to explain sensor 
failures in  spatio-temporal networked data in WDS [59]: Here time series models predict local 
sensor values based on the neighbourhood, and a threshold strategy is used to indicate deviations 
of sensor measurements from expected behaviour. Afterwards, so-called counterfactual 
explanations are used to explain why the deviation takes place. Counterfactual explanations 
provide the information on what needs to be changed in the input to obtain the desired output 
change. They can be computed particularly efficient for specific models [60]. In the work [59], 
local counterfactual explanations are coordinated within the WDS in such a way that it becomes 
possible to identify the global source of the sensor fault as a `consensus’ of all local explanations. 
The results demonstrate the benefit which arises when harvesting on the network structure in 
WDS for XAI methods, yet it still deals with a comparably simple setup. Recent advances in XAI 
technologies for deep graph neural networks [61] or distributional changes [60] offer promising 
starting points to explore the capabilities offered by XAI technologies for complex spatio-temporal 
systems as present in WDS. 

4.2 Fairness and trust  

Since XAI technologies provide insight into the mechanism based on which automatic decisions 
are taken, they offer a convenient possibility to inspect the objectives implemented by an AI model 
in an explicit form. In particularly, XAI methodologies enable humans to identify deviations of an 
AI model from the desired functional and non-functional goals set by a human partner. Here, two 
crucial objectives are fairness and trust.  

The notion of  `fairness’ formalizes the intuition that an AI model treats individuals or groups 
similarly unless there are valid reasons not to do so. As an example, the outcome of a recidivism 
decision should be independent of a person’s ethnicity, hence the latter should constitute a 
`protected’ feature which does not influence the final outcome [63]. XAI methods can uncover 
violations of this objective, since they are capable of explaining the dependency of decision 
outcomes and such protected attributes. Indeed, it has been shown that there exist popular AI 
models used in practice which display a severe bias in diverse areas including automated hiring, 
recidivism assessment, or language models [63],[65]. In WDS, however, the notion of fairness is 
yet widely unexplored, albeit highly relevant. Here fairness refers to the question of whether 
access and quality of WDS are evenly distributed among all customers of a WDS unless prohibited 
by unavoidable physical constraints. In the light of long-term developments, fairness in WDS also 
refers to differences in costs, quality, and services of WDS over several generations. 

The notion of ̀ trust’ summarizes the prerequisites which are required such that a human is willing 
to use an offered AI system. In the first place, this notion refers to the trust that the objectives 
aimed for by a human are met by the system, including non-functional ones such as fairness; 
beyond this alignment, it includes the trust that the AI model does so robustly and in possibly 
changing or adversarial realistic environments. Hence a second crucial demand to establish trust 
are guarantees for the security and safety of WDS in realistic and possibly changing environments 
[64]. Partially, robustness against attacks can be guaranteed by mathematical properties [62]. XAI 
technologies offer an additional avenue based on which to inspect, which attacks and changes can 
be harmful to a system – an opportunity which is yet widely unexplored in the domain of WDS.  
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5 ECONOMIC CONSIDERATIONS FOR LONG-TERM TRANSITIONING OF WATER 
DISTRIBUTION SYSTEMS 

The Water-Futures human-centric approach aspires to develop a methodology that integrates 
economic, social, ethical and environmental considerations, with direct relevance to UN Agenda 
2030, into an interdisciplinary decision-support framework that will allow agent-based societal 
welfare maximization in the short, medium and long-run, under deep uncertainty. In doing so our 
research focuses on five central unresolved scientific questions, challenging the traditional 
paradigm of Neoclassical Economics. These questions will drive our investigations for an 
alternative, deeper, more mature understanding of the structure of human preferences and the 
decision-making process.  

The traditional paradigm in Neoclassical Economics toward welfare maximization passes through 
rationality. A rational agent is assumed to seek to maximize utility given information and 
geographical boundaries. However, research has shown that rationality is a situation that is 
relative and under (deep) uncertainty it is violated. Moreover, different definitions of rationality 
exist and each produces different results. Time and uncertainty are correlated, while uncertainty 
often takes the form of ambiguity (when probabilities of uncertain events are unknown). The term 
risk refers to situations in which the probabilities of events' occurrence are known, while the 
notion of uncertainty is broader and refers to situations in which this may not be the case [66]. 
Most decisions indeed must be made in situations in which some events do not have an obvious, 
unanimously agreed-on probability assignment. This might be because too little information is 
available or because different predictions exist, resulting from different models or datasets or 
different experts' opinions. Currently, the evaluation of climate policy is generally performed 
using models that do not distinguish between risk and uncertainty but actually reduce any kind 
of uncertainty to risk. In this task we will augment the mathematical decision-making framework 
towards treating deep uncertainty, enabling robust decision making with regard to the short, 
medium and long-run development of urban water systems under climate change, as short and 
long-run decisions should be dynamically consistent and integrated into a unifying framework. 

People do not only differ in their tastes for goods and services, but also with regard to how selfish 
or fair-minded they are, which has important economic consequences. This also highlights the 
ethical dimension of welfare maximization, the concept of eudaimonia which has been neglected 
so far [67]. We will develop a mathematical decision framework for the allocation of urban water 
(over time and space, and between societal layers) and the development of the systems 
technology and infrastructure that supports this allocation, which will augment the current 
neoclassical paradigm to internalize the ethical dimension in decision making that lead societies 
to eudaimonia. The suggested augmentation builds on the literature on “Subjective Well-Being”, 
which has produced remarkable results over the last years on determinants of happiness, 
consequences of happiness, causality, integration into standard economics and policy 
consequences. 

“Subjective Well-Being” entails a deeper understanding of human preferences with regard to 
public goods, such as water infrastructure and related environmental concerns. These 
preferences are not documented in any markets and as a result, we need to infer them from other 
choices people make, or to directly elicit them via field or laboratory experiments. Water-Futures 
will use non-market valuation experimental methods [68] aided by virtual reality experiences (to 
the best of our knowledge this is the first attempt for this integration) to elicit willingness to pay 
and welfare benefits for exciting, or planned water infrastructures. People's preferences and 
valuation are dynamic and are shaped by available information and people’s ability to understand 
this information -which is multidisciplinary and science hectic. Water-Futures search for 
responses to these challenges will build on a novel combination of the literature on “Subjective 
Well-Being” and “Experimental Behavioural Economics” for developing a new mathematical 
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decision-making framework, integrated with the water systems engineering, optimal control and 
machine learning algorithms, that can support the design of smart urban water systems in a way 
that leads societies to eudaimonia (happiness via preference satisfaction). As far as 
implementation is concerned Water-Futures aims to use the systems innovation approach to co-
design the future vision for urban water systems and co-develop the technological, policy, and 
financial pathways towards achieving this future vision, by engaging through living labs, all 
relevant stakeholders from different countries across the world. 

In a response to United Nations Secretary-General Antonio Guterres’ call for action: “Today, 
Sustainable Development Goal 6 is badly off track" and it “is hindering progress on the 2030 
Agenda, the realization of human rights and the achievement of peace and security around the 
world",  our endeavour is to support and accelerate the implementation of SDG6 for the people, 
the planet and their prosperity. 

6 SUMMARY AND CONCLUSIONS 

The dramatic rise in water demand resulting from unprecedented urbanization, together with 
increasingly uncertain climate conditions indicates the need for a holistic, intelligent decision-
making framework for managing water infrastructures in the cities of the future. This framework 
needs to ensure that allocation and development decisions on water infrastructure systems will 
be made in a socially equitable, economically efficient and environmentally resilient way as 
advocated by the UN Agenda 2030, Sustainable Development Goals. Consequently, there is a need 
for a new approach to designing the next generation of urban drinking water systems that applies 
not only to the planning and management of mature water infrastructure systems such as those 
found in developed countries but also to developing countries where the fastest population 
growth is predicted over the next 50 years. 

The new design approach needs to: (i) be adaptable to evolving urban water networks (in stages), 
new sensing technologies and consumer behaviours; (ii) be able to integrate real-time monitoring 
and control with long-term planning and policy making; (iii) be able to assimilate water quality 
issues with water supply problems; and (iv) incorporate economic, social, ethical and 
environmental considerations. Moreover, the new framework needs to be human-centric so that 
intelligent algorithmic solutions are explainable and acceptable by human policymakers, 
managers, operators and consumers. Due to its complexity and many interdependent factors, this 
challenge is a typical ‘wicked problem’, which seems impossible to solve [69]. 

The success of the Water-Futures project depends on inter- and trans-disciplinary synergies, 
which combine and transcend the different expertise and methodologies (Sections 2-5) into a 
holistic design framework. As an example, scenario generation constitutes a key factor to enable 
decision-making under deep uncertainties, yet it requires socio-economic insights into the 
rationality of human decision making and machine technologies to uncover homogeneous clusters 
and critical transitions in long-term dynamics. Conversely, a valid quantitative evaluation of the 
explainability of machine learning models is impossible without a reference to expert knowledge 
and human perception, hence vocabulary and validity need insights from control theory and 
socio-economics. Short- and long-term objectives of control and decision making of smart water 
systems are closely interrelated, yielding a strong interdependency of technical as well as societal 
modelling objectives, at the same time requiring machine learning technologies to tame the 
involved combinatorial complexity. Integrating ethics and fairness in control systems requires 
socio-economics expertise. Conversely, integrating physical feedback loops and the different 
social dynamics requires deep collaboration between systems and control theory as well as water 
engineering. Although only in its first year this six-year project has already identified the key areas 
of research and addressed some of the fundamental elements of the Water-Futures framework 
for long-term transitioning of water distribution systems. 
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